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Abstract

Planning under uncertainty involves two distinct sourcés o
uncertainty: uncertainty about the effects of actions amd u
certainty about the current state of the world. The most
widely developed model that deals with both sources of un-
certainty is that of Partially Observable Markov DecisianP
cesses (POMDPs). Simplifying POMDPs by getting rid of
the second source of uncertainty leads to the well-known
framework of fully observable MDPs. Getting rid of the
first source of uncertainty leads to a less widely studied
framework, namely, decision processes where actions can-
not change the state of the world and are only intended to
bring some information about the (static) state of the world
Such “purely epistemic” processes are very relevant, since
many practical problems (such as diagnosis, database-query
ing, or preference elicitation) fall into this class. Howevit

is not known whether this specific restriction of POMDP is
computationally simpler than POMDPSs. In this paper we es-
tablish several complexity results for purely epistemic R&D
(EMDPs). We first show that short-horizon policy existence
in EMDPs isPSPACE-complete. Then we focus on the spe-
cific case of EMDPs with reliable observations and show that
in this case, policy existence is “onl\NP-complete; how-
ever, we show that this problem cannot be approximated with
a bounded performance ratio by a polynomial-time algorithm

Introduction

Most real-world planning problems are pervaded with un-
certainty. This uncertainty comes from two distinct sosrce
uncertainty about the effects of actions and uncertaintyab
the current state of the world (or partial observabilityheT
first source of uncertainty is linked to the dynamics of the
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are deterministic, then the complexity of policy existence
falls down and is onl\NP-complete (Littman 1996).

Simplifying POMDPSs by getting rid of uncertainty about
the current state of the world leads to the well-known frame-
work of fully observable Markov decision processesich
are known to be tractable, unlike general POMDPSs. Getting
rid of uncertainty about the effects of actions on the stéte o
the world leads to a less widely studied framework, namely,
decision processes where actions are only intended to bring
some information about the (static) state of the wohitthis
paper we focus on such “purely epistemic” Markov decision
processes (EMDPs for short).

Remark first that this specific class of POMDPs is very
relevant in practice. Indeed, many important problems fall
into this class, includingreference elicitatioywith possible
application to electronic commerce (see (Boutilier 20@2) f
a POMDP formulation of preference elicitatiomiagnosis
(in medicine or general systemslgtabase queryingames
(such as Mastermind and naval battleship)...

Clearly, such problems can be formulated as POMDPs
and solved using generic algorithms tailored for general
POMDPs. But doing this would not allow for benefiting
from the possible computational benefits obtained by get-
ting rid of the uncertainty about the effects of actions.sThi
raises an important question: to what extent is this specific
class of POMDPs computationally easier than POMDPs in
general? This paper considers this issue in detail and gives
some first answers by establishing several complexity re-
sults for EMDPs. We first show that short-horizon policy
existence in EMDPs i®SPACE-complete — which means
that as far as this problem is concerned, EMDPs are as com-

system, whereas the second one is purely static. The mostplex as general POMDPs. Then we focus on a specific case

widely developed model that deals with both sources of un-
certainty is that of Partially Observable Markov Decision
Processes (POMDPs) (Smallwood & Sondik 1973). Solv-
ing POMDP is a very hard task: policy existence (that is,
the problem of determining whether there exists a policy
for a given problem whose expected utility exceeds a given
threshold) in short-horizon (resp. long-horizon) POMD®s i
PSPACE-complete (respEXPSPACE) (Papadimitriou &
Tsitsiklis 1987; Mundhenlet al. 2000). When all actions
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of EMDPs where the observations returned by information-
gathering actions are fully reliable. In this case, poligise
tence isNP-complete, thus no simpler than policy existence
in deterministic POMDP, and finding an optimal policy for
such D-EMDP is atNPO-complete optimization problem
We show that this problem is not in APX, which means that
there exists no polynomial-time algorithm returning appro
imate solutions with bounded performance ratio.

!Recall thatNPOis the counterpart of the decision claéBfor
optimization problems (Ausiellet al. 1999).



