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Abstract

Planning under uncertainty involves two distinct sources of
uncertainty: uncertainty about the effects of actions and un-
certainty about the current state of the world. The most
widely developed model that deals with both sources of un-
certainty is that of Partially Observable Markov Decision Pro-
cesses (POMDPs). Simplifying POMDPs by getting rid of
the second source of uncertainty leads to the well-known
framework of fully observable MDPs. Getting rid of the
first source of uncertainty leads to a less widely studied
framework, namely, decision processes where actions can-
not change the state of the world and are only intended to
bring some information about the (static) state of the world.
Such “purely epistemic” processes are very relevant, since
many practical problems (such as diagnosis, database query-
ing, or preference elicitation) fall into this class. However, it
is not known whether this specific restriction of POMDP is
computationally simpler than POMDPs. In this paper we es-
tablish several complexity results for purely epistemic MDPs
(EMDPs). We first show that short-horizon policy existence
in EMDPs isPSPACE-complete. Then we focus on the spe-
cific case of EMDPs with reliable observations and show that
in this case, policy existence is “only”NP-complete; how-
ever, we show that this problem cannot be approximated with
a bounded performance ratio by a polynomial-time algorithm.

Introduction
Most real-world planning problems are pervaded with un-
certainty. This uncertainty comes from two distinct sources:
uncertainty about the effects of actions and uncertainty about
the current state of the world (or partial observability). The
first source of uncertainty is linked to the dynamics of the
system, whereas the second one is purely static. The most
widely developed model that deals with both sources of un-
certainty is that of Partially Observable Markov Decision
Processes (POMDPs) (Smallwood & Sondik 1973). Solv-
ing POMDP is a very hard task: policy existence (that is,
the problem of determining whether there exists a policy
for a given problem whose expected utility exceeds a given
threshold) in short-horizon (resp. long-horizon) POMDPs is
PSPACE-complete (resp.EXPSPACE) (Papadimitriou &
Tsitsiklis 1987; Mundhenket al. 2000). When all actions
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are deterministic, then the complexity of policy existence
falls down and is onlyNP-complete (Littman 1996).

Simplifying POMDPs by getting rid of uncertainty about
the current state of the world leads to the well-known frame-
work of fully observable Markov decision processes, which
are known to be tractable, unlike general POMDPs. Getting
rid of uncertainty about the effects of actions on the state of
the world leads to a less widely studied framework, namely,
decision processes where actions are only intended to bring
some information about the (static) state of the world. In this
paper we focus on such “purely epistemic” Markov decision
processes (EMDPs for short).

Remark first that this specific class of POMDPs is very
relevant in practice. Indeed, many important problems fall
into this class, includingpreference elicitation, with possible
application to electronic commerce (see (Boutilier 2002) for
a POMDP formulation of preference elicitation);diagnosis
(in medicine or general systems);database querying; games
(such as Mastermind and naval battleship)...

Clearly, such problems can be formulated as POMDPs
and solved using generic algorithms tailored for general
POMDPs. But doing this would not allow for benefiting
from the possible computational benefits obtained by get-
ting rid of the uncertainty about the effects of actions. This
raises an important question: to what extent is this specific
class of POMDPs computationally easier than POMDPs in
general? This paper considers this issue in detail and gives
some first answers by establishing several complexity re-
sults for EMDPs. We first show that short-horizon policy
existence in EMDPs isPSPACE-complete – which means
that as far as this problem is concerned, EMDPs are as com-
plex as general POMDPs. Then we focus on a specific case
of EMDPs where the observations returned by information-
gathering actions are fully reliable. In this case, policy exis-
tence isNP-complete, thus no simpler than policy existence
in deterministic POMDP, and finding an optimal policy for
such D-EMDP is anNPO-complete optimization problem1.
We show that this problem is not in APX, which means that
there exists no polynomial-time algorithm returning approx-
imate solutions with bounded performance ratio.

1Recall thatNPOis the counterpart of the decision classNPfor
optimization problems (Ausielloet al. 1999).



