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Learning in Repeated/Stochastic
Games
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Learning in Repeated Games

What is it?

• a procedure that given the history of past rounds, gives an
action for the next round

• a dynamic solution concept: learning in repeated games

Questions:

• how can such strategies be defined?
• what is the behavior of the dynamics?
• does such a repeated play converge to a (Nash) equilibrium?
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Two Widely Studied Learning Procedures

Fictitious Play for Repeated Games
• Brown [1] Robinson [7]

• play a best response to the empirical average of past actions
of other players

• stochastic games: repeated games with a state variable
Q-Learning for One-Player Stochastic Games
• Watkins [9]

• estimates a table of state-action continuation values

• how can we combine these procedures for multiplayer
stochastic games?
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Learning in Stochastic Games

Our 1st paper: based on ideas of Q-Learning and Fictitious Play,
we propose a definition of Fictitious Play for multiplayer stochastic
games.

Convergence results: If all players follow the procedure, then
empirical actions converge to:

• the set of stationary Nash equilibria for ergodic,
identical-interest stochastic games

• the set of approximate Nash equilibria for ergodic, zero-sum
stochastic games.
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Learning in Stochastic Games

Our 2nd paper: we extend the definition of FP to smooth action
selection for stochastic games with unknown transitions and
perturbed payoffs.

Motivation:

• FP has regret: since it is (almost) deterministic, an other
player can take advantage of the procedure

• Smooth FP is known to be “no-regret”.
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Fictitious Play for Repeated Games
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Games

Definition (Game)
G = (I, (Ai)i∈I, (ri)i∈I) where

• I is the finite set of players
• Ai is the finite action set of player i
• ri : A→ R is the reward of player i

Nash equilibrium
An action profile where no unilateral deviation are profitable.
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Repeated Games

How is a game repeated?

• sequence of play: for all steps n ∈ N
• every player i plays an action ai

n
• every player i receives ri(an)

• discounted payoff
• (1− δ)

∑∞
n=0 δnri(an)

where δ ∈ (0, 1) is the discount factor
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Equilibrium in Repeated Games

The repeated game is a game itself, and has equilibria.

• multiple Nash equilibria: Folk theorem

• we are interested in strategies which do not depend on history
nor on time, i.e. stationary strategies and equilibria

• lemma: stationary equilibria are equilibria of the static game
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Fictitious Play

• fictitious play is a strategy of the repeated game
• a player plays a best response to the empirical average action

of other players

Fictitious Play (Brown [1], Robinson [7])
• empirical average of every player’s action:

xi
n =

∑n
k=0 ai

k
n

• action selection:

ai
n+1 ∈ BR(x−i

n ) := arg max
bi∈Ai

ri(bi, x−i
n )

• Remark: every player plays assuming that other players are
stationary
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Convergence

Convergence
If all players use fictitious play, then the average actions converge
to the set of stationary Nash equilibria for several classes of
games:
• zero-sum games (Brown [1], Robinson [7])

• potential games (Monderer and Shapley [6])…
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Q-learning for Reinforcement
Learning
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Stochastic Games (Definition)

Definition (Stochastic Game)
G = (S, I, (Ai)i∈I, (ri

s)i∈I,s∈S, (Ps)s∈S)

• S is a finite state space
• Ai is the action set of player i
• ri

s : A→ R is the stage reward
• Ps : A→ ∆(S) is the transition probability map.

We focus on two classes of games:

• identical interest: ri
s = rs

• zero sum: r1
s = −r2

s

• ergodic: every state s′ is reached from any state s with
positive probability for any sequence of actions in a finite time
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Playing Stochastic Games

How to play stochastic games?

• initial state s0
• for all steps n ∈ N, the system is in sn:

• every player i plays an action ai
n

• every player i receives ri
sn(an)

• new state sn+1 ∼ Psn(an)
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Equilibria of Stochastic Games

• discounted payoff
• (1− δ)

∑∞
n=0 δnri

sn(an)
where δ ∈ (0, 1) is the discount factor

• equilibria: a stochastic game has equilibria
• we are interested in the convergence of our procedures to

stationary equilibria [2]
• lemma: a player has an optimal stationary strategy if other

players are stationary

17



Equilibria of Stochastic Games

• discounted payoff
• (1− δ)

∑∞
n=0 δnri

sn(an)
where δ ∈ (0, 1) is the discount factor

• equilibria: a stochastic game has equilibria
• we are interested in the convergence of our procedures to

stationary equilibria [2]
• lemma: a player has an optimal stationary strategy if other

players are stationary

17



Q-Learning: the One-Player Case

• Q-Learning: a procedure that updates a Q function

• Q(s, a) = continuation payoff in s when a is played

Q-learning (Watkins [9])
At every step n, if the system is in sn and an is played, then:

Qn+1(sn, an)← Qn(sn, an)

+ γ
(
Rn+1 + δ max

a
Qn(sn+1, a)− Qn(sn, an)

)
where Rn+1 = (1− δ)rsn(an) and γ is the update step.

