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Abstract

In group decision making, often the agents need to decide
on multiple attributes at the same time, so that there are expo-
nentially many alternatives. In this case, it is unrealistic to ask
agents to communicate a full ranking of all the alternatives.
To address this, earlier work has proposed decomposing such
voting processes by using local voting rules on the individ-
ual attributes. Unfortunately, the existing methods work only
with rather severe domain restrictions, as they require the vot-
ers’ preferences to extend acyclic CP-nets compatible with
a common order on the attributes. We first show that this
requirement is very restrictive, by proving that the number
of linear orders extending an acyclic CP-net is exponentially
smaller than the number of all linear orders. Then, we intro-
duce a very general methodology that allows us to aggregate
preferences when voters express CP-nets that can be cyclic.
There does not need to be any common structure among the
submitted CP-nets. Our methodology generalizes the earlier,
more restrictive methodology. We study whether properties
of the local rules transfer to the global rule, and vice versa.
We also address how to compute the winning alternatives.

Introduction
In many real-life group decision making problems, the space
of alternatives has a multiattribute (or combinatorial) struc-
ture. For instance, in multiple referenda (Brams, Kilgour,
& Zwicker 1998), the inhabitants of some local community
have to make a common decision over several related issues
of local interest. For example, the inhabitants may need to
decide on whether a swimming pool is built and on whether
a tennis court is built. The decisions are not independent,
because, perhaps, if a tennis court is built there is less time
to go swimming; hence we cannot decide on the issues sep-
arately. As another example, the members of an association
may have to elect a steering committee, composed of a pres-
ident, a vice-president and a treasurer (Benoit & Kornhauser
1991). Again, the decisions are not independent: the vot-
ers may not like the president and the treasurer to be close
friends (nor enemies). In both cases, the space of alterna-
tives has a combinatorial structure.

When voting is used in artificial intelligence, these issues
become even more pronounced. For example, agents may
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have to vote over a joint plan or an allocation of tasks or
resources. These alternative spaces are also combinatorial,
and they are generally much larger than those considered in
human domains. This is one of the problems that is driving
the burgeoning field of computational social choice (for an
introduction, see (Chevaleyre et al. 2007)).

In classical social choice theory, voters are supposed to
submit their preferences as linear orders over the set of al-
ternatives, and then a voting rule is applied to select one
alternative as the winner. If the set of alternatives has a mul-
tiattribute structure, then the number of alternatives is ex-
ponentially large, so it is unrealistic to ask voters to specify
their preferences as (explicit) linear orders; hence, we can-
not apply traditional voting rules in a straightforward way.
A simple idea to cope with this problem consists of decom-
posing an election into a set of independent elections, each
of which bears on a single attribute. This works to some ex-
tent when the preferences of voters are separable (that is, if
voters’ preferences over each attribute are independent from
the values of other attributes), but it is impractical when they
are not, because in this case a voter cannot specify prefer-
ences over a single attribute without knowing the values of
the other attributes.

Instead of decomposing the election in parallel, it was
proposed in (Lang 2007) to compose local voting rules se-
quentially: given a fixed directed acyclic graph G whose
vertices are the attributes, these rules work by holding an
election for each attribute based on a local voting rule, after
the decision on its parents has been taken (which is always
possible, because G is acyclic). For this sequential proce-
dure to be applied, it is sufficient that each voter expresses an
acyclic CP-net (Boutilier et al. 1999) whose DAG is G. This
procedure is elicitation-friendly (it can be executed with an
elicitation protocol which asks each voter only polynomi-
ally many queries) and easy to compute (provided that the
local voting rules are). Its properties are studied in (Xia,
Lang, & Ying 2007a). Unfortunately, this sequential proce-
dure is applicable only to G-legal profiles, that is, profiles for
which each vote extends some acyclic CP-net whose DAG is
G. This shortcoming was partially addressed in (Xia, Lang,
& Ying 2007b), which defines order-independent sequential
composition of voting rules, allowing the profile of votes
to be compatible with any linear order (or equivalently, any
DAG) on the set of attributes. More precisely, the profile



must be compatible with some order over the attributes, but
this order is not specified in the definition of the rule.

