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Abstract

Multiple election paradoxes arise when voting separatelgach issue from a set of related
issues results in an obviously undesirable outcome. Slemettzors have argued that a sufficient
condition for avoiding multiple election paradoxes is tlsswamption that voters have separable
preferences. We show that this extremely demanding réstrican be relaxed into the much
more reasonable one: there exists a linear orges ... > Xp on the set of issues such that
for each voter, every issug is preferentially independent of1,...,Xp givenxy,...,Xi_1.
This leads us to define a family of sequential voting rulefindd as the sequential composition
of local voting rules. These rules relate to the setting ofditional preference networks (CP-
nets) recently developed in the Atrtificial Intelligenceetéture. We study in detail how these
sequential rules inherit, or do not inherit, the propertietheir local components. We focus on
the case of multiple referenda, corresponding to multifdetsns with binary issues.



1 Introduction

In many contexts, a group of voters has to make a common daaisi several possibly related
issues, such as in multiple referenda, or voting for consegf(the issues then are the positions to
be filled). As soon as voters have preferential dependebeiwgeen issues, it is generally a bad
idea to decompose a vote problem pissues into a set gf smaller problems, each one bearing
on a single issue: “multiple election paradoxes” (or “panael of multiple referenda”) then arise.
Such paradoxes have been studied in several papers, witsligldly different views. In
[4, 12], voters can vote only or N on each issue; the paradox occurs when the set of propasition
that win, when votes are aggregated separately for eaclogitagn received the fewest votes when
votes are aggregated by combination: for instance, supihese are 3 propositions, B, C and
three voters voting respectively f&{BC, ABC and ABC. Propositionwise aggregation leads to
ABC, which ABCreceives support for not a single voter. The paradox stuidi¢8] is a little bit
different. They show that voting issue by issue is feasithempreferences are separable, and that
it generally fails when they are not (a voter’s preferenaessgparable if her preferences on an
issue does not depend on the choice to be made for other)isdd@sever, as argued by [3, 8],
separability is an extremely strong assumption that ikefylito be met in practice.

Example 1 A common decision has to be made about whether or not to builelaswimming
pool (S orS) and a new tennis court (T dr). Assume that the preferences of voters 1 and 2 are
ST = ST~ ST - ST, those of voters 3 and 4 a8 ~ ST ~ ST = ST and those of voter 5 are
ST> ST > ST ST.

The first problem with Example 1 is that voters 1 to 4 feel illeaise when asked to report
their projected preference of§ S} and{T,T}. The analysis of the paradox in [8] considers
that voters report their preferences optimistically (thogers 1-2 report a preference fSrover
S, but this assumption, even if it has been justified by expenital studies (see [11]), remains
arbitrary, and would not necessarily carry on to more compituations such as a voter with the
following preference relationABC - ABC - ABC - ABC = ABC > ABC - ABC > ABC: only a
very optimistic voter would report a preference fofexcept, of course, if some prior beliefs about
the others’ preferences make him believe that the commaside@boutB andC will be BC.)

The second problem (the paradox itself) is that under trgsragtion that voters report opti-
mistic preferences, the outcome in Example 1 will$E which isthe worst outcome for all but
one voterand a fortiori, is a Condorcet loser. Lacy and Niou [8] gimetner example, with three
issues, leading to an even worse paradox where the outcarnakisd last by everyone.

The main question is now, how can these paradoxes be avoRefi?mulating the question
in a more constructive way, how should a vote on related ssbeeconducted? We argue that we
have to choose one of the following two ways, each of whichdoase specific pitfalls:

The first way consists in giving up decomposing the globagwoto local votes andoting for
combinations of values his solution is supported by Brams et al. [3, 4]. There ilms@mbiguity
on how the process should be conducted, thus leading to plossgble methods:

1. ask voters to report their entire preference relatiorherset of alternatives, and then apply
an usual voting rule such as Borda.

2. ask voters to report only a small part of their preferemtation and apply a voting rule that
needs this information only, such as plurality;

3. limit the number of possible combinations that voters watg for.

From a theoretical point of view, Solution 1 works: each dagpecifies his preference relation
in extensand then any fixed voting rule is applied to the obtained ppfilith no risk of a para-
doxical outcome. However, as noticed in [3], this solutispiactically unfeasible if the number
of issues is more than a small number (say, 3): the expohentaber of alternatives makes it
unreasonable to ask voters to rank all alternatives exiglidin other words, implementing such
a voting rule on a multi-issue domain needsexponential protocolClearly, exponentially long
protocols are not acceptable. Therefore, as soon as theanwhissues is not very small, this
solution is ruled out bgommunication complexigonsiderations.



Solution 2 requires little communication, but it is its omtyerit. Voting rules that are im-
plementable by a cheap protocol make use of a very small pénreosoters’ preferences: if the
protocol is required to have a polynomial communication ptaxity, then the voting rule it imple-
ments use at most a logarithmic part of the profile. Such ibesxist: not only plurality and veto,
but more generally all rules that require, for instance Khep candidates of each voter, whége
is a fixed integer. However, when the number of issues grdwesgtrules could give extremely bad
results. For instance, using plurality when the number sifés is significant and the number of
voters small could well result in a situation where no outeaets more than one vote, in which
case plurality would give an extremely poor result.

Solution 3, sketched in [3], presents the chairperson witarg problematic choice. This may
be feasible when issues can clearly be packaged into grdupsugs such that two groups are
clearly independent, but this favorable situation is fanfrbeing a general rule.

The second way, supported by Lacy and Niou [8] for multipfemenda, consists in sticking to
a vote issue by issue, the outcome of the vote on one issug tmiaaled before the vote on other
issues. They show that sequential voting (with whichevendg) allows for escaping the worst
versions of the multiple election paradoxes, namely, itidv@ Condorcet loser to be elected.
However, this method still has three major drawbacks. Fih& voters may still feel ill at ease
when reporting their preference on an issue, when this meée depends on the value of issues
not decided yet. Second, the study is based on the assurttpdioroters will behave optimistically,
by reporting the projection of their preferred outcome, abhis debatable except in some specific
cases. Third, even if a sequential vote avoids the final @oéado be a Condorcet loser, the paradox
remains to a large extent, as can be seen on the following@eam

Example 2 We have three issues A, B, C a2id + 1 voters.

M voters: AR >~ ABC - ... -~ ABC - ABC

M voters: ABC- ABC ~ ... = ABC~ ABC

1voter:  ABC= ABC = ABC = ABC = ABC > ABC = ABC = ABC

In Example 2, having voters decide first énthen toB and then toC, and assuming they
behave optimistically, will lead té&\BC, which is (a) a “nearly-Condorcet loser” (it is Condorcet-
dominated by all candidates except one) and (b) Paretodied by half of the outcomes. (More
acute paradoxes can be found, but they need more issueaanddhe space.) Actually, the reason
why the sequential process avoids a Condorcet loser to beedles only because thast vote is
made with a full knowledge of the values of other issues, thissesult loses his significance when
the number of issues becomes bigger.

There is a well-known restriction on voter preferences #iws for such paradoxes to be
avoided, that is, when all voters haseparablepreferences across the outcomes of the issues.
Then, a voter’s preferences on the values of an issue is @mdigmt from the values of other issues,
and the elicitation process can be performed safely issusdme (and even without needing to
resort to sequentiality). Under the separability assunmptioting separately on each issue (either
sequentially or simultaneously) enjoys good propertieduiding the election of a Condorcet win-
ners when there is one. However, the separability resirias very demanding, and unlikely to
be met in practice, especially because separable prefssennstitute a very tiny proportion of
possible preferences on multiple issues (see [6]).

The question is now, can this extreme separability assomte relaxed without hampering
the nice properties of sequential voting? As it stands, tiever is positive, as the method can
be safely applied to far many profiles than separable profileformally, the condition should be
that each time a voter is asked to report his preferences imgie $ssues or a small set of isssues,
these preferences do not depend on the values of the iggtdsgve not been decided yet

Formally, this can be expressed as the following conditttvere is a linear ordep = x; >
... > Xp on the set of issues such that for every vatand everyj, the preferences afonx; are
preferentially independent fromy1,...,Xp givenxa,...,Xj_1. If this property is satisfied, then
a simple protocol can be implemented: the voters’ prefereabout issug; are elicited; then a
voting rule is applied so as to make a decision on the valuq ;ahen this chosen value a&f is
communicated to the voters, who then report their prefergion the values of; given the fixed



value ofxi, and so on. Such preference profiles are catlelégal and abbreviated degal for
0 = X1 > ... > Xp in this paper. This protocol generalizes to clusters oféssy...,l, where
for each voter and eadhl; is preferentially independent of 1,...,Im givenly,...,li_1, where
{l1,...,Im} forms a partition of the set of issues.