Epistemic Markov Decision Processes
Definition

Epistemic Markov Decision Processes (EMDPSs) are in-
tended to provide us with a framework for epistemic plan-
ning. In EMDPs, current knowledge about the state of the
world is modelled by delief stateb (a probability distribu-
tion over the sef of possible physical states). The agent has
a set4 of available actions. Performing one of these actions
produces an observatiene O, whereQ is a predefined set
of possible outcomes, but doast change the (unknown)
state of the world. Such actions are callpdrely epis-
temic Typical purely epistemic actions are truth tests (such
as checking directly whether a given component is faulty
or not), value tests (or measurements), queries to agents or
databases, etc.

When a purely epistemic actienis performed in state,
its effect is described by an observation funct@nwhich
can be:

e Deterministic in which case) is a mapping frons x A
to O: observatiorv = O(s, a) is returned whenever is

performed ins.

Stochasticin which caseo is drawn from a probability
distributionp(+|s, a) overO. The probability of observing
o whena is applied ins is denoted) (s, a, 0).

An example of stochastic epistemic action is a noisy mea-
surement, which may return several possible values for the
same true value to be measured.

For technical reasons that will be made clear soon, in
addition to these purely epistemic actions we consider one
more action, calledtop. This action igerminating no fur-
ther action can be applied aftetop has been applied. Fur-
thermore, we will require later that every branch of a pol-
icy ends withstop. Whenever a non-terminating actian
is performed in some current belief stétea costc(a) > 0
will incur, which depends om only (and not orb). When
the actionstop is performed, a reward (positive or negative)
R(b) incurs. R(b) measures to which extent the epistemic
content of the final belief stateis satisfactory. Finally, we
let R(b,a) = —c(a) if a # stop andR(b, stop) = R(b).
Note thatR(b,a) < 0 whenever # stop. Here are some
specific cases for this functidR(.)?:

e letr : S — R, andR(b) = r(s) if b({s}) = 1 and
0 otherwise: a reward is obtained only when the state is
disambiguatedand this reward may depend on the state).

2The reader may wonder why the obvious choiR¢h) =
> scs b(s)r(s) does not figure on this list. The reason is that re-
wards should be attached to tbpistemic conterof belief states,
and should increase with the amount of information, whichlip
departs from expected utility: for instance, suppSse {s1, s2};
then, as soon as(s1) < u(sz2), the belief state in which we know
for sure that the true state is would have the minimal reward
among all belief states, which violates this principle thatre in-
formed belief states are more desirable. This principle oho
tonicity of R with respect to information would deserve more at-
tention, but we leave its study for further work.

o let {(X1,1),...,(Xq,aq)} Where eachX; is a
nonempty subset of and eachy; a positive real num-
ber. ThenR(b) = max{«;|b(X;) = 1} if there exists @
such thab(X;) = 1 (andR(b) = 0 otherwise).

e R(b) = —h(b), whereh(b) = > s —b(s)log(b(s)).

For computational reasons, we require tRatan be ex-
pressed in space polynomial 8], |A|,|O] and computed
also in polynomial time from this polynomial size input. For
instance, in the first case we only need to stdrg for each
s € S, which takes spac@(|S|) and from whichR(b) is
computable in time)(|S)).

Formally, an EMDP is a tupléS, A, 0,0, R, by, H):

S, A andQ are finite sets o$tates actionsandobserva-

tions respectively,

O is theobservation functionO(s, a,0) = p(o|s,a) is

the probability of observing after taking actioru while

being insS.

‘R is thereward function

by (initial belief stat¢ is a probability distribution oves.

H < Nis thehorizonof the EMDP.

Itis clear that an EMDP is a special case of finite-horizon
POMDP, where the transition functidh is defined as fol-
lows: for anya € A, T(s,a,s) 1if s s, and
T(s,a,8')=01if s £ s

Belief state update in EMDP

In an EMDP, observations modify our current knowledge
about the state of the world: only theelief changes, not
the state of the world itself (which departs from the general
POMDP setting). Recall that in a POMDP, when an action
a € Ais performed in belief state € 5 and an observation

o € O results, a new belief stat¢ € B is computed as :

p(ols’,a) ¥oes (T(s,a,5)b(s))
p(olb, a) '
wherep(olb, a) is a normalizing factor independent gf

Taking into account the transition simplification, the
EMDP belief state update becomes:

_ p(ols', a)b(s")
p(olb, a)
where the normalizing factgr(o|a, b) is computed as:

p(olb,a) = Z p(o|s’,a)b(s’), Va,o,b.
s’eS

Vs' € §,b0(s") =

bo(s") Va,o,bandvs' ¢ S, (1)

)

SRemark that, since the state of the world does not change when
performing actioru, O(s, a, 0) can be interpreted both as the prob-
ability of observingo when taking actiom while being ins and as
the probability of observing when taking actiorm and ending up
ins.