However, the domain restriction imposed by this order-
independent sequential composition of voting rules is still
severe: there must exist some (unspecified) directed acyclic
graph G such that the profile is G-legal. (Other work in
which CP-nets are used to combine the preferences of multi-
ple agents also assumes acyclicity (Rossi, Venable, & Walsh
2004). That work allows voters to submit acyclic partial CP-
nets—an extension of CP-nets. Then, a graph representing
the group preference is built based on the submitted partial
CP-nets and pairwise aggregation rules.) This can be seen
as the conjunction of the following two restrictions: (1) each
vote i is compatible with some acyclic graph Gi; (2) for all
voters i, j we have Gi = Gj . For (1), it is known that some
linear orders on the set of alternatives do not extend any CP-
net whose associated graph is acyclic, but so far there has
been no real quantitative study of this lack of expressivity of
acyclic CP-nets. It is only known that the expressivity ra-
tio of separable preferences (a separable preference extends
a CP-net whose associated graph has no edges) is exponen-
tially small (Hodge 2006). That is, the fraction of linear
orders that correspond to separable preferences is exponen-
tially small. To our knowledge, there is no previous result
about how small the expressivity ratio is for general acyclic
CP-nets. In this paper, we prove that this ratio is exponen-
tially small to show that restriction (1) is indeed very severe.

Restriction (2) was justified intuitively in (Lang 2007) by
the belief that in many practical contexts, there exists a nat-
ural order of the attributes for the voters to decide on the at-
tributes in that order. Unfortunately, this is not always true,
and the approach fails as soon as one voter disagrees with
the order.

In this paper, we drop these two assumptions. We define
a new family of voting rules on multiattribute domains that
are applicable to any profile of linear orders. Each voter
only needs to submit a CP-net; the CP-net can be cyclic, and
there does not need to be any relationship among the voters’
CP-nets.1 These voting rules are parameterized by: (1) the
local voting rules that are used on individual attributes—we
will use these to define a particular graph on the set of al-
ternatives; and (2) a choice set function T that selects the
winners based on this induced graph. We show that if T
satisfies a very natural assumption, then the voting rules in-
duced by T extend the order-independent sequential com-
position of local rules from (Xia, Lang, & Ying 2007b). We
study whether properties of the local rules transfer to the
global rule, and vice versa. Then, we focus on a particu-
lar choice set function, namely the Schwartz set (Schwartz
1970), which has been argued to be the largest reasonable
choice set for tournament graphs (Laslier 1997). For the
Schwartz set, we study how to compute the winners under
this methodology.

1Earlier work has also considered social choice for potentially
cyclic CP-nets (Purrington & Durfee 2007). However, that ap-
proach does not apply to all possible (cyclic) CP-nets.

Preliminaries
Let X be a set of alternatives (or candidates). A linear or-
der is a transitive, antisymmetric, and total relation. The
set of all linear orders on X is denoted by L(X ). In con-
trast, a partial order is a transitive and antisymmetric rela-
tion. A profile on X of n votes consists of n linear orders
on X . A voting rule maps each profile to an alternative,
and a voting correspondence maps each profile to a subset
of the alternatives. In this paper, the set of all alternatives
is a multiattribute domain. That is, let A = {x1, . . . ,xp}
be a set of attributes, where each attribute xi takes values
in a local attribute domain Di. An alternative is uniquely
identified by the combination of its attribute values, that is,
X = D1 × . . .×Dp.

CP-nets (Boutilier et al. 1999) are a compact representa-
tion for partial orders. A CP-net N over X consists of two
parts: (a) a directed graph G = (A, E) and (b) a set of con-
ditional linear preferences �i

~u over Di, for any setting ~u of
the parents of xi in G. Let CPT (xi) be the set of all condi-
tional linear preferences on Di; this is called a conditional
preference table (CPT). When G is acyclic, N is said to be
an acyclic CP-net.

