

- 1 -

Stored and Inherited Relations for Logical Navigation Free and
Calculated Attribute Free SQL Queries to Base Tables

Witold Litwin
Université Paris Dauphine France

Witold.litwin@dauphine.fr

Abstract — A stored and inherited relation (SIR) is a 1NF
stored relation enlarged with inherited attributes (IAs). The latter
make SIRs as normalized base tables the only known view-savers
for logical navigation free (LNF) and calculated attribute free
(CAF) SQL queries to such tables, [1]-[5]. Recall that LNF means
no equijoins between foreign and referenced keys, while CAF
queries avoid possibly complex value expressions, e.g., with
aggregate functions and sub-queries. We now show that one may
consider typical present base table schemes with foreign keys as
defining SIRs termed natural. The latter provide for LNF queries,
unlike the same scheme base tables at present. Next, we show how
one may add CAs to such SIR schemes, getting CAF queries as
bonus. Below, we first recall SIRs basics. Then, we discuss the
natural SIRs. Next, we analyze the enlarged schemes. Then, we
generalize the relational design to SIRs, the concept of NFs
especially. Afterwards, we show that providing SIRs over a popular
relational DBS, e.g., SQLite3, should be simple. Preexisting
applications could remain unaffected, while new ones could profit
from LNF and CAF queries. We conclude that major relational
DBS should become SIR-enabled “better sooner than later”. LNF
and CAF query should become the standard, simplifying the life of,
likely, millions of SQL clients.

Keywords—Relational model, Foreign Key, Inheritance,
Logical Navigation, SQL, Calculated Attributes, Stored and
Inherited Relation

I INTRODUCTION
The relational model as defined by Codd has two 1NF

constructs (abstractions), [6], [7]. A stored relation (SR), also called
base relation or table, consists of stored attributes, (SAs), only.
Values of these attributes are not calculable from other attributes in
the DB (that is why they have to be stored). An inherited relation,
more commonly called view or view table, consists of (relationally)
inherited attributes, (IAs), only. One calculates every IA from SAs
or other IAs, through a stored (relational) query called view scheme.
Originally, one supposed every IA calculable only. Later, it
appeared practical sometimes to maintain a (stored) snapshot of
selected IAs, refreshed whenever needed. Such views and IAs were
termed materialized, [17], [16], [20]. Although stored, a
materialized view is not an SR. It is indeed entirely calculable
through its (view) scheme.

Recently, we proposed to add the stored and inherited relation
(SIR) construct to this model, [1]-[4]. The construct roots in [21],
part of the popular in nineties trend to harness inheritance in the
relational DBs. E.g., see [26] or Postgres, [25], or later proposals,
[12]. A SIR, say R, is a 1NF relation with both SAs and IAs, the
primary key (PK) being SAs only. We refer by default to the
projection of R on its all and only SAs as to R_ and call it base of
R. We also say that the IAs enlarge R_ and refer to the IAs scheme
as to Inheritance Expression (IE). The crucial advantage of SIRs as
base tables over the logically the same base tables, but SRs only, as
required by the present model, is that no IA may create a
normalization anomaly. Unlike it would often happen if the same
attributes were SAs instead. Two important advantages for queries
to a DB with SIRs without any normalization anomaly follow, with
respect to the equivalent queries to the DB with normalized SRs
only, i.e., the queries providing for the same output:

(1) A query Q addressing any SAs or IAs of SIR R can be
Logical Navigation Free (LNF), while an equivalent query Q’,
addressing normalized R_ as stand-alone SR named R, would
typically require some LN. Recall that the LN concept designates

the typical joins between the base tables. These are equijoins on
foreign keys, (FKs), [7], and their referenced keys that are PKs with
the same proper names as the FKs, usually, [24]. Recall also that the
normalized SRs as base tables of an SQL DB suffice for every SQL
query to the DB. If Q’ is such a select-project-join query, Q consists
then, typically, from the select-project part of Q’ addressing SIR R
only. Q is then in practice always less procedural, i.e., requiring
fewer characters, than Q’. In addition, joins are often felt dreadful,
the outer ones especially, while the LN often needs the latter, [9],
[19]. Not surprisingly, clients typically at least dislike the LN. We
designate any SIR free of LN for some queries as SIR for LNF
queries.

(2) An IA in SIR R can be a calculated attribute (CA), i.e.,
defined through any relational and value expressions or sub-queries,
perhaps with scalar or aggregate functions. Any query Q to SIR R
with CAs may then be free of defining any of these, selecting every
CA in Q by name only. I.e., Q can be a CAF query, avoiding the
procedurality of the CA specifications within the equivalent Q’ to
SR R with the same SAs and without any IAs instead, i.e. to R_
renamed to R. SAs with the same names and values as CAs would
do in theory as well, but most often would denormalize the base
table to 2NF at best (as we recall by examples later on). We
designate any SIR with CAs as SIR for CAF queries.

A SIR can provide for both LNF and CAF queries. At present,
the only practical way to provide for these capabilities of any SIR R
is view R that we call conceptually equivalent to or the canonical
view of SIR R, C-view R in short. Every C-view R is simply
logically, i.e., mathematically, equal to SIR R. I.e., the attribute
names and order are the same, as well as every tuple. In particular,
one defines all the IAs in SIR R as one would define those in C-
view R, the same From clause included. The From clause should be
besides such that for every R_ tuple one could insert, given R_
constraints, C-view should contain a tuple with the one of R_ as the
sub-tuple. The only difference is then physical, namely every SA A
in R_ is IA A in view R, each of these IAs being inherited from the
same stand-alone SR R_. That R_ may actually be a pre-existing
base table R we referred to in (1) that one had to rename somehow
to create view R. Recall that SQL prohibits any same name relations
in a DB. SIR R, there is a bijection between SIR R and C-view R.

The “price” for (1) or (2) for SIR R with respect to R_ alone as
a base table, may be the procedurality of the IE, i.e., the minimal
number of characters or keystrokes to define it. For SQL extended
to SIRs, [1], it is, basically, an additional procedurality for Create
Table R, [1]. The equivalent price for C-view R in SQL at present is
the procedurality of Create View R. The general advantage of every
SIR R is that the IE can be less procedural than the Create View R,
[1]. The rationale is that the latter has to at least, redefine as an IA
every SA of R_. This obviously costs some procedurality. By the
same token, to create SIR R is always less procedural than to create
R_ and C-view R. In popular terms, every SIR R is a view-saver for
C-view R. Actually, SIRs are also less procedural to maintain, [1].

All this is our rationale for SIRs. We follow the general trend
in DB-science and in entire CS in fact. Recall that this is why the
relational model took over the Codasyl one, although the latter was
already in use, e.g., in Oracle Codasyl DBS. Likewise, it is why it
took finally over every other earlier DB model. The assertional
(declarative…) relational algebra queries or, better, the predicative
ones, were indeed in general considerably less procedural than any
equivalent navigational ones in any of these models. Also, it is the
lower procedurality of the higher-level programming languages for
general programing that wiped out the use of assemblers for it….

mailto:Witold.litwin@dauphine.fr

- 2 -

See oldies on the subject, e.g., early editions of [8].

Below, we qualify Create Table extended to SIRs of SIR Create
Table. One can define SIR Create Table for every popular SQL
dialect: of MySQL, SQLite, Postgresql… Given such a kernel SQL
(dialect), any SIR Create Table specifies every SA as in the kernel
at present. But, in SIR Create Table, these SAs may interlace with
the IAs. Every SIR Create Table R may furthermore include
similarly any table constraints and options of the kernel. Recall that
these specify the PK, FKs, etc.

Next, with respect to the IAs, a SIR Create Table R, may define
an IA explicitly. We speak then about an explicit IA. For every SQL
kernel, one may define explicit IAs as one would do for in C-view
R. One may thus define every such IA individually or indirectly,
whenever appropriate, through SQL R’.* construct, R’≠ R. As in a
Create View, the IE with such explicit IAs always ends up with
From clause. In a SIR, however, we recall, table options may
follow.

Besides, for any kernel SQL providing for, so-called, virtual
(generated, computed, dynamic…) attributes or columns, (VAs),
[22], we supposed that SIR Create Table preserves this capability.
As we recall later, base tables with VAs are beyond Codd’s
relational model. The feature was introduced by the DB industry
(Sybase). As we also remind later, any VA is in fact a specific CA,
hence an IA. We qualified every IA declared as a VA of explicit as
well. We qualified of explicit the IE with explicit IAs only, as well
as the entire SIR Create Table with.

In [1] also, we qualified of SIR-enabled or of SIR DBS in short,
every DBS (or DBMS, as some prefer) providing for SIRs, in
addition to every present SQL kernel capability of a popular DBS.
We also considered that every SIR DBS embeds some present DBS,
referred to simply as the kernel (DBS). The term: kernel SQL above
refers in fact to the SQL dialect of the kernel DBS. Every SIR SQL
dialect provides then at least (i) for Create Table of the kernel DBS,
generalized as above outlined and (ii) for Alter Table generalized to
alter IEs, as we outline later. All the other SQL DDL and DML
statements of the SIR DBS formulate in SIR SQL as for the kernel.

In [2], we conjectured from a motivating example that one
could further design SIR DBS so that some present Create Table R
schemes, i.e., defining the SAs only sufficed as SIR Create Table R
schemes providing for LNF queries. The missing IE part of such
SIR schemes, i.e., the IAs and the From clause, could be then
determined from the DBS meta-tables, apparently easily. We
qualified of implicit any missing IAs and the IE with, as well as the
Create Table with. In particular, we qualify of empty the IE of the
motivating example, i.e., whenever an implicit Create Table R
defined R_ only, in fact, although named R instead. We supposed
finally that every SIR DBS transparently preprocesses every
implicit IE to the explicit one for any further processing.

The obvious gain from implicit schemes was reduced
procedurality. In particular, the procedurality of any Create Table R
with empty IE, was clearly the minimal possible for declaring
SIR R with the intended (explicit) IE. For the motivating example,
it meant in particular, that a base table R defined as at present could
be in fact SIR R providing for LNF queries, instead of requiring the
LN at present for the equivalent queries. Accordingly, clients could
profit from LNF queries without any additional work for the DBA
to define the IE, not to mention the Create View R for C-view R. In
the same time, no normalization anomaly could ever follow.

We proposed consequently that, in addition to the capabilities
proposed in [1] for every SIR DBS, every SIR DBS presumes also
implicit every Create Table submitted. Iff it appears true, SIR DBS
preprocesses the Create Table to the explicit one and processes the
latter as in [1]. The general principles of such preprocessing
remained yet to be stated. They seemed however simple.

We uphold the conjecture in [3]. We have shown that, beyond
the motivating example, it holds more generally (a) if one considers
FKs as E. Codd originally, apparently, [7], [13], hence not only as
SQL at present, (b), if one considers every Create Table R with such

FKs as the implicit Create Table R of a so-called natural SIR. We
also argued that base table schemes usual at present fit (a) and (b).
In other words, on a SIR DBS, every such Create Table R defines
not “only” an SR, perhaps with VAs, as it would do at present, but
the natural SIR R. Yet in other words, unlike today, usual DB
schemes could provide for LNF queries, without any additional
procedurality for the DBA. We outlined an implementation of SIR
DBS supporting implicit Create Table for natural SIRs. The
proposal extended accordingly the so-called SIR-layer, [1], intended
to provide SIR SQL, while reusing internally some kernel SQL. We
conjectured that one could provide with such a SIR-layer every
kernel DBS, at the effort of a couple of months of programming
only. This would make LNF queries de facto standard, making
happier SQL clients, likely in millions today. Accordingly, we
postulated every relational DBS to become SIR-enabled “better
sooner than later”.