“Throughout this paper, the problems considered hafieite
horizon As far as purely epistemic problems are concerned, this
does not really make sense to consider infinite-horizonsaati
problems. Moreover, the most interesting classes of EMD@s w
consider next imply that the horizon is not only finite but bded
by the number of available actions. For similar reasons, eveat
consider discount factors.



Computing optimal policies for EMDP

In a finite-horizon EMDP (as in a POMDP), a poliéycan

be represented by a treg of depth H, where each node

is labelled with an action, and the edges leaving a node la-
belled with actiona represent all possible observation out-
comes aftewn is performed. Moreover, all terminal nodes,
and only terminal nodes, are labelled &yp. Equivalently,

a policy can be viewed as a partial functi@mapping fi-

nite (and possibly empty) sequences of pairs consisting of
an action and an observation to an actié): is the first ac-
tion of the policy, and (a1, 01, - . ., a;, 0;) is the action to be
performed after actions,, . . ., a; have been performed and
have resulted in the observatians. . ., o;. The utility of a
policy 6 applied in initial belief staté, is the expectation of
the sum of rewards incurred along all branches:

H
Vo(bo) = B[ > Ribr, an)lbo, 6
t=0

Given an initial belief staté, and a policy treers, we can
build iteratively the corresponding tree of reachabledjeli
states. To the root of the tree is attached belief tatand

for any node of associated belieénd actior: = 75(b), the
belief attached to the successor node via edge labelied
b¢. The utility of policyd can then be computdzhckwards
attaching rewards to the (belief states) leaves of the tree,
and costs to every edges. Aptimal policyé* for a finite-
horizon EMDP (a policy maximizing® (by)) can of course
also be computed backwards. However, one difficulty with
finite-horizon POMDP in general is that the size required
for expressingH -steps finite horizon policies grows expo-
nentially with the horizorH{ considered, as grows the num-
ber of belief states that can be reached from the initiaklbeli
state. So, the backwards induction algorithm just desdribe
is of exponential (time and space) complexity.

Let us now consider theoLICY EXISTENCE problem:
given a problen and a real numbew, is there a policy
for P whose expected value is at lea& Recall that for
general POMDPs, this problem BSPACE-complete for
problems with a short-term horizon, that is, wh&n< |S|
(Papadimitriou & Tsitsiklis 1987; Mundhergt al. 2000¥.

In the remainder of the paper, we show that policy existence
for EMDPs is alsd®®SPACE-complete in the short-term case
(and, a fortiori, PSPACE-hard in the more general finite-
horizon case). This result is rather negative, since it show
that EMDPs are as hard to solve as general POMDP. How-
ever, we will show that in the specific case where actions
aredeterministi¢i.e. provide us with reliable observations,
(a) any EMDP has a short-term horizon, and (b) policy exis-
tence problem ifNP-complete.

Complexity of policy existence in finite-horizon
EMDPs

The results of this section rely on the following complexity
result by (Conitzer & Sandholm 2003). DefisgATE DIs-
AMBIGUATION (SD) as the following problem:

®Equivalently, PoLICY EXISTENCE is PSPACE-complete
whenH is encoded in unary in the input.

Definition 1 (STATE-DISAMBIGUATION) We are given:

e Aset® = {#,,...,0,} of possible states of the world
and a uniform probability distributiop over©.

o A utility functionu : © — [0; +00[. u(6;) is the utility of
knowingfor surethat the state of the world ;.

o AsetQ = {qi,...,q,} of queries.g; = {qj1,...,qjm, }
is a set of subsets @, such thatJ, ;... ¢jx = ©. If
the true state of the world & andg; is asked, an answer
is chosen (uniformly) randomly among the answgis
containingd;.

¢ A maximum numbe¥ of queries that can be asked and a
target real valuez > 0.

The STATE DISAMBIGUATION problem consists in decid-
ing whether there exists a policy asking at mdsgueries
that gives expected utility at lea&t. If 75(6;) denotes the
probability of identifyingd; by using policy, the SD prob-
lem amounts to deciding whether there existsuch that
Zlggn p(0:)ms(0:)u(0;) > G.

