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Abstract

Multiple election paradoxes arise when voting separately on each issue from a set of related
issues results in an obviously undesirable outcome. Several authors have argued that a sufficient
condition for avoiding multiple election paradoxes is the assumption that voters have separable
preferences. We show that this extremely demanding restriction can be relaxed into the much
more reasonable one: there exists a linear orderx1 > .. . > xp on the set of issues such that
for each voter, every issuexi is preferentially independent ofxi+1, . . . ,xp given x1, . . . ,xi−1.
This leads us to define a family of sequential voting rules, defined as the sequential composition
of local voting rules. These rules relate to the setting of conditional preference networks (CP-
nets) recently developed in the Artificial Intelligence literature. We study in detail how these
sequential rules inherit, or do not inherit, the propertiesof their local components. We focus on
the case of multiple referenda, corresponding to multiple elections with binary issues.



1 Introduction

In many contexts, a group of voters has to make a common decision on several possibly related
issues, such as in multiple referenda, or voting for committees (the issues then are the positions to
be filled). As soon as voters have preferential dependenciesbetween issues, it is generally a bad
idea to decompose a vote problem onp issues into a set ofp smaller problems, each one bearing
on a single issue: “multiple election paradoxes” (or “paradoxes of multiple referenda”) then arise.

Such paradoxes have been studied in several papers, with twoslightly different views. In
[4, 12], voters can vote onlyY or N on each issue; the paradox occurs when the set of propositions
that win, when votes are aggregated separately for each proposition received the fewest votes when
votes are aggregated by combination: for instance, supposethere are 3 propositionsA, B, C and
three voters voting respectively forABC̄, AB̄C and ĀBC. Propositionwise aggregation leads to
ABC, which ABC receives support for not a single voter. The paradox studiedin [8] is a little bit
different. They show that voting issue by issue is feasible when preferences are separable, and that
it generally fails when they are not (a voter’s preferences are separable if her preferences on an
issue does not depend on the choice to be made for other issues). However, as argued by [3, 8],
separability is an extremely strong assumption that is unlikely to be met in practice.

Example 1 A common decision has to be made about whether or not to build anew swimming
pool (S orS̄) and a new tennis court (T or̄T ). Assume that the preferences of voters 1 and 2 are
ST̄ ≻ S̄T≻ S̄T̄ ≻ ST, those of voters 3 and 4 arēST≻ ST̄ ≻ S̄T̄ ≻ ST and those of voter 5 are
ST≻ ST̄ ≻ S̄T≻ S̄T̄ .

The first problem with Example 1 is that voters 1 to 4 feel ill atease when asked to report
their projected preference on{S, S̄} and {T, T̄}. The analysis of the paradox in [8] considers
that voters report their preferences optimistically (thusvoters 1-2 report a preference forS over
S̄), but this assumption, even if it has been justified by experimental studies (see [11]), remains
arbitrary, and would not necessarily carry on to more complex situations such as a voter with the
following preference relation:ABC≻ ĀB̄C̄ ≻ ĀB̄C≻ ĀBC̄ ≻ ĀBC≻ AB̄C̄ ≻ AB̄C≻ ABC̄: only a
very optimistic voter would report a preference forA (except, of course, if some prior beliefs about
the others’ preferences make him believe that the common decision aboutB andC will be BC.)

The second problem (the paradox itself) is that under this assumption that voters report opti-
mistic preferences, the outcome in Example 1 will beST, which is the worst outcome for all but
one voter, and a fortiori, is a Condorcet loser. Lacy and Niou [8] give another example, with three
issues, leading to an even worse paradox where the outcome isranked last by everyone.

The main question is now, how can these paradoxes be avoided?Reformulating the question
in a more constructive way, how should a vote on related issues be conducted? We argue that we
have to choose one of the following two ways, each of which hassome specific pitfalls:

The first way consists in giving up decomposing the global vote into local votes andvoting for
combinations of values. This solution is supported by Brams et al. [3, 4]. There is some ambiguity
on how the process should be conducted, thus leading to threepossible methods:

1. ask voters to report their entire preference relation on the set of alternatives, and then apply
an usual voting rule such as Borda.

2. ask voters to report only a small part of their preference relation and apply a voting rule that
needs this information only, such as plurality;

3. limit the number of possible combinations that voters mayvote for.

From a theoretical point of view, Solution 1 works: each agent specifies his preference relation
in extensoand then any fixed voting rule is applied to the obtained profile, with no risk of a para-
doxical outcome. However, as noticed in [3], this solution is practically unfeasible if the number
of issues is more than a small number (say, 3): the exponential number of alternatives makes it
unreasonable to ask voters to rank all alternatives explicitly. In other words, implementing such
a voting rule on a multi-issue domain needs anexponential protocol. Clearly, exponentially long
protocols are not acceptable. Therefore, as soon as the number of issues is not very small, this
solution is ruled out bycommunication complexityconsiderations.
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Solution 2 requires little communication, but it is its onlymerit. Voting rules that are im-
plementable by a cheap protocol make use of a very small part of the voters’ preferences: if the
protocol is required to have a polynomial communication complexity, then the voting rule it imple-
ments use at most a logarithmic part of the profile. Such rulesdo exist: not only plurality and veto,
but more generally all rules that require, for instance, theK top candidates of each voter, whereK
is a fixed integer. However, when the number of issues grows, these rules could give extremely bad
results. For instance, using plurality when the number of issues is significant and the number of
voters small could well result in a situation where no outcome gets more than one vote, in which
case plurality would give an extremely poor result.

Solution 3, sketched in [3], presents the chairperson with avery problematic choice. This may
be feasible when issues can clearly be packaged into groups of issues such that two groups are
clearly independent, but this favorable situation is far from being a general rule.

The second way, supported by Lacy and Niou [8] for multiple referenda, consists in sticking to
a vote issue by issue, the outcome of the vote on one issue being revealed before the vote on other
issues. They show that sequential voting (with whichever agenda) allows for escaping the worst
versions of the multiple election paradoxes, namely, it avoids a Condorcet loser to be elected.
However, this method still has three major drawbacks. First, the voters may still feel ill at ease
when reporting their preference on an issue, when this preference depends on the value of issues
not decided yet. Second, the study is based on the assumptionthat voters will behave optimistically,
by reporting the projection of their preferred outcome, which is debatable except in some specific
cases. Third, even if a sequential vote avoids the final outcome to be a Condorcet loser, the paradox
remains to a large extent, as can be seen on the following example:

Example 2 We have three issues A, B, C and2M +1 voters.
M voters: ABC̄≻ ĀB̄C̄≻ . . . ≻ AB̄C≻ ABC
M voters: AB̄C≻ ĀB̄C̄≻ . . . ≻ ABC≻ ABC̄
1 voter: ĀBC≻ ĀB̄C̄≻ ĀBC̄≻ ĀB̄C≻ ABC≻ ABC̄≻ AB̄C̄≻ AB̄C

In Example 2, having voters decide first onA, then toB and then toC, and assuming they
behave optimistically, will lead toABC, which is (a) a “nearly-Condorcet loser” (it is Condorcet-
dominated by all candidates except one) and (b) Pareto-dominated by half of the outcomes. (More
acute paradoxes can be found, but they need more issues and thus more space.) Actually, the reason
why the sequential process avoids a Condorcet loser to be elected is only because thelast vote is
made with a full knowledge of the values of other issues, thusthis result loses his significance when
the number of issues becomes bigger.

There is a well-known restriction on voter preferences thatallows for such paradoxes to be
avoided, that is, when all voters haveseparablepreferences across the outcomes of the issues.
Then, a voter’s preferences on the values of an issue is independent from the values of other issues,
and the elicitation process can be performed safely issue byissue (and even without needing to
resort to sequentiality). Under the separability assumption, voting separately on each issue (either
sequentially or simultaneously) enjoys good properties, including the election of a Condorcet win-
ners when there is one. However, the separability restriction is very demanding, and unlikely to
be met in practice, especially because separable preferences constitute a very tiny proportion of
possible preferences on multiple issues (see [6]).

The question is now, can this extreme separability assumption be relaxed without hampering
the nice properties of sequential voting? As it stands, the answer is positive, as the method can
be safely applied to far many profiles than separable profiles. Unformally, the condition should be
that each time a voter is asked to report his preferences on a single issues or a small set of isssues,
these preferences do not depend on the values of the issuesthat have not been decided yet.

Formally, this can be expressed as the following condition:there is a linear orderO = x1 >

.. . > xp on the set of issues such that for every voterv and everyj, the preferences ofv on x j are
preferentially independent fromx j+1, . . . ,xp givenx1, . . . ,x j−1. If this property is satisfied, then
a simple protocol can be implemented: the voters’ preferences about issuex1 are elicited; then a
voting rule is applied so as to make a decision on the value ofx1; then this chosen value ofx1 is
communicated to the voters, who then report their preferences on the values ofx2 given the fixed
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value ofx1, and so on. Such preference profiles are calledO -legal and abbreviated aslegal for
O = x1 > .. . > xp in this paper. This protocol generalizes to clusters of issues I1, . . . , In where
for each voter and eachi, Ii is preferentially independent ofI j+1, . . . , Im given I1, . . . , Ii−1, where
{I1, . . . , Im} forms a partition of the setI of issues.

This domain restriction (O -legality) and the resulting sequential voting rules and correspon-
dences that are then applicable are defined in Section 3. In Section 4 we study in detail the prop-
erties of these sequential composition by relating them to the corresponding properties of local
voting rules to those of its components. It turns out that while many properties expectedly transfer
from local rules to their sequential composition, this is not the case for two important properties,
namely neutrality and consensus. In Section 5 we focus on theparticular case ofmultiple referenda,
obtained where all issues are binary. In Section 6 we briefly mention further issues.