Epistemic Markov Decision Processes

Definition

Epistemic Markov Decision Processes (EMDPs) are in-
tended to provide us with a framework for epistemic plan-
ning. In EMDPs, current knowledge about the state of the
world is modelled by abelief stateb (a probability distribu-
tion over the setS of possible physical states). The agent has
a setA of available actions. Performing one of these actions
produces an observationo ∈ O, whereO is a predefined set
of possible outcomes, but doesnot change the (unknown)
state of the world. Such actions are calledpurely epis-
temic. Typical purely epistemic actions are truth tests (such
as checking directly whether a given component is faulty
or not), value tests (or measurements), queries to agents or
databases, etc.

When a purely epistemic actiona is performed in states,
its effect is described by an observation functionO, which
can be:

• Deterministic, in which caseO is a mapping fromS ×A
to O: observationo = O(s, a) is returned whenevera is
performed ins.

• Stochastic, in which caseo is drawn from a probability
distributionp(·|s, a) overO. The probability of observing
o whena is applied ins is denotedO(s, a, o).

An example of stochastic epistemic action is a noisy mea-
surement, which may return several possible values for the
same true value to be measured.

For technical reasons that will be made clear soon, in
addition to these purely epistemic actions we consider one
more action, calledstop. This action isterminating: no fur-
ther action can be applied afterstop has been applied. Fur-
thermore, we will require later that every branch of a pol-
icy ends withstop. Whenever a non-terminating actiona
is performed in some current belief stateb, a costc(a) ≥ 0
will incur, which depends ona only (and not onb). When
the actionstop is performed, a reward (positive or negative)
R(b) incurs. R(b) measures to which extent the epistemic
content of the final belief stateb is satisfactory. Finally, we
let R(b, a) = −c(a) if a 6= stop andR(b, stop) = R(b).
Note thatR(b, a) ≤ 0 whenevera 6= stop. Here are some
specific cases for this functionR(.)2:

• let r : S → IR+, andR(b) = r(s) if b({s}) = 1 and
0 otherwise: a reward is obtained only when the state is
disambiguated(and this reward may depend on the state).

2The reader may wonder why the obvious choiceR(b) =
P

s∈S
b(s)r(s) does not figure on this list. The reason is that re-

wards should be attached to theepistemic contentof belief states,
and should increase with the amount of information, which totally
departs from expected utility: for instance, supposeS = {s1, s2};
then, as soon asu(s1) < u(s2), the belief state in which we know
for sure that the true state iss1 would have the minimal reward
among all belief states, which violates this principle thatmore in-
formed belief states are more desirable. This principle of mono-
tonicity of R with respect to information would deserve more at-
tention, but we leave its study for further work.

• let {〈X1, α1〉, . . . , 〈Xq, αq〉} where each Xi is a
nonempty subset ofS and eachαi a positive real num-
ber. ThenR(b) = max{αi|b(Xi) = 1} if there exists ai
such thatb(Xi) = 1 (andR(b) = 0 otherwise).

• R(b) = −h(b), whereh(b) =
∑

s∈S −b(s)log
(

b(s)
)

.

For computational reasons, we require thatR can be ex-
pressed in space polynomial in|S|, |A|, |O| and computed
also in polynomial time from this polynomial size input. For
instance, in the first case we only need to storer(s) for each
s ∈ S, which takes spaceO(|S|) and from whichR(b) is
computable in timeO(|S|).

Formally, an EMDP is a tuple〈S,A,O, O,R, b0, H〉:

• S,A andO are finite sets ofstates, actionsandobserva-
tions, respectively,

• O is theobservation function: O(s, a, o) = p(o|s, a) is
the probability of observingo after taking actiona while
being ins3.

• R is thereward function.

• b0 (initial belief state) is a probability distribution overS.

• H ∈ IN is thehorizonof the EMDP4.

It is clear that an EMDP is a special case of finite-horizon
POMDP, where the transition functionT is defined as fol-
lows: for any a ∈ A, T (s, a, s′) = 1 if s = s′, and
T (s, a, s′) = 0 if s 6= s′.

