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Abstract — A stored and inherited relation (SIR) is a 1NF 
stored relation enlarged with inherited attributes (IAs). The latter 
make SIRs as normalized base tables the only known view-savers 
for logical navigation free (LNF) and calculated attribute free 
(CAF) SQL queries to such tables, [1]-[5]. Recall that LNF means 
no equijoins between foreign and referenced keys, while CAF 
queries avoid possibly complex value expressions, e.g., with 
aggregate functions and sub-queries. We now show that one may 
consider typical present base table schemes with foreign keys as 
defining SIRs termed natural. The latter provide for LNF queries, 
unlike the same scheme base tables at present. Next, we show how 
one may add CAs to such SIR schemes, getting CAF queries as 
bonus. Below, we first recall SIRs basics. Then, we discuss the 
natural SIRs. Next, we analyze the enlarged schemes. Then, we 
generalize the relational design to SIRs, the concept of NFs 
especially. Afterwards, we show that providing SIRs over a popular 
relational DBS, e.g., SQLite3, should be simple. Preexisting 
applications could remain unaffected, while new ones could profit 
from LNF and CAF queries.  We conclude that major relational 
DBS should become SIR-enabled “better sooner than later”. LNF 
and CAF query should become the standard, simplifying the life of, 
likely, millions of SQL clients.  

Keywords—Relational model, Foreign Key, Inheritance, 
Logical Navigation, SQL, Calculated Attributes, Stored and 
Inherited Relation 

I INTRODUCTION 
The relational model as defined by Codd has two 1NF 

constructs (abstractions), [6], [7]. A stored relation (SR), also called 
base relation or table, consists of stored attributes, (SAs), only. 
Values of these attributes are not calculable from other attributes in 
the DB (that is why they have to be stored). An inherited relation, 
more commonly called view or view table, consists of (relationally) 
inherited attributes, (IAs), only. One calculates every IA from SAs 
or other IAs, through a stored (relational) query called view scheme. 
Originally, one supposed every IA calculable only. Later, it 
appeared practical sometimes to maintain a (stored) snapshot of 
selected IAs, refreshed whenever needed. Such views and IAs were 
termed materialized, [17], [16], [20]. Although stored, a 
materialized view is not an SR. It is indeed entirely calculable 
through its (view) scheme.  

Recently, we proposed to add the stored and inherited relation 
(SIR) construct to this model, [1]-[4]. The construct roots in [21], 
part of the popular in nineties trend to harness inheritance in the 
relational DBs. E.g., see [26] or Postgres, [25], or later proposals, 
[12]. A SIR, say R, is a 1NF relation with both SAs and IAs, the 
primary key (PK) being SAs only. We refer by default to the 
projection of R on its all and only SAs as to R_ and call it base of 
R. We also say that the IAs enlarge R_ and refer to the IAs scheme 
as to Inheritance Expression (IE). The crucial advantage of SIRs as 
base tables over the logically the same base tables, but SRs only, as 
required by the present model, is that no IA may create a 
normalization anomaly. Unlike it would often happen if the same 
attributes were SAs instead. Two important advantages for queries 
to a DB with SIRs without any normalization anomaly follow, with 
respect to the equivalent queries to the DB with normalized SRs 
only, i.e., the queries providing for the same output: 

(1) A query Q addressing any SAs or IAs of SIR R can be 
Logical Navigation Free (LNF), while an equivalent query Q’, 
addressing normalized R_ as stand-alone SR named R, would 
typically require some LN. Recall that the LN concept designates 

the typical joins between the base tables. These are equijoins on 
foreign keys, (FKs), [7], and their referenced keys that are PKs with 
the same proper names as the FKs, usually, [24]. Recall also that the 
normalized SRs as base tables of an SQL DB suffice for every SQL 
query to the DB. If Q’ is such a select-project-join query, Q consists 
then, typically, from the select-project part of Q’ addressing SIR R 
only. Q is then in practice always less procedural, i.e., requiring 
fewer characters, than Q’. In addition, joins are often felt dreadful, 
the outer ones especially, while the LN often needs the latter, [9], 
[19]. Not surprisingly, clients typically at least dislike the LN. We 
designate any SIR free of LN for some queries as SIR for LNF 
queries.           

(2) An IA in SIR R can be a calculated attribute (CA), i.e., 
defined through any relational and value expressions or sub-queries, 
perhaps with scalar or aggregate functions. Any query Q to SIR R 
with CAs may then be free of defining any of these, selecting every 
CA in Q by name only. I.e., Q can be a CAF query, avoiding the 
procedurality of the CA specifications within the equivalent Q’ to 
SR R with the same SAs and without any IAs instead, i.e. to R_ 
renamed to R. SAs with the same names and values as CAs would 
do in theory as well, but most often would denormalize the base 
table to 2NF at best (as we recall by examples later on). We 
designate any SIR with CAs as SIR for CAF queries.           

A SIR can provide for both LNF and CAF queries. At present, 
the only practical way to provide for these capabilities of any SIR R 
is view R that we call conceptually equivalent to or the canonical 
view of SIR R, C-view R in short. Every C-view R is simply 
logically, i.e., mathematically, equal to SIR R. I.e., the attribute 
names and order are the same, as well as every tuple. In particular, 
one defines all the IAs in SIR R as one would define those in C-
view R, the same From clause included. The From clause should be 
besides such that for every R_ tuple one could insert, given R_ 
constraints, C-view should contain a tuple with the one of R_ as the 
sub-tuple. The only difference is then physical, namely every SA A 
in R_ is IA A in view R, each of these IAs being inherited from the 
same stand-alone SR R_. That R_ may actually be a pre-existing 
base table R we referred to in (1) that one had to rename somehow 
to create view R. Recall that SQL prohibits any same name relations 
in a DB. SIR R, there is a bijection between SIR R and C-view R. 

The “price” for (1) or (2) for SIR R with respect to R_ alone as 
a base table, may be the procedurality of the IE, i.e., the minimal 
number of characters or keystrokes to define it. For SQL extended 
to SIRs, [1], it is, basically, an additional procedurality for Create 
Table R, [1]. The equivalent price for C-view R in SQL at present is 
the procedurality of Create View R. The general advantage of every 
SIR R is that the IE can be less procedural than the Create View R, 
[1]. The rationale is that the latter has to at least, redefine as an IA 
every SA of R_. This obviously costs some procedurality. By the 
same token, to create SIR R is always less procedural than to create 
R_ and C-view R. In popular terms, every SIR R is a view-saver for 
C-view R.  Actually, SIRs are also less procedural to maintain, [1].  

All this is our rationale for SIRs. We follow the general trend 
in DB-science and in entire CS in fact. Recall that this is why the 
relational model took over the Codasyl one, although the latter was 
already in use, e.g., in Oracle Codasyl DBS. Likewise, it is why it 
took finally over every other earlier DB model. The assertional 
(declarative…) relational algebra queries or, better, the predicative 
ones, were indeed in general considerably less procedural than any 
equivalent navigational ones in any of these models. Also, it is the 
lower procedurality of the higher-level programming languages for 
general programing that wiped out the use of assemblers for it…. 

mailto:Witold.litwin@dauphine.fr


 

- 2 - 

See oldies on the subject, e.g., early editions of [8]. 

Below, we qualify Create Table extended to SIRs of SIR Create 
Table. One can define SIR Create Table for every popular SQL 
dialect: of MySQL, SQLite, Postgresql… Given such a kernel SQL 
(dialect), any SIR Create Table specifies every SA as in the kernel 
at present. But, in SIR Create Table, these SAs may interlace with 
the IAs. Every SIR Create Table R may furthermore include 
similarly any table constraints and options of the kernel. Recall that 
these specify the PK, FKs, etc.  

Next, with respect to the IAs, a SIR Create Table R, may define 
an IA explicitly. We speak then about an explicit IA. For every SQL 
kernel, one may define explicit IAs as one would do for in C-view 
R. One may thus define every such IA individually or indirectly, 
whenever appropriate, through SQL R’.* construct, R’≠ R. As in a 
Create View, the IE with such explicit IAs always ends up with 
From clause. In a SIR, however, we recall, table options may 
follow.  

Besides, for any kernel SQL providing for, so-called, virtual 
(generated, computed, dynamic…) attributes or columns, (VAs), 
[22], we supposed that SIR Create Table preserves this capability. 
As we recall later, base tables with VAs are beyond Codd’s 
relational model. The feature was introduced by the DB industry 
(Sybase). As we also remind later, any VA is in fact a specific CA, 
hence an IA. We qualified every IA declared as a VA of explicit as 
well. We qualified of explicit the IE with explicit IAs only, as well 
as the entire SIR Create Table with.  

In [1] also, we qualified of SIR-enabled or of SIR DBS in short, 
every DBS (or DBMS, as some prefer) providing for SIRs, in 
addition to every present SQL kernel capability of a popular DBS. 
We also considered that every SIR DBS embeds some present DBS, 
referred to simply as the kernel (DBS). The term: kernel SQL above 
refers in fact to the SQL dialect of the kernel DBS. Every SIR SQL 
dialect provides then at least (i) for Create Table of the kernel DBS, 
generalized as above outlined and (ii) for Alter Table generalized to 
alter IEs, as we outline later. All the other SQL DDL and DML 
statements of the SIR DBS formulate in SIR SQL as for the kernel.  

In [2], we conjectured from a motivating example that one 
could further design SIR DBS so that some present Create Table R 
schemes, i.e., defining the SAs only sufficed as SIR Create Table R 
schemes providing for LNF queries. The missing IE part of such 
SIR schemes, i.e., the IAs and the From clause, could be then 
determined from the DBS meta-tables, apparently easily. We 
qualified of implicit any missing IAs and the IE with, as well as the 
Create Table with. In particular, we qualify of empty the IE of the 
motivating example, i.e., whenever an implicit Create Table R 
defined R_ only, in fact, although named R instead. We supposed 
finally that every SIR DBS transparently preprocesses every 
implicit IE to the explicit one for any further processing. 

The obvious gain from implicit schemes was reduced 
procedurality. In particular, the procedurality of any Create Table R 
with empty IE, was clearly the minimal possible for declaring 
SIR R with the intended (explicit) IE. For the motivating example, 
it meant in particular, that a base table R defined as at present could 
be in fact SIR R providing for LNF queries, instead of requiring the 
LN at present for the equivalent queries. Accordingly, clients could 
profit from LNF queries without any additional work for the DBA 
to define the IE, not to mention the Create View R for C-view R. In 
the same time, no normalization anomaly could ever follow.      

We proposed consequently that, in addition to the capabilities 
proposed in [1] for every SIR DBS, every SIR DBS presumes also 
implicit every Create Table submitted. Iff it appears true, SIR DBS 
preprocesses the Create Table to the explicit one and processes the 
latter as in [1]. The general principles of such preprocessing 
remained yet to be stated. They seemed however simple.  