This domain restrictiond-legality) and the resulting sequential voting rules and correspon-
dences that are then applicable are defined in Section 3.cltio8el we study in detail the prop-
erties of these sequential composition by relating thenhédorresponding properties of local
voting rules to those of its components. It turns out thatlevimany properties expectedly transfer
from local rules to their sequential composition, this i the case for two important properties,
namely neutrality and consensus. In Section 5 we focus ogpetteular case ahultiple referenda
obtained where all issues are binary. In Section 6 we briefigtion further issues.

2 Preferences on multi-issue domains

Let 1 = {X1,...,Xp} be a set ofssues For eachx; € 1, D; is the finitevalue domairof x;. An
issuex; is binaryif D; = {x;, %}, or equivalently{1;,0;}. (Note the difference between the issue
xi and the valueg.) If X = {Xi,,...,Xi,} € 1, withiy <... <ip, thenDx denoteD;, x ... x Dj,,.
x = D1 x ... x Dpis the set of alblternatives(or candidatey Elements ofx are denoted by, X
etc. and represented by concatenating the values of thesis$or instance, if = {x1,X2,Xs},
X1X2X3 assigns¢; to X1, Xz to X2 andxs to x3. We allow concatenations of vectors of values: for
instance, letr = {x1,X2,X3,Xa,Xs}, Y = {X1,X2}, Z = {X3,Xa}, ¥ = x1Xz, Z = Xa3x4, theny.ZXs
denotes the alternativeXoxXzxsXs.

A preference relatioron x is a strict order (an irreflexive, asymmetric and transitiveary
relation). Alinear preference relatioW is acompletestrict order, i.e., for ang andy # X, either
X > yory > Xholds. We generally noté~y X instead ol (X, X).

Let {X,Y,Z} be a partition of the set and> a linear preference relation over=D,. X is
(conditionally) preferentially independeat Y givenZ (w.r.t. =) if and only if for all X1, X, € Dy,
¥1,¥2 € Dy, Z€ Dz,

Xl.yl.z - 22.91.2 iff 21.92.2 - Xz.yz.z

Conditional preferential independence originates initeedture of multiattribute decision the-
ory [7]. Unlike probabilistic independence, it is a diretteotion: X may be independent of
givenZ withoutY being independent of givenZ. Note that preferential independence is weaker
than utility independence.

Conditional preference networksr CP-nets are a language for specifying preferences based
on the notion of conditional preferential independenceeyTallow for eliciting preferences, and
for storing them, as economically as possible. FormalyPaneta’ [1] over a set of attributes (or
issuesy is a pair consisting of a directed gra@over 1 and a collection of conditional preference
tablesCPT(x;) for eachx; € 1. Appendix 1 gives some fairly detailed background on CR-net

Let o =x1 > ... > Xp be alinear order on. We say that- follows 0 = x1 > ... > X if for all
i < p, xi is preferentially independent ¢k 1, ...,Xp} given{xu, ...,Xi—1} with respect to-.

If > follows o then theprojection of > on x; given (Xq,...,%i-1) € D1 x ... x Dj_1, de-
noted by-—Xix1=x1.-Xi-1=%-1 is the linear preference relation &n defined by: for alli,x € Dj,

X XXX X=Xy X iff X1...Xi—1XiXi4-1...Xp = X1...Xi—1X{Xi+1..Xp holds for all (Xi11,...,Xp) €
Dit1x...xDp.

Due to the fact that follows 0 and that- is a linear ordery-*i*1=x1-Xi-1=X-1 j5 g well-

defined linear order as well. Note also that-iffollows botho = x; > ... > xp ando’ = Xg(1) >

coincide. In other words, the local preference relationxpdepends only on the values of the
issues that precedgin o andin o’.

Let G be anacyclicdirected graph (DAG) on. A preference relatios is compatible with G
denoted by-~ G, if >~ follows some ordep = x1 > ... > X on I that followsG, that is, such
that for every edgéx;, x;) in G we have < j. For any two preference relatiors, >, and CP-net
A, we use the following notations:1~ a( if =1 extendsa(; =1~>> if there exists a CP-net



A st -1~ A and o~ A, =1~pe =2 if =1~ A0 and -2~ A(. Lastly, we say-; and-, are

G-equivalent, denoted by 1~g>2, if and only if =1 and>, are both compatible witks and for
anyx €V, for anyy,y € Dom(par(x)) we have- PA =V, XPa)=Y Note that-1~g> if and

only if there exists a CP-ne{ whose associated graph@sand such that-; and> both extend
A . We frequently use the notatidh(for “ vote”) instead ofs-.

Example 3 Let1 = {x,y,z}, all three being binary. and let V and\be the following votes:

V I XYZ~ XYZ = XYZ = XYZ~ XYZ = XYZ = XYZ>~ XyZ

V' i XYZ= XYZ = XYZ = XYZ = XYZ= XyZ = XyZ = XyZ
Let G be the graph over whose set of edges {§x,z),(y,z)}. V and V are both compatible
with G. Moreover, V~g V', since all local preference relations coincide:>X; X and x>, X;

2= 7 and -85 Z etc. The CP-net that V and \both extend is defined by the

following preferences tables:x X; y = Y; Xy: 2= Z; Xy Z= Z;Xy: Z> Z; Xy : Z > Z.

3 Sequential voting rules and correspondences

We start by recalling briefly some necessary background tingroules and correspondences (for
more details see for instance [2]). Let= {1,...,N} be a finite set ofotersandx a finite set
of candidates A profilew.r.t. 2 andx is a collection ofN individual linear preference relations
overx: P = (Vi,..,.Wn). LetP; , be the set of all preference profiles farandx. A voting
correspondence CP; , — 2¥ \ {0} maps each preference profieof P, , into a nonempty
subseC(P) of x. A voting rule r: P; » — X maps each preference profiteof P; x into a single
candidate (P). The correspondence that elects the candidates that deedréirst by the largest
number of voters is thplurality correspondence. When there are only two candidatgs, the
majority correspondenama jis defined bymaj(P) = {x} (resp.{y} if more voters irP preferx to

y (resp.y to x), andmaj(P) = {x,y} in case of tie.

Given a profileP, x € x is aCondorcet winnefresp.weak Condorcet winngif it is preferred
to any other candidate by a strict (resp. non-strict) mgjasf voters: for ally £ x, #{i : X =i
y} > % (resp.> %). A Condorcet-consistemtule (resp. correspondence) is a voting nulgesp.
correspondenc€) such that whenever there exists a Condorcet winnfar the profileP then
r(P) =x(resp.C(P) = {x}).

These definitions of voting rules are not concerned with hoavotes are elicited from the
voters. As in [5] we distinguish between the voting rule amga@ocol (which determines which
relevant information is elicited, and when, from the vo}¢hat implements it. The deterministic
communication complexity of a voting ruteis the worst-case number of bits sent in the best pro-
tocol implementing. See [5] for a communication complexity study of variousngtrules.

From now on, we assume that the set of candidates is a msug-idomainc = D1 x ... x Dp.
Sequential votingonsists in applying “local” voting rules or correspondesion single issues, one
after the other, in such an order that the local vote on a gasre can be performed only when the
local votes on all its parents in the gra@thave been performed. Note that, unlike in [3, 4, 8], we
do not assume that issues are binary. We now define our cdariaéin restriction:

Definition 1 Given a linear ordero = x1 > ... > Xp on 1, we define Legdb) as the set of all
profiles P= (V4,...,VWn) such that eachMollows 0.

We might wonder how strong this restriction is. First of albte that it is much less demand-
ing than separability. Second, it can be generalized bytjoaning the set of issues into subsets
I1,...,lq such that; is preferentially independent &f.1 U... Ulq givenli U... Uli—1. Obviously,
all profiles are of this form, the worst case beipg: 11 However, we can assume without loss of

1The smaller the size of the subsets, the cheaper the protheotommunication cost of the protocol for computing a
sequential rule using such decomposition into cluste§§:i§ Mx;el |Dj|. The protocol is guaranteed to remain cheap (that
is, polynomial) if there exists a constaft(independent from the number of issues and voters) suchlithatK for every
clusterl;.



generality (and we will do so in the remainder of the papea} trach cluster consist of a single
issue (if this were not the case from the beginning, then elhxterl; can be considered as a new
single issue, with domaiBy, = [1y¢, Dj.)