2 Preferences on multi-issue domains

Let I = {x1, . . . ,xp} be a set ofissues. For eachxi ∈ I , Di is the finitevalue domainof xi . An
issuexi is binary if Di = {xi,xi}, or equivalently{1i,0i}. (Note the difference between the issue
xi and the valuexi .) If X = {xi1, . . . ,xim} ⊆ I , with i1 < .. . < ip, thenDX denotesDi1 × . . .×Dim.
X = D1× ...×Dp is the set of allalternatives(or candidates). Elements ofX are denoted by~x,~x′

etc. and represented by concatenating the values of the issues: for instance, ifI = {x1,x2,x3},
x1x2x3 assignsx1 to x1, x2 to x2 andx3 to x3. We allow concatenations of vectors of values: for
instance, letI = {x1,x2,x3,x4,x5}, Y = {x1,x2}, Z = {x3,x4}, ~y = x1x2, ~z = x3x4, then~y.~z.x5

denotes the alternativex1x2x3x4x5.
A preference relationon X is a strict order (an irreflexive, asymmetric and transitivebinary

relation). A linear preference relationV is acompletestrict order, i.e., for any~x and~y 6=~x, either
~x≻~y or~y≻~x holds. We generally note~x≻V ~x′ instead ofV(~x,~x′).

Let {X,Y,Z} be a partition of the setI and≻ a linear preference relation overX = DI . X is
(conditionally) preferentially independentof Y givenZ (w.r.t. ≻) if and only if for all~x1,~x2 ∈ DX,
~y1,~y2 ∈ DY,~z∈ DZ,

~x1.~y1.~z≻~x2.~y1.~z iff ~x1.~y2.~z≻~x2.~y2.~z

Conditional preferential independence originates in the literature of multiattribute decision the-
ory [7]. Unlike probabilistic independence, it is a directed notion: X may be independent ofY
givenZ withoutY being independent ofX givenZ. Note that preferential independence is weaker
than utility independence.

Conditional preference networks, or CP-nets, are a language for specifying preferences based
on the notion of conditional preferential independence. They allow for eliciting preferences, and
for storing them, as economically as possible. Formally, aCP-netN [1] over a set of attributes (or
issues)I is a pair consisting of a directed graphG overI and a collection of conditional preference
tablesCPT(xi) for eachxi ∈ I . Appendix 1 gives some fairly detailed background on CP-nets.

Let O = x1 > ... > xp be a linear order onI . We say that≻ follows O = x1 > ... > xp if for all
i < p, xi is preferentially independent of{xi+1, ...,xp} given{x1, ...,xi−1} with respect to≻.

If ≻ follows O then theprojection of ≻ on xi given (x1, . . . ,xi−1) ∈ D1 × . . .× Di−1, de-
noted by≻xi |x1=x1,...,xi−1=xi−1, is the linear preference relation onDi defined by: for allxi ,x′i ∈ Di ,
xi ≻xi |x1=x1,...,xi−1=xi−1 x′i iff x1...xi−1xixi+1...xp ≻ x1...xi−1x′ixi+1..xp holds for all(xi+1, . . . ,xp) ∈
Di+1× . . .×Dp.

Due to the fact that≻ follows O and that≻ is a linear order,≻xi |x1=x1,...,xi−1=xi−1 is a well-
defined linear order as well. Note also that if≻ follows bothO = x1 > ... > xp andO ′ = xσ(1) >

... > xσ(k−1) > xi(= xσ(k)) > ... > xσ(p), then≻xi |x1=x1,...,xi−1=xi−1 and≻xi |xσ(1)=xσ(1),...,xσ(k−1)=xσ(k−1)

coincide. In other words, the local preference relation onxi depends only on the values of the
issues that precedexi in O andin O ′.

Let G be anacyclicdirected graph (DAG) onI . A preference relation≻ is compatible with G,
denoted by≻∼ G, if ≻ follows some orderO = x1 > ... > xp on I that followsG, that is, such
that for every edge(xi ,x j) in G we havei < j. For any two preference relations≻1,≻2 and CP-net
N , we use the following notations:≻1∼ N if ≻1 extendsN ; ≻1∼≻2 if there exists a CP-net
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N ′ s.t. ≻1∼ N
′ and≻2∼ N

′; ≻1∼N ≻2 if ≻1∼ N and≻2∼ N . Lastly, we say≻1 and≻2 are
G-equivalent, denoted by≻1∼G≻2, if and only if ≻1 and≻2 are both compatible withG and for

anyx∈V, for any~y,~y′ ∈Dom(par(x)) we have≻x|par(x)=~y
1 =≻

x|par(x)=~y
2 . Note that≻1∼G≻2 if and

only if there exists a CP-netN whose associated graph isG and such that≻1 and≻2 both extend
N . We frequently use the notationV (for “ vote”) instead of≻.

Example 3 Let I = {x,y,z}, all three being binary. and let V and V′ be the following votes:

V : xyz≻ xyz̄≻ xȳz̄≻ xȳz≻ x̄yz̄≻ x̄ȳz̄≻ x̄yz≻ x̄ȳz
V ′ : xyz≻ xyz̄≻ x̄yz̄≻ xȳz̄≻ x̄yz≻ x̄ȳz̄≻ xȳz≻ x̄ȳz

Let G be the graph overI whose set of edges is{(x,z),(y,z)}. V and V′ are both compatible
with G. Moreover, V∼G V ′, since all local preference relations coincide: x≻x

V x̄ and x≻x
V′ x̄;

z≻z|x=x,y=y
V z̄ and z≻z|x=x,y=y

V′ z̄; etc. The CP-net that V and V′ both extend is defined by the
following preferences tables: x≻ x̄; y≻ ȳ; xy : z≻ z̄; xȳ : z̄≻ z; x̄y : z̄≻ z; x̄ȳ : z̄≻ z.

3 Sequential voting rules and correspondences

We start by recalling briefly some necessary background on voting rules and correspondences (for
more details see for instance [2]). LetA = {1, ...,N} be a finite set ofvotersandX a finite set
of candidates. A profile w.r.t. A andX is a collection ofN individual linear preference relations
over X : P = (V1, ...,VN). Let PA ,X be the set of all preference profiles forA andX . A voting
correspondence C: PA ,X → 2X \ { /0} maps each preference profileP of PA ,X into a nonempty
subsetC(P) of X . A voting rule r: PA ,X → X maps each preference profileP of PA ,X into a single
candidater(P). The correspondence that elects the candidates that are ranked first by the largest
number of voters is theplurality correspondence. When there are only two candidates{x,y}, the
majoritycorrespondencema j is defined byma j(P) = {x} (resp.{y} if more voters inP preferx to
y (resp.y to x), andma j(P) = {x,y} in case of tie.

Given a profileP, x∈ X is aCondorcet winner(resp.weak Condorcet winner) if it is preferred
to any other candidate by a strict (resp. non-strict) majority of voters: for ally 6= x, #{i : x ≻i

y} > N
2 (resp.≥ N

2 ). A Condorcet-consistentrule (resp. correspondence) is a voting ruler (resp.
correspondenceC) such that whenever there exists a Condorcet winnerx for the profileP then
r(P) = x (resp.C(P) = {x}).

These definitions of voting rules are not concerned with how the votes are elicited from the
voters. As in [5] we distinguish between the voting rule and aprotocol (which determines which
relevant information is elicited, and when, from the voters) that implements it. The deterministic
communication complexity of a voting ruler is the worst-case number of bits sent in the best pro-
tocol implementingr. See [5] for a communication complexity study of various voting rules.

From now on, we assume that the set of candidates is a multi-issue domainX = D1× ...×Dp.
Sequential votingconsists in applying “local” voting rules or correspondences on single issues, one
after the other, in such an order that the local vote on a givenissue can be performed only when the
local votes on all its parents in the graphG have been performed. Note that, unlike in [3, 4, 8], we
do not assume that issues are binary. We now define our crucialdomain restriction:

Definition 1 Given a linear orderO = x1 > ... > xp on I , we define Legal(O ) as the set of all
profiles P= (V1, . . . ,VN) such that each Vi followsO .

We might wonder how strong this restriction is. First of all,note that it is much less demand-
ing than separability. Second, it can be generalized by partitioning the set of issues into subsets
I1, . . . , Iq such thatIi is preferentially independent ofIi+1∪ . . .∪ Iq givenI1∪ . . .∪ Ii−1. Obviously,
all profiles are of this form, the worst case beingq = 11 However, we can assume without loss of

1The smaller the size of the subsets, the cheaper the protocol: the communication cost of the protocol for computing a
sequential rule using such decomposition into clusters is∑q

i=1 ∏x j∈Ii |D j |. The protocol is guaranteed to remain cheap (that
is, polynomial) if there exists a constantK (independent from the number of issues and voters) such that|Ii | ≤ K for every
clusterIi .
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generality (and we will do so in the remainder of the paper) that each cluster consist of a single
issue (if this were not the case from the beginning, then eachclusterIi can be considered as a new
single issue, with domainDIi = ∏x j∈Ii D j .)

Definition 2 Let O = x1 > ... > xp be a linear order onI , and(r1, . . . , rp) a collection of deter-
ministic voting rules (one for each issuexi). Thesequential voting ruleSeq(r1, . . . , rp) is defined
on all profiles followingO as follows: for any P= (V1, ...,VN) in Legal(O ):

• x∗1 = r1(V
x1
1 , . . . ,Vx1

N );

• x∗2 = r2(V
x2|x1=x∗1
1 , . . . ,V

x2|x1=x∗1
N );

• . . .

• x∗p = rp(V
xp|x1=x∗1,...,xp−1=x∗p−1
1 , . . . ,V

xp|x1=x∗1,..,xp−1=x∗p−1
N )

Then Seq(r1, . . . , rp)(P) = (x∗1, . . . ,x
∗
p).