We uphold the conjecture in [3]. We have shown that, beyond 
the motivating example, it holds more generally (a) if one considers 
FKs as E. Codd originally, apparently, [7], [13], hence not only as 
SQL at present, (b), if one considers every Create Table R with such 

FKs as the implicit Create Table R of a so-called natural SIR. We 
also argued that base table schemes usual at present fit (a) and (b). 
In other words, on a SIR DBS, every such Create Table R defines 
not “only” an SR, perhaps with VAs, as it would do at present, but 
the natural SIR R. Yet in other words, unlike today, usual DB 
schemes could provide for LNF queries, without any additional 
procedurality for the DBA. We outlined an implementation of SIR 
DBS supporting implicit Create Table for natural SIRs. The 
proposal extended accordingly the so-called SIR-layer, [1], intended 
to provide SIR SQL, while reusing internally some kernel SQL. We 
conjectured that one could provide with such a SIR-layer every 
kernel DBS, at the effort of a couple of months of programming 
only. This would make LNF queries de facto standard, making 
happier SQL clients, likely in millions today. Accordingly, we 
postulated every relational DBS to become SIR-enabled “better 
sooner than later”.   

Below, we continue analyzing DBs with SIRs that we call now 
simply SIR DBs. We first illustrate the above overview of SIRs with 
motivating examples. We also discuss more in depth our definition 
of FKs, [7], [13]. Next, we discuss natural SIRs, also more in detail 
than in [3].  We focus particularly on the rules producing the 
explicit scheme of natural SIRs from the present schemes of base 
table with FKs as the implicit ones. We then extend these rules to 
implicit schemes of SIRs other than the natural ones, with CAs 
especially. The goal is always the least procedural SQL schemes for 
SIRs for LNF queries as well as for SIRs for LNF and CAF queries. 

Afterwards, we generalize Alter Table for SIRs defined in [1] to 
the implicit schemes.  We show how one may provide then LNF 
queries to preexisting DBs, while keeping the legacy applications 
running. We outline the relational design of SIR DBs, extending the 
meaning of an NF in particular. We show that our proposal is 
decades overdue. Finally, we detail why to provide for SIRs over 
any present DBS kernel should be simple.  In conclusion, we 
uphold our postulate of making every DBS SIR-enabled “better 
sooner than later”.    

II NATURAL SIRS 

II.A Explicit SIRs By Example 
Our framework for motivating examples is the “biblical” S-P 

DB, Fig. 1. S-P seems the first DB illustrating the relational model, 
[8]. It is also the mold for about every present DB. Hence, 
properties of S-P generalize accordingly.  

Ex. 1. Suppose that DBA actually declares the base table S-P.SP 
as follows:  

(1) Create Table SP (S# Char 5, P# Char 5, QTY INT Primary Key 
(S#, P#)); 

Here, the Primary Key definition is a table constraint. Suppose 
further that DBA declares the following view, after renaming SP to 
SP_:  

(2) Create View SP AS Select SP_.S#,SP_.P#,QTY, SNAME, 
STATUS, S.CITY, PNAME,COLOR,WEIGHT,P.CITY From SP_ 
Left Join S On (SP_.S#=S.S#) Left Join P On (SP_.P#=P.P#);  

Recall that no two relations in an SQL DB can share a name. To 
rename S-P.SP somehow is thus necessary for (2). Next, observe 
that (i) every SP tuple (S#, P#, QTY) at Fig. 1 is also logically the 
proper sub-tuple (S#, P#, QTY) of a tuple of view SP defined by (2) 
with the same (S#, P#), (ii) that view SP can contain only one such 
tuple since S.S# and P.P# are keys, and that, finally, (iii) (2) does 
not define any other tuples. These properties make view SP (2) the 
canonical view of SIR SP, i.e., the C-view SP, declared as follows:  

(3)   Create Table SP(S# Char 5 ,P# Char 5,QTY INT{SNAME, 
STATUS, S.CITY, PNAME, COLOR, WEIGHT,P.CITY From 
SP_ Left Join S On (SP_.S#=S.S#) LEFT JOIN P On 
(SP_.P#=P.P#)} Primary Key (S#, P#));    

Here, the brackets {} delimits the IE. If the IE was disseminated 
within the Create Table, i.e., with IAs among SAs, then {} should 



 

- 3 - 

bracket every sub-list of IAs, except for } of the last one, if 
followed by From clause. To avoid any name conflicts, we also 
suppose the brackets not allowed within the relation names dealt 
with by SIR DBS. If this is problematic, one may suppose other 
brackets, e.g., !! for MsAccess kernel.  

Observe that the IE in (3) is the part of (2) defining the SQL 
projection on every IA in (3) and only on such IAs. But, SP_ 
referred to in (3) is the base of SIR SP, that is S-P.SP (1), preserved 
in (3), although implicitly renamed for the referencing in From 
clause, the same besides as in (2). Below, we refer to DB S-P with 
SIR SP (3) instead of SP (2) as to DB S-P1.  

Fig. 2 shows the scheme of S-P1. Observe that the IE in (3) is 
there the explicit one for S-P1.SP, since it defines every IA and the 
From clause as in (2). Fig. 3 shows S-P1 content, given that of S-P 
at Fig. 1. For convenience, the name and content of every IA at Fig. 
3 are italic. The SP content at Fig. 3 could actually be also the one 
of   C-view SP (2). Provided however that, with our notation, every 
SP column name & value in straight font at the figure becomes 
italic as well. One would denote so indeed every column of every 
view, of view SP in particular.@. 

Ex. 2. In S-P there is no referential integrity between SP and S. 
Hence SP could have tuple t with S# not in S, e.g., t = (S6, P1, 100). 
Suppose now that instead of From clause in view SP, one declares: 
From SP Inner Join S On… . View SP resulting from could not be 
C-view SP. Indeed, there would not be any tuples in the view with 
sub-tuple t. In contrast, such a view could be C-view SP if the 
referential integrity between S and SP was declared.@        

Ex. 3. Recall that for a DML or a DDL statement S, the 
procedurality, say p (S), is the minimal number of characters 
(keystrokes) to express S, without convenience spacing especially. 
In Introduction we recalled that for every SIR R and C-view R, 
p (IE) in Create Table R is always smaller than p (Create View R). 
In our example, p (Create View SP) (2) is p1 = 156. For the IE in 
(3), p2 = 112, with the character count excluding ‘{‘, as replacing 
the usual SQL separator ‘,’ that would be there without the IE, but 
including ‘}’. The latter also replaces a mandatory separator that is 
either ‘,’ or a (single at least) space, depending on the context. So 
C-view SP is at least (p1 – p2) / p2*100 = 39 % more procedural 
than the IE. In other words, the IE saves (p1 – p2) / p1*100 = 28 % 
of p (C-view SP). All these savings for the DBA work provide for 
the same service for the client, i.e., the same queries. SIR SP (3) is 
thus a view-saver for view SP (2). Simply put, on a SIR DBS, 
adding view SP (3) to S-P, instead of creating SIR SP (3), would be 
just a waste of time.@ 

Ex. 4. Consider the need for every PNAME supplied by Smith. 
The corresponding SQL query to S-P, say Q1, requires then the LN 
through the same equijoins between SP and S, and P in From clause 
as in (3) or equivalent joins. Hence, for the same need expressed as 
query, say Q2, to S-P1, the From clause in (3) would do, while the 
selection on SNAME and projection on PNAME in Q2 would be the 
same as in Q1. Q2 would be thus an LNF query. Being free of any 
LN, Q2 would be then always substantially less procedural than Q1, 
regardless of the actual LN in the latter. View SP (2) could provide 
for Q2 as well, although with substantially more procedural scheme, 
as we’ve seen. The view is the only possibility at present.  

The possibility of an equivalent LNF Q2 to S-P1 instead of Q1 
to S-P with LN like in (3) or equivalent one for Q1, clearly extends 
to any select-project part of Q1. The extension implies only that, 
sometimes, some IAs in Q2 may need qualified names. E.g., 
consider any query retrieving supplier’s and part’s CITY.@  

Ex. 5. Suppose that P.WEIGHT is in pounds, while queries 
often need it in KGs. Suppose the latter provided by the attribute 
named, say, WEIGHT_KG, calculated as INT(WEIGHT * 0.454) 
and preceding WEIGHT. Adding WEIGHT_KG as an SA to P 
would create the normalization anomaly. Making it a calculated 
attribute in every query in need of, would increase the procedurality 
of the latter.  The classical solution valid for every present DBS is 
to rather create the convenient view P. A query with WEIGHT_KG 

could invoke it by name only, becoming a CAF query for it, 
accordingly. It is easy to see however that view P could then be also 
C-view P for SIR P with explicit Create Table P as follows:  
(4) Create Table P As (P# Char 4, PNAME Char 20, COLOR Char 
10 {INT(WEIGHT * 0.454) As WEIGHT_KG} WEIGHT Int, 
CITY Char (30) {From P_} Primary Key (P#)); 

Observe that, again, we have p (IE) < p (Create View P). 
Observe also that for popular DBSs providing for VAs we spoke 
about in Introduction, WEIGHT_KG could enlarge P accordingly.  
E.g., at MySQL, the enlarged P could be: 

(5)   Create Table P As (P# Char 4, PNAME Char 20, COLOR Char 
10, WEIGHT_KG As INT(WEIGHT * 0.454), WEIGHT Int, CITY 
Char (30), Primary Key (P#)); 

The obvious benefit is further reduction of procedurality, with 
respect to view P as well therefore. On (yet hypothetical) SIR-
enabled MySQL, with the canonical implementation proposed in 
[1] and recalled in Section 5, say SIR MySQL, P could be in fact 
declared through the same statement. Formally, it is SIR P with (5) 
as the implicit scheme. The IE consists of the definition of 
WEIGHT_KG in the format of a VA only, i.e., without From P 
clause. This IE could be preprocessed to the explicit scheme (4) on 
SIR MySQL. However, for obvious practical reasons, we consider 
any Create Table with VAs as exclusive to SIR DBSs with the 
kernel DBS supporting such VAs, e.g., to MySQL for (5) here. 
Actually, SIR MySQL would forward it to MySQL as is. That one 
would consequently process it as MySQL would do for 
WEIGHT_KG VA presently. We recall the related details when we 
overview the implementation of a SIR DBS in Section VI.    

Incidentally, this processing of WEIGHT_KG is the reason why 
there is no {} brackets around WEIGHT_KG there. The rationale 
will appear in Section VI. It will also appear that (4), with {} thus, 
would be the only possibility for SIR P on any SIR DBS 
implemented canonically over the kernel DBS not supporting any 
VAs, [1]. E.g., {} would be necessary for SIR MSAccess. 

Besides, the vocabulary of the kernels supporting VAs extends 
the concept of base table to every table with SAs and VAs as well. 
The reason seems to be the presence of SAs, hence the use of Create 
Table still, although conveniently extended. This reason motivated 
us to generalize analogously the previously introduced term of the 
base of a SIR, [1]. Namely, in what follow, for any SIR R we now 
call base of R, i.e., R_, the projection of R on every SA and every 
CA, if there is any, with the scheme that could define a VA for the 
kernel. In practice, it means that one could define such a CA 
without {} brackets. Thus, e.g., for P as in (4), P_ = (P#,PNAME, 
COLOR ,CITY, WEIGHT). In contrast for P as in (5), we have:  
P_ = (P#,PNAME, COLOR ,CITY, WEIGHT_KG, WEIGHT).   