Definition 2 Leto =Xy > ... > Xp be a linear order orv, and(ry,...,rp) a collection of deter-
ministic voting rules (one for each issug. Thesequential voting rul&edry,...,rp) is defined
on all profiles followingo as follows: for any P= (V4,...,W) in Legal(0):

o Xt =r1(V]%, . L)

X2[X1=X] Xa|X1=X] .
o X5 =r2(Vy ATA );
° ...
XplX1=X],... Xp-1=X 4 Xp[X1=X],.. Xp_1=X5_1

Then Sefry,...,rp)(P) = (X, ..., Xp).

Example 4 Let N= 12, 1 = {X,y} with Dy = {x,x} and Dy = {y,y}, and P= (Vy,..., V1) the
following 12-voter profile:

V1,V2,V3,Va i Xy = Xy = Xy = Xy Vb, V6, V7 1 Xy = Xy = Xy = Xy
Vg,Vo,Vip i Xy = Xy = Xy =Xy Vig,V11: XY= Xy = Xy = Xy

All these linear preference relations follow the order y. Hence, Pe Legal(x > y).

Take k and r, both equal to the majority rule, together with a tie-breakimechanism which,
in case of a tie between x adresp. between y ang, elects x (resp. )y The projection of P on
X is composed of 7 votes for x and 5 farthat is, B is equal to x- x for 1 <i < 7 and tox > X
for 8 <i <12 Therefore x = ry(P},...,P) = x: thex-winner is X = x. Now, the projection of
P ony givenx = x is composed of 7 votes for y and 5 fgrtherefore § =y, and the sequential
winner is now obtained by combining tkewinner and the conditiongtwinner giverx = x* = x,
namely Sey,ry)(P) = xy.

In addition to sequential rules, we defisequential correspondencisa similar way: if for
eachi, ¢ is a correspondence dh, thenSedqcy,...,Cp)(P) is the set of all(xy,...,Xp) S.t. X, €
(P, P, and for alli > 2, x € ¢ (PP X1t pliba=x, Xioa=xio1y

It is important to remark that, in order to comp@&edrs,...,rp)(P), we do not need to know
the linear preference relations;Y..., \ entirely. everything we need is the local preference
relations: for instance, if = {x,y} andG contains the only edgéx,y), then we need first the
unconditional linear preference relations m@and then the linear preference relationsyocon-
ditioned by the value ok. In other words, if we know the conditional preference takier all
voters) associated with the gra@hthenwe have enough information to determine the sequential
winner for this profile even though some of the preference relations induced fnesettables are
incomplete. This is expressed more formally by the follayviact (see Observation 4 in [9]): let
I ={X1,...,Xp}, Gan acyclic graph over, andP = (Vi,...,W), P’ = (V;,...,\}|) two complete
preference profiles such that for a# 1,...,N we haveVi ~g V/. Then, for any collection of local
voting rules(ry,...,rp), we haveSedry,...,rp)(P) = Seqry,...,rp)(P). (A similar result holds
for correspondences.) This implies that applying seqaéwditing to two profiles corresponding
to the same collection of CP-nets will give the same result.

We may now wonder whether a Condorcet winner (CW), when tbgists one, can be com-
puted sequentially. Sequential Condorcet winners (SCWdefined similarly as for sequential
winners for a given rule: the SCW is the sequential combamatif “local” Condorcet winners.

Definition 3 Let o = x; > ... > Xp be a linear order onz, and Pe Legal(0). (xj,...,x}) is a
sequential Condorcet winnéar P if and only if

o WXy € Dy, #{i,x{ =* X} > 5;



o for every k> 1 andvx, € Dy, #{i,x; = 4701 gy N

Clearly, the existence of a SCW is ho more guaranteed thawot@aCW, and there cannot be
more than one SCW. We have the following positive result J{f®oposition 3): if(x, X3, ..., Xp)
is a Condorcet winner fde, then it is a sequential Condorcet winner Ror(Note that the converse
fails). An important corollary of this result is the folloag:

Theorem 3.1 If every f is Condorcet-consistent then §eq. ..,rp) is Condorcet-consistent.

Therefore, the output of a sequential voting rule will be@mndorcet winner when there exists
one, provided that each local rutes Condorcet-consistent. This applies in particular tausedgal
majority on domains composed of binary issues, which wasadly known in the particular case
when all voters have separable preferences (see [8]). Thissaus to claim thathe restriction
to legal profiles (with respect to some ordey allows for escaping multiple election paradoxes
at least the version of the paradox that deals with Condavireters failing to be elected. For the
version of the paradox concerned with electing a Condoosetr] a sequential voting rule will not
elect a Condorcet loser, provided that each of its locakroiver elects a Concorcet loser:

Theorem 3.2 If there exists K p s.t. § never elects a Condorcet loser, then 8eq..,rp) never
elects a Condorcet loser.

For sequential majority on multiple referenda, we haveghsly more significant result:

Theorem 3.3 Let ¢, ..., cp all equal to the majority correspondence on binary domakfs.any

o-legal profile P and anyl € Sedcy, ... ,Cp)(P), there exist p outcomes, ... X, € x such thatd
weakly Condorcet-domina#for all i < p.

This boundp is actually tight (see Example 6.9 fpr= 3; it can be generalized o> 3).

4 Properties of sequential voting rules

We start be recalling a few important properties that votirlgs may (or may not) satisfy. A voting
rule satisfies

e anonymity if it is unsensitive to any permutation of the voters;
e homogeneityif for any voteV and anyn € N, r(V) =r(nV).
e neutrality if for any profileP and any permutatioM on candidates,(M(P)) = M(r(P)).

e monotonicity if for any profilesP = (V1,...,W) andP’ = (V],...,\})) s.t. each/ is ob-
tained fromV; by raising onlyr (P), we haver (P’) = r(P).

e consistencyif for any two disjoint profiles (that is, given, by two disfdielectorateslp, P,
s.t.r(P1) =r(Py), thenr(PLUP:) =r(P1) =r(Py).

e participation if for any profileP and any vot&/, r(PU{V}) >y r(P).

e consensusf for any profileP = (Vi,...,W), there is no candidates.t. ¢ >y r(P) for all
i <N.

Since sequential voting rules are sequential composifiorudtiple local rules, we may wonder
whether the properties of local rules carry on to their satjgecomposition, and vice versa. In
this paper, we focus on the above properties. We only giwgdtsesn voting rules, but most of the
them can be easily extended to correspondences.



4.1 From sequential rules to local rules

Notice that decomposable voting rules are defined over lpgilles, therefore, when we say
a decomposable voting rule satisfies a property involvingisg profiles, it means that it holds
for all legal profiles. This applies to neutrality and monotonicitgedry,...,rp) is neutral if
for any permutatiorM and any legal profild®, if M(P) is legal thenM(Sedry,...,rp)(P)) =
Seqry,...,rp)(M(P)). (And similarly for monotonicity.)

Theorem 4.1 If Sedry,...,rp) satisfies anonymity (resp. homogeneity, neutrality, cbescy,
participation, consensus), then for afy< i < p, r; also satisfies anonymity (resp. homogeneity,
neutrality, consistency, participation, consensus).

Monotonicity transfers to the last local rule only. This s@egly strange results is mainly
caused by our restriction to legal profiles.

Theorem 4.2 If Sedry,...,rp) satisfies monotonicity, thep also satisfies monotonicity.

Since the way to obtain a new legal profi®efrom P by just raising one candidate can only
affect the conditional orders dby, we consider now a stronger monotonicity by allowing mustip
candidates to be raised simultaneously.

Definition 4.3 A voting rule r isstrongly monotonic if for any profile P, any YC x, and any
P’ obtained from P by only raising the candidates in Y while kagpheir relative position un-
changed, we havelP’) e r(P)UY.

LetY = {r(P)}, we immediately know if is strongly monotonic, then it is also monotonic.
The next theorem shows that strong monotonicity can befeen every local rule.

Theorem 4.4 If Sedry,...,rp) satisfies strong monotonicity, then for ahy i < p, r; also satisfies
strong monotonicity.

4.2 From local rules to sequential rules

Then we give results on whether the sequential composifitwtal rules inherit a given property
satisfied by all local rules. Here are the positive results:

Theorem 4.5 If for all 1 <i < p, r; satisfies anonymity (resp. homogeneity, consistency)gtro
monotonicity), then Séry, ..., rp) also satisfies anonymity (resp. homogeneity, consistetiopg
monotonicity).

The next theorem shows that the converse of Theorem 4.2 alds.h
Theorem 4.6 If r , satisfies monotonicity, then Seq.. ., rp) also satisfies monotonicity.