Proposition 1 (Conitzer & Sandholm 2003)sD
PSPACE-hard, even ifN < n.

Remark that (Conitzer & Sandholm 2003) does not con-
tain any result about the exact complexity s (but only
the PSPACE-hardness result). This exact complexity actu-
ally depends on the way is represented in the input: ¥
is expressed in unary, or i¥ is required to be bounded by a
polynomial function ofn + r, thensD can easily be shown
to be inPSPACE, which leads to the following result:

Corollary 1 Short-term STATE
PSPACE-completé.

From Proposition 1 we now derive the following result:

Proposition 2 poLICY EXISTENCE for short-term EMDP
is PSPACE-complete.

Proof Membership toPSPACE is classical (and similar to
the membership proof t&®SPACE of the QBF problem, since
both problems have the same structure, namely, they con-
sist in searching through a polynomial-depth tree). Hasdne
comes from the following polynomial reduction frosp. Let

SD {©,p,u,Q,N,G} with N < |©|. Define the
following short-term EMDP policy existence probleniP
{§,A,0,0,R,bo, H,G}, where: S = ©, A = Q U {stop},
0= U1§j<r’1<k<mi{qjk}, bop = pandH = N. When query

q; € Qs asked in staté;, observationy;, is returned with prob-
ability O(0;, ¢;, q;,) defined as in the SD problem. Actictiop
does not return any observatioR.(b, ¢;) = 0,Vq; € Q (there are

no action costs) an® (b, stop) = u(0;) if b(#;) = 1 for somes
andR (b, stop) = 0 otherwise. Then, we show that there exists a
policy ¢ for SD of expected utility at leastr if and only if there
exists a corresponding policy f@ of expected utility at leas®.

First, notice that any policy for SD can be represented by
the same decision tree of length at méétfor P. In addition,
branches issuing from query actions have the same protyadoii
tached to them in both SD arl. So, if a leaf of the tree is a
disambiguated stat@; } in both SD andP, the probabilityrs(6;)

is

DISAMBIGUATION iS

5When N is expressed compactly (in binary), then the problem
is most probably not ilPSPACE but can only be shown to be in
EXPSPACE.



is the same in both cases. Finally, since utilities incundetn
statef; is disambiguated in the SD case and wkeésp is applied
in the same situation i® are equal, the utility of policy in P is
D i<icn P(0:)Ts5(0:)u(d;) as in the SD case.

Thus, any policy has the same value in both SD @&gdvhich
implies thatP solves SD. As a consequen@&LICY EXISTENCE
in short-term EMDPs i® SPACE-hard. m|

Deterministic EMDP

We study here a subclass of EMDP where the observation

function is deterministic, i.eo = O(s,a) € O. If we write
S¢ = {s € §,0(s,a) = o} then for any non-terminating
actiona, {S¢}.co(s,a) forms a partition ofS. In this case,
the belief state update (equation 1) writes

ooy b)) bls) . 0 -
bo(s) = Priolad) ~ b(S?) if s € Sg and0 otherwise (2)

In this section we will show that (i) policies for finite-

horizon D-EMDP can always be expressed in size bounded

by |S|H, (ii) the value of any policy can be computed
in polynomial time and (iii) a polynomiahpproximation-
preservingreduction can be built from the MiMum SET
CoVER problem to finite-horizon D-EMDP. From (i) and (ii)
we get that short-term D-EMDP belongsk. From (iii)

we get that it isSNP-complete and even does not admit any
constant-ratio polynomial-time approximation, sincexh
MUM SET CoVER does not (Lund & Yannakakis 1994).

Polynomial-space policy expression in D-EMDPs

As already noticed, the size required for expresdiirgteps
finite horizon policies for POMDP grows exponentially with
H. The same difficulty holds for finite-horizon EMDP in
general, however, we show that it is not the case for finite-
horizon D-EMDP. First, we show that belief state update
(equation 2) implies that the belief states that can be eghch
at any time step have a very specific form.

Proposition 3 Let a D-EMDP P be given, and let
(a1,01,.. at,ot) with t < H be a possible sequence of

ter the sequence has been observed We have:

b(s)
AL Gon
b( Ni=1 S;’,i)
Proof We prove the result by induction. It is true for= 1 as a

result of equation 2. Then, assume it is truetfor H and let us
show itis true fort 4- 1. Applying Eq 2 tob = bgl> 5!, we get

.....

t
if s € (1) Sgi and 0 otherwise.