Example 4 Let N = 12, I = {x,y} with Dx = {x, x̄} and Dy = {y, ȳ}, and P= (V1, . . . ,V12) the
following 12-voter profile:

V1,V2,V3,V4 : xy≻ x̄y≻ xȳ≻ x̄ȳ V5,V6,V7 : xȳ≻ xy≻ x̄y≻ x̄ȳ
V8,V9,V10 : x̄y≻ x̄ȳ≻ xy≻ xȳ V10,V11 : x̄y≻ x̄ȳ≻ xȳ≻ xy

All these linear preference relations follow the orderx > y. Hence, P∈ Legal(x > y).
Take rx and ry both equal to the majority rule, together with a tie-breaking mechanism which,

in case of a tie between x and̄x (resp. between y and̄y), elects x (resp. y). The projection of P on
x is composed of 7 votes for x and 5 forx̄, that is, Px

i is equal to x≻ x̄ for 1≤ i ≤ 7 and tox̄≻ x
for 8≤ i ≤ 12. Therefore x∗ = rx(Px

1 , . . . ,Px
12) = x: thex-winner is x∗ = x. Now, the projection of

P ony givenx = x is composed of 7 votes for y and 5 forȳ, therefore y∗ = y, and the sequential
winner is now obtained by combining thex–winner and the conditionaly-winner givenx = x∗ = x,
namely Seq(rx, ry)(P) = xy.

In addition to sequential rules, we definesequential correspondencesin a similar way: if for
eachi, ci is a correspondence onDi , thenSeq(c1, . . . ,cp)(P) is the set of all(x1, . . . ,xp) s.t. x1∈

c1(P
x1
1 ,. . .,Px1

N ), and for alli ≥ 2, xi ∈ci(P
xi |x1=x1,..,xi−1=xi−1
i , ..,Pxi |x1=x1,..,xi−1=xi−1

N ).
It is important to remark that, in order to computeSeq(r1, . . . , rp)(P), we do not need to know

the linear preference relations V1, . . . , VN entirely: everything we need is the local preference
relations: for instance, ifI = {x,y} andG contains the only edge(x,y), then we need first the
unconditional linear preference relations onx and then the linear preference relations ony con-
ditioned by the value ofx. In other words, if we know the conditional preference tables (for all
voters) associated with the graphG, thenwe have enough information to determine the sequential
winner for this profile, even though some of the preference relations induced from these tables are
incomplete. This is expressed more formally by the following fact (see Observation 4 in [9]): let
I = {x1, . . . ,xp}, G an acyclic graph overI , andP = (V1, . . . ,VN), P′ = (V ′

1, . . . ,V
′
N) two complete

preference profiles such that for alli = 1, . . . ,N we haveVi ∼G V ′
i . Then, for any collection of local

voting rules(r1, . . . , rp), we haveSeq(r1, . . . , rp)(P) = Seq(r1, . . . , rp)(P′). (A similar result holds
for correspondences.) This implies that applying sequential voting to two profiles corresponding
to the same collection of CP-nets will give the same result.

We may now wonder whether a Condorcet winner (CW), when thereexists one, can be com-
puted sequentially. Sequential Condorcet winners (SCW) are defined similarly as for sequential
winners for a given rule: the SCW is the sequential combination of “local” Condorcet winners.

Definition 3 Let O = x1 > ... > xp be a linear order onI , and P∈ Legal(O ). (x∗1, . . . ,x
∗
p) is a

sequential Condorcet winnerfor P if and only if

• ∀x′1 ∈ D1, #{i,x∗1 ≻x1
i x′1} > N

2 ;
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• for every k> 1 and∀x′k ∈ Dk, #{i,x∗k ≻
xk|x1=x∗1,...,xk−1=x∗k−1
i x′k} > N

2 .

Clearly, the existence of a SCW is no more guaranteed than that of a CW, and there cannot be
more than one SCW. We have the following positive result in [9] (Proposition 3): if(x∗1,x

∗
2, . . . ,x

∗
p)

is a Condorcet winner forP, then it is a sequential Condorcet winner forP. (Note that the converse
fails). An important corollary of this result is the following:

Theorem 3.1 If every ri is Condorcet-consistent then Seq(r1, . . . , rp) is Condorcet-consistent.

Therefore, the output of a sequential voting rule will be theCondorcet winner when there exists
one, provided that each local ruler i is Condorcet-consistent. This applies in particular to sequential
majority on domains composed of binary issues, which was already known in the particular case
when all voters have separable preferences (see [8]). This allows us to claim thatthe restriction
to legal profiles (with respect to some orderO ) allows for escaping multiple election paradoxes,
at least the version of the paradox that deals with Condorcetwinners failing to be elected. For the
version of the paradox concerned with electing a Condorcet loser, a sequential voting rule will not
elect a Condorcet loser, provided that each of its local rules never elects a Concorcet loser:

Theorem 3.2 If there exists i≤ p s.t. ri never elects a Condorcet loser, then Seq(r1, . . . , rp) never
elects a Condorcet loser.

For sequential majority on multiple referenda, we have a slightly more significant result:

Theorem 3.3 Let c1, . . . ,cp all equal to the majority correspondence on binary domains.For any
O -legal profile P and any~d ∈ Seq(c1, . . . ,cp)(P), there exist p outcomes~x1, . . .~xp ∈ X such that~d
weakly Condorcet-dominate~xi for all i ≤ p.

This boundp is actually tight (see Example 6.9 forp = 3; it can be generalized top≥ 3).

4 Properties of sequential voting rules

We start be recalling a few important properties that votingrules may (or may not) satisfy. A voting
rule satisfies

• anonymity if it is unsensitive to any permutation of the voters;

• homogeneityif for any voteV and anyn∈ N, r(V) = r(nV).

• neutrality if for any profileP and any permutationM on candidates,r(M(P)) = M(r(P)).

• monotonicity if for any profilesP = (V1, . . . ,VN) andP′ = (V ′
1, . . . ,V

′
N) s.t. eachV ′

i is ob-
tained fromVi by raising onlyr(P), we haver(P′) = r(P).

• consistencyif for any two disjoint profiles (that is, given, by two disjoint electorates)P1,P2

s.t. r(P1) = r(P2), thenr(P1∪P2) = r(P1) = r(P2).

• participation if for any profileP and any voteV, r(P∪{V}) >V r(P).

• consensusif for any profileP = (V1, . . . ,VN), there is no candidatec s.t. c >Vi r(P) for all
i ≤ N.

Since sequential voting rules are sequential composition of multiple local rules, we may wonder
whether the properties of local rules carry on to their sequential composition, and vice versa. In
this paper, we focus on the above properties. We only give results on voting rules, but most of the
them can be easily extended to correspondences.

6



4.1 From sequential rules to local rules

Notice that decomposable voting rules are defined over legalprofiles, therefore, when we say
a decomposable voting rule satisfies a property involving several profiles, it means that it holds
for all legal profiles. This applies to neutrality and monotonicity:Seq(r1, . . . , rp) is neutral if
for any permutationM and any legal profileP, if M(P) is legal, thenM(Seq(r1, . . . , rp)(P)) =
Seq(r1, . . . , rp)(M(P)). (And similarly for monotonicity.)

Theorem 4.1 If Seq(r1, . . . , rp) satisfies anonymity (resp. homogeneity, neutrality, consistency,
participation, consensus), then for any1≤ i ≤ p, ri also satisfies anonymity (resp. homogeneity,
neutrality, consistency, participation, consensus).

Monotonicity transfers to the last local rule only. This seemingly strange results is mainly
caused by our restriction to legal profiles.

Theorem 4.2 If Seq(r1, . . . , rp) satisfies monotonicity, then rp also satisfies monotonicity.

Since the way to obtain a new legal profileP′ from P by just raising one candidate can only
affect the conditional orders onDp, we consider now a stronger monotonicity by allowing multiple
candidates to be raised simultaneously.

Definition 4.3 A voting rule r isstrongly monotonic if for any profile P, any Y⊆ X , and any
P′ obtained from P by only raising the candidates in Y while keeping their relative position un-
changed, we have r(P′) ∈ r(P)∪Y.

Let Y = {r(P)}, we immediately know ifr is strongly monotonic, then it is also monotonic.
The next theorem shows that strong monotonicity can be transfers to every local rule.

Theorem 4.4 If Seq(r1, . . . , rp) satisfies strong monotonicity, then for any1≤ i ≤ p, ri also satisfies
strong monotonicity.

4.2 From local rules to sequential rules

Then we give results on whether the sequential composition of local rules inherit a given property
satisfied by all local rules. Here are the positive results:

Theorem 4.5 If for all 1 ≤ i ≤ p, ri satisfies anonymity (resp. homogeneity, consistency, strong
monotonicity), then Seq(r1, . . . , rp) also satisfies anonymity (resp. homogeneity, consistency,strong
monotonicity).

The next theorem shows that the converse of Theorem 4.2 also holds.

Theorem 4.6 If r p satisfies monotonicity, then Seq(r1, . . . , rp) also satisfies monotonicity.

Neutrality, consensus, and participation are not transferred from local rules to their sequential
composition. We first give the following result, about neutrality and consensus.

Theorem 4.7 Let r1, . . . , rp, p≥ 2 be plurality rules and|Di | ≥ 2 for all i ≤ p. If there exists i≤ p
s.t. |Di | > 2, then Seq(r1, . . . , rp) does not satisfy neutrality, nor consensus.

The next example shows that participation cannot be lifted from local rules to their sequential
composition.

Example 4.8 LetN 1,N 2 be two CP-nets on{01,11,21}×{02,12} s.t. inN 1

01 ≻N1
11 ≻N1

21,01 : 02 ≻N1
12,11 : 12 ≻N1

02,21 : 12 ≻N1
02,

in N 2, x1 andx2 are independent, and11 ≻N2
21 ≻N2

01,02 ≻N2
12.