Belief state update in EMDP
In an EMDP, observations modify our current knowledge
about the state of the world: only thebelief changes, not
the state of the world itself (which departs from the general
POMDP setting). Recall that in a POMDP, when an action
a ∈ A is performed in belief stateb ∈ B and an observation
o ∈ O results, a new belief statebo

a ∈ B is computed as :

∀s′ ∈ S, bo
a(s′) =

p(o|s′, a)
∑

s∈S

(

T (s, a, s′)b(s)
)

p(o|b, a)
.

wherep(o|b, a) is a normalizing factor independent ofs′.
Taking into account the transition simplification, the

EMDP belief state update becomes:

bo
a(s

′) =
p(o|s′, a)b(s′)

p(o|b, a)
, ∀a, o, b and∀s′ ∈ S, (1)

where the normalizing factorp(o|a, b) is computed as:

p(o|b, a) =
∑

s′∈S

p(o|s′, a)b(s′), ∀a, o, b.

3Remark that, since the state of the world does not change when
performing actiona, O(s, a, o) can be interpreted both as the prob-
ability of observingo when taking actiona while being ins and as
the probability of observingo when taking actiona and ending up
in s.

4Throughout this paper, the problems considered have afinite
horizon. As far as purely epistemic problems are concerned, this
does not really make sense to consider infinite-horizon decision
problems. Moreover, the most interesting classes of EMDPs we
consider next imply that the horizon is not only finite but bounded
by the number of available actions. For similar reasons, we do not
consider discount factors.



Computing optimal policies for EMDP
In a finite-horizon EMDP (as in a POMDP), a policyδ can
be represented by a treeτδ of depthH , where each node
is labelled with an action, and the edges leaving a node la-
belled with actiona represent all possible observation out-
comes aftera is performed. Moreover, all terminal nodes,
and only terminal nodes, are labelled bystop. Equivalently,
a policy can be viewed as a partial functionδ mapping fi-
nite (and possibly empty) sequences of pairs consisting of
an action and an observation to an action:δ() is the first ac-
tion of the policy, andδ(a1, o1, . . . , ai, oi) is the action to be
performed after actionsa1, . . . , ai have been performed and
have resulted in the observationso1, . . . , oi. The utility of a
policy δ applied in initial belief stateb0 is the expectation of
the sum of rewards incurred along all branches:

V δ(b0) = E
[

H
∑

t=0

R(bt, at)|b0, δ
]

Given an initial belief stateb0 and a policy treeτδ, we can
build iteratively the corresponding tree of reachable belief
states. To the root of the tree is attached belief stateb0, and
for any node of associated beliefb and actiona = τδ(b), the
belief attached to the successor node via edge labelledo is
bo
a. The utility of policyδ can then be computedbackwards,

attaching rewards to the (belief states) leaves of the tree,
and costs to every edges. Anoptimal policyδ∗ for a finite-
horizon EMDP (a policy maximizingV δ(b0)) can of course
also be computed backwards. However, one difficulty with
finite-horizon POMDP in general is that the size required
for expressingH-steps finite horizon policies grows expo-
nentially with the horizonH considered, as grows the num-
ber of belief states that can be reached from the initial belief
state. So, the backwards induction algorithm just described
is of exponential (time and space) complexity.

Let us now consider thePOLICY EXISTENCE problem:
given a problemP and a real numberv, is there a policy
for P whose expected value is at leastv? Recall that for
general POMDPs, this problem isPSPACE-complete for
problems with a short-term horizon, that is, whenH ≤ |S|
(Papadimitriou & Tsitsiklis 1987; Mundhenket al. 2000)5.
In the remainder of the paper, we show that policy existence
for EMDPs is alsoPSPACE-complete in the short-term case
(and, a fortiori,PSPACE-hard in the more general finite-
horizon case). This result is rather negative, since it shows
that EMDPs are as hard to solve as general POMDP. How-
ever, we will show that in the specific case where actions
aredeterministic, i.e. provide us with reliable observations,
(a) any EMDP has a short-term horizon, and (b) policy exis-
tence problem isNP-complete.

Complexity of policy existence in finite-horizon
EMDPs
The results of this section rely on the following complexity
result by (Conitzer & Sandholm 2003). DefineSTATE DIS-
AMBIGUATION (SD) as the following problem:

5Equivalently, POLICY EXISTENCE is PSPACE-complete
whenH is encoded in unary in the input.