Neutrality, consensus, and participation are not transfirom local rules to their sequential
composition. We first give the following result, about neiity and consensus.

Theorem 4.7 Letry,...,rp, p> 2 be plurality rules andD;| > 2 for all i < p. If there exists K p
s.t. |Di| > 2, then Sefry,...,rp) does not satisfy neutrality, nor consensus.

The next example shows that participation cannot be liftethflocal rules to their sequential
composition.

Example 4.8 Let A1, A2 be two CP-nets 0§01,11,21} x {02,112} s.t. inAG
01 >_9\Cl 11 >_9\Cl 21,01 . 02 >_9\Cl 12,11 . 12 >_9\Cl 02,21 . 12 >_-‘7\C1 02,

in A2, X3 andx, are independent, anth o 21 7o, 01,02 -4, 12

Clearly A b= 111> > 010, therefore, there exists a vote ¥onsistent wittn(>, and 0102 >,
1,1, (cf. Lemma 6.2), for example V210, > 2115 > 130 = 0102 > 1315 > 011>

Let r1 be a scoring rule with score vect(8, 2,0), ro be the plurality rule. Obviously both Jr>
satisfy participation. We consider a profileP(V1,V3) s.t. i and \4 are consistent wittni. Then
Sedry,r2)(P) = 0102 and Seqr,r2) (PU{V>2}) = 1115. But0102 >\, 111>. Hence Se(y,r2) does
not satisfy participation.



5 Multiple referenda

In this section, we focus on the case where all issues areyhjina., multiple referenda). Clearly,
if Seqry,...,rp) is “reasonable” to some extent to be defined, then eashould be the majority
rule. We give below a characterization of sequential majahiat generalizes May’s theorem [10]
to multi-issue domains. It is more natural to consider thgusatial composition majorities as
a correspondence, namededc;, ..., Cp), where eaclt; is the majority correspondence for two
candidates. Notice if the number of voters is odd, then setiplenajority outputs a single winner,
which obviously is not necessarily the case where the nuwthaters is even: for instance, let us
consider 2 voters, with respective preference ordges xy > Xy = Xy andxy = Xy > xy > xy. The
profile is legal forx >y, and the outcome of sequential majority consists here of¢hef three
alternativeg xy, xy, xy}.

First we make an observation on the neutrality of egclOur aim is to find a necessary and
sufficient condition for each to be neutral, based on some observationSexjcy, ... ,cp). Recall
in Theorem 4.1 it has been proved theBédc;, . .., Cp) is neutral ther; is neutral. But this is nota
necessary condition (and we will prove thapif> 3 then the sequential majority is not neutral, see
Theorem 5.6). Fortunately, for multiple referenda, we cad & suitable condition. Denokég the
permutation onx that exchangegds, ...,dp) to (di,...,dp), for exampleMg(011,03) = 1;0,13.
We say thaBedqc;, ..., Cp) isinsensitive to M if for any legal profileP, Mr(Sedcy,...,cp)(P)) =
Sedcy,...,cp)(MRr(P)). The next theorem says that a decomposable voting corrdepoa is
insensitive taVir iff its local correspondences are neutral.

Theorem 5.1 ¢; is neutral for alli < p if and only if Se(gy, ..., Cp) is insensitive to M.

The next theorem characterizes sequential compositioragdnity correspondences.

Theorem 5.2

1. On the domain of all profiles that consists of odd numberatés; a decomposable vot-
ing correspondence Sgg, ... ,Cp) is the sequential majority correspondence if and only if
Sedcy, ..., Cp) satisfies anonymity, strong monotonicity, and is inseresith M.

2. A decomposable correspondence-Geqcy, ... ,Cp) is the sequential majority correspon-
dence if and only if it satisfies anonymity, strong monotityiconsistency, and insensitivity
to Mg, and if whenevelC(P)| > 2 for some profile P, the{P| is even.

Remark that the sets of properties in 1. and 2. are minimaliffgtance, in 1., all three
properties are required).

Recall that Theorem 4.7 says that if sofig| > 2, then the sequential composition of rules
that satisfies neutrality (resp. consensus) might notfgatiutrality (resp. consensus). We may
wonder how about ifD;| = 2 for all i. Notice first that plurality and majority coincides on bipar
domains. We observe that when= 2, sequential majority is neutral.

Theorem 5.3 Let ¢, ¢ be equal to the majority correspondence on binary domaihenBe(r, ;)
is a neutral correspondence.

Then we considep > 2 and we give an important result for multiple referenda, elgmman
impossibility theorem that can be used to prove that seweraimon voting rules are not decom-
posable. This theorem says that if a voting rule satisfiesmposability and consensus, then any
candidate that is not regarded the first by any voter cannohéevinner of the voting process,
even if every voter thinks he is the second best. Here we adatg the theorem, an example of its
application will be presented in the Appendix 3.

Theorem 5.4 If a sequential voting rule Se¢x,...,rp) on a domain consisting of binary issues
satisfies consensus or neutrality, then for any preferemoéle P = {V4,...,Wy} following o,
X=Seqry,...,rp)(P) must be top ranked in at least one{dh, ..., Wn}.



By this theorem, we can easily prove that many voting rulesat decomposable for domains
consisting of binary issues, suchBscklin, Maximin, Copeland, Ranked paisge Example 6.8.

With Theorem 5.4 and Example 6.8 we are able to prove that when2, the sequential
composition of majority (plurality) is not neutral.

Theorem 5.5 If p > 3, then the sequential composition of majority on p binary dm®s does not
satisfy neutrality, nor consensus.

Together with Theorem 4.7 and Theorem 5.3, we know that thersutral sequential plurality
rule is the one on a 2 2 domain.

Theorem 5.6 A sequential composition of plurality rule is neutral ifp2 and |D1| = |D1| = 2.

For neutrality of non-binary subdomains, we have proved fillap > 3, if a decomposable
voting rule satisfies neutrality or consensus, then it is@mtdorcet-consistent. Since this paper
mainly discusses multiple referenda, we do not presenté.he

We end this section with some considerations on manipitiabilVe know that the majority
rule for 2 candidates is not manipulable. What about sedalengjority? We know from [8] that
if all voters have separable preferences, then sequential tyagorion-manipulable. Does this
extend to legal profiles in which some voters have non-sepameferences? Unfortunately, it
does not:

Theorem 5.7 Sequential majority is manipulable.

This is easily seen on this counterexample with two binayésx andy: voter 1 has the preference
relationxy > Xy > Xy = Xy, voter 2 hasy > xy > Xy = Xy and voter 3 hagy > xy > xy > xy. The
profile is inLegal(x > y). If 1 knows the preferences of 2 and 3 then he has no interasitéo
sincerely on issug, even though his preference relation is separalflae votes sincerely, then he
votesx and then the outcome ig. If he votes forxinstead, then the outcomexg, which is better
to him.

As a corollary of this result, strategyproofness does ratdfer from the local level to the
global level.

6 Discussion

We have shown that the sequential composition of local gotirles allows for escaping usual
multiple election paradoxes, under a domain restrictiosimueaker than separability. Moreover,
these sequential rules have a cheap communication corpléve have established many results
concerning the transfer (or the failure of transfer) of imtpot properties from local rules to/from
their sequential composition.

Interestingly, our work has benefited from several previstusams of work that were almost
unrelated: on the one hand, social choice, and on the otlnek, banditional preferential indepen-
dence, initially developed in the literature of multidttrite decision making and now widely used
in artificial intelligence (with CP-nets). The initial maéition of our work was also inspired by the
notion of cheap protocol, as defined in the literature on comnation complexity.

An important aspect of multiple election paradoxes that ldi@eserve more attention is the
role ofknowledgeWhat makes our protocols interesting is the conjunctiomvofproperties: they
arecheap(in terms of communication complexity) amgistemically safeour domain restriction
ensures that each time an elicitation query is asked to ttexsidhe votergnowthe answer, that
is, they have all the necessary information needed to gvatswer. Multiple election paradoxes,
where voters experience regret after voting for a giveneisshen learning the outcome of other
issues, is to a large extent due to the fact that voters aedaskcast a vote about a given issue
whereas theylon't knowtheir true preference, the latter depending on the valuewfesother
issues. This, of course, is guaranteed with separabilitytHis assumption is far too demanding.
We believe that our restriction to legal profiles constistaereasonable sufficient condition for the
existence of a cheap and epistemically safe protocol. Hemieis notnecessarybecause we may



consider sequential rules where the order in which the ssate considered depends on the value
of some previously decided issue; these rules would workafarore general class of profiles.
Looking for a sufficient and necessary condition is left fantfier study, as well as a formalization
of epistemically safe protocols within epistemic logic.
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Appendix 1: conditional preference networks (CP-nets)

Let 1 ba a finite set of variables, and for eaghe 1, let D; be a finite value domain. Let = [y, Di.