Below, we continue analyzing DBs with SIRs that we call now
simply SIR DBs. We first illustrate the above overview of SIRs with
motivating examples. We also discuss more in depth our definition
of FKs, [7], [13]. Next, we discuss natural SIRs, also more in detail
than in [3]. We focus particularly on the rules producing the
explicit scheme of natural SIRs from the present schemes of base
table with FKs as the implicit ones. We then extend these rules to
implicit schemes of SIRs other than the natural ones, with CAs
especially. The goal is always the least procedural SQL schemes for
SIRs for LNF queries as well as for SIRs for LNF and CAF queries.

Afterwards, we generalize Alter Table for SIRs defined in [1] to
the implicit schemes. We show how one may provide then LNF
queries to preexisting DBs, while keeping the legacy applications
running. We outline the relational design of SIR DBs, extending the
meaning of an NF in particular. We show that our proposal is
decades overdue. Finally, we detail why to provide for SIRs over
any present DBS kernel should be simple. In conclusion, we
uphold our postulate of making every DBS SIR-enabled “better
sooner than later”.

II NATURAL SIRS

II.A Explicit SIRs By Example
Our framework for motivating examples is the “biblical” S-P

DB, Fig. 1. S-P seems the first DB illustrating the relational model,
[8]. It is also the mold for about every present DB. Hence,
properties of S-P generalize accordingly.

Ex. 1. Suppose that DBA actually declares the base table S-P.SP
as follows:

(1) Create Table SP (S# Char 5, P# Char 5, QTY INT Primary Key
(S#, P#));

Here, the Primary Key definition is a table constraint. Suppose
further that DBA declares the following view, after renaming SP to
SP_:

(2) Create View SP AS Select SP_.S#,SP_.P#,QTY, SNAME,
STATUS, S.CITY, PNAME,COLOR,WEIGHT,P.CITY From SP_
Left Join S On (SP_.S#=S.S#) Left Join P On (SP_.P#=P.P#);

Recall that no two relations in an SQL DB can share a name. To
rename S-P.SP somehow is thus necessary for (2). Next, observe
that (i) every SP tuple (S#, P#, QTY) at Fig. 1 is also logically the
proper sub-tuple (S#, P#, QTY) of a tuple of view SP defined by (2)
with the same (S#, P#), (ii) that view SP can contain only one such
tuple since S.S# and P.P# are keys, and that, finally, (iii) (2) does
not define any other tuples. These properties make view SP (2) the
canonical view of SIR SP, i.e., the C-view SP, declared as follows:

(3) Create Table SP(S# Char 5 ,P# Char 5,QTY INT{SNAME,
STATUS, S.CITY, PNAME, COLOR, WEIGHT,P.CITY From
SP_ Left Join S On (SP_.S#=S.S#) LEFT JOIN P On
(SP_.P#=P.P#)} Primary Key (S#, P#));

Here, the brackets {} delimits the IE. If the IE was disseminated
within the Create Table, i.e., with IAs among SAs, then {} should

- 3 -

bracket every sub-list of IAs, except for } of the last one, if
followed by From clause. To avoid any name conflicts, we also
suppose the brackets not allowed within the relation names dealt
with by SIR DBS. If this is problematic, one may suppose other
brackets, e.g., !! for MsAccess kernel.

Observe that the IE in (3) is the part of (2) defining the SQL
projection on every IA in (3) and only on such IAs. But, SP_
referred to in (3) is the base of SIR SP, that is S-P.SP (1), preserved
in (3), although implicitly renamed for the referencing in From
clause, the same besides as in (2). Below, we refer to DB S-P with
SIR SP (3) instead of SP (2) as to DB S-P1.

Fig. 2 shows the scheme of S-P1. Observe that the IE in (3) is
there the explicit one for S-P1.SP, since it defines every IA and the
From clause as in (2). Fig. 3 shows S-P1 content, given that of S-P
at Fig. 1. For convenience, the name and content of every IA at Fig.
3 are italic. The SP content at Fig. 3 could actually be also the one
of C-view SP (2). Provided however that, with our notation, every
SP column name & value in straight font at the figure becomes
italic as well. One would denote so indeed every column of every
view, of view SP in particular.@.

Ex. 2. In S-P there is no referential integrity between SP and S.
Hence SP could have tuple t with S# not in S, e.g., t = (S6, P1, 100).
Suppose now that instead of From clause in view SP, one declares:
From SP Inner Join S On… . View SP resulting from could not be
C-view SP. Indeed, there would not be any tuples in the view with
sub-tuple t. In contrast, such a view could be C-view SP if the
referential integrity between S and SP was declared.@

Ex. 3. Recall that for a DML or a DDL statement S, the
procedurality, say p (S), is the minimal number of characters
(keystrokes) to express S, without convenience spacing especially.
In Introduction we recalled that for every SIR R and C-view R,
p (IE) in Create Table R is always smaller than p (Create View R).
In our example, p (Create View SP) (2) is p1 = 156. For the IE in
(3), p2 = 112, with the character count excluding ‘{‘, as replacing
the usual SQL separator ‘,’ that would be there without the IE, but
including ‘}’. The latter also replaces a mandatory separator that is
either ‘,’ or a (single at least) space, depending on the context. So
C-view SP is at least (p1 – p2) / p2*100 = 39 % more procedural
than the IE. In other words, the IE saves (p1 – p2) / p1*100 = 28 %
of p (C-view SP). All these savings for the DBA work provide for
the same service for the client, i.e., the same queries. SIR SP (3) is
thus a view-saver for view SP (2). Simply put, on a SIR DBS,
adding view SP (3) to S-P, instead of creating SIR SP (3), would be
just a waste of time.@

Ex. 4. Consider the need for every PNAME supplied by Smith.
The corresponding SQL query to S-P, say Q1, requires then the LN
through the same equijoins between SP and S, and P in From clause
as in (3) or equivalent joins. Hence, for the same need expressed as
query, say Q2, to S-P1, the From clause in (3) would do, while the
selection on SNAME and projection on PNAME in Q2 would be the
same as in Q1. Q2 would be thus an LNF query. Being free of any
LN, Q2 would be then always substantially less procedural than Q1,
regardless of the actual LN in the latter. View SP (2) could provide
for Q2 as well, although with substantially more procedural scheme,
as we’ve seen. The view is the only possibility at present.

The possibility of an equivalent LNF Q2 to S-P1 instead of Q1
to S-P with LN like in (3) or equivalent one for Q1, clearly extends
to any select-project part of Q1. The extension implies only that,
sometimes, some IAs in Q2 may need qualified names. E.g.,
consider any query retrieving supplier’s and part’s CITY.@

Ex. 5. Suppose that P.WEIGHT is in pounds, while queries
often need it in KGs. Suppose the latter provided by the attribute
named, say, WEIGHT_KG, calculated as INT(WEIGHT * 0.454)
and preceding WEIGHT. Adding WEIGHT_KG as an SA to P
would create the normalization anomaly. Making it a calculated
attribute in every query in need of, would increase the procedurality
of the latter. The classical solution valid for every present DBS is
to rather create the convenient view P. A query with WEIGHT_KG

could invoke it by name only, becoming a CAF query for it,
accordingly. It is easy to see however that view P could then be also
C-view P for SIR P with explicit Create Table P as follows:
(4) Create Table P As (P# Char 4, PNAME Char 20, COLOR Char
10 {INT(WEIGHT * 0.454) As WEIGHT_KG} WEIGHT Int,
CITY Char (30) {From P_} Primary Key (P#));

Observe that, again, we have p (IE) < p (Create View P).
Observe also that for popular DBSs providing for VAs we spoke
about in Introduction, WEIGHT_KG could enlarge P accordingly.
E.g., at MySQL, the enlarged P could be:

(5) Create Table P As (P# Char 4, PNAME Char 20, COLOR Char
10, WEIGHT_KG As INT(WEIGHT * 0.454), WEIGHT Int, CITY
Char (30), Primary Key (P#));

The obvious benefit is further reduction of procedurality, with
respect to view P as well therefore. On (yet hypothetical) SIR-
enabled MySQL, with the canonical implementation proposed in
[1] and recalled in Section 5, say SIR MySQL, P could be in fact
declared through the same statement. Formally, it is SIR P with (5)
as the implicit scheme. The IE consists of the definition of
WEIGHT_KG in the format of a VA only, i.e., without From P
clause. This IE could be preprocessed to the explicit scheme (4) on
SIR MySQL. However, for obvious practical reasons, we consider
any Create Table with VAs as exclusive to SIR DBSs with the
kernel DBS supporting such VAs, e.g., to MySQL for (5) here.
Actually, SIR MySQL would forward it to MySQL as is. That one
would consequently process it as MySQL would do for
WEIGHT_KG VA presently. We recall the related details when we
overview the implementation of a SIR DBS in Section VI.

Incidentally, this processing of WEIGHT_KG is the reason why
there is no {} brackets around WEIGHT_KG there. The rationale
will appear in Section VI. It will also appear that (4), with {} thus,
would be the only possibility for SIR P on any SIR DBS
implemented canonically over the kernel DBS not supporting any
VAs, [1]. E.g., {} would be necessary for SIR MSAccess.

Besides, the vocabulary of the kernels supporting VAs extends
the concept of base table to every table with SAs and VAs as well.
The reason seems to be the presence of SAs, hence the use of Create
Table still, although conveniently extended. This reason motivated
us to generalize analogously the previously introduced term of the
base of a SIR, [1]. Namely, in what follow, for any SIR R we now
call base of R, i.e., R_, the projection of R on every SA and every
CA, if there is any, with the scheme that could define a VA for the
kernel. In practice, it means that one could define such a CA
without {} brackets. Thus, e.g., for P as in (4), P_ = (P#,PNAME,
COLOR ,CITY, WEIGHT). In contrast for P as in (5), we have:
P_ = (P#,PNAME, COLOR ,CITY, WEIGHT_KG, WEIGHT).

The current example illustrates further that every present base
table with VAs is in fact a specific SIR. Given the lasting popularity
of VAs, since Sybase in the eighteens to our knowledge, we may
rationally hope for the future popularity of SIRs, as providing more
generally for CAF queries and/or LNF queries.