Definition 1 (STATE-DISAMBIGUATION ) We are given:

• A setΘ = {θ1, . . . , θn} of possible states of the world
and a uniform probability distributionp overΘ.

• A utility functionu : Θ → [0; +∞[. u(θi) is the utility of
knowingfor surethat the state of the world isθi.

• A setQ = {q1, . . . , qr} of queries.qj = {qj1, . . . , qjmj
}

is a set of subsets ofΘ, such that
⋃

1≤k≤mj
qjk = Θ. If

the true state of the world isθi andqj is asked, an answer
is chosen (uniformly) randomly among the answersqjk

containingθi.
• A maximum numberN of queries that can be asked and a

target real valueG > 0.

The STATE DISAMBIGUATION problem consists in decid-
ing whether there exists a policy asking at mostN queries
that gives expected utility at leastG. If πδ(θi) denotes the
probability of identifyingθi by using policyδ, the SD prob-
lem amounts to deciding whether there existsδ such that
∑

1≤i≤n p(θi)πδ(θi)u(θi) ≥ G.

Proposition 1 (Conitzer & Sandholm 2003)SD is
PSPACE-hard, even ifN ≤ n.

Remark that (Conitzer & Sandholm 2003) does not con-
tain any result about the exact complexity ofSD (but only
thePSPACE-hardness result). This exact complexity actu-
ally depends on the wayN is represented in the input: ifN
is expressed in unary, or ifN is required to be bounded by a
polynomial function ofn + r, thenSD can easily be shown
to be inPSPACE, which leads to the following result:

Corollary 1 Short-term STATE DISAMBIGUATION is
PSPACE-complete6.

From Proposition 1 we now derive the following result:

Proposition 2 POLICY EXISTENCE for short-term EMDP
is PSPACE-complete.

Proof Membership toPSPACE is classical (and similar to
the membership proof toPSPACE of the QBF problem, since
both problems have the same structure, namely, they con-
sist in searching through a polynomial-depth tree). Hardness
comes from the following polynomial reduction fromSD. Let
SD = {Θ, p, u,Q, N, G} with N ≤ |Θ|. Define the
following short-term EMDP policy existence problem:P =
{S ,A,O, O,R, b0, H,G}, where: S = Θ, A = Q ∪ {stop},
O =

S

1≤j≤r,1≤k≤mj
{qjk}, b0 = p andH = N . When query

qj ∈ Q is asked in stateθi, observationqjk is returned with prob-
ability O(θi, qj , qjk) defined as in the SD problem. Actionstop
does not return any observation.R(b, qj) = 0, ∀qj ∈ Q (there are
no action costs) andR(b, stop) = u(θi) if b(θi) = 1 for somei
andR(b, stop) = 0 otherwise. Then, we show that there exists a
policy δ for SD of expected utility at leastG if and only if there
exists a corresponding policy forP of expected utility at leastG.

First, notice that any policyδ for SD can be represented by
the same decision tree of length at mostN for P . In addition,
branches issuing from query actions have the same probability at-
tached to them in both SD andP . So, if a leaf of the tree is a
disambiguated state{θi} in both SD andP , the probabilityπδ(θi)

6WhenN is expressed compactly (in binary), then the problem
is most probably not inPSPACE but can only be shown to be in
EXPSPACE.



is the same in both cases. Finally, since utilities incurredwhen
stateθi is disambiguated in the SD case and whenstop is applied
in the same situation inP are equal, the utility of policyδ in P is
P

1≤i≤n
p(θi)πδ(θi)u(θi) as in the SD case.