The current example illustrates further that every present base 
table with VAs is in fact a specific SIR. Given the lasting popularity 
of VAs, since Sybase in the eighteens to our knowledge, we may 
rationally hope for the future popularity of SIRs, as providing more 
generally for CAF queries and/or LNF queries.  

Ex. 6. Suppose that, in addition to LNF queries, SP clients wish 
for queries selecting QTY for some supplies that the former is 
always followed by the values named PERCENTAGE. The latter 
should provide for every supply selected, the percentage that the 
QTY there constitutes with respect to the entire supply of the part 
supplied. Having to specify the value expression calculating 
PERCENTAGE in every query in need, e.g., by a sub-query that 
follows, with its substantial procedurality thus, would be anything 
but practical for the clients. To simply add PERCENTAGE as an 
SA to SP after QTY, clearly would not make DBA happy. The only 
practical approach is to make it a CA of SIR SP or of C-view SP 
providing for LNF queries as well. The queries could invoke 
PERCENTAGE simply by name, becoming CAF queries for. One 
could create the required SIR SP, e.g., through the explicit scheme 
as follows: 

(6) Create Table SP (S# Char 5, P# Char 5, QTY Int 
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{Round(100*Qty/(select  sum(X.qty) from SP_ X where X.p# = 
SP_.p#), 3) as PERCENTAGE, SNAME, S.CITY, STATUS, 
PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join S On 
(SP_.S# = S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key 
(S#, P#));  

One may easily double check that IE above would be again less 
procedural than Create View SP for C-view SP. Recall also that 
PERCENTAGE cannot be a VA for any relational DBS at present. 
Hence SIR SP with and, more generally, any SIRs with CAs that 
cannot be VAs, are the only known view-savers for ‘their’ C-views 
at present. Hence, again, they would always be better choices for 
the DBA as well. @  

II.B Foreign Keys for SIRs 
Despite being fundamental to the relational model, the concept 

of the foreign key appears still surprisingly imprecise. The original 
definition is in [7]. Codd amended it later several times, [13]. The 
present definitions in textbooks or for popular DBSs differ from the 
original and are not all equivalent. For SIRs, we merge the original 
and SQL concepts. We thus call foreign key (FK) an SA and an SA 
only, perhaps composite, with qualified name, say, R.F, if (i) F is 
declared so through the familiar SQL Foreign Key table option, 
being then a declared FK. If not, (ii) a non-key attribute R.F is a 
natural FK iff (a) R.F is atomic and is not a part of a declared so-
called below PKN FK and if (b) while SIR DBS processes Create 
Table R or Alter Table R, there is a unique in the DB PK named F 
and with qualified name R’.F, where R’ ≠ R, sharing the domain of 
R.F.  In case (i), recall that one often qualifies R.F of referencing 
some key named, say, R’.C, primary or candidate on some DBSs. 
One often qualifies then also R’.C of the referenced key (RK).  
Likewise, one qualifies so R’, while R is the referencing relation. 
We retain this whole terminology for the natural FKs, with C = F 
and R’ the base table with. 

Recall that at present, every FK must be declared as in (i), the 
referential integrity being mandatory. Actually, the Foreign Key 
constraint (clause, option…) was not in [7], but was introduced later 
by the SQL Standard Group. In contrast, the original FK concept is, 
likely, including the one we called the natural FK. Indeed Codd 
neither required to declare every FK nor considered the referential 
integrity mandatory for every FK, [7], [13]. Also, the requirement 
of sharing the domain in [7] implied the same proper name for the 
FK and the PK. The distinction between attributes and domain was 
introduced only later as well.  

Besides, the central original idea for any FK A in [7] seems the 
“cross-referencing” from R to R’ realized by R.A and some R’.A as 
the logical pointers, [7]. In addition of having the same proper name 
as R.A, R’.A had to be a key, qualified then of primary. The 
qualifier indicated R’.A as the key for the referencing. Codd indeed 
expected R’ to often have more than one key (this origin of the 
primary qualifier seems largely forgotten). More in depth, the cross-
referencing meant that every R-tuple t with t.A = v, references the 
only R’-tuple t’ where t’.A = v, provided that such t’ exists. 
Consequently for every t with A = v, one may determine t’ through 
the relational calculus, an equijoin namely, regardless of the 
underlying physical representation. Codd conjectured the logical 
pointers more practical then the physical ones. The latter were the 
basic mode for referencing by the times of [7].  

As known, Codd’s conjecture turned out right, despite vigorous 
opposition for years, if not decades. The benefit claimed by the 
logical referencing was later called the one of the logical/physical 
data independence. In particular, as also known, if a query needs 
some values in R together with some referenced ones in R’, then the 
(left) FK-join: R left outer join R’ on FK = RK in the query 
expresses the referencing, regardless of underlying physical data 
structures and changes to these. Likewise does the equivalent right 
FK-join, or, sometimes, the equivalent inner FK-join if the 
referential integrity is enforced. Recall in particular that RK can be 
composite, say declared as (C1, C2…Ck) with FK composite then 
as well, say declared as (F1, F2…Fk). Then, FK = RK means 
F1 = C1 and F2 = C2…and Fk = Ck. An RK may in particular be 

the PK, which means that (C1, C2…Ck) is also the content of the 
Primary Key constraint of R’. Recall finally that the FK-joins in 
queries constitute the already mentioned LN.  See oldies for more 
on the theme. 

Another consequence of Codd’s proposal was that one can 
formulate every above discussed query as if the attributes of R’ not 
in RK, were in R, except for the additional LN in the join clause of 
the query, i.e., the FK-join. While these R’ attributes typically could 
not be in R, since would create normalization anomalies, 
denormalizing R in consequence. Nevertheless, despite the 
additional procedurality due to the LN, countless examples devised 
after [7], has shown that any equivalent queries using the physical 
pointers implied by any navigational DBS in use by then, especially 
the Codasyl or IMS DBS would typically be several times more 
procedural. See the oldies again.  

Recall that for a declared FK, RK may be a candidate key on 
some DBSs, i.e., any key not declared PK. This is nevertheless at 
best, a debatable possibility, since error-prone in the absence of the 
table option for candidate keys in SQL, unlike for the PK.  Also FK 
and RK may have the same or different (proper) names. Recall that 
in case of a composite FK and RK, say F and C above, the same 
name means that every couple (Fi, Ci) ; i = 1…k shares a name. The 
rationale is that the referencing FK -> RK within an FK constraint is 
by attribute position at present, not by name sharing. Finally, we 
call below an FK primary key named (PKN), whenever RK is a PK 
and FK and RK share the name. Observe that a PKN FK can thus be 
natural or declared, while every natural FK is PKN by definition. It 
is so also for any FK fitting the original Codd’s definition. In other 
words, PKN FK concept qualifies (names) adequately Codd’s FK 
initial idea, to our best understanding of his wording. Non PKN FKs 
are a later possibility, introduced apparently, as we recalled, by the 
SQL designers. 

Besides, the natural FKs appear the most popular, perhaps 
surprisingly for some. The rationale is the least procedural FK-joins 
in queries. Atomic declared FKs do the same, but require the 
Foreign Key constraint, cumbersome for many. Also, the referential 
integrity they impose, may sometimes contradict the application 
requirements.  

  
Fig. 1 S-P database 

Furthermore, we suppose that, in every Create Table R with 
PKN FKs submitted to a SIR DBS, every PKN FK F and only such 
F implies specific IAs in the intended actual Create Table R. The 
latter is the explicit SIR R scheme, we recall. We call these IAs 
Natural Inheritance, (NI), in R from R’ or through F and define 
them as follows. Let A’ denote the ordered set of all the non-PK 
attributes of R’. Then, the NI through F in R consists of the set A’ 
of IAs (i) defined by the pseudo SQL query: select A’ From R_ FK-
join R’; and (ii) either placed in R immediately after the last 
attribute in Create Table R that is not in any other NI through some 
PKN FK of R or placed after some such NIs. We also qualify then 
of naturally inherited every IA within the NI, the NIA, in short. 
Finally, we consider that any non-PKN FK in R scheme implies in 
contrast the referential integrity only. 

Furthermore, observe that the above discussed obstacle of the 
denormalization of R imposing then the LN in the typical queries to 
base tables, disappears with SIR DBs. No IA can indeed create any 
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normalization anomalies. The practical interest of the NI is to 
provide then for the LNF queries for present queries requiring the 
LN. E.g, as for Ex. 4, one may create every R with PKN FKs as SIR 
R with the explicit IE including the NA. This is clearly the case of 
(3). Operationally, as there, one can specify every NIA, as one 
would do for C-view R, e.g., for C-view SP (2) for (3). However, in 
practice any NI will rather be inferred from the implicit R scheme, 
as we will show soon. Then, more precisely, any query addressing 
any SAs of R reduced to R_, as at present and (ii) any non-PK 
attribute R’.A through some LN, may address instead NIA R.A, 
without  LN then, e.g. as in Ex. 4. Any SIR R with the NI, e.g., (3)  
again, acts accordingly as a the view-saver for C-view R. 

It follows from the above that every declared PKN FK F implies 
both the referential integrity and the NI. If one does not want the former, 
but still wishes the latter, one should not declare such F. Provided 
that, as usual, there is only one relation with PK F in the DB, for 
any atomic PKN FK F a natural FK F will result and fit the goal. 
Otherwise, one should change in addition the name of every PK F 
other than R’.F. Notice that such need should be rare, as schemes 
with several relations sharing a PK name seem infrequent. Anyhow, 
all this cannot work for any composite PKN FK F. One solution is 
to (a) add to R’ a surrogate that is, we recall, makeshift atomic PK 
and (b) name it, let us say, C, uniquely for a PK in the DB. The 
composite RK becomes consequently a candidate key. Then, it 
suffices to replace F with C in R. The latter will be a natural FK 
hence will provide for the NI only, as wished. The classical Ex. 14 
illustrates the case later on.   

Finally, we suppose that no SA F of some R can become 
implicitly a natural FK because one issued some Create Table R” 
with PK named F or Alter Table R” that ended up with the PK R”.F. 
In practice, it means that no such statement can enlarge R with the 
NI from R”. A dedicated Alter Table R we discuss in Section IV is 
necessary.    

Ex. 7. Natural FKs are in S-P, assuming S and P created before 
SP. SP.S# and SP.P# are the natural PKN FKs then, with S.S# and 
P.P# being the respective RKs. The original verbal description of S-
P scheme indicates indeed that each pair has a common domain. 
Finally, as the natural FK, SP.S# in SP scheme (1), supposed now 
the implicit SP scheme for S-P1.SP, will imply the NI from S, 
consisting of {SNAME…S.CITY} in (3). Likewise, SP.P# will 
imply the NI from P. As it will appear formally in next section, SP 
scheme (1) will lead then to SP scheme (3) as the explicit scheme, 
with (1) as an implicit one.  