ClearlyN 2 6|= 1112 ≻ 0102, therefore, there exists a vote V2 consistent withN 2, and0102 ≻V2

1112 (cf. Lemma 6.2), for example V2 : 2102 ≻ 2112 ≻ 1102 ≻ 0102 ≻ 1112 ≻ 0112

Let r1 be a scoring rule with score vector(3,2,0), r2 be the plurality rule. Obviously both r1, r2

satisfy participation. We consider a profile P= (V1,V3) s.t. V1 and V3 are consistent withN 1. Then
Seq(r1, r2)(P) = 0102 and Seq(r1, r2)(P∪{V2}) = 1112. But0102 ≻V2 1112. Hence Seq(r1, r2) does
not satisfy participation.
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5 Multiple referenda

In this section, we focus on the case where all issues are binary (i.e., multiple referenda). Clearly,
if Seq(r1, . . . , rp) is “reasonable” to some extent to be defined, then eachr i should be the majority
rule. We give below a characterization of sequential majority that generalizes May’s theorem [10]
to multi-issue domains. It is more natural to consider the sequential composition majorities as
a correspondence, namelySeq(c1, . . . ,cp), where eachci is the majority correspondence for two
candidates. Notice if the number of voters is odd, then sequential majority outputs a single winner,
which obviously is not necessarily the case where the numberof voters is even: for instance, let us
consider 2 voters, with respective preference ordersxy≻ xȳ≻ x̄y≻ x̄ȳ andx̄y≻ x̄ȳ≻ xȳ≻ xy. The
profile is legal forx > y, and the outcome of sequential majority consists here of theset of three
alternatives{xy,xȳ, x̄y}.

First we make an observation on the neutrality of eachci . Our aim is to find a necessary and
sufficient condition for eachci to be neutral, based on some observations onSeq(c1, . . . ,cp). Recall
in Theorem 4.1 it has been proved that ifSeq(c1, . . . ,cp) is neutral thenci is neutral. But this is not a
necessary condition (and we will prove that ifp≥ 3 then the sequential majority is not neutral, see
Theorem 5.6). Fortunately, for multiple referenda, we can find a suitable condition. DenoteMR the
permutation onX that exchanges(d1, . . . ,dp) to (d1, . . . ,dp), for exampleMR(011203) = 110213.
We say thatSeq(c1, . . . ,cp) is insensitive to MR if for any legal profileP, MR(Seq(c1, . . . ,cp)(P)) =
Seq(c1, . . . ,cp)(MR(P)). The next theorem says that a decomposable voting correspondence is
insensitive toMR iff its local correspondences are neutral.

Theorem 5.1 ci is neutral for all i≤ p if and only if Seq(c1, . . . ,cp) is insensitive to MR.

The next theorem characterizes sequential composition of majority correspondences.

Theorem 5.2

1. On the domain of all profiles that consists of odd number of votes, a decomposable vot-
ing correspondence Seq(c1, . . . ,cp) is the sequential majority correspondence if and only if
Seq(c1, . . . ,cp) satisfies anonymity, strong monotonicity, and is insensitive to MR.

2. A decomposable correspondence C= Seq(c1, . . . ,cp) is the sequential majority correspon-
dence if and only if it satisfies anonymity, strong monotonicity, consistency, and insensitivity
to MR, and if whenever|C(P)| ≥ 2 for some profile P, then|P| is even.

Remark that the sets of properties in 1. and 2. are minimal (for instance, in 1., all three
properties are required).

Recall that Theorem 4.7 says that if some|Di | > 2, then the sequential composition of rules
that satisfies neutrality (resp. consensus) might not satisfy neutrality (resp. consensus). We may
wonder how about if|Di | = 2 for all i. Notice first that plurality and majority coincides on binary
domains. We observe that whenp = 2, sequential majority is neutral.

Theorem 5.3 Let c1,c2 be equal to the majority correspondence on binary domains. Then Seq(c1,c2)
is a neutral correspondence.

Then we considerp ≥ 2 and we give an important result for multiple referenda, namely, an
impossibility theorem that can be used to prove that severalcommon voting rules are not decom-
posable. This theorem says that if a voting rule satisfies decomposability and consensus, then any
candidate that is not regarded the first by any voter cannot bethe winner of the voting process,
even if every voter thinks he is the second best. Here we only state the theorem, an example of its
application will be presented in the Appendix 3.

Theorem 5.4 If a sequential voting rule Seq(r1, . . . , rp) on a domain consisting of binary issues
satisfies consensus or neutrality, then for any preference profile P = {V1, . . . ,VN} following O ,
~x = Seq(r1, . . . , rp)(P) must be top ranked in at least one of{V1, . . . ,VN}.
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By this theorem, we can easily prove that many voting rules are not decomposable for domains
consisting of binary issues, such asBucklin, Maximin, Copeland, Ranked pairs; see Example 6.8.

With Theorem 5.4 and Example 6.8 we are able to prove that whenp > 2, the sequential
composition of majority (plurality) is not neutral.

Theorem 5.5 If p ≥ 3, then the sequential composition of majority on p binary domains does not
satisfy neutrality, nor consensus.

Together with Theorem 4.7 and Theorem 5.3, we know that the only neutral sequential plurality
rule is the one on a 2×2 domain.

Theorem 5.6 A sequential composition of plurality rule is neutral iff p= 2 and|D1| = |D1| = 2.

For neutrality of non-binary subdomains, we have proved that for p ≥ 3, if a decomposable
voting rule satisfies neutrality or consensus, then it is notCondorcet-consistent. Since this paper
mainly discusses multiple referenda, we do not present it here.

We end this section with some considerations on manipulability. We know that the majority
rule for 2 candidates is not manipulable. What about sequential majority? We know from [8] that
if all voters have separable preferences, then sequential majority is non-manipulable. Does this
extend to legal profiles in which some voters have non-separable preferences? Unfortunately, it
does not:

Theorem 5.7 Sequential majority is manipulable.

This is easily seen on this counterexample with two binary issuesx andy: voter 1 has the preference
relationxy≻ x̄y≻ xȳ≻ x̄ȳ, voter 2 hasxȳ≻ xy≻ x̄y≻ x̄ȳ and voter 3 has ¯xy≻ x̄ȳ≻ xȳ > xy. The
profile is in Legal(x > y). If 1 knows the preferences of 2 and 3 then he has no interest tovote
sincerely on issuex, even though his preference relation is separable: if he votes sincerely, then he
votesx and then the outcome isxȳ. If he votes for ¯x instead, then the outcome is ¯xy, which is better
to him.

As a corollary of this result, strategyproofness does not transfer from the local level to the
global level.

6 Discussion
We have shown that the sequential composition of local voting rules allows for escaping usual
multiple election paradoxes, under a domain restriction much weaker than separability. Moreover,
these sequential rules have a cheap communication complexity. We have established many results
concerning the transfer (or the failure of transfer) of important properties from local rules to/from
their sequential composition.

Interestingly, our work has benefited from several previousstreams of work that were almost
unrelated: on the one hand, social choice, and on the other hand, conditional preferential indepen-
dence, initially developed in the literature of multiattribute decision making and now widely used
in artificial intelligence (with CP-nets). The initial motivation of our work was also inspired by the
notion of cheap protocol, as defined in the literature on communication complexity.

An important aspect of multiple election paradoxes that would deserve more attention is the
role ofknowledge. What makes our protocols interesting is the conjunction oftwo properties: they
arecheap(in terms of communication complexity) andepistemically safe: our domain restriction
ensures that each time an elicitation query is asked to the voters, the votersknowthe answer, that
is, they have all the necessary information needed to give the answer. Multiple election paradoxes,
where voters experience regret after voting for a given issue when learning the outcome of other
issues, is to a large extent due to the fact that voters are asked to cast a vote about a given issue
whereas theydon’t knowtheir true preference, the latter depending on the value of some other
issues. This, of course, is guaranteed with separability, but this assumption is far too demanding.
We believe that our restriction to legal profiles constitutes a reasonable sufficient condition for the
existence of a cheap and epistemically safe protocol. However it is notnecessary, because we may
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consider sequential rules where the order in which the issues are considered depends on the value
of some previously decided issue; these rules would work fora more general class of profiles.
Looking for a sufficient and necessary condition is left for further study, as well as a formalization
of epistemically safe protocols within epistemic logic.
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Appendix 1: conditional preference networks (CP-nets)
Let I ba a finite set of variables, and for eachxi ∈ I , let Di be a finite value domain. LetX = ∏xi∈I Di .

A CP-net overI is a pairN = 〈G,CPT〉, whereG is a directed graph overI andCPT is a set of con-
ditional preference tables{CPT(xi) : xi ∈ I }. Each conditional preference tableCPT(xi) associates a total
order≻i

~u overDi , with each instantiation~u of xi ’s parentsPar(xi) = U , wherePar(xi) denote the parents of
xi in G.

For instance, letI = {x,y,z}, all three being binary, and assume that preference of a given agent over 2I

can be defined by a CP-net whose structural part is the directed acyclic graphG = {(x,y),(y,z),(x,z)}; this
means that the agent’s preference over the values ofx is unconditional, preference over the values ofy (resp.
z) is fully determined given the value ofx (resp. the values ofx andy).

Example 5 Let N = 12, I = {x,y} with Dom(x) = {x, x̄} and Dom(y) = {y, ȳ}, and P= (V1, . . . ,V12) the
following 12-voter profile:

V1,V2,V3,V4 : xy≻ x̄y≻ xȳ≻ x̄ȳ
V5,V6,V7: xȳ≻ xy≻ x̄y≻ x̄ȳ
V8,V9,V10: x̄y≻ x̄ȳ≻ xy≻ xȳ
V11,V12: x̄y≻ x̄ȳ≻ xȳ≻ xy

All these linear preference relations are compatible with the graph G over{x,y} whose single edge is
(x,y); equivalently, they follow the orderx > y: for all voters, the preference onx is unconditional and the
preference ony may depend on the value ofx.