Thus, any policy has the same value in both SD andP , which
implies thatP solves SD. As a consequence,POLICY EXISTENCE

in short-term EMDPs isPSPACE-hard. 2

Deterministic EMDP
We study here a subclass of EMDP where the observation
function is deterministic, i.e.o = O(s, a) ∈ O. If we write
So

a = {s ∈ S, O(s, a) = o} then for any non-terminating
actiona, {So

a}o∈O(S,a) forms a partition ofS. In this case,
the belief state update (equation 1) writes

bo
a(s) =

b(s)

Pr(o|a, b)
=

b(s)

b(So
a)

if s ∈ So
a and0 otherwise (2)

In this section we will show that (i) policies for finite-
horizon D-EMDP can always be expressed in size bounded
by |S|H , (ii) the value of any policy can be computed
in polynomial time and (iii) a polynomialapproximation-
preservingreduction can be built from the MINIMUM SET
COVER problem to finite-horizon D-EMDP. From (i) and (ii)
we get that short-term D-EMDP belongs toNP. From (iii)
we get that it isNP-complete and even does not admit any
constant-ratio polynomial-time approximation, since MINI -
MUM SET COVER does not (Lund & Yannakakis 1994).

Polynomial-space policy expression in D-EMDPs
As already noticed, the size required for expressingH-steps
finite horizon policies for POMDP grows exponentially with
H . The same difficulty holds for finite-horizon EMDP in
general, however, we show that it is not the case for finite-
horizon D-EMDP. First, we show that belief state update
(equation 2) implies that the belief states that can be reached
at any time step have a very specific form.

Proposition 3 Let a D-EMDP P be given, and let
(a1, o1, . . . , at, ot) with t ≤ H be a possible sequence of
state / observation pairs. Letbo1,...,ot

a1,...,at
be the belief state af-

ter the sequence has been observed. We have:

bo1,...,ot

a1,...,at
(s) =

b(s)

b
(
⋂t

i=1 Soi
ai

) if s ∈
t

⋂

i=1

Soi

ai
and 0 otherwise.

Proof We prove the result by induction. It is true fort = 1 as a
result of equation 2. Then, assume it is true fort < H and let us
show it is true fort + 1. Applying Eq 2 tob = bo1,...,ot

a1,...,at
, we get

b
o1,...,ot+1
a1,...,at+1

(s) =
bo1,...,ot
a1,...,at

(s)

b
o1,...,ot
a1,...,at

`

S
ot+1
at+1

´ if s ∈ S
ot+1
at+1

and 0 otherwise.

The induction hypothesis impliesbo1,...,ot
a1,...,at

(s) =
b(s)

b
`

Tt

i=1 S
oi
ai

´

if s ∈
Tt

i=1 Soi
ai

and 0 otherwise.

Furthermore,bo1,...,ot
a1,...,at

`

S
ot+1
at+1

´

=
b
`

S
ot+1
at+1

T
`

Tt

i=1 Soi
ai

´´

b
`

Tt

i=1 S
oi
ai

´ .

Thus, b
o1,...,ot+1
a1,...,at+1

(s) = b(s)

b

`

Tt+1

i=1
S

oi
ai

´ if s ∈
Tt+1

i=1 Soi
ai

and 0

otherwise. 2

From Proposition 3, we get that∀t ≤ H and for any pos-
sible partial trajectory(a1, o1, . . . , at, ot), the current belief
statebo1,...,ot

a1,...,at
is uniquely determined by the initial belief

stateb and the set of states
(
⋂t

i=1 Soi
ai

)

. Now, given a policy
δ, let us defineSo1,...,ot

δ by S∅
δ = S and

S
o1,...,ot,ot+1

δ = So1,...,ot,ot

δ ∩ S
ot+1

δ(a1,o1,...,at,ot)
=

t
⋂

i=1

Soi

ai

where for everyi, ai = δ(a1, o1, . . . , ai−1, oi−1). At any
time stept > 1, if the current belief state is represented by
S

o1,...,ot−1

δ then the next action isδ(a1, o1, . . . , at−1, ot−1).
The next result also holds:

Proposition 4 For everyt ≤ H , the set of nonempty subsets
of

{

So1,...,ot

δ

}

(o1,...,ot)∈Ot forms a partition ofS.