Ex. 6. Suppose that, in addition to LNF queries, SP clients wish
for queries selecting QTY for some supplies that the former is
always followed by the values named PERCENTAGE. The latter
should provide for every supply selected, the percentage that the
QTY there constitutes with respect to the entire supply of the part
supplied. Having to specify the value expression calculating
PERCENTAGE in every query in need, e.g., by a sub-query that
follows, with its substantial procedurality thus, would be anything
but practical for the clients. To simply add PERCENTAGE as an
SA to SP after QTY, clearly would not make DBA happy. The only
practical approach is to make it a CA of SIR SP or of C-view SP
providing for LNF queries as well. The queries could invoke
PERCENTAGE simply by name, becoming CAF queries for. One
could create the required SIR SP, e.g., through the explicit scheme
as follows:

(6) Create Table SP (S# Char 5, P# Char 5, QTY Int

- 4 -

{Round(100*Qty/(select sum(X.qty) from SP_ X where X.p# =
SP_.p#), 3) as PERCENTAGE, SNAME, S.CITY, STATUS,
PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join S On
(SP_.S# = S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key
(S#, P#));

One may easily double check that IE above would be again less
procedural than Create View SP for C-view SP. Recall also that
PERCENTAGE cannot be a VA for any relational DBS at present.
Hence SIR SP with and, more generally, any SIRs with CAs that
cannot be VAs, are the only known view-savers for ‘their’ C-views
at present. Hence, again, they would always be better choices for
the DBA as well. @

II.B Foreign Keys for SIRs
Despite being fundamental to the relational model, the concept

of the foreign key appears still surprisingly imprecise. The original
definition is in [7]. Codd amended it later several times, [13]. The
present definitions in textbooks or for popular DBSs differ from the
original and are not all equivalent. For SIRs, we merge the original
and SQL concepts. We thus call foreign key (FK) an SA and an SA
only, perhaps composite, with qualified name, say, R.F, if (i) F is
declared so through the familiar SQL Foreign Key table option,
being then a declared FK. If not, (ii) a non-key attribute R.F is a
natural FK iff (a) R.F is atomic and is not a part of a declared so-
called below PKN FK and if (b) while SIR DBS processes Create
Table R or Alter Table R, there is a unique in the DB PK named F
and with qualified name R’.F, where R’ ≠ R, sharing the domain of
R.F. In case (i), recall that one often qualifies R.F of referencing
some key named, say, R’.C, primary or candidate on some DBSs.
One often qualifies then also R’.C of the referenced key (RK).
Likewise, one qualifies so R’, while R is the referencing relation.
We retain this whole terminology for the natural FKs, with C = F
and R’ the base table with.

Recall that at present, every FK must be declared as in (i), the
referential integrity being mandatory. Actually, the Foreign Key
constraint (clause, option…) was not in [7], but was introduced later
by the SQL Standard Group. In contrast, the original FK concept is,
likely, including the one we called the natural FK. Indeed Codd
neither required to declare every FK nor considered the referential
integrity mandatory for every FK, [7], [13]. Also, the requirement
of sharing the domain in [7] implied the same proper name for the
FK and the PK. The distinction between attributes and domain was
introduced only later as well.

Besides, the central original idea for any FK A in [7] seems the
“cross-referencing” from R to R’ realized by R.A and some R’.A as
the logical pointers, [7]. In addition of having the same proper name
as R.A, R’.A had to be a key, qualified then of primary. The
qualifier indicated R’.A as the key for the referencing. Codd indeed
expected R’ to often have more than one key (this origin of the
primary qualifier seems largely forgotten). More in depth, the cross-
referencing meant that every R-tuple t with t.A = v, references the
only R’-tuple t’ where t’.A = v, provided that such t’ exists.
Consequently for every t with A = v, one may determine t’ through
the relational calculus, an equijoin namely, regardless of the
underlying physical representation. Codd conjectured the logical
pointers more practical then the physical ones. The latter were the
basic mode for referencing by the times of [7].

As known, Codd’s conjecture turned out right, despite vigorous
opposition for years, if not decades. The benefit claimed by the
logical referencing was later called the one of the logical/physical
data independence. In particular, as also known, if a query needs
some values in R together with some referenced ones in R’, then the
(left) FK-join: R left outer join R’ on FK = RK in the query
expresses the referencing, regardless of underlying physical data
structures and changes to these. Likewise does the equivalent right
FK-join, or, sometimes, the equivalent inner FK-join if the
referential integrity is enforced. Recall in particular that RK can be
composite, say declared as (C1, C2…Ck) with FK composite then
as well, say declared as (F1, F2…Fk). Then, FK = RK means
F1 = C1 and F2 = C2…and Fk = Ck. An RK may in particular be

the PK, which means that (C1, C2…Ck) is also the content of the
Primary Key constraint of R’. Recall finally that the FK-joins in
queries constitute the already mentioned LN. See oldies for more
on the theme.

Another consequence of Codd’s proposal was that one can
formulate every above discussed query as if the attributes of R’ not
in RK, were in R, except for the additional LN in the join clause of
the query, i.e., the FK-join. While these R’ attributes typically could
not be in R, since would create normalization anomalies,
denormalizing R in consequence. Nevertheless, despite the
additional procedurality due to the LN, countless examples devised
after [7], has shown that any equivalent queries using the physical
pointers implied by any navigational DBS in use by then, especially
the Codasyl or IMS DBS would typically be several times more
procedural. See the oldies again.

Recall that for a declared FK, RK may be a candidate key on
some DBSs, i.e., any key not declared PK. This is nevertheless at
best, a debatable possibility, since error-prone in the absence of the
table option for candidate keys in SQL, unlike for the PK. Also FK
and RK may have the same or different (proper) names. Recall that
in case of a composite FK and RK, say F and C above, the same
name means that every couple (Fi, Ci) ; i = 1…k shares a name. The
rationale is that the referencing FK -> RK within an FK constraint is
by attribute position at present, not by name sharing. Finally, we
call below an FK primary key named (PKN), whenever RK is a PK
and FK and RK share the name. Observe that a PKN FK can thus be
natural or declared, while every natural FK is PKN by definition. It
is so also for any FK fitting the original Codd’s definition. In other
words, PKN FK concept qualifies (names) adequately Codd’s FK
initial idea, to our best understanding of his wording. Non PKN FKs
are a later possibility, introduced apparently, as we recalled, by the
SQL designers.

Besides, the natural FKs appear the most popular, perhaps
surprisingly for some. The rationale is the least procedural FK-joins
in queries. Atomic declared FKs do the same, but require the
Foreign Key constraint, cumbersome for many. Also, the referential
integrity they impose, may sometimes contradict the application
requirements.

Fig. 1 S-P database

Furthermore, we suppose that, in every Create Table R with
PKN FKs submitted to a SIR DBS, every PKN FK F and only such
F implies specific IAs in the intended actual Create Table R. The
latter is the explicit SIR R scheme, we recall. We call these IAs
Natural Inheritance, (NI), in R from R’ or through F and define
them as follows. Let A’ denote the ordered set of all the non-PK
attributes of R’. Then, the NI through F in R consists of the set A’
of IAs (i) defined by the pseudo SQL query: select A’ From R_ FK-
join R’; and (ii) either placed in R immediately after the last
attribute in Create Table R that is not in any other NI through some
PKN FK of R or placed after some such NIs. We also qualify then
of naturally inherited every IA within the NI, the NIA, in short.
Finally, we consider that any non-PKN FK in R scheme implies in
contrast the referential integrity only.

Furthermore, observe that the above discussed obstacle of the
denormalization of R imposing then the LN in the typical queries to
base tables, disappears with SIR DBs. No IA can indeed create any

- 5 -

normalization anomalies. The practical interest of the NI is to
provide then for the LNF queries for present queries requiring the
LN. E.g, as for Ex. 4, one may create every R with PKN FKs as SIR
R with the explicit IE including the NA. This is clearly the case of
(3). Operationally, as there, one can specify every NIA, as one
would do for C-view R, e.g., for C-view SP (2) for (3). However, in
practice any NI will rather be inferred from the implicit R scheme,
as we will show soon. Then, more precisely, any query addressing
any SAs of R reduced to R_, as at present and (ii) any non-PK
attribute R’.A through some LN, may address instead NIA R.A,
without LN then, e.g. as in Ex. 4. Any SIR R with the NI, e.g., (3)
again, acts accordingly as a the view-saver for C-view R.

It follows from the above that every declared PKN FK F implies
both the referential integrity and the NI. If one does not want the former,
but still wishes the latter, one should not declare such F. Provided
that, as usual, there is only one relation with PK F in the DB, for
any atomic PKN FK F a natural FK F will result and fit the goal.
Otherwise, one should change in addition the name of every PK F
other than R’.F. Notice that such need should be rare, as schemes
with several relations sharing a PK name seem infrequent. Anyhow,
all this cannot work for any composite PKN FK F. One solution is
to (a) add to R’ a surrogate that is, we recall, makeshift atomic PK
and (b) name it, let us say, C, uniquely for a PK in the DB. The
composite RK becomes consequently a candidate key. Then, it
suffices to replace F with C in R. The latter will be a natural FK
hence will provide for the NI only, as wished. The classical Ex. 14
illustrates the case later on.

Finally, we suppose that no SA F of some R can become
implicitly a natural FK because one issued some Create Table R”
with PK named F or Alter Table R” that ended up with the PK R”.F.
In practice, it means that no such statement can enlarge R with the
NI from R”. A dedicated Alter Table R we discuss in Section IV is
necessary.

Ex. 7. Natural FKs are in S-P, assuming S and P created before
SP. SP.S# and SP.P# are the natural PKN FKs then, with S.S# and
P.P# being the respective RKs. The original verbal description of S-
P scheme indicates indeed that each pair has a common domain.
Finally, as the natural FK, SP.S# in SP scheme (1), supposed now
the implicit SP scheme for S-P1.SP, will imply the NI from S,
consisting of {SNAME…S.CITY} in (3). Likewise, SP.P# will
imply the NI from P. As it will appear formally in next section, SP
scheme (1) will lead then to SP scheme (3) as the explicit scheme,
with (1) as an implicit one.

The original description of S-P also does not mention any
referential integrity. Nevertheless, at Fig. 1, every SP tuple respects
this constraint for both FKs. Regardless, one may insert, e.g., P7
into SP, without the presence of P7 in P. The feature can be useful,
e.g., if DBA allows for the later insert of P7 data into P. If the
referential integrity was in contrast required for a pair, e.g., (SP.S#,
S.S#), one should declare in Create Table SP or Alter Table SP the
usual: Foreign Key (S#) References S(S#).., including the On
Delete and On Update options perhaps. SP.S# would become the
declared (atomic) PKN FK. On the other hand, if in S-P as on Fig.
1, DBA created SP before S and P, then, for Create Table SP,
neither SP.S# nor SP.P# would be natural FKs anymore.
Consequently, there would not be both NIs in the explicit SIR SP
scheme (1). This would make S-P1.SP = S-P.SP in fact, until one
perhaps alters S-P1.SP as we discuss later.@

II.B Basic Natural SIRs
We will now show that Create SP (1), can be an implicit scheme

for SP (3). Recall that (1) defines all and only SAs of SIR SP (3),
hence, we have p(IE) = 0 there. The property frees thus DBA in
need to create (3), from any additional procedurality otherwise
required. We will show that the property generalizes in fact to any
SIR R qualified of natural in [2].

Def. 1. Suppose that SIR R has PKN FKs F1…FK and for every
Fk ; k=1..K ; R contains the NI through Fk denoted as A’k. Suppose
also that for every NI, referencing some base table R’, one qualifies

with R’ name every attribute in NI in name conflict otherwise with
any other attribute, including an SA. Let R_ denotes all the SAs of
R_, including every VA, we recall, if there are any. Then R is
natural iff the explicit Create Table R has the following or any
equivalent form:

Create Table R (R_ {A’1…,A’k From R_ Left Join R’1 On
R_.F1 = R’.F1 Left Join R’2 On R_.F2 = R’2.F2… Left Join R’k On
R_.Fk = R’k.Fk};.

We refer to all the NIs in any SIR R simply as to NI in R or as
to NI in R through F1…Fk. Besides, the following obvious
proposition follows.

Prop. 1. C-view R for a natural SIR R has the following pseudo
SQL scheme:

Select R_.*, A’1…,A’k From R_ Left Join R’1 On R_.F1 = R’.F1
Left Join R’2 On R_.F2 = R’2.F2… Left Join R’k On R_.Fk = R’k.Fk

Def. 2. We say that a natural R is a basic one iff every R’ is an
SR or is SIR R’ with every IA declared as VA.

