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Abstract 
We describe novel schemes for the signatures of data objects in a Scalable Distributed 

Data Structure (SDDS), which we call algebraic signatures. An algebraic signature 
exhibits different properties than a cryptographically secure signature, best exemplified 
by the well-known standard SHA1.  We calculate the signature as a power series in a 
primitive element of a Galois Field (GF) of 28 or 216 elements.  We use our scheme for 
the SDDS file transfer to the disk and of the record update management in presence of 
concurrent SDDS clients and of bucket splits. 

  One salient consequence of the algebraic properties of our schemes is that the 
probability that two objects have the same signature while they differ by only a few 
symbols, can be strictly zero. Otherwise, our scheme offers a very small collision (error) 
probability. Like the cryptographic schemes in general. Another consequence is that one 
can perform algebraic operations on the signatures themselves.   

We describe the rationale for our schemes, and we recall the theory of the Galois 
Fields. Next, we present our schemes.  Next, we discuss the implementation issues, and 
overview the main actual performance results of the experimental validation in the 
SDDS-2000 system. We conclude with the directions for the further work. 

1 Introduction 
A signature identifies  a larger data object (a record, a page, a file, etc.) with relatively 

few bytes.  Comparing signatures should determine equality with  high probability at 
least. The primary application is the a posteriori detection of updates to the object. 
Especially, between the distributed versions of it, e.g., multi-node copies of a file, 
[Me83], [AA93], [BGMF88], [BL91], [FWA86], [Me91], [SBB90]...  

The updates often follow common patterns. For instance, in a text document the cut 
and paste of n successive symbols usually dominates. Likewise, a database record update 
often changes only relatively few bytes. Typical updates should be most likely to change 
the signatures, when, as usual, there is no way to guarantee the signature change for every 
potential update. Besides this common need, further “wish lists” of constraints on “good” 
signatures can be formulated for specific applications, e.g., for documents [FC87], 
[KC96], [KC99]. 

Several algorithms for signature calculus are known. Perhaps the most applied is the 
well-known standard SHA1. This is a cryptographically secure signature scheme to also 
prevent the malicious alterations. A standard SHA1 signature is usually 128 byte long.    

Signatures are a useful tool for a Scalable Distributed Data Structure (SDDS), e.g., in 
the SDDS-2000 system [C02]. One need is the backup of  RAM bucket to the disk, where 
possibly only the updated areas should be copied. Next, signing the concurrent record 
update avoids the lost updates.  A high-availability SDDS may have a specific need for 
testing the consistency of application and parity data etc.  

The property of a cryptographic signature, e.g., the standard size of SHA1 signature do 
not fit best this context. We describe a novel method which generates, as we call it an 
algebraic signature. We calculate the n-symbol signature as a power series of typically 
primitive elements in a Galois Field (GF) of 28 or 216 elements. Our symbols are 
accordingly successive bytes or two-byte words of the object.  

The algebraic signatures are not cryptographically secure. They exhibits in turn novel 
properties, attractive in our context. Short algebraic signatures, e.g. 4-byte long, should 
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usually suffice. Next, the  probability that two objects differing by at most n symbols 
have the same signature of n symbols is zero. One can also perform algebraic operations 
on the signatures themselves. An updated signature of a structured object can then be 
calculated only from the update to a component signature. This paves the way towards  
tree structures over the collections of signatures, speeding up the localization of the 
updated ones.   

Below, we describe more in depth our motivating SDDS signature needs. We then 
recall the theory of the Galois Fields. Next we present our schemes. Afterwards, we 
overview the implementation tuning, and the experimental results. Finally we provide our 
conclusion and directions for the further work.   

Section 2 presents  the motivating SDDS signature needs.  Section 3  discusses  the 
Galois Fields. Section 4 introduces our schemes. Section 5 discusses selected the 
implementation issues, and the experimental performance measurements. Section 6 sums 
up our conclusions.  