Proof By induction ont. First, this is true forS∅
δ . Now, assume

that the set of nonempty subsets of
˘

S
o1,...,ot

δ

¯

(o1,...,ot)∈Ot forms

a partition ofS . Then,
˘

S
o1,...,ot,ot+1

δ

¯

ot+1∈O
is a partition of

S
o1,...,ot

δ for any (o1, . . . , ot). Therefore, the set of nonempty
subsets of

˘

S
o1,...,ot+1

δ

¯

(o1,...,ot+1)∈Ot+1 is a partition ofS . 2

Proposition 4 implies that, at any time stept, all the reach-
able belief states are distinct, and thus,|S| is an upper bound
of the number of reachable belief states at timet. This in turn
implies that the policy tree corresponding to a finite-horizon,
D-EMDP has size bounded by|S|H .

Example 1 LetS = {1, 2, 3, 4, 5, 6},O = {o1, o2, o3} and
A = {a, b, c}, where all three actions are deterministic and
thus defined bySo1

a = {1}, So2
a = {2, 3, 4, 5}, So3

a = {6},
So1

b = {1, 2, 3}, So2

b = {4, 5, 6}, So1
c = {1, 3, 5}, and

So2
c = {2, 4, 6}. Letb0 = 〈0.2, 0.2, 0.2, 0.2, 0.1, 0.1〉. Then

bo1
a = 〈1, 0, 0, 0, 0, 0〉; bo2

a = 〈0, 2
7 , 2

7 , 2
7 , 1

7 , 0〉; bo2,o1
a,c =

〈0, 0, 2
3 , 0, 1

3 , 0〉. Figure 1 shows a policy (left) and the sup-
ports of the reachable belief states. Notice thatδ succeeds
in disambiguating the state of the world.

o2o1

o1 o2

o1 o2

o3

o1 o2

o1 o2
o3

o1 o2o1 o2 o1 o2

{1}

a

c

b b

{2,3,4,5} {6}

{3,5} {2,4}

{3} {5} {2} {4}

a

c

b b

stop stop

stop stop stop stop

Figure 1: Left: policy. Right: Reachable belief states.

Proposition 4 does not yet allow for claiming that finite-
horizon EMDP have a polynomial-space policy representa-
tion, sinceH may be exponentially large in the size of the
input. However, the following result shows that a D-EMDP
always has a short optimal policy.



Proposition 5 Let P be a D-EMDP andδ a policy forP .
Then there exists a policyδ′ such thatdepth(δ′) ≤ |A| + 1
andVδ′ (b0) ≥ Vδ(b0).

Proof When actions are deterministic, applying the same action
twice on the same branch of a policyδ will give the same
observation. Therefore, on a given branch ofδ, if some actiona
appears, applyinga again later will not change the belief state,
so any occurrence ofa other than the first one may be removed
without changing the belief state. Letδ′ be the policy obtained by
removing such action occurrences. The belief states obtained in
δ andδ′ are the same;δ and δ′ may differ only on action costs.
Since action costs are never negative (applying an action never
increases the global utility), we haveVδ′(b0) ≥ Vδ(b0). Lastly,
since each actiona ∈ A appears at most once on every branch of
δ′, the depth ofδ′ is at most|A| + 1. 2

This fact allows to reduce the search for the optimal policy
to policies of depth at most|A| + 1. Therefore, any finite-
horizon D-EMDP can be reduced to an equivalent short-term
horizon D-EMDP (which horizon is|A| + 1). We therefore
get the following corollary:

Corollary 2 For any finite-horizon D-EMDP problemP =
〈S,A,O, O,R, b, H〉, there exists an optimal policy whose
depth in bounded by|A| + 1.

The latter result, together with Proposition 4, finally
proves the following corollary:

Corollary 3 Any finite-horizon EMDP P =
〈S,A,O, O,R, b, H〉 has an optimal policy that can
be represented in spaceO(|S||A|).

Policy existence for D-EMDP isNP-complete
We first show that the problem of finding a policyδ =
{δ1, . . . , δH} optimal with respect toP is in NP.

Lemma 1 POLICY EXISTENCEfor D-EMDP is inNP.