CP-netN induces a partial preorder�N such that for any
ai, bi ∈ Di, any setting ~u of the set of parents of xi (denoted
by ParG(xi)), and any setting ~z of A− ParG(xi)− {xi},
(ai, ~u, ~z) �N (bi, ~u, ~z) if and only if ai �i

~u bi. We note that
when N is acyclic, �N is transitive and asymmetric, that
is, a strict partial order. Given a DAG G on A, a CP-net N
is compatible with G if its graph GN is compatible with G,
which means that GN ⊆ G.

A linear order V extends a CP-netN , denoted by V ∼ N ,
if it extends the partial order thatN induces. For any setting
~u of ParG(xi), let V |xi:~u be the restriction of V to xi, given
~u. That is, V |xi:~u is the linear order �i

~u. Given a DAG G on
A, V is compatible with G if there exists a CP-net N such
that V ∼ N andN is compatible with G. If V is compatible
with G, we also say that V is G-legal; we say V is legal, if it
is G-legal for some acyclic graph G. The set of all G-legal
votes is denoted by Legal(G). A profile is G-legal if all of
its votes are G-legal. For any linear orderO on A, we define
GO to be the graph induced by O—that is, there is an edge
(xi,xj) in GO if and only if xi >O xj . We note that for any
DAG G, a linear order O can be found such that G ⊆ GO,
which means that any G-legal profile is also GO-legal.

Given an order O = x1 > . . . > xp and a set of lo-
cal rules {r1, . . . , rp}—that is, for any i ≤ p, ri is a vot-
ing rule on Di—the (fixed-order) sequential composition
of local rules r1, . . . , rp w.r.t. O (Lang 2007), denoted by
Seq(r1, . . . , rp), is defined for all GO-legal profiles as fol-
lows: Seq(r1, . . . , rp)(P ) = (d1, . . . , dp), where for each
i ≤ p, di = ri(P |xi:d1...di−1). The (fixed-order) sequen-
tial composition of local correspondences c1, . . . , cp w.r.t.O
is defined similarly. More precisely, for any GO-legal pro-
file P , Seq(c1, . . . , cp)(P ) = (d1, . . . , dp), where for each
i ≤ p, di ∈ ci(P |xi:d1...di−1). The order-independent
sequential composition of local rules (Xia, Lang, & Ying
2007b), denoted by SeqOI(r1, . . . , rp), extends the domain
of sequential composition of local rules to the set of all legal
profiles P , which means that the order O is not held fixed



in the definition. For any permutation σ on {1, . . . , p}, let
O = xσ(1) > . . . > xσ(p). Then, for any GO-legal pro-
file P , SeqOI(r1, . . . , rp)(P ) = Seq(rσ(1), . . . , rσ(p))(P ).
The order-independent sequential composition of local cor-
respondences is defined similarly. All of the above voting
rules (correspondences) are well-defined because it has been
shown in (Lang 2007) that for any G-legal profile, the set of
winners is the same for all O such that G ⊆ GO.

To study the properties of a voting rule, some common
voting criteria are examined. We say a voting rule r satisfies
•anonymity, if the output of the rule is insensitive to the
names of the voters;
•homogeneity, if for any vote V and any n ∈ N, n > 0,
r(V ) = r(nV ), where nV is the profile composed of n
copies of V ;
•neutrality, if the output of the rule is insensitive to the
names of the alternatives;
•monotonicity, if for any profile P = (V1, . . . , VN ) and
another profile P ′ = (V ′

1 , . . . , V ′
N ) such that each V ′

i is ob-
tained from Vi by raising only r(P ), we have r(P ′) = r(P );
•consistency, if for two disjoint profiles P1, P2, r(P1) =
r(P2), then r(P1 ∪ P2) = r(P1) = r(P2);
•participation, if for any profile P and any vote V , r(P ∪
{V }) �V r(P );
•Pareto efficiency, if for any profile P , there is no alterna-
tive c that is preferred to r(P ) by all the voters.