A CP-net overr is a paira, = (G,CPT), whereG is a directed graph over andCPT is a set of con-
ditional preference tablefCPT(x;) : xj € 1}. Each conditional preference talfl&®T(x;) associates a total
order-}; overD;j, with each instantiatiod of x;’s parentsPar(x;) = U, wherePar(x;) denote the parents of
Xj in G.

For instance, let = {x,y,z}, all three being binary, and assume that preference of a gigent over 2
can be defined by a CP-net whose structural part is the diteatgclic graphG = {(x,y), (Y, 2), (x,2)}; this
means that the agent’s preference over the valugdfinconditional, preference over the valuey ¢fesp.
) is fully determined given the value &f(resp. the values of andy).

Example 5 Let N= 12, 1 = {x,y} with Domx) = {x,x} and Dony) = {y,y}, and P= (V4,...,V12) the
following 12-voter profile:
Vi, V2,V3, Vgt Xy = XY= Xy = Xy

Vs, Vg, V7 XY = XY = XY = Xy
Vg, Vg, Vio: XY = Xy = XY = Xy
V11,Vi2: XY = Xy = Xy = Xy

All these linear preference relations are compatible whk graph G overx,y} whose single edge is
(x,y); equivalently, they follow the order > y: for all voters, the preference oxis unconditional and the
preference oty may depend on the value xf

The corresponding conditional preference tables are:

voters 1,2,3,4 voters 5,6,7 voters 8,9,10 voters 11,12

X = X X=X X = X X = X
XY=y X:y-Yy XY=y X:y=Yy
X:y>=y X:y>=y X:y>=y X:y=y

The conditional preference statements contained in tlases are written with the following usual no-
tation: for instance, in a CP-ngt, 1% : X3 = X3 means that wheRry; is true andx; is false therxz = x3 is
preferred taxz = X3 ceteris paribusthat is, for any fixed values of the other varialgs. . ., xp.

Formally in CP-netn, for anyx; € 1, the conditional independence in CP-net leads to the fatigw
preference relations. Define first

=Ni= {UZx -, U2y X -hy.2€ [1 Dik
xjEPar(x;)

Write - = |J,, >* the union of all relations-* encoded iIrCPT(x;). Notice we require-, be a linear
order, SO~5 is transitive. Therefore the full preferential informatiencoded iy is thetransitive closure

of =%, namely-, = =2 It has been proved [1] that @ is acyclic, then-, is consistent, namely for any
%,y, at most one of -, ¥ andy -, X holds.

In the paper we make the classical assumption@iaiacyclic. A CP-netal induces a preference ranking
onx: AL =X~ yiff X, y. Notice for anyX =Xy, X andy differs only in one issue, artt-, Wis obtained

through a transitive sequence of relatigns™ %3,%; = %,...,%n_1 = Xm,Xm =N W. Son =X~ Vis
thus equivalent to: There is a sequence of improving flipsifydo X, where an improving flip is the flip of a
single issue; “respecting” the preference tablPT(x;) (see [1]). Note that the preference relation induced
from a CP-net is generally not complete, as seen on the fiigpaxample.

Example 6.1 Consider the example depicted in Figure 1.
=X XYZ= XYZ XYZ = XYZ, XYZ= XyZ, XyZ = XyZ
=Y XYZ- XyZ, XYZ = XYZ, XYZ>= XyZ XYZ = XyZ
=21 XYZ> XYZ, XyZ>= XyZ, XyZ> Xyz, Xyz - Xyz, illustrated as

11



N

[

— Xy=Yy XVy:z»27
X:y=y —(XVYy):Z>-2
Figure 1: A CP-net.

Now, -, is the transitive closure of* U =Y U -Z, illustrated b y the followign diagram:

Xyz
Xyz / N Xy7~> WH X72~> )?yZH )TyZ_
N g
\/2
To see how to generate xyzxyz, we consider a three-step increasing flip: in the first siejs, flipped
according to x- X, thus ¥z is obtained; then in the second stejs flipped according toy: z> z, thus leads
to xyz; finallyy is flipped according to xy > Yy, reaching xyz.

An important property of such sequential voting rules anglespondences is that the outcome does not
depend oro, provided thats follows 0. This can be expressed formally:

Observation 1 Leto = (xg > ... >Xp) and 0" = (Xg(1) > .- > Xg(p)) be two linear orders on V such that
G follows botho ando’. Then

Sequv ) rp)(P) = Seqro(l) yeee 7r0(p))(P)
and similarly for voting correspondences.

Example 6 Everything is as in Example 5, except that we don’t know thersocomplete preference re-
lations, but only their corresponding conditional prefece tables. These conditional preferences contain
strictly less information than P, because some of the peefsg relations they induce are not complete: for
instance, the induced preference relation for the first £xots xy>- Xy > Xy, Xy > xy > Xy, with xy andxy
being incomparable. However, we have enough informatiafetermine the sequential winner for this pro-
file, even though some of the preference relations are inlmpor instance, taking again the majority rule
for ry and ry, the sequential winner is xy for any complete profile=RVj, ..., V],) extending the incomplete
preference relations induced by the 12 conditional prefeestables above.

Appendix 2: Proofs

The following Lemma will be used frequently in the followisgctions. The proof is easy so we omit it.

Lemma 6.2 Given a CP-net\(, if Al = B > a, then there exists a linear preference V extending.t.
1. o>y B.
2. a andp are adjacent, i.e. there is nps.t.a =y y>v B.

If A0 = a > B, thenV also satisfies:
3. Denote V obtained from V by exchangirgandp, thenV ~, V.

Proof of Theorem 3.2: If r; never elects a Condorcet loser and for a profleSedry,...,rp)(P) =
(di,...,dp) is the Condorcet loser dP, then for anyd/ € Dj, (di,...,di_1,d/,di11,...,dp) Condorcet-
dominates(dy, ...,dp). Therefore inP*a=t-%1=0-1 ¢’ Condorcet-dominates;, which meang; is the
Condorcet loser if*ilx1=ti-Xi-1=di-1 - Sincer; would not select a Condorcet losg(PXiX1=di--Xi-1=di-1) -2 ¢
This contradicts witfsedry, ...,rp)(P) = (dy,...,dp). SoSedry,...,rp)(P) is not the Condorcet loser &
O

Theorem 3.3Denoted = (dy,...,dp), % = (dy,...,di_1,,di.1,...,dp). We claimd weak Condorcet-
dominateX;. This is becausg electsd;, so

#{V 1V € P gy x_g=a_y Gi} >

N Z
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Therefore #V :V e Pd =y %} > % The theorem is thus proved. O

Proof of Theorem 4.1: Anonymity and homogeneity are obvious. _ _
o Neutrality: If for some < N, r;j is not neutral, then there exists a permutatinon D; and a profileP'

onD;j s.t. ' o
M'(ri(R)) # ri(M'(P")),

then we construct a profile on D as follows:

1. DefineG to be the graph in which there is no edge.

2. For any\/ji € P!, construct a vot¥j ~ G, andexi :Vji.
Then define a permutatidvl onD s.t.

M(dl,...7di,1,di,di+1...,dp) = (d17"'7di717Mi(di)7di+1'"7dp)'
Supposesedry,...,rp)(P) = (dy,...,dp), then
Seqr]J IERE) rp)(M(P)) = (dl7 s 7di,17 rp(Mi (Pi))7di+17 o 7dp)

But from neutrality we have

Seqry,...,rp)(M(P))
=M(Seqry,...,rp)(P))
=(dy,...,di_1,M (rp(P")),dit1,...,dp)
A(dr, .01, M (rp(P)), Gy, dp)

Contradiction. So for all < p, ri must be neutral.
o Participation: SupposBedry,...,rp) satisfies participation, then we need to check that forrargny

profile P' = {V},..., } and any vot&/},, ; onD;
(P UV 1}) 2y, Ti(PY.
We prove this by constructing a profie=Vjy,...,Vy and a vot&/y1 onD s.t. for anyr,| <N+1,
1. V; is consistent with the CP-net in which all issues are inddpen
2. Foranyj < p,j #1i, the preference of; restricted orDj is the same as that bf.
3. The preference df; restricted orD; isVri.
SinceSedry,...,rp) satisfies homogeneity, each also satisfies homogeneity. Denatgthe first ranked
candidate irD by eachvj for all j #1i, if
(P UM 1) <y, (P
then

Seqry,...,rp)(P)
=(0y,...,6i-1,1i(P"), b, dp)
Svpoa (A1, Gimg, (PP UL 1 1), bt -, dp)
=Sedry,....rp)(PU{Wn+1})
which contradicts with theBedry,...,rp) satisfies participation.