Proof Let P = 〈S ,A,O, O,R, b, H〉 be a short-term D-EMDP
problem andv be a utility threshold. Due to Corollary 2, without
loss of generality we may assume thatH ≤ |A| + 1. We know
from Corollary 3 that there exists an optimal policyδ that can
be expressed in space|δ| = O(|S||A|). We now show that
the valueV δ(b) can be computed in polynomial time. Indeed,
this value can be computed backwards by solving the equations
V δ

t (b) = R(b, δ(b)) +
P

o∈O

`

p(o|b, a)V δ
t+1(b

o
a)

´

, where
V δ

H+1(b) = 0, ∀b ∈ B. Since the number of belief states which
can be reached inH time steps or less from the initial belief state
b is in O(|S||A|), they can all be generated in polynomial time
and the backwards computation also takes polynomial time. So,
checking whetherV δ(b) ≥ v can be done in polynomial time, and
the policy existence problem D-EMDP is inNP. 2

NP-hardness ofPOLICY EXISTENCE for D-EMDP is
now shown by a polynomial reduction fromMINIMUM SET
COVER (MSC), which is known to beNP-hard (Karp 1972).

Definition 2 (MINIMUM SET COVER) An instance of the
MINIMUM SET COVER (MSC) problem is composed of
a finite set S = {s1, . . . , sn} and a collectionC =

{C1, . . . , Cm} of subsets ofS. Asolutionfor theMSC prob-
lem is a subsetC′ ⊆ C which coversS, i.e.

⋃

C∈C′ C = S.
The measurem for theMSC problem ism(C′) = |C′|.

The proposed reduction computes a D-EMDP instance
PMSC for any instanceMSC:

Definition 3 LetMSC = 〈S, C〉 be an instance of Minimum
Set Cover. We define the corresponding instance of policy
existence in D-EMDPPMSC = 〈S,A,O, O,R, b0, H, G〉:

• S = {s1, . . . , sn} is identical to theMSC state space.
• A = {a1, . . . , am} whereaj corresponds to setCj in the

MSC problem.
• O = {y, n} and the deterministic functionO is such that

O(si, aj) = y if si ∈ Cj andO(si, aj) = n if si 6∈ Cj .
• b0(si) = 1/n, ∀si ∈ S andH = m − 1.
• ∀b, aj,R(b, aj) is defined as follows: letM = nm; then

R(b, stop) = M if there is a subsetCj such thatb(Cj) =
1; andR(b, stop) = 0 otherwise. Then,c(aj) = 1, ∀aj.

• G = M − m + 1.

We now show the following:

Lemma 2 There exists a policyδ for PMSC such that
Vδ(b0) ≥ G if and only if MSC is a positive instance of
MINIMUM SET COVER.

Proof ⇐ Let C′ = {Ci1 , . . . , Ciq} be a set cover ofS of size at
mostm (thus,q ≤ m). Then consider the following policyδC′ :

ai1 ; if o = yes thenstop
else ai2 ; if o = yes thenstop

(...)
else aiq−1

; stop

Clearly, the depth ofδC′ is q − 1 ≤ m − 1. Consider any
terminal node ofδC′ . If the last action performed beforestop was
aij

with j < q − 1, then the fact that the observation returned
after aij

is yes implies that the final belief stateb is such that
b(Cij

) = 1, therefore,R(b, stop) = M (b is a “good” belief
state). If the last action performed beforestop wasaiq−1

, then
there are two possibilities. If the returned observation isyes,
then the final belief stateb is such thatb(Ciq−1

) = 1, therefore,
R(b, stop) = M . If the returned observation isno, then we
know that the true state of the world is not in any of the sets
C1, . . . , Cq−1; therefore, becauseC is a set cover ofS, the true
state of the world must be inCq, henceforthb(Cq) = 1, and again
R(b, stop) = M . Thus, the reward associated with every terminal
node isM , and each branch contains at mostm − 1 non-stop
actions, therefore,Vδ

C′ (b0) ≥ M − m + 1.
⇒ Let δ be a policy of depth at mostm − 1 and such that
Vδ(b0) ≥ M − m + 1. Let ai1 , . . . , aiq the actions appearing on
the rightmost branch ofδ. Then we claim that there existsCiq+1

such that{Ci1 , . . . , Ciq+1
} is a set cover ofS (of size at mostm).