The corresponding conditional preference tables are:

voters 1,2,3,4 voters 5,6,7 voters 8,9,10 voters 11,12

x≻ x̄
x : y≻ ȳ
x̄ : y≻ ȳ

x≻ x̄
x : ȳ≻ y
x̄ : y≻ ȳ

x̄≻ x
x : y≻ ȳ
x̄ : y≻ ȳ

x̄≻ x
x : ȳ≻ y
x̄ : y≻ ȳ

The conditional preference statements contained in these tables are written with the following usual no-
tation: for instance, in a CP-netN , x1x2 : x3 ≻ x3 means that whenx1 is true andx2 is false thenx3 = x3 is
preferred tox3 = x3 ceteris paribus, that is, for any fixed values of the other variablesx4, . . . ,xp.

Formally in CP-netN , for any xi ∈ I , the conditional independence in CP-net leads to the following
preference relations. Define first

≻xi = {~u~zx≻N ~u~zy: x≻i
~u y,~z∈ ∏

x j 6∈Par(xi)

D j}.

Write ≻N =
S

xi
≻xi the union of all relations≻xi encoded inCPT(xi). Notice we require≻N be a linear

order, so≻N is transitive. Therefore the full preferential information encoded inN is thetransitive closure

of ≻N , namely≻N = ≻N . It has been proved [1] that ifG is acyclic, then≻N is consistent, namely for any
~x,~y, at most one of~x≻N ~y and~y≻N ~x holds.

In the paper we make the classical assumption thatG is acyclic. A CP-netN induces a preference ranking
onX : N |=~x≻~y iff ~x≻N ~y. Notice for any~x≻N ~y,~x and~y differs only in one issue, and~z≻N ~w is obtained

through a transitive sequence of relations~z≻N ~x1,~x1 ≻N ~x2, . . . ,~xm−1 ≻N ~xm,~xm ≻N ~w. SoN |=~x≻~y is
thus equivalent to: There is a sequence of improving flips from~y to~x, where an improving flip is the flip of a
single issue~xi “respecting” the preference tableCPT(xi) (see [1]). Note that the preference relation induced
from a CP-net is generally not complete, as seen on the following example.

Example 6.1 Consider the example depicted in Figure 1.
≻x: xyz≻ x̄yz, xyz̄≻ x̄yz̄, xȳz≻ x̄ȳz, xȳz̄≻ x̄ȳz̄
≻y: xyz≻ xȳz, xyz̄≻ xȳz̄, x̄ȳz≻ x̄yz, x̄ȳz̄≻ x̄yz̄
≻z: xyz≻ xyz̄, xȳz≻ xȳz̄, x̄yz≻ x̄ȳz, x̄ȳz̄≻ x̄ȳz, illustrated as
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X Y Z

x≻ x̄
x : y≻ ȳ
x̄ : ȳ≻ y

x∨y : z≻ z̄
¬(x∨y) : z̄≻ z

Figure 1: A CP-net.

Now,≻N is the transitive closure of≻x ∪ ≻y ∪ ≻z, illustrated b y the followign diagram:

xyz
ր
ց

xȳz

xyz̄

ց
ր

xȳz̄→ x̄ȳz̄→ x̄ȳz→ x̄yz→ x̄yz̄

To see how to generate xyz≻ x̄ȳz̄, we consider a three-step increasing flip: in the first step,x is flipped
according to x≻ x̄, thus x̄yz̄ is obtained; then in the second step,z is flipped according to x̄y : z≻ z̄, thus leads
to xȳz; finallyy is flipped according to x: y≻ ȳ, reaching xyz.

An important property of such sequential voting rules and correspondences is that the outcome does not
depend onO , provided thatG follows O . This can be expressed formally:

Observation 1 LetO = (x1 > .. . > xp) andO ′ = (xσ(1) > .. . > xσ(p)) be two linear orders on V such that
G follows bothO andO ′. Then

Seq(r1, . . . , rp)(P) = Seq(rσ(1), . . . , rσ(p))(P)
and similarly for voting correspondences.

Example 6 Everything is as in Example 5, except that we don’t know the voters’ complete preference re-
lations, but only their corresponding conditional preference tables. These conditional preferences contain
strictly less information than P, because some of the preference relations they induce are not complete: for
instance, the induced preference relation for the first 4 voters is xy≻ x̄y≻ x̄ȳ, xy≻ xȳ ≻ x̄ȳ, with xȳ andx̄y
being incomparable. However, we have enough information todetermine the sequential winner for this pro-
file, even though some of the preference relations are incomplete. For instance, taking again the majority rule
for rx and ry, the sequential winner is xy for any complete profile P′ = (V ′

1, . . . ,V
′
12) extending the incomplete

preference relations induced by the 12 conditional preference tables above.

Appendix 2: Proofs
The following Lemma will be used frequently in the followingsections. The proof is easy so we omit it.

Lemma 6.2 Given a CP-netN , if N 6|= β ≻ α, then there exists a linear preference V extendingN s.t.

1. α ≻V β.

2. α andβ are adjacent, i.e. there is noγ s.t. α ≻V γ ≻V β.

If N 6|= α ≻ β, then V also satisfies:

3. Denote V′ obtained from V by exchangingα andβ, then V′ ∼N V.

Proof of Theorem 3.2: If r i never elects a Condorcet loser and for a profileP, Seq(r1, . . . , rp)(P) =
(d1, . . . ,dp) is the Condorcet loser ofP, then for anyd′i ∈ Di , (d1, . . . ,di−1,d′i ,di+1, . . . ,dp) Condorcet-
dominates(d1, . . . ,dp). Therefore inPxi |x1=d1...xi−1=di−1, d′i Condorcet-dominatesdi , which meansdi is the
Condorcet loser inPxi |x1=d1...xi−1=di−1. Sincer i would not select a Condorcet loser,r i(Pxi |x1=d1...xi−1=di−1) 6= di .
This contradicts withSeq(r1, . . . , rp)(P) = (d1, . . . ,dp). SoSeq(r1, . . . , rp)(P) is not the Condorcet loser ofP.
2

Theorem 3.3 Denote~d = (d1, . . . ,dp), ~xi = (d1, . . . ,di−1,di ,di+1, . . . ,dp). We claim ~d weak Condorcet-
dominate~xi . This is becauser i electsdi , so

#{V : V ∈ P,di ≻Vxi |x1=d1...xi−1=di−1 di} ≥
N
2

.
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Therefore #{V : V ∈ P, ~d ≻V ~xi} ≥
N
2 . The theorem is thus proved. 2

Proof of Theorem 4.1: Anonymity and homogeneity are obvious.
• Neutrality: If for somei ≤ N, r i is not neutral, then there exists a permutationMi onDi and a profilePi

on Di s.t.
Mi(r i(Pi)) 6= r i(M

i(Pi)),

then we construct a profileP onD as follows:

1. DefineG to be the graph in which there is no edge.

2. For anyV i
j ∈ Pi , construct a voteVj ∼ G, andVxi

j = V i
j .

Then define a permutationM on D s.t.

M(d1, . . . ,di−1,di ,di+1 . . . ,dp) = (d1, . . . ,di−1,M
i(di),di+1 . . . ,dp).

SupposeSeq(r1, . . . , rp)(P) = (d1, . . . ,dp), then

Seq(r1, . . . , rp)(M(P)) = (d1, . . . ,di−1, rp(M
i(Pi)),di+1, . . . ,dp).

But from neutrality we have

Seq(r1, . . . , rp)(M(P))

=M(Seq(r1, . . . , rp)(P))

=(d1, . . . ,di−1,M
i(rp(P

i)),di+1, . . . ,dp)

6=(d1, . . . ,di−1,M
i(rp(P

i)),di+1, . . . ,dp)

Contradiction. So for alli ≤ p, r i must be neutral.
• Participation: SupposeSeq(r1, . . . , rp) satisfies participation, then we need to check that for anyr i , any

profile Pi = {V i
1, . . . ,V

i
N} and any voteV i

N+1 on Di

r i(P
i ∪{V i

N+1}) ≥V i
N+1

r i(P
i).

We prove this by constructing a profileP = V1, . . . ,VN and a voteVN+1 onD s.t. for anyr, l ≤ N+1,

1. Vr is consistent with the CP-net in which all issues are independent.

2. For anyj ≤ p, j 6= i, the preference ofVr restricted onD j is the same as that ofVl .

3. The preference ofVr restricted onDi isV i
r .

SinceSeq(r1, . . . , rp) satisfies homogeneity, eachr j also satisfies homogeneity. Denoted j the first ranked
candidate inD j by eachVj for all j 6= i, if

r i(P
i ∪{V i

N+1}) <V i
N+1

r i(P
i)

then

Seq(r1, . . . , rp)(P)

=(d1, . . . ,di−1, r i(P
i),di+1, . . . ,dp)

>VN+1(d1, . . . ,di−1, r i(P
i ∪{V i

N+1}),di+1, . . . ,dp)

=Seq(r1, . . . , rp)(P∪{VN+1})

which contradicts with thatSeq(r1, . . . , rp) satisfies participation.
•Consensus: Similarly ifr i does not satisfy consensus principle, then there exists a profile Pi =(V i

1, . . . ,V
i
N)

on Di anddi ∈ Di s.t. for allV i ∈ Pi , di >V i r i(Pi). ConstructP = (V1, . . . ,VN) onD as follows:

1. Vj follows the DAG that all issues are independent.

2. Vxi
j = V i

j .

3. Vj is a conditional lexicographical order.
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Clearly
Seq(r1, . . . , rp)(P) = (d1, . . . ,di−1, r i(P

i),di+1, . . . ,dp).