• convergence with one player when the environment is
stationary and the update step decreasing

• problem: in multiplayer stochastic games, other player
actions are not stationary
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Combining FP and Q-learning to
Learn in Stochastic Games
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Combining FP and Q-learning

Inspired by Leslie et al. [5]; Sayin et al. [8].

• two sets of variables
• estimate us of the continuation payoff starting from a state s
• estimate xi

s of other player i strategy in state s that will be
used by other players

• variables are updated at every step: sequence (us,n, xs,n).
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Auxiliary Game

We define an auxiliary game using a vector u of continuation
payoffs.
Definition (Auxiliary Game)
• one-shot, static game parameterized by a vector u
• actions A
• payoff functions:

fs,u(a) = (1− δ)rs(a) + δ
∑
s′∈S

Pss′(a)us′

Remark: fs,u is extended to mixed action profiles

Remark: it corresponds to a one-shot game whose payoff is the
instantaneous payoff of the stochastic games + the estimate of the
continuation payoff in u.
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Fictitious Play for Stochastic Games

FP for stochastic games for all players
• action selection: a best response in the auxiliary game

parameterized by un to empirical action x−i
s,n

• update of un: towards the payoff in the auxiliary game
fs,un(xs,n)

• update of xi
s,n+1: empirical action of player i in state s
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Fictitious Play for Stochastic Games

FP for stochastic games for all players

• ∀s us,n+1 − us,n = β

n + 1 (fs,un(xs,n)− us,n)

• ai
n+1 ∈ arg max

bi∈Ai
fsn+1,un+1(bi, x−i

sn+1,n)

• xi
s,n+1 =

∑n+1
k=0 1sk=sai

n
s♯
n

where s♯
n = ♯{i | 0 ≤ i ≤ n ∧ si = s} and β > 0
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Convergence

Set-up: all players use FP, we look at empirical actions.

Theorem (convergence of FP in i.i. stochastic games)
For identical-interest ergodic stochastic games, FP for stochastic
games converges to the set of stationary Nash equilibrium.

Theorem (convergence of FP in z.s. stochastic games)
For zero-sum ergodic stochastic games, FP for stochastic games
converges to the set of stationary Aβ-Nash equilibrium where
A > 0 does not depend on β.
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Synchronicity

• FP is updating empirical actions for the current state and
continuations payoff for all states

• we now define other procedures where the variables are
updated for all the states or only for the current state

Synchronous FP
• us,n+1 − us,n = 1

n+1 (fs,un(xs,n)− us,n)
• ai

s,n+1 ∈ arg maxbi∈Ai fs,un+1(bi, x−i
s,n)

• xi
s,n+1 − xi

s,n = 1
n+1

(
ai

s,n+1 − xi
s,n

)
Fully-asynchronous FP

• us,n+1 − us,n = 1sn+1=s

s♯
n+1

(
fis,un(xs,n)− ui

s,n
)

• xi
s,n+1 − xi

s,n = 1sn+1=s

s♯
n+1

(
ai

n+1 − xi
s,n

)
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Convergence

Theorem (convergence of FP in i.i. stochastic games)
For identical interest ergodic stochastic games, synchronous FP
for stochastic games converges to the set of stationary Nash
equilibrium.

Fully-asynchronous FP also converges if δ < 1/|S|.
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Proof

idea:

• first, define analogous continuous-time systems

• second, study the convergence in these continuous-time
systems

• third, use the stochastic approximation framework to deduce
results in discrete time
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Proof (2)

In continuous time, we get a best-response dynamics:
Synchronous Best-Response Dynamicsu̇s = fs,u(x)− us

ẋi
s ∈ BRu,s(x−i

s )− xi
s
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Proof (3)

continuous: dx
dt ∈ F(x)

discrete-time: xn+1 − xn ∈ γnF(xn)

Stochastic Approximations
• if F : Rk ⇒ Rk is a Marchaud map

• γn such that γn ≥ 0, ∑
n γn =∞ and ∑

n γ2
n <∞

These two class of sets are equal:

• internally chain transitive sets for dx
dt ∈ F(x)

• limit sets of xn+1 − xn ∈ γnF(xn)
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Extension

• idea: update the un vector slower than the xn vectors (Leslie
et al. [4], Sayin et al. [8])

FP for Stochastic Game

• s♯
n = ♯{k | 0 ≤ k ≤ n ∧ sk = s}

• ui
s,n+1 − ui

s,n = 1sn+1=s

α(s♯
n)