Ex. 8. On a SIR-enabled DBS, S-P1.SP illustrated at Fig. 2 is a
natural SIR. First, S and P referenced each through a natural, hence
PKN, FKs S# and P#, obviously differ from each other, as required.
Then, the IAs: SNAME, STATUS, S.CITY constituting the NI
through S# from S, follow QTY. The same occurs for SP.P# and P,
except that they follow the NI through S#. Both IAs CITY are
qualified for obvious reasons. Finally From clause is conform to
Def. 1. In contrast, S-P1.SP enlarged further with PERCENTAGE
would not be natural, since the latter would be an IA outside SP_
and outside both NIs. In any case both NIs in SP constitute the NI in
SP.

Accordingly, in our terminology, every IA following S# till SA
P# is sourced in S. Next, SP naturally inherits each and all of them.
Respectively, same is true for every IA sourced in P. All these IAs
together constitute for SP its NI through the foreign keys and they
naturally enlarge SP_. Finally, SP is a basic natural SIR.@

Observe now the following easy properties of natural SIRs:

Prop. 2. Suppose that Create Table R in some DB defines at
present an SR R with PKN FKs. Accordingly, consider the
following generic formula for such Create Table R, where ‘…’
designates some SAs or VAs or none:

(7) Create Table R (…, F1,… FK…. <table options>);

Then, (7) can be an implicit scheme for natural SIR R with the
NI through F1,… FK and R_ defined by (7).

Proof. To prove (7), one should provide a deterministic
algorithm for the explicit IE as in Def. 1. We sketched the latter in
[3]. In the next section, we provide a more complete formulation.@

Accordingly, given (7), for every natural SIR R, we say
sometimes that R is so for R_ or for base table R with (7) as the
actual (explicit) Create Table R.

Ex. 9. Create Table SP (1) and Create Table SP (3) are clearly
conform to Prop 1. Hence S-P1.SP (3) is the natural SIR for S-P.SP
(1) and for the base SP_ of SP (3). Finally, it is the unique natural
SIR for both.@

Recall furthermore that, given the quest for non-procedurality,
the empty IE of (7) is a definitive advantage over the explicit one in
Def. 1 and in C-view R, by the same token. Also, on every SIR-
enabled DBS, providing for the natural SIRs in particular, DBA
could therefore always create a natural SIR R with no more work
than for sole R_ as a stand-alone SR R at present.

Ex. 10. On a SIR DBS, Create Table SP (1) would suffice for
SP (3). The S-P scheme would define S-P1. The DBA would have
no additional work to define S-P1.SP.@

In the same time, as we already hinted for S-P1, the clients
would gain LNF queries to SP, regardless of whether the DBA uses

- 6 -

(3) or, obviously better, (1) for S-P1.SP. We have hinted that this
may be true more generally for every natural SIR R. We will prove
it now for basic natural SIRs.

Prop. 3. Suppose that a DB has a base SR R with the scheme
that could also be the implicit one of a natural SIR R. Let us denote
a base table that R references as R’. Next, consider a select-project-
join query Q1 (i) projecting on some SAs of R or on some non-key
SAs in one or more of R’s, and (ii) where R and each R’ are joined
through some of the PKN FK-joins, i.e., forming thus, likely, a
typical LN at present. Next, consider the LNF query Q2 addressing
SIR R only, through the same select-project clauses as Q1, except,
perhaps, that some IAs are qualified. Then, for every SR R and
every Q1, Q2 is equivalent to Q1. SIR R is consequently a view-
saver for such LNF queries. It is also possibly the least procedural
one, in the sense of possibly empty IE.

Proof. For every Q1, suppose that one renames SR R to R_ and
replaces all the FK-joins of Q1 with the FK-joins in (5). The relation
defined by these joins contains the same attributes as the natural
SIR R explicitly defined by (5), except, perhaps, that (i) some
attribute names became qualified or (ii) the order of the attributes is
different. Given the properties of left outer equi-joins, the modified
Q1 is equivalent to the original, provided that if select-project
clauses of original Q1 referred to an attribute name that became
qualified, then every such name in modified Q1 is qualified as well.

The latter From clause can be equivalently modified to the
nested one, where the inner query (a) has both the select clause and
the FK-joins as in (5) and (b) it is named R within the outer From.
Whether the latter R designates SIR R on SIR-enabled DBS, (as we
tacitly suppose here), or designates “only” view R at present, does
not matter. The overall result is that for every Q1, query Q2 with the
same select-project clause as the latter query but referring to R only
in From clause, instead of containing the inner query defining R, is
the LNF query to R equivalent to Q1. Accordingly, view R is a view
for LNF queries for any such Q1. SIR R is consequently a view-
saver for any such LNF queries. R scheme is possibly the least
procedural one, since DBA may choose the implicit one with empty
IE (what every DBA will likely do in practice then).@

Ex. 11. Consider the need for SP.S#, SNAME, CITY for every
supply. Every Q1 to S-P must have then the LN through the FK-join
SP Left Join S. E.g., one may issue Q1 as:

(8) Select SP.S#, SNAME, CITY From SP Left Join S On
SP# = S.S#;

After renaming SP to SP_, one can equivalently replace Q1
with:

(9) Select SP_.S#, SNAME, S.CITY From SP_ Left Join S On SP#
= S.S# Left Join P On SP.P# = P.P#;

Notice that CITY became qualified. The latter query is in turn
equivalent to the following one with nested From:

(10) Select SP.S#, SNAME, S.CITY From (Select SP_.S#,
SNAME, STATUS, S.CITY, SP_.P#, PNAME, COLOR,
WEIGHT, P.CITY, QTY From SP_ Left Join S On SP_.S#=S.S#
Left Join P On SP_.P#=P.P#) As SP;

Finally, whether SP designates now in fact view SP (2) or SIR
SP (3), then the latter query becomes simply Q2 as follows:

(11) Select S#, SNAME, S.CITY From SP;

Observe that p (Q1) = 56 and p (Q2) = 31. Thus the LN alone in
Q1 is almost as procedural as Q2. Hard to see why an S-P client
having choice, could prefer Q1 to Q2. @

Notice that, usually, DBS would process Q2 by the standard
query modification approach that would walk backward the above
steps towards Q1. Similar conclusions will hold more generally for
every select-project-join query to S-P.SP and S or P, with LN
through the FK joins over FKs of SP. Accordingly, view SP is a
view for LNF queries, requiring the above FK-joins otherwise.
SIR SP is then a view-saver for the same LNF queries. It is also

possibly the least procedural one, since one can define the SAs
only.@

Recall also that every IA A of a natural SIR R, is a natural one
itself. By definition, it thus has the same name as an attribute of
some base table R’ that R references, called also source of R.A.
Thus one may consider that for every query Q to R only that we
qualified of an LNF one, for every IA A that Q perhaps addresses,
Q addresses then in fact some R’.A. One may say then that Q is an
LNF query not only to R, but also, indirectly through every R.A
addressed, to every base table R’ that is the source of. For some,
that meaning of an LNF query is perhaps the primary one even,
[24].

Accordingly to this terminology, one can formulate Prop. 3 in
an alternative way that some may find more appealing:

Prop. 3bis. Suppose that a DB has a base table R with the
scheme of the SAs that makes it the implicit one of a natural SIR R.
Let R’1… be every base table that R references. Next, let Q1 be a
select-project-join query addressing some SAs in R scheme and
some attributes of R’1 or of R’2 or…, with every join being a left
FK-join preserving R or with any join equivalent to. Then, for every
possible Q1, there is a query Q2 addressing SAs in R scheme and
such that (i) Q2 is equivalent to Q1, (ii) Q2 is an LNF query also to
every R’ that Q1 addresses (through the joins) and (iii) Q2 is the
select-project part of Q1 with From R clause only, except that some
attribute names in Q1 may end up qualified. R is consequently a
possibly the least procedural view-saver for such LNF queries.@

Observe finally that if Create Table R defining at present an
SR R only, may define the natural SIR R instead, then it provides
for the discussed attractive LNF queries, at no additional data
definition cost for DBA. We now describe the algorithm effectively
providing for that capability, i.e., of inferring the explicit natural
SIR R scheme from the one of the SR R, on any popular DBS.

II.C Inferring Explicit Schemes of Basic Natural SIRs
As already stressed, suppose every referenced relation to

preexist the referencing one. Suppose also that SIR-enabled DBS
gets Create Table R with SAs only and, may be, with some of these
being declared FKs. The scheme may be thus an implicit scheme of
the natural SIR R. SIR-enabled DBS processes then the Create
Table as follows. The algorithm mainly generalizes our motivating
examples. The outcome is the explicit Create Table R. We specify
the rules only verbally, omitting easy details the actual
implementation would require. We take for granted that the implicit
Create Table R defines SAs only. We also consider only the
canonical implementation of a SIR-enabled DBS in [1], we recall in
Section VI below. The SIR-enabled DBS creates and manages then
every SIR R as base table R_ and C-view R within the kernel DBS.

Alg. 1. 1. (Determine every natural FK). For every (atomic) SA
R.A that is neither a primary key nor a declared FK or within such
FK, check in the meta-tables, provided by every popular SQL DBS
at present and often named SYSTABLES for base tables and
SYSVIEWS for views, e.g., in DB2, whether there is a unique
relation (named) R”, with the primary key sharing the name and the
domain of R.A. If so, R.A is a natural FK. Next, (i) if R” (name)
does not end up with ‘_’, then R’ := R”. Else (ii) if R”/’_’ is not in
SYSVIEWS etc., then R’:= R”. Else, R’ is not a basic natural SIR.
Then, check the rules for compound natural SIRs we outline later.

2. (Processing every PKN FK). For every PKN FK with R’
determined in (1) or analogously for any declared FK (recall that,
on some popular DBSs, this may require to check in SYSTABLES
that RK is a PK, since it could be a candidate key), retrieve from
SYSTABLES the name of every non-PK attribute of R’. Then (iii),
place all these names, qualified if needed, in Create Table R, as in
(a) in Def. 1.

3. (Create From clause). Let F1… be the PKN FKs enumerated
in the left-to-right order in Create Table R and R’1… be the
referenced relations. Suppose for the form of the string below, for
every composite F, the simplified notation we indicated before.

- 7 -

Then, after the last SA and before the table options, insert the string
in the form of: From R_ Left Join R’1 On (R_.F1 = R’1.F1) Left Join
R’2 On (R_.F2 = R’2.F2)….@

Ex. 12. We skip the easy but tedious proof of the rules. We only
show that they build the explicit Create Table SP (3) from (1).
Suppose thus S-P1.S and S-P1.P already created. Rule 1 produces
names (S, S#) and (P, P#). For the former, Rule 2 finds S# in (1). It
thus inserts SNAME…S.CITY, right after S#. Likewise, it inserts
PNAME...P.CITY right after SP.P#. Finally, Rule 3 builds From
clause in (3) and terminates the explicit IE.@

For the DBA, as already hinted to, the rules mean simply
p(IE) = 0. They thus mean free bonus of zero additional time for
creating, instead of S-P.SP, the natural SIR SP (3), with its p = 112
(explicit) procedurality of the IE. This, to provide the clients with
also free then bonus of typically far less procedural LNF queries.
For the DBA again, an even bigger bonus is with respect to the
present situation. One saves indeed 100% of procedurality p = 152
of Create View SP (2) for the same purpose.