The original description of S-P also does not mention any 
referential integrity. Nevertheless, at Fig. 1, every SP tuple respects 
this constraint for both FKs. Regardless, one may insert, e.g., P7 
into SP, without the presence of P7 in P. The feature can be useful, 
e.g., if DBA allows for the later insert of P7 data into P. If the 
referential integrity was in contrast required for a pair, e.g., (SP.S#, 
S.S#), one should declare in Create Table SP or Alter Table SP the 
usual: Foreign Key (S#) References S(S#).., including the On 
Delete and On Update options perhaps. SP.S# would become the 
declared (atomic) PKN FK. On the other hand, if in S-P as on Fig. 
1, DBA created SP before S and P, then, for Create Table SP, 
neither SP.S# nor SP.P# would be natural FKs anymore. 
Consequently, there would not be both NIs in the explicit SIR SP 
scheme (1). This would make S-P1.SP = S-P.SP in fact, until one 
perhaps alters S-P1.SP as we discuss later.@ 

II.B Basic Natural SIRs 
We will now show that Create SP (1), can be an implicit scheme 

for SP (3). Recall that (1) defines all and only SAs of SIR SP (3), 
hence, we have p(IE) = 0 there. The property frees thus DBA in 
need to create (3), from any additional procedurality otherwise 
required. We will show that the property generalizes in fact to any 
SIR R qualified of natural in [2]. 

Def. 1. Suppose that SIR R has PKN FKs F1…FK and for every 
Fk ; k=1..K ; R contains the NI through Fk denoted as A’k. Suppose 
also that for every NI, referencing some base table R’, one qualifies 

with R’ name every attribute in NI in name conflict otherwise with 
any other attribute, including an SA. Let R_ denotes all the SAs of 
R_, including every VA, we recall, if there are any. Then R is 
natural iff the explicit Create Table R has the following or any 
equivalent form:  

Create Table R (R_ {A’1…,A’k From R_ Left Join R’1 On 
R_.F1 = R’.F1 Left Join R’2 On R_.F2 = R’2.F2… Left Join R’k On 
R_.Fk = R’k.Fk};. 

We refer to all the NIs in any SIR R simply as to NI in R or as 
to NI in R through F1…Fk. Besides, the following obvious 
proposition follows. 

Prop. 1. C-view R for a natural SIR R has the following pseudo 
SQL scheme: 

Select R_.*, A’1…,A’k From R_ Left Join R’1 On R_.F1 = R’.F1 
Left Join R’2 On R_.F2 = R’2.F2… Left Join R’k On R_.Fk = R’k.Fk 

Def. 2. We say that a natural R is a basic one iff every R’ is an 
SR or is SIR R’ with every IA declared as VA.  

Ex. 8. On a SIR-enabled DBS, S-P1.SP illustrated at Fig. 2 is a 
natural SIR. First, S and P referenced each through a natural, hence 
PKN, FKs S# and P#, obviously differ from each other, as required. 
Then, the IAs: SNAME, STATUS, S.CITY constituting the NI 
through S# from S, follow QTY. The same occurs for SP.P# and P, 
except that they follow the NI through S#. Both IAs CITY are 
qualified for obvious reasons.  Finally From clause is conform to 
Def. 1. In contrast, S-P1.SP enlarged further with PERCENTAGE 
would not be natural, since the latter would be an IA outside SP_ 
and outside both NIs. In any case both NIs in SP constitute the NI in 
SP.  

Accordingly, in our terminology, every IA following S# till SA 
P# is sourced in S. Next, SP naturally inherits each and all of them. 
Respectively, same is true for every IA sourced in P. All these IAs 
together constitute for SP its NI through the foreign keys and they 
naturally enlarge SP_. Finally, SP is a basic natural SIR.@    

Observe now the following easy properties of natural SIRs:  

Prop. 2. Suppose that Create Table R in some DB defines at 
present an SR R with PKN FKs. Accordingly, consider the 
following generic formula for such Create Table R, where ‘…’ 
designates some SAs or VAs or none: 

(7)   Create Table R (…, F1,… FK…. <table options>);  

Then, (7) can be an implicit scheme for natural SIR R with the 
NI through  F1,… FK and R_ defined by (7). 

Proof. To prove (7), one should provide a deterministic 
algorithm for the explicit IE as in Def. 1. We sketched the latter in 
[3]. In the next section, we provide a more complete formulation.@  

Accordingly, given (7), for every natural SIR R, we say 
sometimes that R is so for R_ or for base table R with (7) as the 
actual (explicit) Create Table R.   

Ex. 9. Create Table SP (1) and Create Table SP (3) are clearly 
conform to Prop 1. Hence S-P1.SP (3) is the natural SIR for S-P.SP 
(1) and for the base SP_ of SP (3). Finally, it is the unique natural 
SIR for both.@    

Recall furthermore that, given the quest for non-procedurality, 
the empty IE of (7) is a definitive advantage over the explicit one in 
Def. 1 and in C-view R, by the same token. Also, on every SIR-
enabled DBS, providing for the natural SIRs in particular, DBA 
could therefore always create a natural SIR R with no more work 
than for sole R_ as a stand-alone SR R at present. 

Ex. 10. On a SIR DBS, Create Table SP (1) would suffice for 
SP (3). The S-P scheme would define S-P1. The DBA would have 
no additional work to define S-P1.SP.@  

In the same time, as we already hinted for S-P1, the clients 
would gain LNF queries to SP, regardless of whether the DBA uses 
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(3) or, obviously better, (1) for S-P1.SP. We have hinted that this 
may be true more generally for every natural SIR R. We will prove 
it now for basic natural SIRs. 

Prop. 3. Suppose that a DB has a base SR R with the scheme 
that could also be the implicit one of a natural SIR R. Let us denote 
a base table that R references as R’. Next, consider a select-project-
join query Q1 (i) projecting on some SAs of R or on some non-key 
SAs in one or more of R’s, and (ii) where R and each R’ are joined 
through some of the PKN FK-joins, i.e., forming thus, likely, a 
typical LN at present.  Next, consider the LNF query Q2 addressing 
SIR R only, through the same select-project clauses as Q1, except, 
perhaps, that some IAs are qualified. Then, for every SR R and 
every Q1, Q2 is equivalent to Q1. SIR R is consequently a view-
saver for such LNF queries. It is also possibly the least procedural 
one, in the sense of possibly empty IE.  

Proof. For every Q1, suppose that one renames SR R to R_ and 
replaces all the FK-joins of Q1 with the FK-joins in (5). The relation 
defined by these joins contains the same attributes as the natural 
SIR R explicitly defined by (5), except, perhaps, that (i) some 
attribute names became qualified or (ii) the order of the attributes is 
different. Given the properties of left outer equi-joins, the modified 
Q1 is equivalent to the original, provided that if select-project 
clauses of original Q1 referred to an attribute name that became 
qualified, then every such name in modified Q1 is qualified as well.  

The latter From clause can be equivalently modified to the 
nested one, where the inner query (a) has both the select clause and 
the FK-joins as in (5) and (b) it is named R within the outer From. 
Whether the latter R designates SIR R on SIR-enabled DBS, (as we 
tacitly suppose here), or designates “only” view R at present, does 
not matter. The overall result is that for every Q1, query Q2 with the 
same select-project clause as the latter query but referring to R only 
in From clause, instead of containing the inner query defining R, is 
the LNF query to R equivalent to Q1. Accordingly, view R is a view 
for LNF queries for any such Q1. SIR R is consequently a view-
saver for any such LNF queries. R scheme is possibly the least 
procedural one, since DBA may choose the implicit one with empty 
IE (what every DBA will likely do in practice then).@      

Ex. 11. Consider the need for SP.S#, SNAME, CITY for every 
supply. Every Q1 to S-P must have then the LN through the FK-join 
SP Left Join S. E.g., one may issue Q1 as: 

(8) Select SP.S#, SNAME, CITY From SP Left Join S On  
SP# = S.S#; 

After renaming SP to SP_, one can equivalently replace Q1 
with:  

(9) Select SP_.S#, SNAME, S.CITY From SP_ Left Join S On SP# 
= S.S# Left Join P On SP.P# = P.P#; 

Notice that CITY became qualified. The latter query is in turn 
equivalent to the following one with nested From: 

(10) Select SP.S#, SNAME, S.CITY From (Select SP_.S#, 
SNAME, STATUS, S.CITY, SP_.P#, PNAME, COLOR, 
WEIGHT, P.CITY, QTY From SP_ Left Join S On SP_.S#=S.S# 
Left Join P On SP_.P#=P.P#) As SP; 

Finally, whether SP designates now in fact view SP (2) or SIR 
SP (3), then the latter query becomes simply Q2 as follows: 

(11) Select S#, SNAME, S.CITY From SP;  

Observe that p (Q1) = 56 and p (Q2) = 31. Thus the LN alone in 
Q1 is almost as procedural as Q2. Hard to see why an S-P client 
having choice, could prefer Q1 to Q2.  @  

Notice that, usually, DBS would process Q2 by the standard 
query modification approach that would walk backward the above 
steps towards Q1. Similar conclusions will hold more generally for 
every select-project-join query to S-P.SP and S or P, with LN 
through the FK joins over FKs of SP. Accordingly, view SP is a 
view for LNF queries, requiring the above FK-joins otherwise. 
SIR SP is then a view-saver for the same LNF queries. It is also 

possibly the least procedural one, since one can define the SAs 
only.@      

Recall also that every IA A of a natural SIR R, is a natural one 
itself. By definition, it thus has the same name as an attribute of 
some base table R’ that R references, called also source of R.A. 
Thus one may consider that for every query Q to R only that we 
qualified of an LNF one, for every IA A that Q perhaps addresses, 
Q addresses then in fact some R’.A. One may say then that Q is an 
LNF query not only to R, but also, indirectly through every R.A 
addressed, to every base table R’ that is the source of. For some, 
that meaning of an LNF query is perhaps the primary one even, 
[24]. 

Accordingly to this terminology, one can formulate Prop. 3 in 
an alternative way that some may find more appealing: 

Prop. 3bis. Suppose that a DB has a base table R with the 
scheme of the SAs that makes it the implicit one of a natural SIR R. 
Let R’1… be every base table that R references. Next, let Q1 be a 
select-project-join query addressing some SAs in R scheme and 
some attributes of R’1 or of R’2 or…, with every join being a left 
FK-join preserving R or with any join equivalent to. Then, for every 
possible Q1, there is a query Q2 addressing SAs in R scheme and 
such that (i) Q2 is equivalent to Q1, (ii) Q2 is an LNF query also to 
every R’ that Q1 addresses (through the joins) and (iii) Q2 is the 
select-project part of Q1 with From R clause only, except that some 
attribute names in Q1 may end up qualified. R is consequently a 
possibly the least procedural view-saver for such LNF queries.@ 

Observe finally that if Create Table R defining at present an 
SR R only, may define the natural SIR R instead, then it provides 
for the discussed attractive LNF queries, at no additional data 
definition cost for DBA. We now describe the algorithm effectively 
providing for that capability, i.e., of inferring the explicit natural 
SIR R scheme from the one of the SR R, on any popular DBS. 

II.C  Inferring Explicit Schemes of Basic Natural SIRs  
As already stressed, suppose every referenced relation to 

preexist the referencing one. Suppose also that SIR-enabled DBS 
gets Create Table R with SAs only and, may be, with some of these 
being declared FKs. The scheme may be thus an implicit scheme of 
the natural SIR R. SIR-enabled DBS processes then the Create 
Table as follows. The algorithm mainly generalizes our motivating 
examples. The outcome is the explicit Create Table R. We specify 
the rules only verbally, omitting easy details the actual 
implementation would require. We take for granted that the implicit 
Create Table R defines SAs only. We also consider only the 
canonical implementation of a SIR-enabled DBS in [1], we recall in 
Section VI below. The SIR-enabled DBS creates and manages then 
every SIR R as base table R_ and C-view R within the kernel DBS.   