Acyclic CP-nets are restrictive
In this section, we show that even when each local do-
main is binary, the number of legal linear orders—the set
of all linear orders � for which there is some acyclic
CP-net that � extends—is exponentially smaller than the
number of all linear orders. Let CP (X ) = {V ∈
L(X ) : There exists a CP-net N such that V ∼ N}. That
is, CP (X ) = ∪OLegal(GO).

Theorem 1 If X = {0, 1}p, then |CP (X )|
|L(X )| ≤

p!
22p−2 .

Sketch of proof. We construct a set of exponentially many
permutations on the set of alternatives, and we prove that
for any two different linear orders compatible with the same
order over attributes, for any two (not necessarily different)
permutations in the set, if we apply the first permutation to
the first linear order and the second permutation to the sec-
ond linear order, the results are different. That is, for any
linear order compatible with a given order O, we can find
a large set of corresponding linear orders by applying the
set of permutations to it; and the sets of linear orders cor-
responding to different GO-legal linear orders are disjoint.
This completes the proof. Details are omitted due to space
constraints. �

We note that |X | = 2p. Theorem 1 implies that
the expressivity ratio of legal linear orders ( |CP (X )|

|L(X )| ) is

O((20.2)−|X|), which is exponentially small.

H-composition of local voting rules
In this section, we introduce a new framework for compos-
ing local voting rules. We call this hypercubewise compo-
sition (H-composition) of local voting rules. The reason is

that the outcome only depends on preferences between al-
ternatives that differ on only one attribute. We can visualize
the set of all alternatives as a hypercube, and alternatives
that differ on only one attribute are neighbors on this hyper-
cube, as discussed in (Domshlak & Brafman 2002). An H-
composition of local rules is defined for all profiles in which
for each vote, there exists a (possibly cyclic) CP-net that it
extends. In fact, for any linear order V on X , there exists
a CP-net N such that V extends N , so we can apply this
to any linear orders (but also some partial orders). An H-
composition of local rules is defined in two steps. In the first
step, an induced graph is generated by applying local rules
to the input profile. Then, in the second step, a choice set
is selected based on the induced graph as the set of winners.
We first define the induced graph of P w.r.t. local rules (or
correspondences) r1, . . . , rp.
Definition 1 Given a profile P = (V1, . . . , Vn) and local
rules (or correspondences) r1, . . . , rp, the induced graph
of P w.r.t. r1, . . . , rp, denoted by IG(r1, . . . , rp)(P ) =
(X , E), is defined by the following edges between alterna-
tives. For any i ≤ p, any setting −→x−i, let Ci = ri(P |xi:

−−→x−i
);

for any ci ∈ Ci, any di ∈ Di, let there be an edge
(ci,
−→x−i)→ (di,

−→x−i).
Example 1 Suppose the multiattribute domain consists of
two binary attributes: S ranging over {S, S̄} and T
ranging over {T, T̄}. The local rules are both the ma-
jority rule. Two votes V1, V2 and their induced graph
IG(Maj, Maj)(V1, V2) are illustrated in Figure 1. We note
that V1 is compatible with S > T, V2 is compatible with
T > S.

V1 : S > T
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

V2 : T > S
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

Induced graph
(S, T ) (S, T̄ )

(S̄, T ) (S̄, T̄ )

Figure 1: Two votes and their induced graph.
Next, we define the dominance relation in a directed graph.
Definition 2 Given a directed graph G = (V,E), for any
v1, v2 ∈ V , v1 is said to dominate v2, denoted by v1 �G v2,
if and only if:
1. There is a directed path from v1 to v2, and
2. There is no directed path from v2 to v1.
Let �G be the transitive closure of E, that is, �G is the
minimum preorder such that if (v1, v2) ∈ E, then v1 �G

v2. Then, another equivalent way to define the dominance
relation is: �G is the strict order induced by �G, that is,
v1 �G v2 if and only if v1 �G v2 and v2 6�G v1.