II.E Compound Natural SIRs

A compound natural SIR R inherits through some FKs from
SIRs. These can be natural perhaps compound themselves, or
others. In other words, a non-PK attribute of an R’ can now be an
SA or an IA. Operationally, as usual today, we suppose again every
R’ being created before R. By the same token, we suppose that later
alterations of any R’ schemes do not cascade to R. Here are
motivating examples of compound natural SIRs. They seem
framework for frequent practical cases.

Ex. 13. Suppose one alters S-P scheme as follows. An
additional relation CG (CITY, GPS) stores uniquely for each city
the GPS location. Suppose further that on a SIR-enabled DBS, one
creates CG first, then S and P with their S-P schemes, Fig. 1 and SP
through its scheme (1), at last. CG has no FKs, hence its scheme
above defines an SR. Then, the S scheme has only one FK that is
the natural FK S.CITY, referencing CG.CITY. S is now therefore a
basic natural SIR, with S-P.S scheme as the implicit one and the
following explicit scheme, inferred through the rules above:

(12) S (S#, SNAME, STATUS, CITY {GPS From S Left Join CG
On S.CITY = CG.CITY})

The explicit Create Table S scheme for (13) is obvious to figure
out. P becomes a basic natural SIR analogously. But, the NI for SP
defined by Prop. 1 includes now also two IAs: S.GPS and P.GPS.
Hence, SP becomes the compound natural SIR. Its explicit Create
Table evolves to:

(13) Create Table SP (S# Char 5 {SNAME, STATUS, S.CITY,
S.GPS} P# Char 5 {PNAME, COLOR, WEIGHT, P.CITY, P.GPS}
QTY INT {From SP_ Left Join S On (SP_.S# = S.S#) LEFT JOIN
P On (SP_.P# = P.P#)} Primary Key (S#, P#));

LNF queries to SP may now address both P.GPS and S.GPS.
But, it is easy to see that Alg. 1 does not let to infer (13) from (1)
anymore. It needs the completion we show soon.

Finally, it’s instructive to appreciate the procedurality gain with
LNF queries searching for GPS data. E.g., suppose the search for
SP.S#, SNAME, S.CITY, S.GPS and SP.P#, PNAME, P.CITY,
P.GPS, as well as QTY, for every supply with QTY > 100. For S-P
with SR CG added as base table, every SQL query Q1 expressing
the search would need some LN, e.g., the nested one as follows:

(14) Select SP.S#, SNAME, S.CITY, S.GPS, SP.P#, PNAME,
P.CITY, P.GPS, QTY From SP_ Left Join (S Left Join CG On
S.CITY = CG.CITY) On SP_.S# = S.S# Left Join (P Left Join CG
P.CITY = CG.CITY) On SP_.P# = P.P# Where Qty > 100;

The LNF Q2 to S-P1 would be in contrast simply:

(15) Select SP.S#, SNAME, S.CITY, S.GPS, SP.P#, PNAME,
P.CITY, P.GPS, QTY From SP Where Qty > 100;

We have p (Q1) =203 and p (Q2) = 83. Thus Q1 is almost 2.5

times more procedural than Q2. Besides, no wonder that the
complexity of LN through nested joins in (15) is not what most
clients like best. The result would not change much if, e.g., one
familiar with properties of joins unnested these while formulating
Q1 or replaced some with the left natural ones etc. Recall finally
that all these advantages of Q1 come for free at the data definition
level for DBA. I.e., if looked upon as SIR implicit schemes, the
“classic” Create Table S, Create Table P and Create Table SP of S-
P DB, could make instantly possible for Q1, instead of forcing Q2
only at present.@

Ex. 14. Suppose that the DBA defines for S-P also the well-
known base table providing the allocations of the supplies in SP to
jobs:

(16) Create Table SPJ (S#..., P#..., J#..., ALLOC…, Primary Key
(S#, P#, J#), Foreign Key (S#, P#) Referencing SP (S#, P#));

Here, (S#, P#) is a declared composite PKN FK. Suppose also
that J# is not a natural FK for some reason. For a SIR-enabled DBS,
the above scheme is the implicit one of SIR SPJ. Neither S# nor P#
is a natural FK in SPJ, since both are within a declared PKN FK.
Hence, SPJ would be a natural compound SIR where the explicit
scheme naturally inherits every non-key SA and IA of SP:

(17) Create Table SPJ (S#..., P#..., J#..., ALLOC, {QTY,
SNAME,..S.CITY, PNAME…P.CITY From SP_ Left Join SP On
SP_.S# = S.S# And SP_.P# = P.P#} Primary Key (S#..., P#..., J#),
Foreign Key (S#, P#) Referencing SP (S#, P#));

Notice that the referential integrity between SP and SPJ would
be enforced, as for every declared PKN FK and as for any FK at
present. If it is not desired, then, as said generally before, one
should not declare (S#, P#) as an FK. The natural attributes in NI
through (S#, P#) that one wishes to preserve for LNF queries and
which are neither in the NI through S# nor through P#, should be
then explicit. Actually, this amounts to QTY only. A better
approach to inherit QTY instead implicitly as well is through the
already discussed technique of a surrogate, say SP# here, added to
SP, i.e., enlarging the implicit scheme of SP to SP (SP#, S#, P#,
QTY). The composed key (S#, P#) is no more the primary one. SPJ
may become SPJ (SP#, J#, ALLOC), with SP# being the PKN FK
and QTY becoming an implicit IA, since in the NI of SP#.

Anyway, whether QTY is implicit or explicit in SPJ, a SIR-
enabled DBS will provide for the LNF queries addressing any SAs
of SPJ and through the IAs, any SA or IA of SP. Hence, through
IAs of SPJ, such query will be also able to, transitively and
transparently, address every attribute of S and of P. Thus, again at
no cost for the DBA, the client could, e.g., search for SNAME,
PNAME and available QTY of every part allocated to job ‘J1’
through the select-project only LNF Q1:

Select SNAME,PNAME,QTY From SPJ Where J#=‘J1'.

In contrast, supposing SPJ (16) and the original SP, the
necessary LN in Q2 below, would make the latter more than three
times more procedural and dreadful for many:

Select SNAME,PNAME,QTY From SPJ Left Join (SP Left Join S
On SP.S#=S.S# Left Join P On SP.P#=P.P#) On (SPJ.S#=SP.S#
And SPJ.P#=SP.P.#) Where J#=‘J1'. @

Ex. 15. Suppose now for S-P1 that one enlarges S-P.P with the
calculated attribute WEIGHT_KG as in Example 5. Suppose further
that DBA again creates S and P before SP, with P with
WEIGHT_KG becoming SIR P, we recall. Then SP implicitly
defined through SP_ scheme named Create Table SP, would remain
a natural SIR. However, it will be a compound one this time,
regardless one defined WEIGHT_KG as the VA or as if it was an
IA of C-view P. The explicit Create Table SP would become:

(18) Create Table SP (S# Char 5, P# Char 5, QTY INT {SNAME,
STATUS, S.CITY, PNAME, COLOR, WEIGHT, WEIGHT_KG,
P.CITY From SP_ Left Join S On SP_.S# = S.S# LEFT JOIN P On
SP_.P# = P.P#} Primary Key (S#, P#));

- 8 -

SP provides now for the LNF queries to WEIGHT_KG as
well.@

Given these examples, the enhancement to the rules for basic
natural SIRs in the previous section can be as follows. The new
need is to recognize for every R’ whether itself it is not a SIR.

Alg. 2. (i) - Rule (1) in Alg. 1 states that R can be a compound
natural R if R”/’_’ is in SYSVIEWS etc. Consider so now. Then, R
is effectively a compound natural SIR, since R”/’_’ is a SIR. Hence
set R’ to R’ := R”/’_’.

(ii) - The NI in R from R’ is now defined through SYSVIEWS
etc. This one should be, as usual, every IA of view R’ defined there
other than every IA inherited from RK in R’_. The latter is to be
found through SYSTABLES etc.

(iii) - Perform finally rule (3).

We skip the easy proof in favor of the motivating example.

Ex. 16. Consider again S-P altered as in Ex. 13. Then rule (1)
above will find for S# that S_ table in SYSTABLES etc. is R“ with
S as R”/_ in SYSVIEWS etc. The control will pass to rule (i) that
will set S as R’. Likewise, for P#, it will find R’ := P. Rule (ii) will
then determine for S from SYSTABLES etc. that S.S# is the RK,
hence it will find out from SYSVIEWS etc. that
{SNAME…S.GPS} is the NI for SP.S# in SP. Likewise, it will
determine {PNAME…P.GPS} as the NI for SP.P#. Then, after
applying rule (3) again, the end result for From clause would be the
one in (13) and, altogether, Create Table SP (13) will be the explicit
one in our case.

Likewise, for S-P altered as in Ex. 15, Alg. 1 for the basic
natural SIR and SYSTABLES etc. alone will determine for SP, the
NI from S. For P in turn, to find it out, Alg. 1 will call Alg. 2 for the
compound natural SIR. The explicit Create Table SP (18) will be
the overall result.@

III OTHER SIRS WITH PKN FKS
One can define implicit schemes also for SIRs other than natural

ones, provided they have PKN FKs. The following proposition
shows it. We denote the explicit Create Table R as RE and as RI the
implicit one derived as follows.

Prop. 4. Consider SIR R with PKN FKs defined by RE in the
form that follows. We denote as A any attribute other than any of
those in NI. We suppose that at least one A is an IA other than a
VA. Notice that R cannot be then a natural one. Next, we denote as
A all such IAs. Then, we denote as NI all the NIAs and as NI-joins
all the FK-join clauses of the NI. We further denote as <A def.
clause> the part of From clause defining A and not containing any
of joins in <NI-joins>, if there is any such part. Next, brackets []
denote optional parts of the statement, as usual. Finally, we omit all
the {} brackets around IAs, except, perhaps, of the initial ‘{‘, if
used instead of the usual SQL ‘(‘ and of the final ‘}’ terminating the
From clause. Supposing now that RE is as follows:

RE = Create Table R (|{ A1…,A2…AK…,NI From R_ [<A def.
clause>] NI-joins} [<Table constraints>]) [<Table options>];

Then, RI is RE without NI and NI-joins.@

Proof. RI suffices, as one can complete it towards RE through
the pre-processing obviously almost the same as the one for natural
SIRs. The only difference is the eventual completion of the <A def.
clause>. We therefore skip the easy, but tedious completion specs.

We also skip the trivial generalization of Alg. 1 & 2 providing
for a unique RE inference algorithm for both: natural SIRs and the
ones dealt with here. @

Notice that (implicit) IE of RI resulting from Prop. 4 cannot be
empty. Unlike was the implicit IE for any natural SIR, recall.

The rationale for RI’s here is obviously p (RI) < p (RE), again. The
gain is thus even greater with respect to p(C-view R). The typical
needs for the explicit IAs seem as follows. (i) R has one or more

calculated IAs (CAs), each defined through a value expression
inheriting from SAs or from other IAs in R or from attributes of
some R’≠R, or defined by a sub-query. Then, (ii) for some FK F, R
may have for privacy, only some or even none of the natural IAs
through F. Or, (iii), F may have the same IAs as in NI, but, for
query convenience, displaced within R or renamed for some.
Finally, (iv) F1 and F2 in R may share R’. This is contrary to the
assumptions of NI, we recall. Here are motivating examples,
illustrating these needs. The procedurality savings that appear are
always about or above 50%, sometimes with RE being several times
more procedural. These are clearly substantial saving, by any
practical meaning of the term.