Alg. 1. 1. (Determine every natural FK). For every (atomic) SA 
R.A that is neither a primary key nor a declared FK or within such 
FK, check in the meta-tables, provided by every popular SQL DBS 
at present and often named SYSTABLES for base tables and 
SYSVIEWS for views, e.g., in DB2, whether there is a unique 
relation (named) R”, with the primary key sharing the name and the 
domain of R.A. If so, R.A is a natural FK. Next, (i) if R” (name) 
does not end up with ‘_’, then R’ := R”. Else (ii) if R”/’_’ is not in 
SYSVIEWS etc., then R’:= R”. Else, R’ is not a basic natural SIR. 
Then, check the rules for compound natural SIRs we outline later. 

2. (Processing every PKN FK). For every PKN FK with R’ 
determined in (1) or analogously for any declared FK (recall that, 
on some popular DBSs, this may require to check in SYSTABLES 
that RK is a PK, since it could be a candidate key), retrieve from 
SYSTABLES the name of every non-PK attribute of R’. Then (iii), 
place all these names, qualified if needed, in Create Table R, as in 
(a) in Def. 1.    

3. (Create From clause). Let F1… be the PKN FKs enumerated 
in the left-to-right order in Create Table R and R’1… be the 
referenced relations. Suppose for the form of the string below, for 
every composite F, the simplified notation we indicated before. 
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Then, after the last SA and before the table options, insert the string 
in the form of: From R_ Left Join R’1 On (R_.F1 = R’1.F1) Left Join 
R’2 On (R_.F2 = R’2.F2)….@ 

Ex. 12. We skip the easy but tedious proof of the rules. We only 
show that they build the explicit Create Table SP (3) from (1). 
Suppose thus S-P1.S and S-P1.P already created. Rule 1 produces 
names (S, S#) and (P, P#). For the former, Rule 2 finds S# in (1). It 
thus inserts SNAME…S.CITY, right after S#. Likewise, it inserts 
PNAME...P.CITY right after SP.P#. Finally, Rule 3 builds From 
clause in (3) and terminates the explicit IE.@  

For the DBA, as already hinted to, the rules mean simply 
p(IE) = 0. They thus mean free bonus of zero additional time for 
creating, instead of S-P.SP, the natural SIR SP (3), with its p = 112 
(explicit) procedurality of the IE. This, to provide the clients with 
also free then bonus of typically far less procedural LNF queries. 
For the DBA again, an even bigger bonus is with respect to the 
present situation. One saves indeed 100% of procedurality p = 152 
of Create View SP (2) for the same purpose.  

II.E Compound Natural SIRs     

A compound natural SIR R inherits through some FKs from 
SIRs. These can be natural perhaps compound themselves, or 
others. In other words, a non-PK attribute of an R’ can now be an 
SA or an IA. Operationally, as usual today, we suppose again every 
R’ being created before R. By the same token, we suppose that later 
alterations of any R’ schemes do not cascade to R.  Here are 
motivating examples of compound natural SIRs. They seem 
framework for frequent practical cases. 

Ex. 13. Suppose one alters S-P scheme as follows. An 
additional relation CG (CITY, GPS) stores uniquely for each city 
the GPS location. Suppose further that on a SIR-enabled DBS, one 
creates CG first, then S and P with their S-P schemes, Fig. 1 and SP 
through its scheme (1), at last. CG has no FKs, hence its scheme 
above defines an SR. Then, the S scheme has only one FK that is 
the natural FK S.CITY, referencing CG.CITY. S is now therefore a 
basic natural SIR, with S-P.S scheme as the implicit one and the 
following explicit scheme, inferred through the rules above: 

(12) S (S#, SNAME, STATUS, CITY {GPS From S Left Join CG 
On S.CITY = CG.CITY}) 

The explicit Create Table S scheme for (13) is obvious to figure 
out. P becomes a basic natural SIR analogously. But, the NI for SP 
defined by Prop. 1 includes now also two IAs: S.GPS and P.GPS. 
Hence, SP becomes the compound natural SIR. Its explicit Create 
Table evolves to: 

(13) Create Table SP (S# Char 5 {SNAME, STATUS, S.CITY,  
S.GPS} P# Char 5 {PNAME, COLOR, WEIGHT, P.CITY, P.GPS} 
QTY INT {From SP_ Left Join S On (SP_.S# = S.S#) LEFT JOIN 
P On (SP_.P# = P.P#)} Primary Key (S#, P#)); 

LNF queries to SP may now address both P.GPS and S.GPS. 
But, it is easy to see that Alg. 1 does not let to infer (13) from (1) 
anymore. It needs the completion we show soon.  

Finally, it’s instructive to appreciate the procedurality gain with 
LNF queries searching for GPS data. E.g., suppose the search for 
SP.S#, SNAME, S.CITY, S.GPS and SP.P#, PNAME, P.CITY, 
P.GPS, as well as QTY, for every supply with QTY > 100. For S-P 
with SR CG added as base table, every SQL query Q1 expressing 
the search would need some LN, e.g., the nested one as follows: 

(14) Select SP.S#, SNAME, S.CITY, S.GPS, SP.P#, PNAME, 
P.CITY, P.GPS, QTY From SP_ Left Join (S Left Join CG On 
S.CITY = CG.CITY) On SP_.S# = S.S# Left Join (P Left Join CG 
P.CITY = CG.CITY) On SP_.P# = P.P# Where Qty > 100;   

The LNF Q2 to S-P1 would be in contrast simply:  

(15) Select SP.S#, SNAME, S.CITY, S.GPS, SP.P#, PNAME, 
P.CITY, P.GPS, QTY From SP Where Qty > 100;   

We have p (Q1) =203 and p (Q2) = 83. Thus Q1 is almost 2.5 

times more procedural than Q2. Besides, no wonder that the 
complexity of LN through nested joins in (15) is not what most 
clients like best. The result would not change much if, e.g., one 
familiar with properties of joins unnested these while formulating 
Q1 or replaced some with the left natural ones etc. Recall finally 
that all these advantages of Q1 come for free at the data definition 
level for DBA. I.e., if looked upon as SIR implicit schemes, the 
“classic” Create Table S, Create Table P and Create Table SP of S-
P DB, could make instantly possible for Q1, instead of forcing Q2 
only at present.@  

Ex. 14. Suppose that the DBA defines for S-P also the well-
known base table providing the allocations of the supplies in SP to 
jobs: 

(16) Create Table SPJ (S#..., P#..., J#..., ALLOC…, Primary Key 
(S#, P#, J#), Foreign Key (S#, P#) Referencing SP (S#, P#)); 

Here, (S#, P#) is a declared composite PKN FK. Suppose also 
that J# is not a natural FK for some reason. For a SIR-enabled DBS, 
the above scheme is the implicit one of SIR SPJ. Neither S# nor P# 
is a natural FK in SPJ, since both are within a declared PKN FK. 
Hence, SPJ would be a natural compound SIR where the explicit 
scheme naturally inherits every non-key SA and IA of SP:  

(17) Create Table SPJ (S#..., P#..., J#..., ALLOC, {QTY, 
SNAME,..S.CITY, PNAME…P.CITY From SP_ Left Join SP On 
SP_.S# = S.S# And SP_.P# = P.P#} Primary Key (S#..., P#..., J#), 
Foreign Key (S#, P#) Referencing SP (S#, P#)); 

Notice that the referential integrity between SP and SPJ would 
be enforced, as for every declared PKN FK and as for any FK at 
present. If it is not desired, then, as said generally before, one 
should not declare (S#, P#) as an FK. The natural attributes in NI 
through (S#, P#) that one wishes to preserve for LNF queries and 
which are neither in the NI through S# nor through P#, should be 
then explicit. Actually, this amounts to QTY only. A better 
approach to inherit QTY instead implicitly as well is through the 
already discussed technique of a surrogate, say SP# here, added to 
SP, i.e., enlarging the implicit scheme of SP to SP (SP#, S#, P#, 
QTY). The composed key (S#, P#) is no more the primary one. SPJ 
may become SPJ (SP#, J#, ALLOC), with SP# being the PKN FK 
and QTY becoming an implicit IA, since in the NI of SP#.  

Anyway, whether QTY is implicit or explicit in SPJ, a SIR-
enabled DBS will provide for the LNF queries addressing any SAs 
of SPJ and through the IAs, any SA or IA of SP. Hence, through 
IAs of SPJ, such query will be also able to, transitively and 
transparently, address every attribute of S and of P. Thus, again at 
no cost for the DBA, the client could, e.g., search for SNAME, 
PNAME and available QTY of every part allocated to job ‘J1’ 
through the select-project only LNF Q1:  

Select SNAME,PNAME,QTY From SPJ Where J#=‘J1'. 

In contrast, supposing SPJ (16) and the original SP, the 
necessary LN in Q2 below, would make the latter more than three 
times more procedural and dreadful for many: 

Select SNAME,PNAME,QTY From SPJ Left Join (SP Left Join S 
On SP.S#=S.S# Left Join P On SP.P#=P.P#) On (SPJ.S#=SP.S# 
And SPJ.P#=SP.P.#) Where J#=‘J1'. @ 

Ex. 15. Suppose now for S-P1 that one enlarges S-P.P with the 
calculated attribute WEIGHT_KG as in Example 5. Suppose further 
that DBA again creates S and P before SP, with P with 
WEIGHT_KG becoming SIR P, we recall. Then SP implicitly 
defined through SP_ scheme named Create Table SP, would remain 
a natural SIR. However, it will be a compound one this time, 
regardless one defined WEIGHT_KG  as the VA or as if it was an 
IA of C-view P. The explicit Create Table SP would become: 

(18) Create Table SP (S# Char 5,  P# Char 5, QTY INT {SNAME, 
STATUS, S.CITY, PNAME, COLOR, WEIGHT, WEIGHT_KG, 
P.CITY From SP_ Left Join S On SP_.S# = S.S# LEFT JOIN P On 
SP_.P# = P.P#} Primary Key (S#, P#)); 
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SP provides now for the LNF queries to WEIGHT_KG as 
well.@      

Given these examples, the enhancement to the rules for basic 
natural SIRs in the previous section can be as follows. The new 
need is to recognize for every R’ whether itself it is not a SIR.  

Alg. 2. (i) - Rule (1) in Alg. 1 states that R can be a compound 
natural R if R”/’_’ is in SYSVIEWS etc. Consider so now. Then, R 
is effectively a compound natural SIR, since R”/’_’ is a SIR.  Hence 
set R’ to R’ :=  R”/’_’. 

(ii) - The NI in R from R’ is now defined through SYSVIEWS 
etc. This one should be, as usual, every IA of view R’ defined there 
other than every IA inherited from RK in R’_. The latter is to be 
found through SYSTABLES etc.  

(iii) - Perform finally rule (3).   

We skip the easy proof in favor of the motivating example.    