We further define two kinds of special vertices in a di-
rected graph G as follows. The first is a vertex that domi-
nates all the other vertices, and the second is a vertex that
dominates all its neighbors. We call the former the global
Condorcet winner (which must be unique), and the latter a
local Condorcet winner.

Now, we are ready to define the choice set function, which
specifies a choice set for each graph.
Definition 3 A choice set function T is a mapping from any
graph to a subset of its vertices.



We recall the definitions of some often-studied choice sets
in a graph G = (V,E).
The Schwartz set is the union of all maximal mutually con-
nected subsets. A maximal mutually connected subset is a
subset of vertices such that there is a path between any two
vertices in the set, but there is no path from a vertex outside
the set to a vertex inside the set.
The Smith set is the smallest set of vertices such that every
vertex in the set dominates all the vertices outside the set.
The Copeland set: A vertex c’s Copeland score is the num-
ber of vertices that are dominated by c minus the number
of vertices that dominate c. The vertices with the highest
Copeland score are the winners.

Choice sets were originally introduced to make group de-
cisions for tournament graphs. However, the definitions are
easily extended to general graphs, as we did above. See
(Laffond, Laslier, & Le Breton 1995) and (Brandt, Fischer,
& Harrenstein 2007) for more discussion.

We say a choice set function T always chooses the global
Condorcet winner, if for any graph G = (V,E) in which c is
the global Condorcet winner, we have T (G) = {c}. We say
that T always chooses local Condorcet winners, if every lo-
cal Condorcet winner is always in T (G). We emphasize that
here, the meaning of a Condorcet winner is different from
traditional meaning of a Condorcet winner, which refers to
an alternative that wins every pairwise election. We say that
T is monotonic, if for any graph (V,E), any c ∈ T (V,E),
and any (V,E′) that is obtained from (V,E) by only flipping
some of the incoming edges of c, we have c ∈ T (V,E′).
Theorem 2 (known/easy) The Schwartz set, Smith set,
Copeland set, are monotonic and always choose the global
Condorcet winner and local Condorcet winners.

We are now ready to define the H-composition of local
rules (correspondences).
Definition 4 Let T be a choice set function. The
Hypercubewise-T (H-T ) composition of local rules
r1, . . . , rp, denoted by HT (r1, . . . , rp), is defined as
follows. For any profile P of linear orders on X ,

HT (r1, . . . , rp)(P ) = T (IG(r1, . . . , rp)(P ))

That is, for any profile P , HT (r1, . . . , rp) computes the
winner in the following two steps. First, the induced
graph IG(r1, . . . , rp)(P ) is generated by applying local
rules r1, . . . , rp to the restrictions of P to all the local do-
mains. Then, in the second step, the set of winners is se-
lected by the choice set function T from the induced graph
IG(r1, . . . , rp)(P ).

From Theorem 1, the fact that all linear orders are consis-
tent with some CP-net, and all CP-nets can be used under H-
composition, we know that the domain of H-composition of
local rules is exponentially larger than the domain of order-
independent sequential composition. We note that to build
the induced graph, only the preferences between adjacent al-
ternatives are necessary. We note that the H-composition of
local rules is a correspondence.

One interesting question is, how H-compositions are re-
lated to (order-independent) composition of local rules. Be-
cause the H-compositions are defined by both local rules and

the choice set, the relationship should also depend on local
rules and the properties of the choice set. The next theo-
rem states that if a choice set function T always chooses
the global Condorcet winner, then H-T composition of local
rules is an extension of order-independent sequential com-
position of the same local rules.

Theorem 3 Let T be a choice set function that always
chooses the global Condorcet winner. Then, for all legal
profiles P , HT (r1, . . . , rp)(P ) = SeqOI(r1, . . . , rp)(P ).
Proof. We omit the details due to space constraint, but the
main idea is that from the winner under order-independent
sequential composition, a path to every other alternative can
be found, and no path in the other direction exists. Hence
this alternative is the global Condorcet winner, and will
therefore be elected by HT . �

Corollary 1 If T is the Schwartz set, Smith set, or
Copeland set, then HT (r1, . . . , rp) is an extension of
SeqOI(r1, . . . , rp).