=1

bayian(s) =

if s € Sa; 71 and O otherwise.

O yeeey o Ot41
obaa (Satt)

.....

The induction hypothesis impligg?’ %" (s) =

if s € N_, S and 0 otherwise.

0t+1

N (AL, 52)
oy 52)

Furthermoreb

,,,,, o (Sot+1) — b(

----- at41

01,..,0¢ 41 _ b(s) t+1 oL
ThUS ba1 (S) = W fS € ﬂ S and O

otherwise. O

From Proposition 3, we get that < H and for any pos-
sible partial trajectoryas, o1, . . ., at, 0t ), the current belief
stateby! o is uniquely determined by the initial belief
stateb and the set of state§);_, S¢). Now, given a policy
5, let us definesyt° by ¥ = S and

S§11~~~7Ot70t+1 501, +,0t,0t N SOt+1

t
é(ai,o01,.. ) = ﬂ Sl(l)i
=1
where for everyi, a; = 6(a1,01,...,a,-1,0;—1). Atany
time stept > 1, if the current belief state is represented by
St then the next action i8(a1,01,...,ai-1,0t_1).
The next result also holds:

5,0t

Proposition 4 For everyt < H, the set of nonempty subsets
of {1t }(01 .oncor fOrms a partition ofS.

Now, assume

or)EOt forms

is a partition of
0441€0
Therefore, the set of nhonempty
ot+1 is a partition ofS. O

Proof By induction ont. First, this is true forS?.
that the set of nonempty subsets{afy*° }

a partition ofS. Then, {55 0t 0f+1}

St for any (o1, ...,0t).
O01,..-,0¢41
subsets of 5§ }<01,...,0t+1)e
Proposition 4 implies that, at any time stejall the reach-
able belief states are distinct, and th|d4,is an upper bound
of the number of reachable belief states at timiEhis in turn
implies that the policy tree corresponding to a finite-haoniz
D-EMDP has size bounded ib§|H .

Example 1 LetS = {1,2,3,4,5,6}, O = {01, 02,03} and
A = {a,b,c}, where all three actions are deterministic and
thus defined by = {1}, 5> = {2,3,4,5}, 5% = {6},

So = {1,2,3}, S¢* = {4,5,6}, S = {1,3,5}, and
S — (2,46}, Letby = (0.2,0.2,0.2,0.2,0.1,0.1). Then
b3t = (1,0,0,0,0,0); b3 = (0,2,2,2,1,0); b3z =

(0,0, §,O 1.0). Figure 1 shows a policy (left) and the sup-
ports of the reachable belief states. Notice thatucceeds

in disambiguating the state of the world.

};M/N

stop c stop c{2,3,4,5} {6}
M /\
b b b{3,5} b{2,4}
A2 B2 BN
stop stop stop Stoq:;} {5} {2} {4}

Figure 1: Left: policy. Right: Reachable belief states.

Proposition 4 does not yet allow for claiming that finite-
horizon EMDP have a polynomial-space policy representa-
tion, sinceH may be exponentially large in the size of the
input. However, the following result shows that a D-EMDP
always has a short optimal policy.



Proposition 5 Let P be a D-EMDP and a policy for P.
Then there exists a poliey such thatdepth(d') < |A| + 1
andVj (bg) > Vs(bo).

Proof When actions are deterministic, applying the same action
twice on the same branch of a poligy will give the same
observation. Therefore, on a given branchypff some actiona
appears, applying again later will not change the belief state,
so any occurrence af other than the first one may be removed
without changing the belief state. L&tbe the policy obtained by
removing such action occurrences. The belief states adataim

§ and$’ are the same§ and §’ may differ only on action costs.
Since action costs are never negative (applying an actieerne
increases the global utility), we hawg, (bo) > Vs(bo). Lastly,
since each action € A appears at most once on every branch of
', the depth of’ is at most.A| + 1. ]

This fact allows to reduce the search for the optimal policy
to policies of depth at mostd| + 1. Therefore, any finite-
horizon D-EMDP can be reduced to an equivalent short-term
horizon D-EMDP (which horizon ig4| + 1). We therefore
get the following corollary:

Corollary 2 For any finite-horizon D-EMDP probler® =
(S, A,0,0,R,b, H), there exists an optimal policy whose
depth in bounded bjy4| + 1.