Ex. 16. Consider again S-P altered as in Ex. 13. Then rule (1) 
above will find for S# that S_ table in SYSTABLES etc. is R“ with 
S as R”/_ in SYSVIEWS etc. The control will pass to rule (i) that 
will set S as R’. Likewise, for P#, it will find R’ := P. Rule (ii) will 
then determine for S from SYSTABLES etc. that S.S# is the RK, 
hence it will find out from SYSVIEWS etc. that 
{SNAME…S.GPS} is the NI for SP.S# in SP. Likewise, it will 
determine {PNAME…P.GPS} as the NI  for  SP.P#. Then, after 
applying rule (3) again, the end result for From clause would be the 
one in (13) and, altogether, Create Table SP (13) will be the explicit 
one in our case. 

Likewise, for S-P altered as in Ex. 15, Alg. 1 for the basic 
natural SIR and SYSTABLES etc. alone will determine for SP, the 
NI from S. For P in turn, to find it out, Alg. 1 will call Alg. 2 for the 
compound natural SIR. The explicit Create Table SP (18) will be 
the overall result.@  

III OTHER SIRS WITH PKN FKS 
One can define implicit schemes also for SIRs other than natural 

ones, provided they have PKN FKs. The following proposition 
shows it. We denote the explicit Create Table R as RE and as RI the 
implicit one derived as follows.  

Prop. 4.  Consider SIR R with PKN FKs defined by RE in the 
form that follows. We denote as A any attribute other than any of 
those in NI. We suppose that at least one A is an IA other than a 
VA. Notice that R cannot be then a natural one. Next, we denote as 
A all such IAs. Then, we denote as NI all the NIAs and as NI-joins 
all the FK-join clauses of the NI. We further denote as <A def. 
clause> the part of From clause defining A and not containing any 
of joins in <NI-joins>, if there is any such part. Next, brackets [] 
denote optional parts of the statement, as usual. Finally, we omit all 
the {} brackets around IAs, except, perhaps, of the initial ‘{‘, if 
used instead of the usual SQL ‘(‘ and of the final ‘}’ terminating the 
From clause. Supposing now that RE is as follows:     

RE = Create Table R (|{ A1…,A2…AK…,NI From R_ [<A def. 
clause>] NI-joins} [<Table constraints>]) [<Table options>]; 

Then, RI is RE without NI and NI-joins.@ 

Proof. RI suffices, as one can complete it towards RE through 
the pre-processing obviously almost the same as the one for natural 
SIRs. The only difference is the eventual completion of the <A def. 
clause>. We therefore skip the easy, but tedious completion specs. 

We also skip the trivial generalization of Alg. 1 & 2 providing 
for a unique RE inference algorithm for both: natural SIRs and the 
ones dealt with here. @  

Notice that (implicit) IE of RI resulting from Prop. 4 cannot be 
empty. Unlike was the implicit IE for any natural SIR, recall.  

The rationale for RI’s here is obviously p (RI) < p (RE), again. The 
gain is thus even greater with respect to p(C-view R). The typical 
needs for the explicit IAs seem as follows. (i) R has one or more 

calculated IAs (CAs), each defined through a value expression 
inheriting from SAs or from other IAs in R or from attributes of 
some R’≠R, or defined by a sub-query. Then, (ii) for some FK F, R 
may have for privacy, only some or even none of the natural IAs 
through F. Or, (iii), F may have the same IAs as in NI, but, for 
query convenience, displaced within R or renamed for some. 
Finally, (iv) F1 and F2 in R may share R’. This is contrary to the 
assumptions of NI, we recall. Here are motivating examples, 
illustrating these needs. The procedurality savings that appear are 
always about or above 50%, sometimes with RE being several times 
more procedural. These are clearly substantial saving, by any 
practical meaning of the term. 

Ex. 17. (i) Consider SIR P from Ex. 13 enlarged with 
WEIGHT_KG placed after WEIGHT. Supposing that the kernel 
does not provide for VAs, the implicit Create Table P would be: 

(19) PI = Create Table P As (P# Char 4, PNAME Char 20, COLOR 
Char 10, WEIGHT Int {INT(WEIGHT * 0.454) As WEIGHT_KG} 
CITY Char (30), Primary Key (P#)); 

SIR-enabled DBS would enlarge then (19) to the explicit Create 
Table as follows:  

(20) PE = Create Table P As (P# Char 4, PNAME Char 20, COLOR 
Char 10, WEIGHT Int {INT(WEIGHT * 0.454) As WEIGHT_KG} 
CITY Char (30) {GPS From P_ Left Join CG On P_.CITY = 
CG.CITY} Primary Key (P#)); 

The explicit IE is visibly more than twice procedural than the 
implicit one. Alternatively, suppose now that MySQL is the kernel. 
The implicit Create Table P could contain the VA WEIGHT_KG:  

(21) PI = Create Table P As (P# Char 4, PNAME Char 20, COLOR 
Char 10, WEIGHT Int, WEIGHT_KG As INT(WEIGHT * 0.454), 
CITY Char (30), Primary Key (P#)); 

PE would keep then the definition of WEIGHT_KG as the VA, 
but will remain obviously as procedural as (22).@              

Ex. 18. (i) Suppose that for some security reasons, no attribute 
of Supplier should be in SP available for LNF queries, except for 
S#, somehow renamed so to hide its relationship to S. SPI could 
simply be: 

(23) SPI = Create Table SP (X Char 5, P# Char 5, QTY INT 
Primary Key (S#, P#)); 

Since SP.P# remains a natural FK, SPE  would be: 

(24) SPE = Create Table SP (X Char 5, P# Char 5, QTY INT 
{PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join P On 
SP_.P# = P.P#} Primary Key (S#, P#)); 

SPI is again visibly about a half of the SPE..  

(ii) Suppose now that only the attributes SNAME, CITY of S-P.S 
should be visible to LNF queries to SP. SPI could be: 

(25) SPI  =,Create Table SP (X Char 5, P# Char 5, QTY INT 
{SNAME, CITY From SP_ Left Join S On SP_.X = S.S#} Primary 
Key (X, P#)); 

For both (i) and (ii), the renaming of SP.S# was necessary, as it 
would be a PKN FK otherwise. It would imply then NI in the 
explicit scheme, obviously contradicting the specs. SPE for (26) 
would be again substantially more procedural, by about 50% visibly 
again:  

(26) SPE =,Create Table SP (S≠ Char 5,  P# Char 5 {PNAME, 
COLOR, WEIGHT, CITY} QTY Int {SNAME, CITY From SP_ 
Left Join S On SP_.S≠ = S.S# Left Join P On SP_.P# = P.P#} 
Primary Key (S≠, P#));    

Ex. 19. Suppose that SP should be as the natural one, but with 
the additional IA named WEIGHT_T. This one should indicate for 
every supply, its total weight, supposed to be WEIGHT * QTY, 
whenever one knows WEIGHT of the supplied part. One wishes 
also WEIGHT_T to follow QTY in SP. WEIGHT_T is not a natural 
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IA, since defined through a value expression. Neither, it could be a 
VA, since WEIGHT is not in SP. Nevertheless the following SPI is 
OK: 

(27) SPI = Create Table SP (S# Char 5, P# Char 5, QTY INT 
{WEIGHT*QTY AS WEIGHT_T} Primary Key (S#, P#));  

SPE would be: 

(28) SPE = Create Table SP (S# Char 5, P# Char 5, QTY INT, 
{WEIGHT * QTY AS WEIGHT_T, SNAME, S.CITY, STATUS, 
PNAME, COLOR, WEIGHT, P.CITY From SP_ Left Join S On 
(SP_.S# = S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key 
(S#, P#));   

Indeed, both S# and P# in SPI continue to represent all their 
natural IAs. Next, WEIGHT_T would need FK-join between SP_ 
and P in SPI if it should become an explicit one as is. But, this 
clause can be omitted otherwise, as defining also the NI from P. The 
procedurality of the implicit IE, say p1, in SPI is p1 = 23. For the 
explicit IE, we have p2 = 134. Thus, the explicit IE is almost six 
times more procedural. The procedurality ratio between entire SPE 
and SPI is obviously smaller, but still again SPI is visibly about 
twice less procedural than SPE. Notice finally that the procedurality, 
say p3, of Create View SP for C-view SP that is the only practical 
possibility for WEIGHT_T  at present,  is p3 = 171. Hence, it is 
more than seven times greater than p1, making the implicitly 
defined SP quite a view-saver. 

Ex. 20.  SP should get as the last attribute, a calculated IA, say 
PERCENTAGE. For every supply, the latter should be the 
percentage that the QTY of that supply constitutes with respect to 
the entire supply of the part supplied. Sub-query below defines 
PERCENTAGE, leading to SPI: 

(29) SPI = Create Table SP (s# Char 5, p# Char 5, qty Int {(select 
Round (100*Qty / (select  sum(X.qty) from SP_ X where  
X.[p#] = SP_.[p#]), 3)) as PERCENTAGE} Primary Key (S#, P#)); 

Without the NI inferred, the From SP_ clause should follow the 
attribute list. But, it is not here, since would be redundant with the 
FK-joins referencing S and P. SPE would therefore be: 

(30) SPE = Create Table SP (s# Char 5 {SNAME, S.CITY, 
STATUS} p# Char 5 {PNAME, COLOR, WEIGHT, P.CITY} qty 
Int, {Round(100*Qty/(select  sum(X.qty) from SP_ X where X.p# = 
SP_.p#), 3) as PERCENTAGE From SP_ Left Join S On (SP_.S# = 
S.S#) LEFT JOIN P On (SP_.P# = P.P#)} Primary Key (S#, P#));  

It is easy to calculate that the implicit IE is 2.1 times less 
procedural than the explicit one. In other words, the implicit IE 
saves 53% of the explicit one. Hence, it is even more efficient as the 
view-saver, (how much?).  

Ex. 21. Consider the following DB named E-M providing data 
on employees. Some employees are managers. Each employee has 
an ID named E#. Each manager has the ID M# that is some E# 
renamed. An employee may share work time among several 
managers. An SA FRC indicates the fraction of work time spent by 
employee E# for manager M#. A manager may get M# and start to 
manage some employees before all the other data of those or of 
her/himself are in E-M. One could accordingly define E-M as:     

(31) EMP (E#..., NAME…, TEL…, DEP…, Primary Key (E#));  

(32) EM (E#.., M#..., {M.NAME, M.TEL, M.DEP} FRC… {From 
EM_ Left Join Emp M On EM_.M# = M.E#} Primary Key (E#, 
M#);  

EMP is an SR and EM is visibly a SIR. Suppose EMP created 
first. E# is then a natural FK. M# in contrast is neither a natural nor 
a declared FK. For our meaning of the FK concept, it is so just an 
SA in EM useful for the DBA to define the IAs with selected data 
about every manager, when already in EMP. Besides, as E# is a 
PKN FK, EM should contain the NI through E#, while it does not. 
(32) shows thus EMI. The preprocessing would expand it to the 
(substantially more procedural) EME that we leave as an exercise. 
EM would provide for LNF queries on every attribute of employees 

or of managers in E-M.@  

 IV ALTERING SIRS WITH FKS 
One can alter every SIR R with FKs through the Alter Table R, 

specified for SIRs in [1]. In particular, one can define a new IE, 
through the SIR-specific clause, termed IE clause. The clause 
defines for any R, the new IE, regardless of the existing one, if any. 
In fact, the clause basically defines the C-view R scheme, as one 
would define it through Create View R or Alter View R. For this 
reason, as those that will appear in Section VI, the IE clause is 
mandatory whenever one adds, renames or drops an SA in R.  