Suppose it is not the case, that is, there exists a states that does
not belong to any of the{Ci1 , . . . , Ciq+1

}. If the true state of the
world is s then the obtained branch will be the rightmost branch
of δ, and the reward associated with the final belief state will be
0. Since the prior probability ofs is 1

n
, the value ofδ would be at

most (1 − 1
n
).M = M − m, which contradicts the assumption

thatVδ(b0) ≥ M − m + 1. Therefore, there exists a set cover of
S of size at mostm. 2



From Lemmas 1 and 2 we get the following result:

Proposition 6 POLICY EXISTENCE for D-EMDP is NP-
complete.

Finally, optimal policies for D-EMDPs are hard to ap-
proximate.

Proposition 7 Finding a D-EMDP optimal policy is not in
APX.

Proof MSC does not belong to APX (Lund & Yannakakis 1994),
i.e. no polynomial algorithm exists which approximates aMSC
optimal solution within any constant factor. Since the reduction
used in the proof of Lemma 2 isapproximation preserving7,
finding an optimal policy for a D-EMDP is not in APX. 2

Concluding remarks
In this paper we have defined the class of epistemic
POMDPs, which are relevant forinformation gathering
problems. Even though an EMDP can be seen as a degener-
ate case of POMDP, we have shown that solving an EMDP is
as hard as solving a POMDP in general (PSPACE-complete
for short-term horizons), except when knowledge-gathering
actions are deterministic, in which case the policy existence
problem is onlyNP-complete.

One of the works most related to ours is (Conitzer &
Sandholm 2003), where the state disambiguation problem
is shown to bePSPACE-hard. Our work extends theirs by
providing a unique framework for meta-reasoning problems
(finite-horizon EMDP).

Another related result can be found in (Littman 1996),
where policy existence fordeterministic POMDP (D-
POMDP) is shown to beNP-complete. As a particular case
of D-POMDP, D-EMDP are inNP as well. Even though
D-EMDP seem simpler than D-POMDP at first glance, we
show that they areNP-complete as well and not in APX,
which implies that D-POMDP are not in APX either. The
fact that D-EMDP belongs toNP could have been derived
directly from Littman’s result, however, our direct proof al-
lows to prove a result concerning the size of optimal poli-
cies which contrasts with Littman’s result about D-POMDP.
More precisely, we have shown that whatever horizon is con-
sidered (polynomial in|S|, finite, or even infinite), optimal
policies for D-EMDP have sizeO(|S||A|), at most. For
D-POMDP in general, this size is inO(H |S|) and is only
bounded by(1 + |S|)|S| (infinite horizon case).

Admittedly, our results are rather negative. However we
believe they are significant for two reasons. First, before we
established these results, we did not know whether theNP-
hardness result for deterministic POMDP (Littman 1996)
was still holding under the additional restriction that actions
are purely epistemic; given the practical importance and the
specificity of such purely epistemic MDPs, it is significant to
know that these are not simpler than deterministic POMDPs.
This, together with thePSPACE-completeness result in the
general case, is a contribution to making more complete

7To show this, it is enough to notice that the reduction preserves
the solution quality measure.

the general complexity landscape of planning under uncer-
tainty. Second, these negative results suggest that it might
not be necessarily suboptimal to reuse policy construction
algorithms for general POMDPs for solving epistemic plan-
ning problems.

Finally, a related stream of work is planning under par-
tial observability with compact action descriptions. Most
planning languages use concise representations of states and
actions, which makes the plan existence problem more com-
plex than when the state and action spaces are flat (as in our
paper). Rintanen (Rintanen 2004) shows that the plan exis-
tence problem for propositional non-probabilistic planning
with partial observability is 2-EXP-complete and the special
case with deterministic operators is EXPSPACE-complete.
Obviously, the next step would consist in considering epis-
temic planning problems with propositional representation
and identify the complexity of the plan existence problem.

Finally, even though not approximable within a constant
factor in polynomial time, EMDP (and structured EMDP)
may admit approximate solution algorithms. We plan to
study algorithms using heuristics based oninformation the-
ory principles (such as entropy, or the value of information).
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