2 Signatures for an SDDS 
We recall that a Scalable Distributed Data Structure (SDDS) uses the server nodes of a 

multicomputer to store a file consisting of records or more generally objects.  Records or 
objects have a unique key and are stored on each server in buckets. The data structure 
implements the key-based operations of inserts, deletes, and updates as well as scan 
queries.  These operations are requested by an application from the SDDS client at its 
node. The client manages the query delivery  to the appropriate server and receives the 
reply if any. The file scales with the inserts through the splits. Each split sends about half 
of a bucket to a new one, dynamically appended to the file. Typically the buckets reside 
for the processing entirely in the distributed RAM.    

We apply the signatures to an SDDS at present to the RAM file backup to the disk  
and to the management of the concurrent updates. 

2.1 File backup 
We wish to store or backup an SDDS RAM buckets on disks. Perhaps to reuse the 

RAM for another SDDS bucket, brought from the disk. For this purpose, we backup in 
parallel each RAM bucket B of the file. . We want to copy to the disk possibly only the 
parts of B that changed with respect to the disk content.  The whole capability should be 
an enhancement to the running prototype SDDS-2000 [CERIA]. 

The traditional approach that comes to mind is to divide the bucket into pages of some 
relatively small granularity. Then to simply index each page by a dirty/clean bit B. B is 
set to “clean” when the page is saved to the disk. It becomes “dirty” at the next write to 
the page. We copy only the dirty pages. 

The implementation of this approach requires that every part of the running SDDS 
server code is checked for its writes of the bucket. If it does so, it is modified so that it 
makes dirty the appropriate bit. The SDDS server code has dozens of thousands of lines 
of code produced by various people over years. The discussed revision would be a major 
and error prone work. At best it would constitute a long effort, at worst it would be the 
enhancement that breaks the application. 

Another approach is to provide each page with a signature. We compute all the 
signatures only when we save the bucket.  This computation is therefore independent of 
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all those writing anywhere to the bucket, in any part of the already running code.  It is the 
crucial advantage of the method over the traditional approach in our case.  

More in detail, we provide the disk bucket with a signature map, which is simply the 
collection of all its page signatures. When we wish to save the bucket, we compute the 
signature of each page and compare it to its “buddy” in the signature map. We save the 
page only if the signatures are different. We update the map in consequence.  

The slicing of the bucket into pages is somewhat arbitrary. A changed region might 
span over several pages.  The slicing should be such that the map is entirely in RAM.  Or 
better, it enters the L1 or L2 cache during the comparison phase, perhaps with the help of 
the Prefetch command. The practical page size can then be expected somewhere between 
256 B and 64 KB depending on the bucket size. In our case, it will appear that the size of 
GF used also limits the page size. On the other hand, it will also appear that larger pages 
decrease the total signature calculus time. In contrast, larger granularity obviously 
increases the size of transfers to the disk. The best choice is likely to be application 
dependent.  

The signature map can be simply a table. This is our basic choice for the present 
implementation. The use of algebraic signatures allows however to structure it into a 
signature tree as well. We compute then a signature at the node at next higher level from 
all those under the node. This may speed up the identification of the portions of the map 
where the signatures have changed. It should be especially useful if the map in its entirety 
does not fit into RAM. 

2.2 Concurrent Record Updates   
Several SDDS clients may attempt to read or update the same record R. It is best for 

the access performance to let every client read any record without any wait. However, the 
subsequent update should not override any other. A simple way to ensure this classical 
requirement for an SDDS could be as follows. It is freely inspired by the optimistic 
option of the concurrency control of MS-Access3. 