Ex. 17. (i) Consider SIR P from Ex. 13 enlarged with
WEIGHT_KG placed after WEIGHT. Supposing that the kernel
does not provide for VAs, the implicit Create Table P would be:

(19) PI = Create Table P As (P# Char 4, PNAME Char 20, COLOR
Char 10, WEIGHT Int {INT(WEIGHT * 0.454) As WEIGHT_KG}
CITY Char (30), Primary Key (P#));

SIR-enabled DBS would enlarge then (19) to the explicit Create
Table as follows:

(20) PE = Create Table P As (P# Char 4, PNAME Char 20, COLOR
Char 10, WEIGHT Int {INT(WEIGHT * 0.454) As WEIGHT_KG}
CITY Char (30) {GPS From P_ Left Join CG On P_.CITY =
CG.CITY} Primary Key (P#));

The explicit IE is visibly more than twice procedural than the
implicit one. Alternatively, suppose now that MySQL is the kernel.
The implicit Create Table P could contain the VA WEIGHT_KG:

(21) PI = Create Table P As (P# Char 4, PNAME Char 20, COLOR
Char 10, WEIGHT Int, WEIGHT_KG As INT(WEIGHT * 0.454),
CITY Char (30), Primary Key (P#));

PE would keep then the definition of WEIGHT_KG as the VA,
but will remain obviously as procedural as (22).@

Ex. 18. (i) Suppose that for some security reasons, no attribute
of Supplier should be in SP available for LNF queries, except for
S#, somehow renamed so to hide its relationship to S. SPI could
simply be:

(23) SPI = Create Table SP (X Char 5, P# Char 5, QTY INT
Primary Key (S#, P#));

Since SP.P# remains a natural FK, SPE would be:

(24) SPE = Create Table SP (X Char 5, P# Char 5, QTY INT
{PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join P On
SP_.P# = P.P#} Primary Key (S#, P#));

SPI is again visibly about a half of the SPE..

(ii) Suppose now that only the attributes SNAME, CITY of S-P.S
should be visible to LNF queries to SP. SPI could be:

(25) SPI =,Create Table SP (X Char 5, P# Char 5, QTY INT
{SNAME, CITY From SP_ Left Join S On SP_.X = S.S#} Primary
Key (X, P#));

For both (i) and (ii), the renaming of SP.S# was necessary, as it
would be a PKN FK otherwise. It would imply then NI in the
explicit scheme, obviously contradicting the specs. SPE for (26)
would be again substantially more procedural, by about 50% visibly
again:

(26) SPE =,Create Table SP (S≠ Char 5, P# Char 5 {PNAME,
COLOR, WEIGHT, CITY} QTY Int {SNAME, CITY From SP_
Left Join S On SP_.S≠ = S.S# Left Join P On SP_.P# = P.P#}
Primary Key (S≠, P#));

Ex. 19. Suppose that SP should be as the natural one, but with
the additional IA named WEIGHT_T. This one should indicate for
every supply, its total weight, supposed to be WEIGHT * QTY,
whenever one knows WEIGHT of the supplied part. One wishes
also WEIGHT_T to follow QTY in SP. WEIGHT_T is not a natural

- 9 -

IA, since defined through a value expression. Neither, it could be a
VA, since WEIGHT is not in SP. Nevertheless the following SPI is
OK:

(27) SPI = Create Table SP (S# Char 5, P# Char 5, QTY INT
{WEIGHT*QTY AS WEIGHT_T} Primary Key (S#, P#));

SPE would be:

(28) SPE = Create Table SP (S# Char 5, P# Char 5, QTY INT,
{WEIGHT * QTY AS WEIGHT_T, SNAME, S.CITY, STATUS,
PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join S On
(SP_.S# = S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key
(S#, P#));

Indeed, both S# and P# in SPI continue to represent all their
natural IAs. Next, WEIGHT_T would need FK-join between SP_
and P in SPI if it should become an explicit one as is. But, this
clause can be omitted otherwise, as defining also the NI from P. The
procedurality of the implicit IE, say p1, in SPI is p1 = 23. For the
explicit IE, we have p2 = 134. Thus, the explicit IE is almost six
times more procedural. The procedurality ratio between entire SPE
and SPI is obviously smaller, but still again SPI is visibly about
twice less procedural than SPE. Notice finally that the procedurality,
say p3, of Create View SP for C-view SP that is the only practical
possibility for WEIGHT_T at present, is p3 = 171. Hence, it is
more than seven times greater than p1, making the implicitly
defined SP quite a view-saver.

Ex. 20. SP should get as the last attribute, a calculated IA, say
PERCENTAGE. For every supply, the latter should be the
percentage that the QTY of that supply constitutes with respect to
the entire supply of the part supplied. Sub-query below defines
PERCENTAGE, leading to SPI:

(29) SPI = Create Table SP (s# Char 5, p# Char 5, qty Int {(select
Round (100*Qty / (select sum(X.qty) from SP_ X where
X.[p#] = SP_.[p#]), 3)) as PERCENTAGE} Primary Key (S#, P#));

Without the NI inferred, the From SP_ clause should follow the
attribute list. But, it is not here, since would be redundant with the
FK-joins referencing S and P. SPE would therefore be:

(30) SPE = Create Table SP (s# Char 5 {SNAME, S.CITY,
STATUS} p# Char 5 {PNAME, COLOR, WEIGHT, P.CITY} qty
Int, {Round(100*Qty/(select sum(X.qty) from SP_ X where X.p# =
SP_.p#), 3) as PERCENTAGE From SP_ Left Join S On (SP_.S# =
S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key (S#, P#));

It is easy to calculate that the implicit IE is 2.1 times less
procedural than the explicit one. In other words, the implicit IE
saves 53% of the explicit one. Hence, it is even more efficient as the
view-saver, (how much?).

Ex. 21. Consider the following DB named E-M providing data
on employees. Some employees are managers. Each employee has
an ID named E#. Each manager has the ID M# that is some E#
renamed. An employee may share work time among several
managers. An SA FRC indicates the fraction of work time spent by
employee E# for manager M#. A manager may get M# and start to
manage some employees before all the other data of those or of
her/himself are in E-M. One could accordingly define E-M as:

(31) EMP (E#..., NAME…, TEL…, DEP…, Primary Key (E#));

(32) EM (E#.., M#..., {M.NAME, M.TEL, M.DEP} FRC… {From
EM_ Left Join Emp M On EM_.M# = M.E#} Primary Key (E#,
M#);

EMP is an SR and EM is visibly a SIR. Suppose EMP created
first. E# is then a natural FK. M# in contrast is neither a natural nor
a declared FK. For our meaning of the FK concept, it is so just an
SA in EM useful for the DBA to define the IAs with selected data
about every manager, when already in EMP. Besides, as E# is a
PKN FK, EM should contain the NI through E#, while it does not.
(32) shows thus EMI. The preprocessing would expand it to the
(substantially more procedural) EME that we leave as an exercise.
EM would provide for LNF queries on every attribute of employees

or of managers in E-M.@

 IV ALTERING SIRS WITH FKS
One can alter every SIR R with FKs through the Alter Table R,

specified for SIRs in [1]. In particular, one can define a new IE,
through the SIR-specific clause, termed IE clause. The clause
defines for any R, the new IE, regardless of the existing one, if any.
In fact, the clause basically defines the C-view R scheme, as one
would define it through Create View R or Alter View R. For this
reason, as those that will appear in Section VI, the IE clause is
mandatory whenever one adds, renames or drops an SA in R.

We call explicit the IE clause defining the C-view as just
discussed. It has to contain the explicit IE in particular. The
rationale for such IE clause is that the IAs within intermix with the
SAs of R_, as Ex. 22 below illustrates. The names of the latter serve
as placeholders. One specifies the explicit IE clause for any new IE
in this way. Besides, the clause can be sometimes implicit, i.e.,
without the entire content of the explicit one. A SIR DBS pre-
processes every implicit IE clause into an explicit one for any
further processing.

For even lesser procedurality, we now consider that for a
relation with PKN FKs, the implicit IE clause avoids to enumerate
any NIs. It may happen then that these NIs are the only IAs to add.
We suppose that one may write then the (implicit) IE clause simply
as IE {}.

An IE clause may in particular add IAs other than VAs to an
SR R or to SIR R with CAs declared as VAs only. Such R may pre-
exist the upgrade of a DBS to a SIR-enabled one. Observe
furthermore that for every SR R with PKN FKs, the clause IE {}
makes R a basic natural SIR, without affecting any pre-existing
data. The rewrite rules for pre-processing implicit IE clauses into
the explicit ones with NIs are easy figure out.

Recall also that every natural SIR R, hence also the one
resulting from Alter Table R for an SR R, brings to R the free bonus
of the LNF queries to any SA of R and to any of the non-PK
attributes of any R’. For every preexisting query, the outcome
remains the same, except for every query referring to R through ‘*’
or R.*. Recall that such queries are not recommended for
applications, hence rare. Notice also that for every preexisting SR
R, in the absence of any of the discussed alterations, the DBS
upgrade would not affect any preexisting queries.

Ex. 22. Consider S-P in use on some present DBS. Suppose this
DBS becomes SIR DBS. Every preexisting query to S-P will
provide the same outcome. Then, Alter Table SP IE {}; will
upgrade SP to S-P1.SP. The rewrite rules will process the Alter into
the explicit one, [1], visibly more procedural by far:

(33) Alter Table SP IE {S#, SNAME, S.CITY, STATUS, P#,
PNAME, COLOR, WEIGHT, P.CITY, QTY From SP_ Left Join S
On SP_.S# = S.S# LEFT JOIN P On SP_.P# = P.P# };

After (34), SP would be a natural SIR. New queries to SP may
also be now LNF. Every existing one will provide for the same
outcome, except for queries with: ‘*’ or ‘SP.*’ obviously. The
alteration will not affect any existing S-P.SP (stored) content, the
one at Fig. 1 especially.@

Observe finally, that, as already discussed for the creation of
SIRs with FKs, for every existing SR R with PKN FKs, one should
perform IE (), only if (i) every R’ preexists and, (ii) if R’ also has
PKN FKs, then (i) was already applied to R’ etc. E.g., if all the
relations of Ex. 13 are preexisting SRs, one should alter CG first, S
and P after and SP, at last. Otherwise for a declared FK, an error
could appear, while a natural FK could silently miss an IA. R would
provide then for fewer LNF queries, obviously.

V RELATIONAL DESIGN FOR SIR DBS
The relational design has for goal the “best” collection of base

table schemes for a DB. Usually, it means the smallest possible
number of 4NF SRs. About always in practice then, each of these is

- 10 -

also in 5NF and, even, in less popular 6NF, [10]. Several methods
for are known. Whatever is one’s favor, let us refer to the result as
S. In practice, every S contains SRs with (declared) FKs. Then, S is
accompanied with some scheme, say O, of the base tables creation
order, so that for every referencing table R, every referenced one,
say R’ as before, exists when R is being created. A run-time error
occurs otherwise on every DBS of our knowledge at present.

We call relational design for SIR DBs, any methods similarly
aiming at “best” collection of base table schemes that can be SRs or
SIRs. “Best” means here for every SIR, first the least procedural
schemes, hence the implicit ones whenever possible. Next, “best”
continues to aim, for every base table, at the NF making it free of
anomalies. But a new general issue is then, as we’ll show now, that
the concepts of i-th NF for i > 1 and of BCNF need a revision.
Then, any method has to take to the account the natural FKs as well.
We now address successively both issues.