But for anyVj ∈ P,

(d1, . . . ,di−1,di ,di+1, . . . ,dp) >Vj (d1, . . . ,di−1, r i(P
i),di+1, . . . ,dp),

which contradicts with thatSeq(r1, . . . , rp) satisfies consensus.
• Consistency: Similar with the proof for neutrality, if there existsi ≤ p s.t. r i is not consistent, then there

exist two profiles
Pi

1 = (V i
11, . . . ,V

i
1N1

),Pi
2 = (V i

21, . . . ,V
i
2N2

)

on Di s.t. r i(Pi
1) = r i(Pi

2) andr i(Pi
1∪Pi

2) 6= r i(Pi
1). We construct two profiles

P1 = (V11, . . . ,V1N1),P2 = (V21, . . . ,V2N2)

s.t.

1. Any vote inP1 or P2 is consistent with the graph in which all issues are independent.

2. For any voteV in P1 or P2 and anyj 6= i we haveVx j = {0 j > 1 j > .. .(|D j |−1) j}.

3. For all j ≤ N1, Vxi
1 j = V i

1 j and for all j ≤ N2, Vxi
2 j = V i

2 j .

SinceSeq(r1, . . . , rp) satisfies consistency, for any profilep, we haveSeq(r1, . . . , rp)(P)= Seq(r1, . . . , rp)(2P)=
Seq(r1, . . . , rp)(P∪2P) = . . . = Seq(r1, . . . , rp)(P)(nP). So it also satisfies homogeneity. By Theorem 4.1 each
r j satisfies homogeneity. So

Seq(r1, . . . , rp)(P1) = Seq(r1, . . . , rp)(P2)

=(01, . . . ,0i−1, r i(P
i
1),0i+1, . . . ,0p)

6=(01, . . . ,0i−1, r i(P
i
1∪Pi

2),0i+1, . . . ,0p)

=Seq(r1, . . . , rp)(P1∪P2)

This contradicts with the consistency ofSeq(r1, . . . , rp), sor i must satisfies consistency. 2

Proof of Theorem 4.2: If Seq(r1, . . . , rp) satisfies monotonicity butrp does not, then there exists a profile
Pp = (Vp

1 , . . . ,Vp
N ) on Dp and another profileP′p = (V ′p

1 , . . . ,V ′p
N ) s.t. V ′p

i is obtained fromVp
i by lifting

rp(Pp) and keep other relative order unchanged, andrp(P′p) 6= rp(Pp).
Now consider CP-netN 1, . . . ,NN s.t.

(a) All issues inN i are independent.

(b) For all j ,k≤ N, i ≤ p−1,N xi
j = N xi

k .

(c) For all j ≤ N N
xp

j = Vp
j .

Then consider the conditional lexicographical orderVj forN j , respectively. Denotedi the top ranked candidate
of N xi

1 . We then obtainV ′
i by raising only(d1, . . . ,dp−1, rp(Pp)) exactly as we raiserp(Pp) from Vp

i to V ′p
i .

SinceVi are all conditional lexicographical order, allV ′
i are legal, andV

′xp|d1...dp−1

i = V ′p
i . Then combined

with the homogeneity ofr1, . . . , rp−1, it is easy to check

Seq(r1, . . . , rp)(V ′
1, . . . ,V

′
N) = (d1, . . . ,dp−1, rp(P′p)),

Seq(r1, . . . , rp)(V1, . . . ,VN) = (d1, . . . ,dp−1, rp(P
p)).

Sincerp(P′p) 6= rp(Pp), we have

Seq(r1, . . . , rp)(V
′
1, . . . ,V

′
N) 6= Seq(r1, . . . , rp)(V1, . . . ,VN),

which contradicts with the monotonicity ofSeq(r1, . . . , rp). Theorem is thus proved. 2

Proof of Theorem 4.4: If not, then there existsi ≤ p s.t. r i does not satisfy strong monotonicity but
Seq(r1, . . . , rp) does. This means there exists profilesPi ,P′i on Di s.t. P′i is obtained fromPi by rais-
ing candidates inY ⊆ Di and r i(P′i) 6∈ {r i(Pi)∪Y}. Let Pi = (V i

1, . . . ,V
i
N), we construct two sets of CP-

nets{N 1, . . . ,NN}, {N ′
1 , . . . ,N ′

N} by lifting each linear order inPi and P′i to a linear order onX simi-
larly with the proof of Theorem 4.2, and consider the conditional lexicographical orders of them. DenoteP
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andP′ the resulting profiles overX . Then it is easy to seeP′ is obtained fromP by raising candidates in
YX = D1× . . .Di−1×Y×Di+1× . . .×Dp. Sincer i(P′i) 6∈ {r i(Pi)∪Y}, we know

Seq(r1, . . . , rp)(P
′) 6∈ {Seq(r1, . . . , rp)(P)}∪YX .

This contradicts with the assumption thatSeq(r1, . . . , rp) satisfies monotonicity. 2

Proof of Theorem 4.5: Anonymity and homogeneity are obvious.
• Consistency: LetP1 andP2 be two profiles onD s.t.

Seq(r1, . . . , rp)(P1) = Seq(r1, . . . , rp)(P2) = (d1, . . . ,dp).

Sincer1 satisfies consistency, andd1 = r1(P
x1
1 ) = r1(P

x1
2 ), we haved1 = r1(P

x1
1 ∪Px1

2 ) = r1((P1∪P2)
x1).

Suppose after the firsti stepsr j selectedd j from P1∪P2, then

di+1 = r i+1(P
xi+1|d1...di
1 ) = r i+1(P

xi+1|d1...di
2 ).

From the consistency ofr i+1 we have

di+1 = r i+1(P
xi+1|d1...di
1 ∪Pxi+1|d1...di

2 ) = r i+1((P1∪P2)
xi+1|d1...di ).

Sor i+1 would selectdi+1 fromP1∪P2. ThereforeSeq(r1, . . . , rp)(P1∪P2)= Seq(r1, . . . , rp)(P1), Seq(r1, . . . , rp)
satisfies consistency.

• Strong monotonicity: For anyY ⊆ X , we write

Yxi |d1...di−1 = {xi :~x∈Y,x j = d j for all j ≤ i−1}.

Supposer1, . . . , rp satisfy strong monotonicity, first we prove for any profileP andP′, if P′ is obtained from
P by raising candidates inY, then

(Seq(r1, . . . , rp)(P
′))1 ∈ {(Seq(r1, . . . , rp)(P

′))1}∪Yx1. (1)

To prove this, we only need to check thatP′x1 is obtained fromPx1 by raisingYx1. It suffices to check for any
V ∈ P and its counterpartV ′ ∈ P′, for anyx∈Yx1, y∈ D1

x≻V y⇒ x≻V ′ y.

If not, supposex ≻V y but y ≻V ′ x, and(x, ~d2) ∈Y for some~d2 ∈ D2× . . .×Dp. Then we know(x, ~d2) ≻V

(y, ~d2) and(y, ~d2) ≻V ′ (x, ~d2). SinceV ′ is obtained fromV by raising candidates inY, for any~d ∈Y we have

{~x :~x≻V ′ ~d} ⊆ {~x :~x≻V ~d}.

But (y, ~d2) ∈ {~x :~x≻V ′ ~d}, and(y, ~d2) 6∈ {~x :~x≻V ~d}, contradiction.
So we know Equation (1) holds. Denotew1 = r1(P′x1). Now there are two cases:w1 6= r1(Px1) and

w1 = r1(Px1). For the first case there must existV ∈ P s.t. the rank ofw1 in V ′x1 is higher than inVx1. If
not, thenV ′x1 is obtained fromVx1 by raising candidates inYx\{w1} for all V ∈ P, so by strong monotonicity
of r1, w1 ∈ ({r1(Px1)}∪Yx1)\{w1}, contradiction. Suppose there existsV ∈ P andy∈ D1 s.t. y≻V w1 and
w1 ≻V ′ y. Then we know for all~d2 ∈ D2× . . .Dp, (w1, ~d2) ≻V ′ (y, ~d2) and(y, ~d2) ≻V (w1, ~d2). Therefore in
V ′, (w1, ~d2) must be raised, which means{w2}×D2× . . .×Dp ⊆Y. SoSeq(r1, . . . , rp)(P′) ∈Y.

For the second case, we can move to the second step of sequential voting process, considering fixingx1 =
w1. Then following the same proof we knowSeq(r1, . . . , rp)(P′) ∈Y or r2(Px2|w1) = r2(P′x2|w1). Repeat this
process recursively, finally we can proveSeq(r1, . . . , rp)(P′) ∈Y or Seq(r1, . . . , rp)(P′) = Seq(r1, . . . , rp)(P).
This completes the proof of the theorem. 2

Proof of Theorem 4.6: We first present and proof a lemma.

Lemma 6.3 Suppose V∼N , and V′ is obtained from V by only raising~d∈D. If V ′ is also legal and V′ ∼N ′

andN ′ 6= N , thenN ′ differs fromN only onxp : d1 . . .dp−1, and the conditional order ofN ′xp:d1...dp−1 is
obtained fromN xp:d1...dp−1 by raising only dp.
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Lemma 6.3Proof. We first prove thatN ′ differs fromN only on the conditional orderxp : d1 . . .dp−1. If
not, then there existsi < p andsj ∈ D j , j < i s.t.

N ′xi :s1...si−1 6= N xi :s1...si−1.

Then∃si ,s′i ∈ Di s.t. s1 . . .si−1 : si >N s′i but s1 . . .si−1 : si <N ′ s′i . Choose any~v1, ~v2 ∈ Di+1 × . . .×Dp

s.t. ~v1 6= ~v2, then the relative position of two pairs:(s1, . . . ,si , ~v1) and (s1, . . . ,s′i , ~v1), (s1, . . . ,si , ~v2) and
(s1, . . . ,s′i , ~v2), are exchanged. Since we are raising only~d, the relative order exchanging pair must contain~d,
but the four candidates in the two pairs are all different from one another, contradiction.