We recall that an update operation may only change the non-key part of R. Let Rb 
denote the before-image of R and Sb its signature. We recall that before-image is the 
content of R that is subject to the update by a client. We call the result of the update after-
image of R and note it and its signature respectively Ra and Sa. The update can be 
conditional in which case Ra depends on Rb. For instance through the condition: 
Salary := Salary + 0.01*Sales. Alternatively, the update may be unconditional. Then, Ra is 
set regardless of Rb. For instance : Salary := 1000 or Image (c) := Refresh (Image (c)) for 
images of a surveillance camera. The application needs Rb for a conditional update. It 
may not need it for an unconditional one. In both cases, it may not be aware whether 
actually Ra ≠ Rb as the result. As perhaps in the above example, for unlucky salesmen in 
these hard times, or as long as there is no burglar in the house under surveillance. 

The signatures may potentially help managing the concurrent updates to an SDDS as 
follows. If the application needs Rb, it requests the client to key search R. If Rb might 
have been updated, the application provides to the client Rb and Ra. The client computes 
Sa and Sb. If Sa = Sb, then the update in fact did not change the record. Such an update 
terminates at the client. Only if  Sa ≠ Sb, the client sends Ra and Sb to the server. The 

                                                 
3 The optimistic concurrency control of MsAccess is not the optimistic approach traditionally presented in 
the database books, e.g.,  [LBK02]. 
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server accesses R and computes its signature S. If Sb = S, then the server updates R to 
R := Ra. Otherwise, it abandons the update. A concurrent update had to happen to R in the 
meantime, since the client read Rb and the server received its update Ra. If the new update 
proceeded, it would override that one, making the result non-serializable. The server 
notifies the client about the rollback which in turn alerts the application. The application 
may read R again and redo the update accordingly. 

If the update is unconditional, then the application may provide only Ra to the client. 
The client computes Sb and sends the key of Ra to the server requesting S. The server 
computes S and send it to the client as Sb. From this point, the client and the server can 
proceed as described above. Calculating and sending S alone as Sb, avoids the transfer of 
entire Rb to the client, to possibly avoid the useless transfer of Ra to the server in turn. 
These can be substantial savings, e.g., for our surveillance images. 

The scheme does not need locks. Also, as we have seen, the signature calculus saves 
the useless record transfers.  Besides, neither the key search, nor the insert or deletion 
needs the signature calculus. Hence, none of these operations incurs the concurrency 
management overhead. All together, the degree of concurrency can be potentially high. 
The scheme roughly corresponds to the R-Committed isolation level of the SQL3 
standard. Its properties make it attractive to many applications that do not need the 
transaction management. Especially, if the search is the predominant operation, as one 
considers in general for an optimistic scheme.  

The scheme does not store the signatures. Hence, the storage overhead can be zero, 
unlike, e.g., for timestamps, probably used by MsAccess. Nevertheless, it can still be 
advantageous to modify the scheme so to store the signatures with their records. The 
client sends then also Sa to the server which  stores it in the file with Ra if it accepts the 
update. When the client requests R it gets it with S. If the client requests S alone, the 
server simply extracts S from R, instead of dynamically calculating it. All together, one 
saves the Sb calculus at the client and that of S at the server. Also, and more significantly 
perhaps in practice, the signature calculus becomes entirely deported at the client. Hence, 
it becomes entirely parallel among the concurrent clients. As we show later, the storage 
cost at the server can be about 4-bytes per signature. 

Whether one stores the signature or not, the speed of the signature calculus is clearly 
THE challenge. The resulting access performance should in particular about match the 
current one of an SDDS. The calculus time should not be longer than a fraction of a 
millisecond per record in practice.  

3 Galois Fields 
A Galois field (GF), is finite field. As any field, it supports addition and 

multiplication. Addition and multiplication are associative, commutative, and 
distributive, there exists neutral elements called zero and one for addition and 
multiplication respectively, and there exist inverse elements regarding addition and 
multiplication.    

 We denote GF(2f) a GF defined over the set of all binary strings of a certain length f. 
We deal only with these GFs unless we state otherwise. The fields GF (28) and  GF (216) 
are our main concern. Their elements are respectively byte and 2-byte strings.  