V. A SIR DB Specific Normal Forms
Observe from our example that, e.g., before one adds

WEIGHT_KG, P is BCNF (and so on). It’s no more after. Indeed,
FD: WEIGHT -> WEIGHT_KG, makes P in 2NF at best. But, as an
IA, WEIGHT_KG, does not create any normalization anomalies.
Unlike SA WEIGHT_KG would do. The lossless decomposition
through Heath theorem, [18], making P without IA WEIGHT_KG,
hence in 3NF again, would be senseless. Hence, P with
WEIGHT_KG as IA should not lose its BCNF “status”. Similar
situation occurs for SP with WEIGHT_T, given FD: (WEIGHT,
QTY) -> WEIGHT_T there. The issue was already observed by
some clients of VAs, [28].The practical way out is to expand the
definition of the normal forms so to take to the account that no IA
may introduce a normalization anomaly. Our proposal is thus as
follows:

Def. 3. A 1NF relation, SR or SIR, is iNF ; i = 2..6 ; or in BCNF
iff the relation formed by all its SAs is in iNF or BCNF.

Then, both P without WEIGHT_KG and with WEIGHT_KG as
an IA are in BCNF. In contrast, P with WEIGHT_KG declared as
an SA, i.e., without the value expression, but only enumerated for
each value of WEIGHT, would not be in 3NF even. Like P would
not be also for the usual definition of 3NF and BCNF. Similarly, -
for SP and WEIGHT_T. Notice that the definition applies to present
relations with VAs. We recall that all these are specific SIRs.
Finally, it is backward compatible for SRs Altogether Def. 3 is long
overdue thus.

V.B SIR DB Specific Design Steps
For a SIR DB, some SRs in S may become SIR bases. Let us

call Sf the schemes forming the intended DB possibly with SIRs.
One basically seeks Sf where every SIR scheme is the least
procedural possible, i.e., the least procedural implicit one. As it
appeared, e.g., for S-P and S-P1, we may typically expect S = Sf
with every SIR being a natural one, basic or compound. On the
other hand, as already abundantly discussed, DBA may wish some
SRs enlarged with some explicit IAs, CAs especially. Also with
respect to O’s schemes, if Of

, is the creation order scheme for a SIR
DB with all SRs and SIR bases in S, it may happen that O
acceptable for S is not for Sf. E.g., O = (SP, S, P) is OK for S-P, but,
as one could see, not for S-P1. Besides, if the goal is a SIR DB
upfront, then it is obviously not useful to define any O, just perhaps
to alter it later to some Of anyhow. Altogether, beyond every
present method for S, designing a SIR DB may require some of the
following SIR-specific steps.

(i) For every R in S with PKN FKs, (a) rename every PKN FK
that should not be so anymore in Sf, in case there is any such FK.

(ii) For every R in S, for every explicit IA A that should enlarge
R, if there is any such A, every CA in particular, add A scheme.
Generally, - as an explicit scheme, including the explicit LN, if the
latter will not be in in the explicit From clause of R scheme.
Alternatively, for a CA, add it as the (implicit) VA scheme,
whenever more appropriate.

(iii) Choose Of such that for every R (a) for every natural FK,
R’ preexists Create Table R, (b) for every IA in R, every source
relation preexists Create Table R as well.

Step (i) may occur for some popular design methods. E.g. it
would be the case if one aims at SIR DB from Ex. 18(ii), while
obtaining S of S-P at Fig. 1 as the result of the lossless
decompositions of the universal relation, [24], through Heath
Theorem, [18], until every base table is in BCNF at least. Step (ii) is
optional as well. One would actually need it for SIR DB resulting
from Ex. 18(ii), but not, e.g., for S-P1.SP, with S = Sf. Also, in this
step, DBA adds every CA A scheme. Notice that the DBA may then
have the choice of more than one R. The only necessary condition is
indeed that A is functionally dependent on the primary key of
chosen R. E.g., the DBA may add WEIGHT_KG scheme either to P
or to SP only. However, it is easy to figure out that choosing for A
the relation that is the earliest in Of among all those possible for A,
can make some queries searching for A values less procedural.
Thus, e.g., WEIGHT_KG should rather be in P.

Step (iii) is obviously mandatory for every practical SIR DB.
The choice of Of is obviously more restrictive than of O for the
same SRs, including those forming the bases of SIRs. Every Of has
to indeed to create, for every natural FK and every explicit IA, CAs
especially, every referenced base table. Recall finally that for every
DB, hence for SIR DBs as well if the universal relation for S has
non-trivial multivalued-valued dependencies (MVDs), the
decomposition should start with the Fagin’s Theorem, [14]. The
Heath Theorem applies then to the resulting intermediate SRs with
FDs only. More details would be out of scope here.

Besides, our prior various examples abundantly motivate the
above steps. E.g., for S-P and S-P1 DBs, we have S = Sf as at Fig. 2
and only step (iii) applies. Of could be (S, P, SP) or (P, S SP). The
final result for SP was the natural basic SIR at Fig. 3, we recall.
Likewise, to design S-P and S-P1 variants in Ex. 13, again S = Sf
and only step (iii) applies. Of is either (CG, S, P, SP) or (CG, P, S,
SP) obviously. Whatever the choice is, in the SIR DB, CG would
remain an SR, S and P would be basic natural SIRs and SP would
end up a compound natural one, we recall.

Next, in Ex. 18 (ii) again, although SP.P# is the only PKN FN,
one still needs Of = (S, P, SP) or Of = (P, S SP). The rationale is the
LN towards S in From clause of SP, making S referenced by
SP.SNAME and of SP.CITY. Thus all three steps apply to this DB.
Finally, the design of S-P1 variants with WEIGHT_KG or
PERCENTAGE, or WEIGHT_T, will apply any favorite DBA’s
design method, followed by steps (ii) and (iii) only.

VI IMPLEMENTING SIRS
The canonical implementation consists of the, so-called, SIR-layer,
interfacing every client and the DBA, [1]. Fig. 4. Every SIR-layer
uses SQL kernel of the already discussed some kernel (DBS).
Together, this creates a SIR DBS, in our terminology. Above SIR-
layer, the relational constructs for any clients and DBA are: SRs,
SIRs and views. We suppose the SIR SQL dialect for these
constructs to be the kernel one, with the DDL syntax extended as
above amply discussed. Underneath, i.e., for the kernel, there are
necessarily only two constructs: (i) SRs, perhaps with VAs and (ii)
views. We suppose then that (a) for every SIR DB, say DS, there is
in the kernel a DB, say DK, termed kernel DB with the same name
as DS, (b) for every SR or SIR with every IA declared as a VA and
for every view in DS, SIR-layer creates the same table in DK. In
other words, SIR-layer simply forwards to the kernel every Create
Table or Create View statement for such tables. For the Foreign
Key constraint, this may however imply the naming rule for DS we
discuss soon. In contrast, for every SIR R with some or all IAs
declared otherwise than VAs for DS, SIR-layer creates atomically
within DK the following canonical representation of R, CR in short:

(i) base table R_. This can thus be an SR or an SR with all the VAs.
R_ has then also every table constraint and option declared for SIR
R. Except perhaps for the Foreign Key constraint modified as above
described.

- 11 -

(ii) C-view R. In particular, one may create the latter with only the
proper attribute names in conflict being qualified (prefixed), e.g., as
in (3). The conflicting SAs are then prefixed with R_. Alternatively,
one may simply qualify every name, with no consequences for the
queries to C-view, at any kernel we are aware of.

Fig. 4 illustrates the creation of S-P1 DB as DS and DK, with CR
of SP. SPI scheme defines SP in DS. SIR-layer first preprocess (PP)
SPI to SPE scheme, Then, it processes (P) the whole S-P1 schema to
DK scheme. That one defines base tables S, P, SP_ and C-view SP,
canonically implementing S-P1. (SP_, SP) is there the canonical
representation (CR) of SP.

 The naming rule for FK constraints in DS referred to above, is
that whenever for an FK, one intends to reference SIR R’ with IAs
other than VAs, then the FK constraint should actually reference
R’_. The rule results from the CR and from both Codd’s and SQL
definitions of FKs. These require indeed every RK to be an SA. For
any SIR R’, RK is thus within the base of R’_ in DS, hence within
the base table R’_ in DK. In contrast, no RK can be declared as an
attribute of R’. This would make indeed the constraint to reference
C-view R’ in the DK. The attempt to create R with such an FK
constraint would fail.

Note as future work that it is, however, possible to use the CR
without that rule. Namely, one can design the variant of the
canonical implementation where even if R’ is a SIR in DK, the FK
constraint in DS names R’ anyway. The advantage would be only
one referencing rule for any FK constraint in DS, i.e., one always
references the base table name only. The price would be a more
complex implementation. The latter should indeed include
additional preprocessing of every Create Table for DS, finding for
every declared FK; whether R’ is a SIR. SIR-layer could determine
this from SYSTABLES and SYSVIEWS. If R’ designates a C-view
there and that there is also base table R’_, then SIR-layer should
replace R’ with R’_. SIR-layer would generate then the Create
Table R_ and Create View R statements for DK only after
processing in this way every FK in the statement. At present, all this
does not seem however worth the gain.

Whatever is the variant, SIR-layer obviously easily extracts
Create Table R_ and Create View R for the CR, i.e., for DK, from
the explicit Create Table R for DS, i.e., for SIR-layer. The Create
Table R_ contains indeed every attribute scheme outside {} and
every table option. Some ‘}’ may then get replaced with ‘,’ in
Create Table R_. The Create View R in turn, copies the name of
every attribute in Create Table R outside some {} and every scheme
of an IA, together with every element ‘*’ or in the form of ‘R’.*, if
there is any, as well as the From clause terminating the IE,
necessarily within {}. The last ‘}’ ends up the IE, also necessarily.
It also terminates Create View R, being replaced with ‘;’ there. The
rationale for the simplicity and correctness of all this parsing is our
Section II assumption on the {} brackets that neither bracket can be
in a relation name in the SQL dialect supposed for the SIR DBS. To
appreciate how the absence of such brackets complicates the
implementation of SIR-layer, practice our examples.

Likewise, one can easily see how SIR-layer should process for
the CR, every Alter Table and Drop Table, [1]. Finally, SIR-layer
simply forwards every Create View R to the kernel, whether over
SRs, SIRs or views, E.g., it would do so for any views of S-P1.SP.

Next, we suppose the SIR-layer to pass through every Select
query for DS. The kernel with DK processes it then towards the
tables with the same names. For any SIR R within the query, the
kernel will thus process it towards C-view R. It may in particular
internally optimize the execution time of such queries, e.g., by
materializing some IAs of view R for faster joins, [16], [17], [27]…
SIR-layer also forwards unchanged to the kernel, every updating
query, i.e., Insert, Update, or Delete. However, since an IA may be
not updatable, we suppose as “safe” policy for the canonical
implementation that any such queries name only tables for SIR DB
that are base tables for the kernel’s DB under the CR. These have
thus only SAs and, perhaps, some VAs, for the kernel providing for
those. If, for a SIR DB, R is an SR or a SIR where every IA is a

VA, the query should name R. Thus, e.g., an update should start as:
Update R…., as at present. If, in contrast, R is a SIR with IAs other
than VAs, the query should refer to R_.