From the observation that each exchanging pair must contain~d we can similarly prove the remaining part
of this lemma. 2

Now given any profileP = (V1, . . . ,VN), a legal profileP′ = (V ′
1, . . . ,V

′
N) is obtained by raising only

Seq(r1, . . . , rp)(P) = (d1, . . . ,dp). From Lemma 6.3 we know that

1. V ′xi |~si
j = Vxi |~si

j for all i ≤ N, i ≤ p−1,~si ∈ D1× . . .×Di−1

2. V
′xp|d1...dp−1

j is obtained byV
xp|d1...dp−1

j by raisingdp.

So from the definition ofSeq(r1, . . . , rp), we know thatr i would selectdi from P′ for all i ≤ p−1, rp would

selectrp(V
′xp|d1...dp−1

1 , . . . ,V
′xp|d1...dp−1

N ). Sincerp satisfies monotonicity, we have

rp(V
′xp|d1...dp−1

1 , . . . ,V
′xp|d1...dp−1

N ) = dp.

HenceSeq(r1, . . . , rp)(P′) = (d1, . . . ,dp)= Seq(r1, . . . , rp)(P). This is exactly the monotonicity ofSeq(r1, . . . , rp).
2

Proof of Theorem 4.7: TakeX = {01,11,21}×{02,12} as an example (the proof is similar in other cases).
Let N 1,N 2,N 3 be three CP-nets s.t.x1 andx2 are independent, and

01 ≻N 1
11 ≻N 1

21, 12 ≻N 1
02;

11 ≻N 2
01 ≻N 2

21, 02 ≻N 2
12;

21 ≻N 3
11 ≻N 3

01, 02 ≻N 3
12;

It is easy to verify thatN i 6|= 0102 ≻ 1112,N i 6|= 1112 ≻ 0102 for i = 1,2,3. DenoteM the permutation onD
that only exchange 0102 and 1112. Then by Lemma 6.2, there exist three votesV1,V2,V3 s.t. for i = 1,2,3

1. Vi andM(Vi) are consistent withN i , and

2. 1112 ≻Vi 0102.

Consider a profile consisting of threeV1, twoV2 and twoV3. ClearlySeq(r1, r2)(3V1+2V2 +2V3) = 0102, but
we know 1112 ≻Vi 0102, which means thatSeq(r1, r2) cannot satisfies consensus. Also fromM(Seq(r1, r2)(3V1+
2V2 +2V3)) = 1112 andSeq(r1, r2)(M(3V1 +2V2+2V3)) = 0102 we know thatSeq(r1, r2) is not neutral. The
proof is complete. 2

Proof of Theorem 5.1: First we prove ifSeq(c1, . . . ,cp) is insensitive toMR, then eachci is neutral. If there
existsi s.t.ci is not neutral, denoteMi the non-identity permutation onDi , then there existsPi = {V i

1, . . . ,V
i
N}

s.t. Mi(r i(Pi)) 6= r i(Mi(Pi)), namelyr i(Pi) = r i(Mi(Pi)). Without loss of generality we assumer i(Pi) = 1i .
Construct a profileP = {V1, . . . ,VN} on D s.t.

1. For anyV ∈ P, V follows a DAG in which any issue is independent from others.

2. For anyV ∈ P, and j 6= i, Vx j = 1 j > 0 j .

3. For all j ≤ N, Vxi
j = V i

j .

Then thei-th component ofSeq(c1, . . . ,cp)(P) and Seq(c1, . . . ,cp)(MR(P)) are r i(Pi) = 1i , which means
MR(Seq(c1, . . . ,cp)) 6= Seq(c1, . . . ,cp)(MR(P)), contradiction.

Then notice that for any voteV onX , d1 . . .di : xi+1 >V xi+1 iff d1 . . .di : xi+1 >MR(V) xi+1. Obviously if
eachci is neutral, thenSeq(c1, . . . ,cp) is insensitive toMR. 2

Proof of Theorem 5.2:
1. The necessity is easy to check. We only prove sufficiency. By Theorem 5.1 we know thatSeq(c1, . . . ,cp)

is insensitive toMR is equivalent to eachci is neutral. By Theorem 4.1 we know eachci satisfies strong mono-
tonicity. DenoteVi = 0i ≻ 1i ,V ′

i = 1i ≻ 0i . Then we claimci(nVi +mV′
i ) = 0i iff n > m. If not, there exists
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n > m s.t. n+ m is odd andci(nVi + mV′
i ) = 1i . We raise 1i in (n−m)Vi , then by strong monotonicity,

ci(mVi +nV′
i ) = 1i , but by neutralityci(mVi +nV′

i ) = 0i , contradiction. Therefore we knowci is the majority
correspondence.

2. Again we only prove sufficiency. Since whenever|C(P)| ≥ 2, |P| is even, we know on the domain
of all legal profiles consisting of odd votes,Seq(c1, . . . ,cp) satisfies anonymity, strong monotonicity, and is
insensitive toMR. So by part 1 of this theorem, we know if|P| is odd, thenC is the sequential majority
correspondence. Now for eachci considerci(nVi + mV′

i ), wherem+ n can be divided by 2. By neutrality
we can assumen≥ m without loss of generality. Thenci((n−1)Vi + mV′

i ) = ci(Vi) = 0i , so by consistency
ci(nVi +mV′

i ) = 0i , which meansci is the majority correspondence.
To prove the property set in 2. is minimal, we present examples for removing each condition. Anonymity

is obvious. For strong monotonicity, let eachci be the correspondence that select a minority. Thenci is
consistent and neutral, soC satisfies consistency by Theorem 4.5,C is insensitive toMR by Theorem 5.1.
Clearly when|P| is odd,|C(P)|= 1. So we knowC satisfies the other four conditions, and is not the sequential
composition of majority correspondences.

For consistency, letci be majority correspondence if|P| is odd, otherwise it is trivial (always outputs
Di ). Since majority and trivial correspondence are both neutral and strong monotonic, we knowC satisfies
strong monotonicity and is insensitive toMR by Theorem 4.5. Notice when|P| is odd,C is the sequential
composition of majority correspondence, we knowC satisfies the four properties other than consistency.

For insensitive toMR, we simply letci(P) = 0i for all P, it is easy to checkC satisfies other four properties.
For |C(P)| ≥ 2 ⇒ |P| is odd, we consider the trivial correspondenceC(P) = X for all P. By simple

calculation we know all the other four properties holds.
So the property set in 2. is minimal. Similar examples show the property set in 1. is also minimal. 2

Proof of Theorem 5.3: LetD1 = {01,11},D2 = {02,12}. We would in fact prove that theSeq(c1,c2) isstrong
decomposable, which is more specific than decomposability. We need to prove that for each permutationM
on D1×D2 andP = (P1, . . . ,PN) following O = x1 > x2, if M(P) is also a legal preference profile, then

M(Seq(c1,c2)(P)) = Seq(c1,c2)(M(P)).

BecauseM−1 is also a permutation, it suffices to prove that for each permutation M on D1 ×D2 andP =
(P1, . . . ,PN) following O = x1 > x2, if M(P) is a legal preference profile, then

M(Seq(c1,c2)(P)) ⊆ Seq(c1,c2)(M(P)),

namely
(x1,x2) ∈ Seq(c1,c2)(P) ⇒ M(x1,x2) ∈ Seq(c1,c2)(M(P)) (2)

To prove this, for any given permutationM, we find all votesP following O s.t.M(P) is legal. Recall that
the CP-nets determine the voting results, we only need to know the effects ofM on CP-nets. For example, if
we know thatM can transform a voteP1 following N 1 to another voteP2 following N 2, then the result of the
sequential voting process is indifferent with whatP1,P2 exactly are.

We wrote a program to calculate all possible transformations of CP-nets for any permutation. Without
loss of generality, we only consider preference profiles that follow x1 > x2 before permutation. For example,
the following is part of the outcome, we will explain the meaning of the symbols right after presenting them.
0132
000—>001 001—>000 001—> r000 010—>011 010—> r100 011—>010 100—>101 110—>111 110—
> r111 101—>100 101—> r011 111—>110

We encode each candidate inD1×D2 as a number—0102 as 0, 0112 as 1, 1102 as 2, 1112 as 4. In the
output, the first 4 numbers 0132 encode the permutationM s.t.M(0102) = 0102,M(0112) = 0112,M(1102) =
1112,M(1112) = 1102.

A CP-net that followsx1 > x2 is encoded as 3 numbersabc, where

a =

{

0 iff 01 ≻ 11
1 iff 11 ≻ 01

,b =

{

0 iff 01 : 02 ≻ 12
1 iff 01 : 12 ≻ 02

,c =

{

0 iff 11 : 02 ≻ 12
1 iff 11 : 12 ≻ 02

.

For a CP-net followingx2 > x1, the 3 numbers are defined similarly with them firstly considering the prefer-
ence onD2, then add “r” before the numbers.

A transformationN —> N ′ means thatN is M-transformable toN ′. To prove neutrality, we need to
verify for each permutation and any legal preference profile, Equation (2) holds. We verifyM = 0132 in this
paper as an example.
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From the output related toM = 0132 listed above, there are 8 possible transformations from a CP-net fol-
lowing x1 > x2 to another CP-net following the same order, and 4 possible transformations from a CP-net fol-
lowing x1 > x2 to another CP-net followingx2 > x1. By anonymity, we assume that there area,b,c,d,e, f ,g,h
votes for 000—> 001,001—> 000,010—> 011,011—> 010,100—> 101,110—> 111,101—> 100,111—
> 110 respectively. If 1102 is selected bySeq(c1,c2) before permutation, then sincec1,c2 are both plurality
rules, we have

e+ f +g+h≥ a+b+c+d

and
a+c+e+ f ≥ b+d +g+h.