The latter result, together with Proposition 4, finally
proves the following corollary:

Corollary 3 Any finite-horizon EMDP P
(§,4,0,0,R,b,H) has an optimal policy that can
be represented in space(|S||.A|).

Policy existence for D-EMDP isNP-complete

We first show that the problem of finding a polidy =
{01,...,0n } optimal with respect t@ is in NP.

Lemma 1 poLicy EXISTENCEfor D-EMDP is inNP.

Proof Let P = (S, A,0,0,R,b, H) be a short-term D-EMDP
problem andv be a utility threshold. Due to Corollary 2, without
loss of generality we may assume thét < |A| + 1. We know
from Corollary 3 that there exists an optimal polidythat can
be expressed in spadé| = O(|S||A]). We now show that
the vaIueV‘s(b) can be computed in polynomial time. Indeed,
this value can be computed backwards by solving the equsation
VE(b) = R(1,60) + Yo (p(ob,a)Vi1(b7)), where
V;}H(b) = 0,Vb € B. Since the number of belief states which
can be reached il time steps or less from the initial belief state
b is in O(|S]|A|), they can all be generated in polynomial time
and the backwards computation also takes polynomial tineg. S
checking whetheV5(b) > v can be done in polynomial time, and
the policy existence problem D-EMDP is NP. a

NP-hardness ofrPoLicY EXISTENCE for D-EMDP is
now shown by a polynomial reduction fromNIMUM SET
COVER(MSC), which is known to bé&lP-hard (Karp 1972).

Definition 2 (MINIMUM SET COVER) An instance of the
MINIMUM SET COVER (MSC) problem is composed of
a finite setsS {s1,...,s,} and a collectionC =

{C1,...,Cy} of subsets of. Asolutionfor theMSC prob-
lem is a subsef’ C C which coversS, i.e. (Joee C = S.
The measuren for theMSC problem ism/(C’) = |C'|.

The proposed reduction computes a D-EMDP instance
Pwmsc for any instanceSC:

Definition 3 LetMSC = (S, C) be an instance of Minimum
Set Cover. We define the corresponding instance of policy
existence in D-EMDPPysc = (S, 4,0,0,R, by, H, G):

o §={s1,...,s,} isidentical to theMSC state space.
e A={ai,...,an} wherea; corresponds to sef’; in the
MSC problem.

e O = {y,n} and the deterministic functiof is such that
O(si,aj) =y if S; € Cj andO(Si,CL]’) =nif S; ¢ CJ

e by(s;) =1/n,Vs; € SandH =m — 1.

o Vb,a;,R(b,a;) is defined as follows: let/ = nm; then
R(b, stop) = M if there is a subsef’; such thab(C;) =
1; and R (b, stop) = 0 otherwise. Ther;(a;) = 1, Va;.

e G=M-m+1.

We now show the following:

Lemma 2 There exists a policyy for Pysc such that
Vs(bg) > G if and only if MSC is a positive instance of
MINIMUM SET COVER.

Proof « LetC' = {C;,,...,Ci, } be asetcover of of size at
mostm (thus,q < m). Then consider the following polic§.:
a;, ;1 T o= yesthenstop

el se a;,; i f o= yesthenstop

(.)

el sea;,_,;stop

Clearly, the depth obc is g — 1 < m — 1. Consider any
terminal node ob.. If the last action performed befosgop was
a;; with j < ¢ — 1, then the fact that the observation returned
after a;; is yes implies that the final belief state is such that
b(Ci;) = 1, therefore,R (b, stop) = M (b is a “good” belief
state). If the last action performed beforop wasa;,_,, then
there are two possibilities. If the returned observationyés,
then the final belief staté is such that(C;,_,) = 1, therefore,
R(b,stop) = M. If the returned observation iso, then we
know that the true state of the world is not in any of the sets
Ci,...,Cq—_1; therefore, becaus@ is a set cover of5, the true
state of the world must be ifi;, henceforthb(C,;) = 1, and again
R(b, stop) = M. Thus, the reward associated with every terminal
node isM, and each branch contains at mast— 1 non-stop
actions, thereforés , (bo) > M —m + 1.
= Let é be a policy of depth at most: — 1 and such that
Vs(bo) > M —m + 1. Leta,,, ..., a, the actions appearing on
the rightmost branch of. Then we claim that there exis;_, ,
suchtha{C;,,...,Cy, ., } is a set cover of (of size at mosin).
Suppose it is not the case, that is, there exists a stttat does
not belong to any of th¢C;, ,...,C;, ., }. If the true state of the
world is s then the obtained branch will be the rightmost branch
of 0, and the reward associated with the final belief state will be
0. Since the prior probability of is £, the value o5 would be at
most(1 — £).M = M — m, which contradicts the assumption
thatVs(bo) > M — m + 1. Therefore, there exists a set cover of
S of size at mosin. a