Local vs. global properties
Two interesting questions for order-independent (or fixed-
order) sequential composition of local rules are (Xia, Lang,
& Ying 2007a; 2007b): First, if all of the local rules satisfy
some criterion, then does their order-independent (or fixed-
order) sequential composition satisfy it as well? Second,
vice versa, if the order-independent (or fixed-order) sequen-
tial composition of local rules satisfies some criterion, does
each local rule satisfy it as well? For H-composition of local
rules, we can ask the same question. From Theorem 3 we
know that if T always chooses the global Condorcet win-
ner, then HT is an extension of SeqOI . We can use this
observation to carry over some of the results in (Lang 2007;
Xia, Lang, & Ying 2007a; 2007b) to HT . Specifically, if T
always chooses the global Condorcet winner, and if a crite-
rion transfers from the order-independent sequential compo-
sition of local rules to each local rule, then it also transfers
for H-T composition; if a criterion does not transfer from lo-
cal rules to their order-independent sequential composition,
then it also does not transfer for H-T composition. Given
the results in (Xia, Lang, & Ying 2007b), these observations
allow us to resolve everything except how anonymity, ho-
mogeneity, monotonicity, and consistency transfer from lo-
cal rules to their H-T composition. It is easy to see that
anonymity and homogeneity always transfer. The next ex-
ample shows that if T always chooses local Condorcet win-
ners, then consistency does not transfer, even when the votes
in the profile extend (possibly different) acyclic CP-nets.

Example 2 Let X = {x, x̄} × {y, ȳ} × {z, z̄}, and let all
the local rules be the majority rule. Consider the following
three CP-nets: (The non-specified parts of the CPTs do not
matter.)
N1: compatible with x > y > z, and x � x̄, x : y � ȳ,
xy : z � z̄, x̄ : ȳ � y, x̄ȳ : z̄ � z.
N2: compatible with y > z > x, and y � ȳ, y : z � z̄,
yz : x � x̄, ȳ : z̄ � z, ȳz̄ : x̄ � x.
N1: compatible with z > x > y, and z � z̄, z : x � x̄,
zx : y � ȳ, z̄ : x̄ � x, z̄x̄ : ȳ � y.



Criteria Global to local Local to global
Anonymity Y Y

Homogeneity Y Y
Neutrality Y N

Monotonicity Y Y for monotonic T
Consistency Y N if T always chooses

local Condorcet winner
Participation Y N

Pareto efficiency Y N

Table 1: Local vs. global

For any V1, V2, V3 extendingN1,N2,N3, respectively, let
P = (V1, V2, V3). Let HT (M) = HT (Maj, Maj,Maj).
Then (x̄, ȳ, z̄) is a local Condorcet winner, so it is in
HT (M)(P ). However, HT (M)(V1) = HT (M)(V2) =
HT (M)(V3) = (x, y, z), so HT (M) does not satisfy con-
sistency (because otherwise, we must have HT (M) =
{(x, y, z)}, which we know is not the case).
The next proposition states that for any monotonic choice set
function T , the monotonicity is transferred from local rules
to their H-T composition. We omit the proof due to space
constraint.
Proposition 1 Let T be a monotonic choice set function.
If all local rules {r1, . . . , rp} satisfy monotonicity, then
HT (r1, . . . , rp) also satisfies monotonicity.
For choice sets T that always choose the global Condorcet
winner, whether properties of local rules transfer to their H-
T composition and vice versa is summarized in Table 1.