After permutation, frome+ f +g+h≥ a+b+c+d we know thatc1 would select 11 (of course, it may also
select 01) and froma+ c+ e+ f ≥ b+ d + g+ h we know that afterc1 selected 11, c2 would select 12. So
1112 must be selected after permutation.

Suppose there area,b,c,d votes for 001—> r000, 010—> r100, 110—> r111, 101—> r011 respec-
tively. If (11,02) is selected bySeq(c1,c2) before permutation, thenc+ d ≥ a+ b,b+ c≥ a+ d. Since the
order is reversed after permutation, we would firstly considerc2. Fromb+c≥ a+d we knowc2 would select
12 and fromc+ d ≥ a+ b we know that after 12 is selected, 11 is selected byc1. So 1112 must be selected
after permutation, Equation (2) holds for 1102 case.

We checked all the 4 candidates inD1×D2 for all permutations in a similar way, and found that Equation
(2) always hold. The lengthy verifications are omitted here.ThereforeSeq(c1,c2) is neutral. 2

Proof of Theorem 5.4: To prove this theorem, we need some definition and lemmas.

Definition 6.4 For anyO = xi1 > .. . > xip with i1, . . . , ip a permutation of{1, . . . , p}, and a linear preference
relation P followingO , define a mapping ConP fromX to a subset of all CPTs items in CP-net ofO s.t.

ConP(~x) = {≻x1
P ,≻

x2|x1=x1
P , . . . ,≻

xp|x1=x1,x2=x2,...,xp−1=xp−1

P }

For example, letp= 3,P= 111213 ≻ 111203 ≻ 110203 ≻ 110213 ≻ 011203 ≻ 010203 ≻011213 ≻010213, then
ConP(110213) = ConP(110203) = {11 ≻ 01,11 : 12 ≻ 02,1102 : 03 ≻ 13}. The subscriptionP is sometimes
omitted when there is no confusion.

Lemma 6.5 Let V = {x1, . . . ,xp}, P= {P1, . . . ,PN} followingO = x1 > .. . > xp and

Seq(r1, . . . , rp)(P1, . . . ,PN) =~x.

If another linear preference profile P′ = {P′
1, . . . ,P

′
N} satisfies:

(a) P′
i followsO ,

(b) (∀1≤ i ≤ N)
(

P′
i satisfies ConPi (x̄)

)

,

then
Seq(r1, . . . , rn)(P′

1, . . . ,P
′
N) =~x.

Proof. This is obvious, since thatxi = x∗i = x′∗i by the assumption ofP′. 2

This lemma says that if we keep some conditional order(i.e. the CPTs related to the result of the sequential
voting process in the representing CP-net ) unchanged, the sequential voting result would not change as well.

Lemma 6.6 Let P be a linear preference relation followingO , its first ranked vector is~x. For any~x′ 6=~x, not
all of {x′i1 ≻P x̄′i1 ,x

′
i1

: x′i2 ≻P x̄′i2 , . . . ,x
′
i1

. . .x′ip−1
: x′p ≻P x̄′p} hold in P.

Proof. On the contrary, suppose all of them hold. Without loss of generality letO = x1 > .. . > xp.
Let i be the smallest index thatxi 6= x′i . Sincex′1 . . .x′i−1 : x′i ≻ x̄′i holds, it must be the case that

(x1, . . . ,xi−1,x
′
i ,xi+1, . . . ,xp) ≻ (x1, . . . ,xi−1,xi ,xi+1, . . . ,xp) =~x,

which contradicts the assumption that~x is the first ranked inP. This completes the proof. 2

Lemma 6.7 Let V be a linear preference relation consistent withO , and its first ranked vector is~x. For any
~x′ 6=~x, if~x′ 6=~x, then there exists V′ also consistent withO , s.t.

a. ~x′ ≻V ′ ~x′, where~x′ is the complement of~x′;

b. ~x′ and~x′ are adjacent in V′.

c. Let M be the permutation on D that only exchanges~x′ and~x′, then V′ ∼ M(V ′).
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d. V ′ also satisfies Con(~x′).

Proof. Without loss of generality, we can assume thatO = x1 > .. . > xp, ~x = (11,d2, . . . ,dp) s.t. ∃2≤ i ≤
p,di = 0, and~x′ = (11, . . . ,1p). Thus~x′ = (01,02, . . . ,0p). DenoteN the corresponding CP-net ofV. Our
first goal is to construct a CP-netN ′ s.t. all ofCon(~x′) hold and

N ′ 6|= (11, . . . ,1p) ≻ (01, . . . ,0p).

By Lemma 6.6, we know that at least one of{11 ≻V 01,11 : 12 ≻V 02, . . . ,11 . . .1p−1 : 1p ≻V 0p} does
not hold. Leti be the smallest number that 11 . . .1i−1 : 0i ≻V 1i and 11 . . .1i−2 : 1i−1 ≻V 0i−1. In N ′, we
firstly put allConP(11, . . . ,1p) toN ′’s CPTs, then for all 1≤ j ≤ i, we put

11 . . .1 j−10 j : 0 j+1 ≻ 1 j+1,

11 . . .1 j−10 j0 j+1 : 0 j+2 ≻ 1 j+2,

...

11 . . .1 j−10 j . . .0p−1 : 0p ≻ 1p,

denoted asCj , into the CPTs ofN ′. The other part of the CPTs ofN ′ can be chosen arbitrarily, which would
not affect the claim of this lemma. SinceConP(11, . . . ,1p) andCjs are contained in the CPTs ofN ′, we know
that the only parent of(01, . . . ,0p) in the induced graph ofN ′ is (11,02, . . . ,0p); similarly the only parent of
(11,02, . . . ,0p) is (11,12,03, . . . ,0p), etc.

In the end,(11, . . . ,1i−1,0i , . . . ,0p) does not have any parent. Sincei ≤ p, (11, . . . ,1p) is not a parent
of (01, . . . ,0p), which meansN ′ 6|= (11, . . . ,1p) ≻ (01, . . . ,0p). On the other hand, since 11 >V 01, we also
knowN ′ 6|= (01, . . . ,0p) ≻ (11, . . . ,1p). Therefore by Lemma 6.2 there exists a linear preference orderingV ′

consistent withN ′ satisfying a,b,c. The lemma is thus proved. 2

Now we can prove the theorem. If the theorem does not hold, by Lemma 6.7 there existsV ′
1, . . . ,V

′
N s.t.

for every 1≤ i ≤ N

(a) ~x′ ≻V ′ ~x′, where~x′ is the complement of~x′;

(b) ~x′ and~x′ are adjacent inV ′.

(c) LetM be the permutation onD that only exchanges~x′ and~x′, thenV ′ ∼ M(V ′).

(d) V ′ also satisfiesCon(~x′).

Then by Lemma 6.5,Seq(r1, . . . , rp)(P′
1, . . . ,P

′
N) =~x, which obviously contradicts the consensus. (c) obvi-

ously contradicts with neutrality. The proof is complete. 2

Proof of Theorem 5.5: Example 6.8 also shows that the sequential plurality on multiple referenda is not
neutral if p≥ 3. Consider the profileP= (V1,V2,V3), the sequential plurality rule would select 111213, which
is not ranked first in anyVi . So by Theorem 5.4 the sequential plurality does not satisfyeither neutrality or
consensus. 2

Proof of Theorem 5.7:
This is easily shown on the following counterexample with two binary issuesx andy:

voter 1: (x,y) ≻ (x̄,y) ≻ (x̄, ȳ) ≻ (x̄, ȳ
voter 2: (x, ȳ) ≻ (x,y) ≻ (x̄,y) ≻ (x̄, ȳ)
voter 3: (x̄,y) ≻ (x̄, ȳ) ≻ (x, ȳ) ≻ (x,y)

The profile is legal, the order beingx ≻ y (note that voter 1’s preference order is separable). If voter 1
knows the preferences of voters 2 and 3 then he does not want tovote sincerely onx: if he does, then he votes
x and then the outcome is(x, ȳ). If he votes for ¯x instead then then outcome is ¯x,y), which is better to him.2

Appendix 3: Examples
Example 6.8 Copeland satisfies consensus, because if c1 ≻ c2 in all votes, then c1 would gain more points
than c2 in pairwise comparison. ConsiderX = {01,11}×{02,12}×{03,13} and a profile P consisting of the
following three votes

V1 : 011213 ≻ 111213 ≻ 011203 ≻ 111203 ≻ 010203 ≻ 110203 ≻ 010213 ≻ 110213;

V2 : 110213 ≻ 111213 ≻ 110203 ≻ 111203 ≻ 010213 ≻ 011213 ≻ 010203 ≻ 011203;

V3 : 111203 ≻ 111213 ≻ 110203 ≻ 110213 ≻ 011203 ≻ 011213 ≻ 010203 ≻ 010213,
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Obviously they followx1 > x2 > x3, and the Copeland rule would select111213, which is not ranked first in
any Vi . If Copeland is decomposable, then by Theorem 5.4, any candidate that is not ranked first in any vote
should not be the winner. This contradicts with the profile defined above. So we know Copeland could not be
decomposable on a domain of binary composition.

Example 6.9 Consider three votes

V1 : 011213 ≻ 011203 ≻ 010203 ≻ 010213 ≻ 111213 ≻ 110213 ≻ 111203 ≻ 110203;

V2 : 110213 ≻ 110203 ≻ 010203 ≻ 010213 ≻ 111213 ≻ 011213 ≻ 111203 ≻ 011203;

V3 : 111203 ≻ 110203 ≻ 010203 ≻ 011203 ≻ 111213 ≻ 110213 ≻ 010213 ≻ 011213.

Let P= (V1,V2,V3), then the sequential majority elects111213 from P, which only weak Condorcet-dominates
three candidates —110213,111203, and011213.
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