Beyond that rule, the correctness of an updating query to the
canonically implemented SIR-layer would depend on kernel’s view
update capabilities, [11]. E.g., the LNF query to S-P1, say, Q1:
Delete From SP Where SNAME = ‘Smith’; would be directed thus
by every kernel towards view SP. It then would be correct for MS
Access and MySQL. Both provide indeed for updates of outer join
views, of view SP thus. In contrast Q1 would fail on SQL server
kernel and SQLite. None provides indeed that capability, forcing
the updating of SRs instead. Instead of Q1; the correct query
Q2 could then be: Delete From SP_ Where S# In (Select SP.S# from
SP Where SNAME = ‘Smith’);. Notice that Q2 would be correct for
MS Access and SQL Server as well. The visible drawback with
respect to Q1 is greater procedurality, because of the LN through the
‘In’ clause.

The above functions of SIR-layer, where outlined already in [1]
and [5]. Their canonical implementation appeared simple. The only
new function here is the preprocessing of FKs. It appears simple to
integrate. As stated within Section II.C, to find whether an attribute
is a natural FK, kernel’s meta-tables, e.g. SYSTABLES, should
suffice. Same is valid for determining whether a declared FK is
PKN and for locating for every PKN FK, every SA or VA to
become the source for the NI within the basic natural SIR.
Likewise, exploring the meta-table(s) for views, e.g., SYSVIEWS,
should suffice for every compound natural SIR. Both meta-tables
should suffice consequently for any other SIR with FKs, with CAs
in particular.

Altogether, to reuse typical present schemes of SRs with PKN
FKs as the implicit schemes of natural SIRs appears simple, perhaps
surprisingly simple. Simple means here a couple of months of
programming at most. Recall that, unlike today, any such schemes
become view-savers for LNF queries. It appears similarly simple to
extend this processing to the implicit schemes of SIRs with FKs and
explicit IAs, the CAs other than VAs especially. Recall that SIRs
with the latter become view-savers for LNF & CAF queries
involving such CAs as well.

VII CONCLUSION
On a SIR-enabled DBS, a typical present scheme of a stored

relation R with FKs, defines a natural SIR R. LNF queries to base
tables at no cost for the DBA are the bonus. Also, SIRs with only
some PKN FKs or with CAs, still provide for LNF or CAF queries,
through Create Table R usually substantially less procedural than
possible at present. This is also a bonus for the DBA.

Next, it appears easy to generalize the present relational DB
design to SIR. In particular, an overhaul of the Normal Forms
emerges then. The decades old practice of VAs makes this overhaul
long overdue. Notice to DB textbook authors.

Finally, it looks simple to add the preprocessing of PKN FKs to
the previously proposed canonical implementation of SIR-layer. We
plan the proof-of-concept prototype as the next step. The Python’s
beta version for SQLite3 kernel is actually already there. Recall that
the SQLite3 apparently serves an estimated trillion+ DBs (VLDB
22). More generally, any embedded kernel SQL should suffice for
the canonically implemented SIR DBS. The road to make dough is
wide open.

Altogether, relational schemes with FKs were visibly not read
as they should be, from the very inception of the relational model.
LN with its often felt dreadful joins, within otherwise simple
queries to base tables, was the penalty for generations. Likewise
was the alternate need of views to offset the shortcoming. Same for
the CAF queries, either presently limited to VAs or requiring
dedicated views as well. Relational DBSs should become SIR-
enabled “better sooner than later”. Making LNF & CAF queries to
the base tables the standard, at last. It will be a long overdue service
to SQL clients, likely in many millions these days.

https://www.lamsade.dauphine.fr/%7Elitwin/Prototype%20SIR-Layer%20for%20Implicit%20SIR%20scheme1.pdf

- 12 -

ACKNOWLEDGMENTS
We are grateful to Ron Fagin for invitation to present this

material at IBM Almaden Research Cntr., March 2020. We thank
also Berthold Reinwald and C. Mohan for helpful comments.
Likewise, we thank Darrell Long for his March 2020 invitation to
talk about at UCSC Eng. as well and to Sheldon Finkelstein for
inspiring remarks.

REFERENCES
[1] Litwin, W. SQL for Stored and Inherited Relations. 21st Intl.

Conf. on Enterprise Information Systems, (ICEIS 2019), http://. www
iceis.org/?y=2019, 12p.

[2] Litwin, W. Manifesto for Improved Foundations of Relational Model.
EICN-2019. Procedia Computer Science, 160, (2019), 624-628,
Elsevier, (publ.).

[3] Litwin, W. Natural Stored and Inherited Relations. EUSPN-ICTH
2021, Procedia Computer Science, Elsevier (publ.), 8p.

[4] Litwin, W. Stored and Inherited Relations. arXiv:1703.09574
[cs.DB]. March 2017.

[5] Litwin, W., 2016. Supplier-Part Databases with Stored and Inherited
Relations Simulated on MS Access. Lamsade Tech. E-Note. pdf

[6] Codd, E., F., 1969. Derivability, Redundancy and Consistency of
Relations Stored in Large Data Banks. IBM Res. Rep. RJ 599 #12343.

[7] Codd, E., F., 1970. A Relational Model of Data for Large Shared Data
Banks. CACM, 13,6.

[8] Date, C., J. 2004. An Introduction to Database Systems. Pearson
Education Inc. ISBN 0-321-18956-6.

[9] Date, C., J., & Darwen, H., 1991. Watch out for outer join. Date and
Darwen Relational Database Writings.
[10] Date, C., J. Database Design and Relational Theory, Normal Forms and

All That Jazz. O'Reilly, 2012.
[11] Date, C., J. View Updating and Relational Theory. O'Reilly, 2012.

[12] Date, C., J. Type Inheritance & Relational Theory. O'Reilly, 2016.
[13] Date, C., J. E.F. Codd and Relational Theory. Lulu. 2019.
[14] Fagin, R. 1977. Multivalued Dependencies and a New Normal Form for

Relational Databases, ACM TODS. 2,3, 262-278.
[15] Beeri, C., R. Fagin, J. H. Howard. A Complete Axiomatization for

Functional and Multi-valued Dependencies in Database Relations”,
SIGMOD-77, 47-61. 4.

[16] Goldstein, J. Larson, P., 2001. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. ACM SIGMOD.

[17] Halevy, A.,Y., 2001. Answering queries using views: A survey. VLDB
Journal 10: 270–294.

[18] Heath, I., J., 1971. Unacceptable file operations in a relational data
base. ACM SIGFIDET '71 Workshop on Data Description, Access and
Control, 19-33.

[19] Jajodia, S., Springsteel, F., N., 1990. Lossless outer joins with
incomplete information. BIT, 30, 1, 34-41

[20] Larson, P., Zhou J., 2007. Efficient Maintenance of Materialized Outer-
Join Views. ICDE.

[21] Litwin, W. Ketabchi, M., Risch, T., 1992. Relations with Inherited
Attributes. HPL. Palo Alto, CA. Tech. Rep. HPL-DTD-92-45, 30.

[22] Litwin, W. Vigier, Ph., 1986. Dynamic attributes in the multidatabase
system MRDSM, IEEE-ICDE.

[23] Mendelzon, A. 2004. Who won the Universal Relation wars? Stanford
InfoLab,http://infolab.stanford.edu/jdu-symposium/talks/mendelzon.pdf

[24] Maier, D, Ullman, J. D., Vardi, M., Y., 1984. On the foundations of the
universal relation model. ACM-TODS, 9, 2, 283-308.

[25] Postgres SQL. https://www.postgresql.org/.
[26] Stonebraker, M. Moore, 1996. D. Object-Relational DBMSs: The next

Great Wave. Morgan Kaufmann. 2nd Ed. 1998.
[27] Valduriez P., 1987. Join indices. ACM TODS, 12(2), 218–246.
[28] Does a computed column break 3NF ?
https://dba.stackexchange.com/questions/247095/does-a-computed-column-

break-3nf-third-normal-form , 2019.

Create Table S (Create Table P (Create Table SP (
S# Char 5, P# Char 5, S# Char 5
SNAME Char 30, PNAME Char 30, P# Char 5
STATUS Int, COLOR Char 30, QTY Int {SNAME, STATUS, S.CITY, {PNAME, COLOR, WEIGHT, P.CITY
CITY Char 30, WEIGHT Int, From SP_ Left Join S On SP_.S#=S.S# Left Join P On SP.P#=P.P#}
Primary Key (S#)); CITY Char 30, Primary Key (S#, P#));
 Primary Key (P#));

Fig. 2: S-P1 scheme with explicit SP scheme. The implicit one would be that of S-P.SP, outside the brackets {}.

 Fig. 3: S-P1 content. IAs are Italic. S-P1.SP is the natural SIR for S-P.SP.

Table S Table P
S# SNAME STATUS CITY P# PNAME COLOR WEIGHT CITY
S1 Smith 20 London P1 Nut Red 12 London
S2 Jones 10 Paris P2 Bolt Green 17 Paris
S3 Blake 30 Paris P3 Screw Blue 17 Rome
S4 Clark 20 London P4 Screw Red 14 London
S5 Adams 30 Athens P5 Cam Blue 12 Par
 P6 Cog Red 19 London
Table SP
S# P# QTY SNAME STATUS S.CITY PNAME COLOR WEIGHT P.CITY
S1 P1 100 Smith 20 London Nut Red 12 London
S1 P2 200 Smith 20 London Bolt Green 17 Paris
S1 P3 400 Smith 20 London Screw Blue 17 Rome
S1 P4 200 Smith 20 London Screw Red 14 London
S1 P5 100 Smith 20 London Cam Blue 12 Paris
S1 P6 100 Smith 20 London Cog Red 19 London
S2 P1 300 Jones 10 Paris Nut Red 12 London
S2 P2 400 Jones 10 Paris Bolt Green 17 Paris
S3 P2 200 Blake 30 Paris Bolt Green 17 Paris
S4 P2 200 Clark 20 London Bolt Green 17 Paris
S4 P4 300 Clark 20 London Screw Red 14 London
S4 P5 400 Clark 20 Athens Cam Blue 12 Paris

http://www.iceis.org/?y=2019
http://www.iceis.org/?y=2019
https://arxiv.org/abs/1703.09574
http://www.lamsade.dauphine.fr/%7Elitwin/SP%20DBs%20on%20MsAccess.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-321-18956-6
http://infolab.stanford.edu/jdu-symposium/talks/mendelzon.pdf
https://www.postgresql.org/
https://dba.stackexchange.com/questions/247095/does-a-computed-column-break-3nf-third-normal-form
https://dba.stackexchange.com/questions/247095/does-a-computed-column-break-3nf-third-normal-form

- 13 -

Fig. 4: Creation of S-P1 SIR DB.

 SIR DBS

SIR-Layer

 PP

 SPI

 P

 S
P

 SPE

 P

 S

Kernel DBS

 S

 P

 SP_

 SP

 S-P1

 SP_

 CR

	Stored and Inherited Relations for Logical Navigation Free and
	Calculated Attribute Free SQL Queries to Base Tables
	I Introduction
	II Natural SIRs
	II.A Explicit SIRs By Example
	II.B Foreign Keys for SIRs
	II.B Basic Natural SIRs
	II.C Inferring Explicit Schemes of Basic Natural SIRs

	III Other SIRs with PKN FKs
	IV Altering SIRs with FKs
	V Relational Design for SIR DBs
	V. A SIR DB Specific Normal Forms
	V.B SIR DB Specific Design Steps

	VI Implementing SIRs
	VII Conclusion
	Acknowledgments
	References