Computing H-Schwartz winners
As we mentioned in the introduction, among all choice sets,
we are most interested in the Schwartz set, because first, it
has been argued that the Schwartz set is the “largest” reason-
able choice set for tournaments (Laslier 1997), and second,
it corresponds to the nondominated set previously consid-
ered in the context of CP-nets (Boutilier et al. 2004). Recent
work on the complexity of computing dominance relations
in CP-nets shows that the dominance problem in a CP-net is
hard (Goldsmith et al. 2008). More precisely, given a CP-
net N and two alternatives a and b, it is PSPACE-complete
to compute whether or not a �N b. This can be used to show
that checking membership in the Schwartz set is PSPACE-
complete (Goldsmith et al. 2008).

Although computing the Schwartz set is hard in general,
if the preferences are more structured it can be easy. As
an extreme example, if the voters’ preferences extend an
acyclic CP-net G, then H-Schwartz is equivalent to order-
independent sequential composition of local rules, under
which computing the winner is easy. In this section, we in-
troduce a technique to exploit more limited independence
information in the submitted votes for the purpose of com-
puting the set of H-Schwartz winners.
Definition 5 Let A1 . . .Aq (q ≤ p) be a partition of the set
of attributes A . We say a CP-net N is compatible with
A1 > . . . > Aq if for any l ≤ q and any x ∈ Al, ParG(x) ⊆
A1 ∪ . . . ∪ Al. A linear order V is compatible with A1 >
. . . > Aq if there exists a CP-net N such that V extends N
and N is compatible with A1 > . . . > Aq.

One special case is the following: if the input profile is G-
legal, and G is compatible with x1 > . . . > xp, then we
can use the partition A1 = {x1}, . . . ,Ap = {xp}. We can
use the following algorithm to find a partition with which
the input profile P is compatible. Suppose that we already
know the graphs of the CP-nets that the votes in P extend.
Algorithm 1
1. Let GP be the union of all the graphs of the CP-nets that
the votes in P extend.
2. Let q = 0; repeat step 3 until GP = ∅.
3. Let q ← q+1. Find a maximal mutually connected subset
of GP , and call it Aq. Remove Aq and all edges connecting
it to GP .
4. Output the partition A1 ∪ . . . ∪ Aq.

This algorithm runs in time O(p3). Now we are ready to
present the technique for computing the set of H-Schwartz
winners more efficiently. Suppose the set of attributes can
be partitioned into A1 ∪ A2 so that P is compatible with
A1 > A2.
Process 1
1. Compute the Schwartz set HSchwartz(rA1)(P |A1) =
W 1

1 ∪ . . . ∪ W k
1 , where the W i

1 are the maximal mutually
connected subsets in IG(rA1)(P |A1).
2. For each i ≤ k, let IG(rA2)(P |A2:W i

1
) =⋃

w∈W i
1
IG(rA2)(P |A2:w); then, compute the Schwartz set

W i
2 for IG(rA2)(P |A2:W i

1
).

3. Output Wp =
⋃k

i=1 W i
1 ×W i

2.
The next theorem states that we can compute the winners

of HSchwartz(r1, . . . , rp)(P ) by Process 1.

Theorem 4 WP = HSchwartz(r1, . . . , rp)(P ).

Sketch of proof. Let w2 be a setting of A2 and w1, w
′
1 be set-

tings of A1 such that w1 and w′
1 differ only on one attribute.

Since P is compatible with A1 > A2, we have that there
is an edge from (w1, w2) to (w′

1, w2) in IG(rA)(P ) if and
only if there is an edge from w1 to w′

1 in IG(rA1)(P |A1).
This implies the following claim.
Claim 1 If there is a path from (w1, w2) to (w′

1, w
′
2) in

IG(rA)(P ), then its projection on A1 is a path from w1 to
w′

1 in IG(rA1)(P |A1).
We note that for any i ≤ k, any w1, w

′
1 ∈ W i

1 such that
there is a path from w1 to w′

1, and any w2 ∈ DA2 , there is
a path from (w1, w2) to (w′

1, w2). Therefore, we have the
following claim.
Claim 2 For any i ≤ k, any (w1, w2), (w′

1, w
′
2) ∈ W i

1 ×
DA2 , there is a path from (w1, w2) to (w′

1, w
′
2) if and only

if there is a path from w2 to w′
2 in IG(rA2)(P |A2:W i

1
).