We call explicit the IE clause defining the C-view as just 
discussed. It has to contain the explicit IE in particular. The 
rationale for such IE clause is that the IAs within intermix with the 
SAs of R_, as Ex. 22 below illustrates. The names of the latter serve 
as placeholders. One specifies the explicit IE clause for any new IE 
in this way. Besides, the clause can be sometimes implicit, i.e., 
without the entire content of the explicit one. A SIR DBS pre-
processes every implicit IE clause into an explicit one for any 
further processing.  

For even lesser procedurality, we now consider that for a 
relation with PKN FKs, the implicit IE clause avoids to enumerate 
any NIs. It may happen then that these NIs are the only IAs to add. 
We suppose that one may write then the (implicit) IE clause simply 
as IE {}.  

An IE clause may in particular add IAs other than VAs to an 
SR R or to SIR R with CAs declared as VAs only. Such R may pre-
exist the upgrade of a DBS to a SIR-enabled one. Observe 
furthermore that for every SR R with PKN FKs, the clause IE {} 
makes R a basic natural SIR, without affecting any pre-existing 
data. The rewrite rules for pre-processing implicit IE clauses into 
the explicit ones with NIs are easy figure out.  

Recall also that every natural SIR R, hence also the one 
resulting from Alter Table R for an SR R, brings to R the free bonus 
of the LNF queries to any SA of R and to any of the non-PK 
attributes of any R’. For every preexisting query, the outcome 
remains the same, except for every query referring to R through ‘*’ 
or R.*. Recall that such queries are not recommended for 
applications, hence rare. Notice also that for every preexisting SR 
R, in the absence of any of the discussed alterations, the DBS 
upgrade would not affect any preexisting queries.     

Ex. 22. Consider S-P in use on some present DBS. Suppose this 
DBS becomes SIR DBS. Every preexisting query to S-P will 
provide the same outcome. Then, Alter Table SP IE {}; will 
upgrade SP to S-P1.SP. The rewrite rules will process the Alter into 
the explicit one, [1], visibly more procedural by far:    

(33) Alter Table SP IE {S#, SNAME, S.CITY, STATUS, P#, 
PNAME, COLOR, WEIGHT, P.CITY, QTY From SP_ Left Join S 
On SP_.S# = S.S# LEFT JOIN P On SP_.P# = P.P# };    

After (34), SP would be a natural SIR. New queries to SP may 
also be now LNF. Every existing one will provide for the same 
outcome, except for queries with: ‘*’ or ‘SP.*’ obviously. The 
alteration will not affect any existing S-P.SP (stored) content, the 
one at Fig. 1 especially.@ 

Observe finally, that, as already discussed for the creation of 
SIRs with FKs, for every existing SR R with PKN FKs, one should 
perform IE (), only if (i) every R’ preexists and, (ii) if R’ also has 
PKN FKs, then (i) was already applied to R’ etc. E.g., if all the 
relations of Ex. 13 are preexisting SRs, one should alter CG first, S 
and P after and SP, at last. Otherwise for a declared FK, an error 
could appear, while a natural FK could silently miss an IA. R would 
provide then for fewer LNF queries, obviously.   

V RELATIONAL DESIGN FOR SIR DBS 
The relational design has for goal the “best” collection of base 

table schemes for a DB. Usually, it means the smallest possible 
number of 4NF SRs. About always in practice then, each of these is 
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also in 5NF and, even, in less popular 6NF, [10]. Several methods 
for are known. Whatever is one’s favor, let us refer to the result as 
S. In practice, every S contains SRs with (declared) FKs. Then, S is 
accompanied with some scheme, say O, of the base tables creation 
order, so that for every referencing table R, every referenced one, 
say R’ as before, exists when R is being created. A run-time error 
occurs otherwise on every DBS of our knowledge at present.    

We call relational design for SIR DBs, any methods similarly 
aiming at “best” collection of base table schemes that can be SRs or 
SIRs.  “Best” means here for every SIR, first the least procedural 
schemes, hence the implicit ones whenever possible.  Next, “best” 
continues to aim, for every base table, at the NF making it free of 
anomalies. But a new general issue is then, as we’ll show now, that 
the concepts of i-th NF for i > 1 and of BCNF need a revision. 
Then, any method has to take to the account the natural FKs as well. 
We now address successively both issues.  

V. A SIR DB Specific Normal Forms 
Observe from our example that, e.g., before one adds 

WEIGHT_KG, P is BCNF (and so on). It’s no more after. Indeed, 
FD: WEIGHT -> WEIGHT_KG, makes P in 2NF at best. But, as an 
IA, WEIGHT_KG, does not create any normalization anomalies. 
Unlike SA WEIGHT_KG would do. The lossless decomposition 
through Heath theorem, [18], making P without IA WEIGHT_KG, 
hence in 3NF again, would be senseless. Hence, P with 
WEIGHT_KG as IA should not lose its BCNF “status”. Similar 
situation occurs for SP with WEIGHT_T, given FD: (WEIGHT, 
QTY) -> WEIGHT_T there. The issue was already observed by 
some clients of VAs, [28].The practical way out is to expand the 
definition of the normal forms so to take to the account that no IA 
may introduce a normalization anomaly. Our proposal is thus as 
follows: 

Def. 3. A 1NF relation, SR or SIR, is iNF ; i = 2..6 ; or in BCNF 
iff the relation formed by all its SAs is in iNF or BCNF.   

Then, both P without WEIGHT_KG and with WEIGHT_KG as 
an IA are in BCNF. In contrast, P with WEIGHT_KG declared as 
an SA, i.e., without the value expression, but only enumerated for 
each value of WEIGHT, would not be in 3NF even. Like P would 
not be also for the usual definition of 3NF and BCNF. Similarly, - 
for SP and WEIGHT_T. Notice that the definition applies to present 
relations with VAs. We recall that all these are specific SIRs. 
Finally, it is backward compatible for SRs Altogether Def. 3 is long 
overdue thus. 

V.B SIR DB Specific Design Steps 
For a SIR DB, some SRs in S may become SIR bases. Let us 

call Sf the schemes forming the intended DB possibly with SIRs. 
One basically seeks Sf where every SIR scheme is the least 
procedural possible, i.e., the least procedural implicit one. As it 
appeared, e.g., for S-P and S-P1, we may typically expect S = Sf 
with every SIR being a natural one, basic or compound. On the 
other hand, as already abundantly discussed, DBA may wish some 
SRs enlarged with some explicit IAs, CAs especially. Also with 
respect to O’s schemes, if Of

, is the creation order scheme for a SIR 
DB with all SRs and SIR bases in S, it may happen that O 
acceptable for S is not for Sf. E.g., O = (SP, S, P) is OK for S-P, but, 
as one could see, not for S-P1. Besides, if the goal is a SIR DB 
upfront, then it is obviously not useful to define any O, just perhaps 
to alter it later to some Of anyhow. Altogether, beyond every 
present method for S, designing a SIR DB may require some of the 
following SIR-specific steps.     

(i) For every R in S with PKN FKs, (a) rename every PKN FK 
that should not be so anymore in Sf, in case there is any such FK. 

(ii) For every R in S, for every explicit IA A that should enlarge 
R, if there is any such A, every CA in particular, add A scheme. 
Generally, - as an explicit scheme, including the explicit LN, if the 
latter will not be in in the explicit From clause of R scheme. 
Alternatively, for a CA, add it as the (implicit) VA scheme, 
whenever more appropriate.   

(iii) Choose Of such that for every R (a) for every natural FK, 
R’ preexists Create Table R, (b) for every IA in R, every source 
relation preexists Create Table R as well. 

Step (i) may occur for some popular design methods. E.g. it 
would be the case if one aims at SIR DB from Ex. 18(ii), while 
obtaining S of S-P at Fig. 1 as the result of the lossless 
decompositions of the universal relation, [24], through Heath 
Theorem, [18], until every base table is in BCNF at least. Step (ii) is 
optional as well. One would actually need it for SIR DB resulting 
from Ex. 18(ii), but not, e.g., for S-P1.SP, with S = Sf. Also, in this 
step, DBA adds every CA A scheme. Notice that the DBA may then 
have the choice of more than one R. The only necessary condition is 
indeed that A is functionally dependent on the primary key of 
chosen R. E.g., the DBA may add WEIGHT_KG scheme either to P 
or to SP only. However, it is easy to figure out that choosing for A 
the relation that is the earliest in Of among all those possible for A, 
can make some queries searching for A values less procedural. 
Thus, e.g., WEIGHT_KG should rather be in P.  

Step (iii) is obviously mandatory for every practical SIR DB. 
The choice of Of is obviously more restrictive than of O for the 
same SRs, including those forming the bases of SIRs. Every Of has 
to indeed to create, for every natural FK and every explicit IA, CAs 
especially, every referenced base table. Recall finally that for every 
DB, hence for SIR DBs as well if the universal relation for S has 
non-trivial multivalued-valued dependencies (MVDs), the 
decomposition should start with the Fagin’s Theorem, [14]. The 
Heath Theorem applies then to the resulting intermediate SRs with 
FDs only. More details would be out of scope here.     

Besides, our prior various examples abundantly motivate the 
above steps. E.g., for S-P and S-P1 DBs, we have S = Sf as at Fig. 2 
and only step (iii) applies. Of could be (S, P, SP) or (P, S SP). The 
final result for SP was the natural basic SIR at Fig. 3, we recall. 
Likewise, to design S-P and S-P1 variants in Ex. 13, again S = Sf 
and only step (iii) applies. Of  is either (CG, S, P, SP) or (CG, P, S, 
SP) obviously. Whatever the choice is, in the SIR DB, CG would 
remain an SR, S and P would be basic natural SIRs and SP would 
end up a compound natural one, we recall.      

Next, in Ex. 18 (ii) again, although SP.P# is the only PKN FN, 
one still needs Of = (S, P, SP) or Of = (P, S SP). The rationale is the 
LN towards S in From clause of SP, making S referenced by 
SP.SNAME and of SP.CITY. Thus all three steps apply to this DB. 
Finally, the design of S-P1 variants with WEIGHT_KG or 
PERCENTAGE, or WEIGHT_T, will apply any favorite DBA’s 
design method, followed by steps (ii) and (iii) only.           