¢ Consensus: Similarly iff does not satisfy consensus principle, then there existsfitg®' = (Vli, W)
onD; andd; € D; s.t. for allV' € P!, d; >y ri(P'). ConstructP = (V1,...,Vn) onD as follows:

1. Vj follows the DAG that all issues are independent.
2. V=V,
3. Vj is a conditional lexicographical order.
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Clearly )
Seqry,...,rp)(P) = (d,...,di—1,ri(P"),dit1,....dp).
But for anyVj € P,

(d17 s 7di717di7di+17 oo :dp) >V] (d17 ce 7di717ri(Pi)7di+17 oo 7dp)7

which contradicts with theBedry, ..., rp) satisfies consensus.
e Consistency: Similar with the proof for neutrality, if tleeexistd < p s.t.r; is not consistent, then there
exist two profiles

PL= (Vi1 Ving):Po = (V1. Van,)
onD; s.t.rj(P}) = ri(P,) andri (P} UP}) # ri(P}). We construct two profiles
Pr=(Vi1,....Vain ), P2 = (V1. Van, )
S.t.
1. Any vote inPy or P, is consistent with the graph in which all issues are indepatd
2. For any vot&/ in P, or P and anyj # i we havev*i = {0; > 1; > ...(|Dj| —1)j}.
3. Forallj < Nl,lej‘ :Vlij and for allj < N2,V2in :Vzij.

SinceSeqry, . ..,rp) satisfies consistency, for any profiewe haveSedry,...,rp)(P) = Sedry,...,rp)(2P) =
Seqry,...,rp)(PU2P) =...=Sedry,...,rp)(P)(nP). So it also satisfies homogeneity. By Theorem 4.1 each
rj satisfies homogeneity. So

Seqry,....rp)(P1) = Seqry,....rp)(P2)
:(017 ce 7Oi717ri(Pj||_)7oi+17 s :Op)

#(0g,...,0_1, i (PLUP}), 011, ..., Op)
:SEC(I’L ... 7I’p)(F’]_U Pz)

This contradicts with the consistency ®&dr, ..., rp), sorj must satisfies consistency. O

Proof of Theorem 4.2: If Sedry,...,rp) satisfies monotonicity buty does not, then there exists a profile
PP = (VP,...,\{}) on Dy and another profil®® = (V;P,...,.\\P) s.t. /'* is obtained fromV," by lifting
rp(PP) and keep other relative order unchanged, gs{é'?) # rp(PP).

Now consider CP-net(y, ..., AN S.t.

(@) Allissues i are independent.

(o) Forallj,k<N,i< p—l,y\(jxi =2

(c) Forallj <Na;®=V.
Then consider the conditional lexicographical ordgfor 4, respectively. Denoté, the top ranked candidate
of 2. We then obtaitV;’ by raising only(ds,...,dp_1,rp(PP)) exactly as we raisgy(PP) from \/ip to Vi’p.
SinceV; are all conditional lexicographical order, &} are legal, an i’x"‘dl"'dM =V/P. Then combined
with the homogeneity ofy,...,rp_1, itis easy to check

Sequ, ceey rp)(v]l_v cee 7V|<l) = (d17 cee 7dp717 rp(P/p)):

Sequ7 . -7rp)(v IR 7VN) = (d17 A 7dp—l7rp(Pp))~
Sincerp(P'P) # rp(PP), we have
Sedra,....rp)(V1,..., W) # Sedry,...,1p) (Va,..., W),
which contradicts with the monotonicity &eqry,...,rp). Theorem is thus proved. O
Proof of Theorem 4.4: If not, then there exists < p s.t. r; does not satisfy strong monotonicity but
Sedry,...,rp) does. This means there exists profiRlsP" on D; s.t. P" is obtained fromP' by rais-
ing candidates iy C Dj andri(P") € {ri(R)UY}. LetP' = (Vi,...,V), we construct two sets of CP-

nets{a(,...,An}. {AG,...,AQ} by liting each linear order irP' and P to a linear order onx simi-
larly with the proof of Theorem 4.2, and consider the condisil lexicographical orders of them. Dendte
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and P’ the resulting profiles over. Then it is easy to seB’ is obtained fromP by raising candidates in
Yy =D1 x...Dj_1 XY x Dj+1 x ... x Dp. Sincer;(P") & {r;(P)UY?}, we know

Sedry,....rp)(P') & {Sedry,....rp)(P)} UYx.

This contradicts with the assumption ti&dr1,...,rp) satisfies monotonicity. a

Proof of Theorem 4.5: Anonymity and homogeneity are obvious.
e Consistency: LeP; andP, be two profiles oD s.t.

Sedry,...,rp)(P1) =Sedqry,...,rp)(P2) = (di,...,dp).

Sincer satisfies consistency, a = r1(P}*) = r1(P}?), we haved; = ry(P{* UP}*) =r1((PLUP,)).
Suppose after the firsstepsrj selectedl; from P, UP,, then

i+1]ds...di ie1|dy...di
di+1 — ri+l(P;_(I+1‘ 1 |) — ri+l(P§(H1‘ 1 |).

From the consistency of,1 we have

caldyd | oxiald g ol g
Ghy1 = risa (P S ORIt — (P U Ry,

Sorj;1 would selectl; fromPLUP,. ThereforeSedry,...,rp)(PLUP) =Seqry,...,rp)(P1), Sedry,...,rp)
satisfies consistency.
e Strong monotonicity: For any C x, we write

yXld-Gon — £y g e Y, x; = dj forall j <i—1}.

Suppose,...,rp satisfy strong monotonicity, first we prove for any profi@ndP’, if P’ is obtained from
P by raising candidates M, then

(Seqry,...,rp)(P))1 € {(Sedry,....rp)(P)) 1} UY™. 1)

To prove this, we only need to check th¥: is obtained fronP*: by raisingY*:. It suffices to check for any
V € P and its counterpait’ € P/, for anyx € Y*1,y € D

X>vY=X>yY.

If not, supposex -y y buty =y x, and(x,dz) € Y for somed, € Dy x ... x Dp. Then we know(x,dp) -v
(y,db) and(y,d) =y (x,d>). SinceV' is obtained fromV/ by raising candidates M, for anyd € Y we have

{X: %Xy d} C{X: Xy d}.

But (y,d2) € {X: X =y d}, and(y,dp) & {X: X =y d?}, contradiction.

So we know Equation (1) holds. Denotg = ri(P*t). Now there are two casesv; # rl(PX1> and
wy = r1(PXt). For the first case there must existe P s.t. the rank ofvy in V™t is higher than iv*. If
not, therlv™t is obtained from/*: by raising candidates ¥*\ {w } for all V € P, so by strong monotonicity
of ri, wp € ({r1(P*)}UY*)\{w, }, contradiction. Suppose there exists P andy € Dy s.t. y >y w; and
wy >y y. Then we know for altl € Dy x ... Dp, (Wi,d) v (y,d2) and(y,dz) v (w1,dy). Therefore in
V’, (wy,d>) must be raised, which meafigs} x Do x ... x Dp CY. SoSeqry,...,rp)(P) €Y.

For the second case, we can move to the second step of sedjuetitig process, considering fixixg =
w1. Then following the same proof we kndBedry, ...,rp)(P') € Y or rp(P2M) = ry(P*2M1). Repeat this
process recursively, finally we can pro8edry,...,rp)(P’) €Y or Sedry,...,rp)(P') = Sedry,...,rp)(P).
This completes the proof of the theorem. O

Proof of Theorem 4.6: We first present and proof a lemma.

Lemma 6.3 Suppose & 4, and V is obtained from V by only raising € D. If V' is also legal and V~ 2’
and " # 2(, thena(’ differs froma¢ only onxp : dy...dp_1, and the conditional order afi %pid1--do-1 g
obtained froma Xe:d:-G-1 py raising only ¢.
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Lemma 6.3Proof. We first prove that(’ differs froma¢ only on the conditional ordetp : d;...dp_1. If
not, then there exisis< p andsj € Dj, j <is.t.