From Lemmas 1 and 2 we get the following result:

Proposition 6 poLIcY EXISTENCE for D-EMDP is NP-
complete.

Finally, optimal policies for D-EMDPs are hard to ap-
proximate.

Proposition 7 Finding a D-EMDP optimal policy is not in
APX.

Proof MSC does not belong to APX (Lund & Yannakakis 1994),
i.e. no polynomial algorithm exists which approximateM&C
optimal solution within any constant factor. Since the ithn
used in the proof of Lemma 2 iapproximation preservirlg
finding an optimal policy for a D-EMDP is not in APX. m|

Concluding remarks

In this paper we have defined the class of epistemic
POMDPs, which are relevant fanformation gathering

the general complexity landscape of planning under uncer-
tainty. Second, these negative results suggest that ittmigh
not be necessarily suboptimal to reuse policy construction
algorithms for general POMDPs for solving epistemic plan-

ning problems.

Finally, a related stream of work is planning under par-
tial observability with compact action descriptions. Most
planning languages use concise representations of states a
actions, which makes the plan existence problem more com-
plex than when the state and action spaces are flat (as in our
paper). Rintanen (Rintanen 2004) shows that the plan exis-
tence problem for propositional non-probabilistic plamni
with partial observability is 2-EXP-complete and the spéci
case with deterministic operators is EXPSPACE-complete.
Obviously, the next step would consist in considering epis-
temic planning problems with propositional representatio
and identify the complexity of the plan existence problem.

Finally, even though not approximable within a constant
factor in polynomial time, EMDP (and structured EMDP)

problems. Even though an EMDP can be seen as a degener/May admit approximate solution algorithms. We plan to

ate case of POMDP, we have shown that solving an EMDP is
as hard as solving a POMDP in geneRSPACE-complete

for short-term horizons), except when knowledge-gatlegerin
actions are deterministic, in which case the policy existen
problem is onlyNP-complete.

One of the works most related to ours is (Conitzer &
Sandholm 2003), where the state disambiguation problem
is shown to bdPSPACE-hard. Our work extends theirs by
providing a unique framework for meta-reasoning problems
(finite-horizon EMDP).

Another related result can be found in (Littman 1996),
where policy existence fordeterministic POMDP (D-
POMDP) is shown to b&lP-complete. As a particular case
of D-POMDP, D-EMDP are irNP as well. Even though
D-EMDP seem simpler than D-POMDP at first glance, we
show that they ar&lP-complete as well and not in APX,
which implies that D-POMDP are not in APX either. The
fact that D-EMDP belongs tdlP could have been derived
directly from Littman'’s result, however, our direct prodf a
lows to prove a result concerning the size of optimal poli-
cies which contrasts with Littman’s result about D-POMDP.
More precisely, we have shown that whatever horizon is con-
sidered (polynomial inS|, finite, or even infinite), optimal
policies for D-EMDP have sizé&(|S||A]), at most. For
D-POMDP in general, this size is i@(H|S|) and is only
bounded by(1 + |S|)¥! (infinite horizon case).

Admittedly, our results are rather negative. However we
believe they are significant for two reasons. First, befoee w
established these results, we did not know whetheNthe
hardness result for deterministic POMDP (Littman 1996)
was still holding under the additional restriction thatacs
are purely epistemic; given the practical importance aed th
specificity of such purely epistemic MDPs, it is significamt t
know that these are not simpler than deterministic POMDPs.
This, together with th® SPACE-completeness result in the
general case, is a contribution to making more complete

"To show this, itis enough to notice that the reduction presser
the solution quality measure.

study algorithms using heuristics basediniormation the-
ory principles (such as entropy, or the value of information).
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