VI IMPLEMENTING SIRS 
The canonical implementation consists of the, so-called, SIR-layer, 
interfacing every client and the DBA, [1]. Fig. 4. Every SIR-layer 
uses SQL kernel of the already discussed some kernel (DBS). 
Together, this creates a SIR DBS, in our terminology. Above SIR-
layer, the relational constructs for any clients and DBA are: SRs, 
SIRs and views. We suppose the SIR SQL dialect for these 
constructs to be the kernel one, with the DDL syntax extended as 
above amply discussed. Underneath, i.e., for the kernel, there are 
necessarily only two constructs: (i) SRs, perhaps with VAs and (ii) 
views. We suppose then that (a) for every SIR DB, say DS, there is 
in the kernel a DB, say DK, termed kernel DB with the same name 
as DS, (b) for every SR or SIR with every IA declared as a VA and 
for every view in DS, SIR-layer creates the same table in DK. In 
other words, SIR-layer simply forwards to the kernel every Create 
Table or Create View statement for such tables. For the Foreign 
Key constraint, this may however imply the naming rule for DS we 
discuss soon. In contrast, for every SIR R with some or all IAs 
declared otherwise than VAs for DS, SIR-layer creates atomically 
within DK the following canonical representation of R, CR in short:  

(i) base table R_. This can thus be an SR or an SR with all the VAs. 
R_ has then also every table constraint and option declared for SIR 
R. Except perhaps for the Foreign Key constraint modified as above 
described.  
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(ii) C-view R. In particular, one may create the latter with only the 
proper attribute names in conflict being qualified (prefixed), e.g., as 
in (3). The conflicting SAs are then prefixed with R_. Alternatively, 
one may simply qualify every name, with no consequences for the 
queries to C-view, at any kernel we are aware of.  

Fig. 4 illustrates the creation of S-P1 DB as DS and DK, with CR 
of SP. SPI scheme defines SP in DS. SIR-layer first preprocess (PP) 
SPI to SPE scheme, Then, it processes (P) the whole S-P1 schema to 
DK scheme. That one defines base tables S, P, SP_ and C-view SP, 
canonically implementing S-P1. (SP_, SP) is there the canonical 
representation (CR) of SP.  

 The naming rule for FK constraints in DS referred to above, is 
that whenever for an FK, one intends to reference SIR R’ with IAs 
other than VAs, then the FK constraint should actually reference 
R’_.  The rule results from the CR and from both Codd’s and SQL 
definitions of FKs. These require indeed every RK to be an SA. For 
any SIR R’, RK is thus within the base of R’_ in DS, hence within 
the base table R’_ in DK. In contrast, no RK can be declared as an 
attribute of R’. This would make indeed the constraint to reference 
C-view R’ in the DK. The attempt to create R with such an FK 
constraint would fail.   

Note as future work that it is, however, possible to use the CR 
without that rule. Namely, one can design the variant of the 
canonical implementation where even if R’ is a SIR in DK, the FK 
constraint in DS names R’ anyway. The advantage would be only 
one referencing rule for any FK constraint in DS, i.e., one always 
references the base table name only. The price would be a more 
complex implementation. The latter should indeed include 
additional preprocessing of every Create Table for DS, finding for 
every declared FK; whether R’ is a SIR. SIR-layer could determine 
this from SYSTABLES and SYSVIEWS. If R’ designates a C-view 
there and that there is also base table R’_, then SIR-layer should 
replace R’ with R’_. SIR-layer would generate then the Create 
Table R_ and Create View R statements for DK only after 
processing in this way every FK in the statement. At present, all this 
does not seem however worth the gain.   

Whatever is the variant, SIR-layer obviously easily extracts 
Create Table R_ and Create View R for the CR, i.e., for DK, from 
the explicit Create Table R for DS, i.e., for SIR-layer. The Create 
Table R_ contains indeed every attribute scheme outside {} and 
every table option. Some ‘}’ may then get replaced with ‘,’ in 
Create Table R_. The Create View R in turn, copies the name of 
every attribute in Create Table R outside some {} and every scheme 
of an IA, together with every element ‘*’ or in the form of ‘R’.*, if 
there is any, as well as the From clause terminating the IE, 
necessarily within {}. The last ‘}’ ends up the IE, also necessarily. 
It also terminates Create View R, being replaced with ‘;’ there. The 
rationale for the simplicity and correctness of all this parsing is our 
Section II assumption on the {} brackets that neither bracket can be 
in a relation name in the SQL dialect supposed for the SIR DBS. To 
appreciate how the absence of such brackets complicates the 
implementation of SIR-layer, practice our examples.  

Likewise, one can easily see how SIR-layer should process for 
the CR, every Alter Table and Drop Table, [1]. Finally, SIR-layer 
simply forwards every Create View R to the kernel, whether over 
SRs, SIRs or views, E.g., it would do so for any views of S-P1.SP.  

Next, we suppose the SIR-layer to pass through every Select 
query for DS. The kernel with DK processes it then towards the 
tables with the same names. For any SIR R within the query, the 
kernel will thus process it towards C-view R. It may in particular 
internally optimize the execution time of such queries, e.g., by 
materializing some IAs of view R for faster joins, [16], [17], [27]… 
SIR-layer also forwards unchanged to the kernel, every updating 
query, i.e., Insert, Update, or Delete. However, since an IA may be 
not updatable, we suppose as “safe” policy for the canonical 
implementation that any such queries name only tables for SIR DB 
that are base tables for the kernel’s DB under the CR. These have 
thus only SAs and, perhaps, some VAs, for the kernel providing for 
those. If, for a SIR DB, R is an SR or a SIR where every IA is a 

VA, the query should name R. Thus, e.g., an update should start as: 
Update R…., as at present. If, in contrast, R is a SIR with IAs other 
than VAs, the query should refer to R_.   

Beyond that rule, the correctness of an updating query to the 
canonically implemented SIR-layer would depend on kernel’s view 
update capabilities, [11]. E.g., the LNF query to S-P1, say, Q1: 
Delete From SP Where SNAME = ‘Smith’; would be directed thus 
by every kernel towards view SP. It then would be correct for MS 
Access and MySQL. Both provide indeed for updates of outer join 
views, of view SP thus. In contrast Q1 would fail on SQL server 
kernel and SQLite. None provides indeed that capability, forcing 
the updating of SRs instead. Instead of Q1; the correct query 
Q2 could then be: Delete From SP_ Where S# In (Select SP.S# from 
SP Where SNAME = ‘Smith’);. Notice that Q2 would be correct for 
MS Access and SQL Server as well. The visible drawback with 
respect to Q1 is greater procedurality, because of the LN through the 
‘In’ clause.   

The above functions of SIR-layer, where outlined already in [1] 
and [5]. Their canonical implementation appeared simple. The only 
new function here is the preprocessing of FKs. It appears simple to 
integrate. As stated within Section II.C, to find whether an attribute 
is a natural FK, kernel’s meta-tables, e.g. SYSTABLES, should 
suffice. Same is valid for determining whether a declared FK is 
PKN and for locating for every PKN FK, every SA or VA to 
become the source for the NI within the basic natural SIR. 
Likewise, exploring the meta-table(s) for views, e.g., SYSVIEWS, 
should suffice for every compound natural SIR. Both meta-tables 
should suffice consequently for any other SIR with FKs, with CAs 
in particular.  

Altogether, to reuse typical present schemes of SRs with PKN 
FKs as the implicit schemes of natural SIRs appears simple, perhaps 
surprisingly simple. Simple means here a couple of months of 
programming at most. Recall that, unlike today, any such schemes 
become view-savers for LNF queries. It appears similarly simple to 
extend this processing to the implicit schemes of SIRs with FKs and 
explicit IAs, the CAs other than VAs especially. Recall that SIRs 
with the latter become view-savers for LNF & CAF queries 
involving such CAs as well.    

VII CONCLUSION 
On a SIR-enabled DBS, a typical present scheme of a stored 

relation R with FKs, defines a natural SIR R. LNF queries to base 
tables at no cost for the DBA are the bonus. Also, SIRs with only 
some PKN FKs or with CAs, still provide for LNF or CAF queries, 
through Create Table R usually substantially less procedural than 
possible at present. This is also a bonus for the DBA. 

Next, it appears easy to generalize the present relational DB 
design to SIR. In particular, an overhaul of the Normal Forms 
emerges then. The decades old practice of VAs makes this overhaul 
long overdue. Notice to DB textbook authors. 

Finally, it looks simple to add the preprocessing of PKN FKs to 
the previously proposed canonical implementation of SIR-layer. We 
plan the proof-of-concept prototype as the next step. The Python’s 
beta version for SQLite3 kernel is actually already there. Recall that 
the SQLite3 apparently serves an estimated trillion+ DBs (VLDB 
22). More generally, any embedded kernel SQL should suffice for 
the canonically implemented SIR DBS. The road to make dough is 
wide open.  

Altogether, relational schemes with FKs were visibly not read 
as they should be, from the very inception of the relational model. 
LN with its often felt dreadful joins, within otherwise simple 
queries to base tables, was the penalty for generations. Likewise 
was the alternate need of views to offset the shortcoming. Same for 
the CAF queries, either presently limited to VAs or requiring 
dedicated views as well. Relational DBSs should become SIR-
enabled “better sooner than later”. Making LNF & CAF queries to 
the base tables the standard, at last. It will be a long overdue service 
to SQL clients, likely in many millions these days.   

https://www.lamsade.dauphine.fr/%7Elitwin/Prototype%20SIR-Layer%20for%20Implicit%20SIR%20scheme1.pdf
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Create Table S (  Create Table P ( Create Table SP ( 
S#  Char 5,                        P# Char 5,                   S# Char 5  
SNAME Char 30,         PNAME Char 30,       P# Char 5    
STATUS Int,           COLOR  Char 30,       QTY Int {SNAME, STATUS, S.CITY, {PNAME, COLOR, WEIGHT, P.CITY 
CITY Char 30,          WEIGHT Int,              From SP_ Left Join S On SP_.S#=S.S# Left Join P On SP.P#=P.P#}  
Primary Key (S#));         CITY Char 30,            Primary Key (S#, P#));         
   Primary Key (P#));         
 
Fig. 2:  S-P1 scheme with explicit SP scheme. The implicit one would be that of S-P.SP, outside the brackets {}.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                        Fig. 3:  S-P1 content. IAs are Italic. S-P1.SP is the natural SIR for S-P.SP. 
 
 
 

Table S      Table P 
S# SNAME STATUS   CITY  P# PNAME COLOR   WEIGHT    CITY  
S1         Smith 20 London  P1     Nut Red 12 London 
S2 Jones 10 Paris  P2 Bolt Green 17 Paris 
S3 Blake 30 Paris  P3 Screw  Blue 17 Rome 
S4 Clark 20 London  P4  Screw Red 14 London 
S5 Adams 30  Athens  P5 Cam Blue 12 Par
     P6     Cog Red 19 London 
Table SP  
S#      P#   QTY      SNAME    STATUS    S.CITY            PNAME     COLOR WEIGHT P.CITY     
S1      P1   100        Smith 20        London    Nut Red          12        London      
S1      P2   200        Smith   20        London    Bolt           Green       17        Paris        
S1      P3   400        Smith    20        London    Screw        Blue         17        Rome           
S1      P4   200        Smith 20        London   Screw        Red      14        London       
S1      P5   100        Smith   20        London     Cam Blue        12        Paris        
S1      P6   100        Smith 20        London      Cog Red 19        London     
S2      P1   300        Jones  10        Paris          Nut Red 12        London     
S2      P2   400        Jones 10        Paris          Bolt Green       17        Paris         
S3      P2   200        Blake 30        Paris          Bolt Green       17        Paris         
S4      P2   200        Clark  20        London      Bolt     Green       17        Paris            
S4      P4   300        Clark  20        London     Screw        Red           14        London        
S4      P5   400        Clark 20        Athens      Cam  Blue          12        Paris          
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Fig. 4:  Creation of S-P1 SIR DB.  
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