N/Xi:sl»»»S—l ?é in:sl»»»S—l_

Then3s,§ €Djs.t. s1...5.1:8 >, § buts;...§ 1:5 <,/ §. Choose any,V> € Dj;1 x ... x Dp
s.t. Vi # Vb, then the relative position of two pairgsy,...,s,v1) and (sy,...,5, Vi), (St,...,S,V2) and
(s1,...,5,V), are exchanged. Since we are raising ahlshe relative order exchanging pair must contjn
but the four candidates in the two pairs are all differentrfrane another, contradiction.

From the observation that each exchanging pair must codtaie can similarly prove the remaining part
of this lemma. ]

Now given any profileP = (Vy,...,W), a legal profileP’ = (VJ,...,\{,) is obtained by raising only
Sedry,...,rp)(P) = (dy,...,dp). From Lemma 6.3 we know that

1 V5 =S foralli <N,i < p-1,§ €Dy x... xDi_1

2. v/el-%-1 is obtained by/ % 1 by raisingdp.

So from the definition oBeqry,...,rp), we know thatj would select; from P foralli<p-1, rp would
selectrp(Vllx"ldl“‘dp’l, .. ,V,(,Xpldl“‘dp’l). Sincer, satisfies monotonicity, we have

Xp|dy...dp— Xp|dy...dp—
rp(lep‘ 1...Op 17"'7VNXP‘ 1...dp 1) :dp~

HenceSedry,...,rp)(P") = (di,...,dp) =Sedry,...,rp)(P). Thisis exactly the monotonicity &edry,...,rp).
]

Proof of Theorem 4.7: Takex = {01,11,21} x {O2,1,} as an example (the proof is similar in other cases).
Let A(1, A2, A3 be three CP-nets sx; andx, are independent, and

01 ~aq 1 ~aq 2, 1 G 0;
1 A, 01 A, 21, O 2 1p;
2 A 1 A 01, O A 1p;

It is easy to verify that\ %= 0102 = 1115, AG ~ 1115 >~ 010, for i = 1,2,3. DenoteM the permutation oD
that only exchange@, and 4 1,. Then by Lemma 6.2, there exist three votes/,, V3 s.t. fori=1,23

1. Vi andM(V;) are consistent withyj, and
2. 111, >V 0105.

Consider a profile consisting of threg, twoV, and twoVz. ClearlySedry,r2)(3Vy + 2Vo + 2V3) = 0107, but
we know 41, >y, 0102, which means thaedqr,r2) cannot satisfies consensus. Also frbt(Sedry,r2)(3Vy+
2o+ 2V3)) = 1315 andSedry, r2) (M(3Vy + 2V + 2V3)) = 0102 we know thatSedrq,r2) is not neutral. The
proof is complete. m|

Proof of Theorem 5.1: First we prove ifSedcy, ... ,Cp) is insensitive tdVIr, then eaclt; is neutral. If there
existsi s.t. ¢ is not neutral, denot®l; the non-identity permutation db;, then there existB' = {V], e MG
s.t. Mi(ri(P")) # ri(M;(P")), namelyr;(P') = ri(M;(P")). Without loss of generality we assumgP') = 1;.
Construct a profild® = {V4,...,Vn} onD s.t.

1. ForanyV € P,V follows a DAG in which any issue is independent from others.

2. Forany e P,andj #i,V*i =1;>0j.

3. Forallj <N,V =V/.

Then thei-th component ofSeqc;,...,cp)(P) and Sedcy, ..., cp)(Mr(P)) arer;(P') = 1;, which means
Mg(Sedqc;,...,Cp)) # Sedcy,...,Cp)(Mr(P)), contradiction.

Then notice that for any voté on.x, dy...di 1 X1 >v Xigq iff di...di 1 X571 >0 Xi+1. Obviously if
eachg; is neutral, therSedcy, ..., ¢p) is insensitive taVIr. m|

Proof of Theorem 5.2:

1. The necessity is easy to check. We only prove sufficiengyltiizorem 5.1 we know th&edcs, ..., Cp)
is insensitive tdMR is equivalent to eacy is neutral. By Theorem 4.1 we know eagtsatisfies strong mono-
tonicity. DenoteV; = 0; >~ 1i,\/i’ =1; > 0;. Then we clainti(nVf + m\/,’) =0 iff n> m. If not, there exists
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n>ms.t n+mis odd andc(nV + mV') = 1;. We raise Lin (n—m)\i, then by strong monotonicity,
ci(mV +nV) = 1;, but by neutralityci(mV +nV/’) = 0;, contradiction. Therefore we knogy is the majority
correspondence.

2. Again we only prove sufficiency. Since wheney&(P)| > 2, |P| is even, we know on the domain
of all legal profiles consisting of odd voteSeqc;, . ..,Cp) satisfies anonymity, strong monotonicity, and is
insensitive toMg. So by part 1 of this theorem, we know || is odd, thernC is the sequential majority
correspondence. Now for eachconsiderc; (nVi + mV{'), wherem-+n can be divided by 2. By neutrality
we can assume > mwithout loss of generality. Theq((n— 1)V + m\{') = ¢j(V;) = 0;, so by consistency
Gi(nV + m\/,’) = 0;, which meang; is the majority correspondence.

To prove the property setin 2. is minimal, we present exasfaderemoving each condition. Anonymity
is obvious. For strong monotonicity, let eachbe the correspondence that select a minority. Ttes
consistent and neutral, €dsatisfies consistency by Theorem 4G5js insensitive tdVig by Theorem 5.1.
Clearly when|P| is odd,|C(P)| = 1. So we knowC satisfies the other four conditions, and is not the sequentia
composition of majority correspondences.

For consistency, let; be majority correspondence || is odd, otherwise it is trivial (always outputs
Dj). Since majority and trivial correspondence are both rméw@nd strong monotonic, we knoW satisfies
strong monotonicity and is insensitive kg by Theorem 4.5. Notice whej| is odd,C is the sequential
composition of majority correspondence, we krnowatisfies the four properties other than consistency.

For insensitive tdvr, we simply letc; (P) = 0; for all P, it is easy to check satisfies other four properties.

For |C(P)| > 2 = |P|is odd, we consider the trivial corresponderi@@) = x for all P. By simple
calculation we know all the other four properties holds.

So the property set in 2. is minimal. Similar examples shavtoperty set in 1. is also minimal. O

Proof of Theorem 5.3: LetD1 = {01,131 },D2 = {02, 15}. We would in fact prove that th®edcs , ;) is strong
decomposablewhich is more specific than decomposability. We need togtbat for each permutatiav
onDj1 x Dy andP = (Py,...,Py) following 0 = X1 > X2, if M(P) is also a legal preference profile, then

M(Sedci,¢2)(P)) = Sedca, c2) (M(P)).

BecauseM ! is also a permutation, it suffices to prove that for each peation M on Dy x D, and P =
(Py,...,Py) following 0 = x1 > xp, if M(P) is a legal preference profile, then

M(Sedcy, c2)(P)) € Sedey, c2)(M(P)),

namely
(X17X2) S Seq01702)(P) = M(X17X2) S SEC(C]_7CZ)(M(P)) (2)

To prove this, for any given permutatidm, we find all votes? following o s.t. M(P) is legal. Recall that
the CP-nets determine the voting results, we only need twkhe effects oM on CP-nets. For example, if
we know thatM can transform a votB; following A3 to another voté, following A, then the result of the
sequential voting process is indifferent with wiratP, exactly are.

We wrote a program to calculate all possible transformatiohCP-nets for any permutation. Without
loss of generality, we only consider preference profilesfitiiow x; > X2 before permutation. For example,
the following is part of the outcome, we will explain the mawnof the symbols right after presenting them.
0132
000—>001 001—>000 001—>r000 010—-011 010—>r100 011—-010 100—-101 110—>111 110—
>r111101—-100 101—>r011 111—-110

We encode each candidatel x D, as a number—@, as 0, Q1o as 1, 400 as 2, 41, as 4. In the
output, the first 4 numbers 0132 encode the permutafiant. M(0102) = 0102,M(0112) = 011, M(1102) =
1115, M(111p) = 1505.

A CP-net that follows<; > X, is encoded as 3 numbeabc where

a= 0 if'f01>-11 _ 0 iff01:02>-12 _ 0 iff11:02>-12
o 1 iff11>-01 T 1 iff01112>-02 T 1 iff11112>-02

For a CP-net following; > X1, the 3 numbers are defined similarly with them firstly considgthe prefer-
ence orD», then add " before the numbers.