(
fis,ui(xs,n)− ui

s,n
)

• xi
s,n+1 − xi

s,n = 1sn+1=s

s♯
n

(
ai

n − xi
n,s

)
• ai

n+1 ∈ arg max fiun+1,sn+1(xi
s,n+1)

• idea: extend the proofs to other classes of games
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Extension to Unknown Transitions
and Perturbed Payoffs
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Smooth Fictitious Play

Fictitious Play
ai

n+1 ∈ BR(x−i
n ) := arg max

bi∈Ai
ri(bi, x−i

n )

Smooth Fictitious Play Fudenberg and Levine [3]
ai

n+1 ∼ SBR(x−i
n ) := arg max

σi∈∆(Ai)
ri(σi, x−i

n ) + ϵhi(σi, x−i
n )

Regularizer
• hi : Πj∈I∆(Aj) 7→ R+, smooth, strictly concave in σi

‖∇hi‖ = +∞ on the boundary of ∆(Ai)
• ϵ > 0
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Why Smooth Best-Response?

• SFP has the no-regret property while FP has not

• Every action is played infinitely often
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Smooth Fictitious Play for Stochastic Games

Our definition of SFP in stochastic games:
SFP for Stochastic Games (known payoff and transition)

us,n+1 − us,n = β
n+1 (fs,un(xs,n)− us,n)

ai
n+1 ∼ arg max

σi∈∆(Ai)
fsn+1,un+1(σi, x−i

n ) + ϵh(σi, x−i
n )

xi
s,n+1 =

∑n+1
k=0 1sk=sai

k
s♯
n+1
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Results

Theorem
SFP for stochastic games converges to

• the set of regularized Nash equilibrium for identical-interest
stochastic games

• the set of Mβ regularized Nash equilibria for zero-sum
stochastic games.

34



SFP with Unknown Transitions and Perturbed Payoffs

Unknown transitions: Ps is unknown but states are observed

Perturbed payoffs: ri
s are unknown and E[Ri

n] = ri
sn(an)

• f̂s,un(σs) = (1− δ)̂rs(σs) + δP̂s(σs) · un

• with r̂s and P̂s average vectors of past payoffs and transitions
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Results and Proofs

• same results as in the known transitions and payoffs case

• proofs: uses the continuous-time smooth best-response
dynamics
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Conclusion

Our results
• procedures to play stochastic games

• convergence of the procedures for identical-interest and
zero-sum ergodic stochastic games

• convergence of a generalized continuous-time system
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Conclusion

Future work
• other classes of games

• different update steps for xn and un

• suppose less coordination between players: different update
steps, different priors

38



References

[1] George W Brown. Iterative solution of games by fictitious play.
Activity analysis of production and allocation, 13(1):374–376,
1951.

[2] A. M. Fink. Equilibrium in a stochastic $n$-person game.
Hiroshima Mathematical Journal, 28(1), January 1964. ISSN
0018-2079. doi: 10.32917/hmj/1206139508.

[3] Drew Fudenberg and David K. Levine. Consistency and
cautious fictitious play. Journal of Economic Dynamics and
Control, 19(5-7):1065–1089, July 1995. ISSN 01651889. doi:
10.1016/0165-1889(94)00819-4.

39



[4] David S Leslie, Steven Perkins, and Zibo Xu. Best-response
Dynamics in Zero-sum Stochastic Games. page 34, April 2018.

[5] David S. Leslie, Steven Perkins, and Zibo Xu. Best-response
dynamics in zero-sum stochastic games. Journal of Economic
Theory, 189:105095, September 2020. ISSN 00220531. doi:
10.1016/j.jet.2020.105095.

[6] Dov Monderer and Lloyd S. Shapley. Fictitious Play Property
for Games with Identical Interests. Journal of Economic
Theory, 68(1):258–265, January 1996. ISSN 00220531. doi:
10.1006/jeth.1996.0014.

[7] Julia Robinson. An Iterative Method of Solving a Game. The
Annals of Mathematics, 54(2):296, September 1951. ISSN
0003486X. doi: 10.2307/1969530.

40



[8] Muhammed O. Sayin, Francesca Parise, and Asuman Ozdaglar.
Fictitious play in zero-sum stochastic games. SIAM Journal on
Control and Optimization, 60(4):2095–2114, 2022. doi:
10.1137/21M1426675.

[9] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Oxford, 1989.

41


	Learning in Repeated/Stochastic Games
	Fictitious Play for Repeated Games
	Q-learning for Reinforcement Learning
	Combining FP and Q-learning to Learn in Stochastic Games
	Extension to Unknown Transitions and Perturbed Payoffs
	References