Then, based on Claim 1 and Claim 2 we can
prove that WP ⊆ HSchwartz(r1, . . . , rp)(P ) and
HSchwartz(rA)(P ) ⊆ WP , which means that WP =
HSchwartz(rA)(P ). Details are omitted due to space con-
straints. �

If the decomposition is A1 > . . . > Aq with q > 2, then
Process 1 can be applied recursively to find the Schwartz set,
as follows. First, compute the Schwartz set over A1×A2 by
Process 1, then use this result to compute the Schwartz set
over (A1 × A2)× A3, etc. up to (A1 × . . .× Aq−1)× Aq.

The next example shows how Process 1 works.



Example 3 Let X = {0, 1}3, and let three votes V1, V2, V3

extend three CP-nets. V1 : x1 > x2 > x3, V2 :
x2 > x1 > x3, and V3 : the variables are indepen-
dent. Let the partition be A1 = {x1,x2}, A2 = {x3}.
Then, Vi, i = 1, 2, 3 is compatible with A1 > A2. Sup-
pose that {w1, w

′
1} = HSchwartz(r1, r2)(P |{x1,x2}), so

that there is no path from w1 to w′
1, and vise versa. Also

suppose that {w2} = HSchwartz(r3)(P |x3:x−3=w1) and
{w′

2} = HSchwartz(r3)(P |x3:x−3=w′
1
). Then, the winners

are (w1, w2) and (w′
1, w

′
2).

The next theorem states that if P is compatible with A1 >
. . . > Aq, then the time required to compute the set of
Schwartz winners by applying Process 1 is a polynomial
function of the number of winners, the longest time it takes
to apply local rules, p, n, and max |DAi

|.
Theorem 5 Suppose an n-vote profile P is compatible with
A1 > . . . > Aq. Let dmax = maxi≤q |DAq |. Let tmax(n)
be the longest time it takes to apply local rules on n in-
puts. Then, the running time of Process 1 is O(apdmax(np+
tmax(n)p + dmax)), where a is the number of H-Schwartz
winners.

Usually tmax(n) is polynomial. Therefore, the computa-
tional complexity of Process 1 mainly comes from the num-
ber of H-Schwartz winners, and the size of the largest par-
tition dmax. Effectively, Process 1 gives a smooth tradeoff
between computational efficiency and generality, and is cer-
tainly better than applying standard voting rules directly.

Conclusion and future work
In artificial intelligence, agents often need to jointly choose
an alternative from a combinatorial domain (for example,
the set of all plans or the set of all allocations of tasks or
resources). In such settings, it is unrealistic to ask agents to
communicate a full ranking of all the alternatives, because
there are exponentially many—but this is what standard vot-
ing rules require. To address this, earlier work has proposed
decomposing such voting processes by using local voting
rules on the individual attributes. Unfortunately, the existing
methods work only with rather severe domain restrictions:
they require the voters’ preferences to extend acyclic CP-
nets compatible with a common order on the attributes. We
showed that this requirement is very restrictive, by proving
that the number of linear orders extending an acyclic CP-net
is exponentially smaller than the number of all linear orders.
Then, we introduced a very general methodology that allows
us to aggregate preferences when voters express CP-nets that
can be cyclic. There does not need to be any common struc-
ture among the submitted CP-nets. Our methodology gener-
alizes the earlier, more restrictive methodology. We studied
whether properties of the local rules transfer to the global
rule, and vice versa. We also address how to compute the
winning alternatives. We believe this methodology consti-
tutes a significant step forward in using voting in realistic
AI settings.

Further research can extend the idea of H-composition to
other local aggregation functions, for example, local social
welfare functions, which rank all the alternatives rather than

just produce a winner. Another extension would be to al-
low voters submit preorders. In that case, we can apply H-
composition of local choice sets to determine winners. A
final possibility is to consider alternatives to the Schwartz
choice set, such as the Smith and Copeland sets.
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