A transformatiorm —> ¢’ means thaty is M-transformable tay’. To prove neutrality, we need to
verify for each permutation and any legal preference prdfitpiation (2) holds. We verifil = 0132 in this
paper as an example.
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From the output related td = 0132 listed above, there are 8 possible transformations &#&P-net fol-
lowing x1 > X, to another CP-net following the same order, and 4 possiaiesformations from a CP-net fol-
lowing X1 > X5 to another CP-net following, > x1. By anonymity, we assume that there arb, c,d, e, f,g,h
votes for 000— 001, 001—> 000,010—> 011,011—> 010,200—> 101,110—> 111 101—> 100 111—
> 110 respectively. If 10 is selected bysedcs, ;) before permutation, then sincg, ¢, are both plurality
rules, we have

e+f+g+h>a+b+c+d
and

a+c+e+f>b+d+g+h
After permutation, frome+ f +g+h > a+ b+ c+d we know thatc; would select 1 (of course, it may also
select Q) and froma+c+e+ f > b+ d-+ g+ h we know that aftec; selected 1, ¢, would select 3. So
1,1, must be selected after permutation.

Suppose there am@ b, c,d votes for 001— r000, 010—> r100, 110—> r111, 101—> r011 respec-
tively. If (11,07) is selected bySedcy,c,) before permutation, theo+d > a+ b,b+c > a+d. Since the
order is reversed after permutation, we would firstly coaisid. Fromb+ ¢ > a+ d we knowc, would select
1, and fromc+d > a+ b we know that after 1is selected, i is selected by;. So 41, must be selected
after permutation, Equation (2) holds forQb case.

We checked all the 4 candidateslia x D, for all permutations in a similar way, and found that Equatio
(2) always hold. The lengthy verifications are omitted h&ifeereforeSedc, ¢p) is neutral. m|

Proof of Theorem 5.4: To prove this theorem, we need some definition and lemmas.

Definition 6.4 Foranyo =xj, > ... > X, withiy,...,ip a permutation of1,...,p}, and alinear preference
relation P followingo, define a mapping Cenfrom x to a subset of all CPTs items in CP-netm5b.t.

= Xp|X1=X1,X2=X2,..., Xp—1=Xp—
Comp(X) = {50, 2Paa | XpPamXaXom, Ko 1 =Xp-1y

For example, Iep: 3,P=111513> 111503 > 10003 > 11013 > 011503 = 0;0,03 > 011513 > 0,013, then
Corp(1;0213) = Corp(110,03) = {11 > 01,13 : 15 > 02,110, : 03 > 13}. The subscriptiorP is sometimes
omitted when there is no confusion.

Lemma 6.5 LetV = {x1,...,Xp}, P={Py,...,Py} following o = x1 > ... > xp and
Seqry,...,rp)(P,...,Pn) =X
If another linear preference profile’R= {Py, ..., P} satisfies:
(a) P followso,
(b) (V1<i<N)(P satisfies Cog(x)),
then
Seqry,...,r)(P,...,Py) =X

Proof. This is obvious, since that = x* = x* by the assumption d¥’. ]
This lemma says that if we keep some conditional order i@ PTs related to the result of the sequential
voting process in the representing CP-net ) unchangedetiestial voting result would not change as well.

Lemma 6.6 Let P be a linear preference relation following its first ranked vector i€. For anyX +# X, not
all of {x, =p X, X, 1, =P X,....X ...X_ X >=p Xy} holdinP.

Proof. On the contrary, suppose all of them hold. Without loss ofegality leto = x1 > ... > Xp.
Leti be the smallest index that# x. Sincex;...x_; : X > X holds, it must be the case that
(X17 .. 7Xi717)<7xi+17 R :Xp) > (Xl7 s 7Xi,1,Xi,Xi+1, s 7Xp) = X?
which contradicts the assumption ti¥&s the first ranked if. This completes the proof. m|

Lemma 6.7 LetV be a linear preference relation consistent withand its first ranked vector . For any
X #£ X, if ¥ # X, then there exists\Aalso consistent withy, s.t.

a. X =y X, where¥ is the complement of;

b. ¥ andX are adjacent in V.

c. Let M be the permutation on D that only exchangeandX, thenV ~ M(V’).
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d. V' also satisfies CqiY').

Proof. Without loss of generality, we can assume that X1 > ... > Xp, X= (11,d2,...,dp) s.t. 32<i <
p,di =0, andX’ = (13,...,1p). ThusX = (01,0,,...,0p). Denotex’ the corresponding CP-net Wf. Our
first goal is to construct a CP-ngt’ s.t. all ofCon(X') hold and

By Lemma 6.6, we know that at least one{df v 01,11 : 1 =v Op,...,11...1p_1 : 1p v Op} does
not hold. Leti be the smallest number that.1.1;_1:0; =y i and ... 1i_5:1_1 =v Qi_1. In &/, we
firstly put allCorp(11,...,1p) to A"'s CPTs, then for all K j <i, we put

11...1j105 : Ojy1 > 1j41,
11...1j-10j0j41: Ojy2 = 1j42,

11...1j,10j...0p,1 . Op - 1p7

denoted a€j, into the CPTs of\’. The other part of the CPTs af ' can be chosen arbitrarily, which would
not affect the claim of this lemma. SinG®rp(11,...,1p) andC;s are contained in the CPTsaf’, we know
that the only parent of0s,...,0p) in the induced graph af(’ is (11,02,...,0p); similarly the only parent of
(11,0p,... 7Op) is (11,12,0s,... 7Op), etc.

In the end,(11,...,1-1,0;,...,0p) does not have any parent. Sirice p, (11,...,1p) is not a parent
of (04,...,0p), which means\’ |~ (13,...,1p) > (01,...,0p). On the other hand, sincg v 01, we also
know ¢’ b~ (04,...,0p) > (11,...,1p). Therefore by Lemma 6.2 there exists a linear preferencerioghv’
consistent withw(’ satisfying a,b,c. The lemma is thus proved. a

Now we can prove the theorem. If the theorem does not hold,dmrha 6.7 there existg/, ...,V s.t.
forevery 1<i <N

(@) X =y X', where¥X is the complement ot';

(b) X and¥ are adjacent iv’.

(c) LetM be the permutation ob that only exchange® and¥/, thenV’ ~ M(V').

(d) V' also satisfie€on(¥).
Then by Lemma 6.5Sedqry,...,rp)(Py,...,Py) = X, which obviously contradicts the consensus. (c) obvi-
ously contradicts with neutrality. The proof is complete. a

Proof of Theorem 5.5: Example 6.8 also shows that the sequential plurality onipielreferenda is not
neutral if p > 3. Consider the profil® = (V1,V>,V3), the sequential plurality rule would selegtl}13, which
is not ranked first in any;. So by Theorem 5.4 the sequential plurality does not saéigher neutrality or
consensus. |

Proof of Theorem 5.7:
This is easily shown on the following counterexample witlo foinary issues andy:
voter 11 (xy) = (X.y) = (XY) = (XY
voter 2:  (x,Y) = (X,Y) = (X,y) = (X,Y)
voter 3:  (Xy) = (X,¥) = (X,Y) = (X,Y)
The profile is legal, the order being- y (note that voter 1's preference order is separable). Ifrvbte
knows the preferences of voters 2 and 3 then he does not waotagincerely orx: if he does, then he votes
x and then the outcome {g,y). If he votes forxinstead then then outcomexgy), which is better to himO

Appendix 3: Examples

Example 6.8 Copeland satisfies consensus, becauseg # c; in all votes, then ¢ would gain more points
than @ in pairwise comparison. Consider = {01,13 } x {02,1,} x {03,13} and a profile P consisting of the
following three votes

Vl . 011213 - 111213 - 011203 - 111203 - 010203 - 110203 - 010213 - 110213;

V51170013 > 171513 > 1;0,03 > 171503 > 010213 > 011513 > 0;0,03 >~ 011,03;

V3:171503 > 171513 > 1;0,03 > 170013 > 011503 > 011513 > 0;0,03 - 010213,
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Obviously they follow; > x> > x3, and the Copeland rule would seletl,13, which is not ranked first in
any V. If Copeland is decomposable, then by Theorem 5.4, any datedihat is not ranked first in any vote
should not be the winner. This contradicts with the profiléra above. So we know Copeland could not be
decomposable on a domain of binary composition.

Example 6.9 Consider three votes

V11011213 > 011503 > 010203 > 010213 > 171513 > 170013 > 171,03 = 1;0,03;
V5 1170213 > 170003 > 010203 > 010213 > 171513 > 011513 > 11,03 >~ 011,03;
V3: 171503 > 170003 > 010203 > 011503 > 171513 > 170013 > 0;0213 >~ 011513.

Let P= (V1,V2,V3), then the sequential majority eledtsl; 13 from P, which only weak Condorcet-dominates
three candidates -+ 0,13,1;1,03, and0;1,13.
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