We identify each binary string with a binary polynomial in one formal unknown x.  
For example, we identify the string 101001 with the polynomial x5+x3+1.  We further 
associate with the GF the  generator polynomial g(x), which is a polynomial of degree f 
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that cannot be written as a product of two other polynomials other than the trivial result 
of a multiplication of 1 with itself. 

The addition of two elements in our GF is that of their binary polynomials.  In 
practice, it boils down to the XOR  of the two strings.  The product of two elements is 
formally corresponds to the binary polynomial obtained by multiplying the two operand 
polynomials and taking the remainder modulo g(x), the generator polynomial.     . There 
are several ways to implement this calculus in practice. We use the logarithmic 
multiplication method we detail later on. This  seems most practical for our GF (28) and  
GF (216) fields.  It uses the primitive elements of a GF which are elements with the 
following properties.  

The order of a non-zero element α of a Galois field is the smallest exponent non-zero i  
such that that: 

ord( ) := min{ 0 :  = 1} iiα α> . 
All non-zero elements in a GF have a finite order.  An element α ≠ 0 of a GF of size s 

is primitive, if ord(α) = s-1. It well known that for any given primitive element α in a 
Galois field with s elements, all the non-zero elements in the field are different powers αi, 
each with a uniquely determined exponent i, 0 ≤ i ≤ s-1. Furthermore, a GF can have 
several primitive elements.   

In particular, any αi is also a primitive element if i and s-1 are coprime (meaning that 
they have no non-trivial factors in common).  Since our GFs contain 2f elements, the 
prime decomposition of 2f-1 does not contain the prime 2. For our values of f = 8,16, 2f-1  
contains furthermore a few factors Hence there are relatively many primitive elements.  

For instance, for f = 255 the prime factorization is 3⋅5⋅15.  There are 85 + 51 + 15 – 17 
– 5 – 3 + 2 = 128 numbers between 2 and 255 that have a prime factor in common with 
255.  Hence, 255 – 128 = 127 or roughly half of the non-zero elements are primitive. For 
any a and any f furthermore, a2, a4, a8… are the primitive elements.    

The logarithmic multiplication uses the primitive elements as follows. Let α be a 
primitive element – as before.  Every non-zero element β is a power of α.  If β=αi, we 
call i the logarithm of β with respect to α and write i=logα(β) and we call β the 
antilogarithm of i with respect to α and write β=antilogα(i).  The logarithms are uniquely 
determined if we choose i to be 0≤i≤2f-2.  We set logα(0)=-∝.     

The multiplication is now given by the following formula: 
)).(log)((logantilog γβγβ ααα +=⋅  

Here, the addition is to be performed modulo 2f-1.  We can now implement Galois 
field multiplication by keeping both a table for logarithms and antilogarithms.  These 
tables are of size 2ff and for moderate f (i.e. up to f=16) fit in the L1 or L2 cache during 
execution on current µ-processors.  To accommodate the awkward addition modulo 2f-1 
in the product formula, we can double the size of the antilog table to accommodate 
indices up to size 2f⋅2.   

The complete implementation of multiplication needs to check for the special case of 
one of the operands being equal to 0.  Assuming that antilog is a table of size 2f⋅2, we 
then obtain the following C-pseudo-code for the multiplication: 

GFElement mult(GFElement left, GFElement right) { 
 if(left==0||right == 0) return 0; 
 return antilog[log[left]+log[right]]; 
} 
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In terms of Assembly instructions, the typical execution costs of the body of the sub-
program are two comparisons, four additions (three for table-look-up), three memory 
fetches and the return statement.   

4 Algebraic Signatures  
4.1 Basic properties 

We call page P a string of l symbols pi ; l = 0,2..l-1.  In our case, the symbols pi are 
bytes or 2-byte words.  The symbols are elements of a Galois field, GF (2f) for us ; f = 8, 
16 basically. We assume that l < 2f -1.   

Let α = (α1…αn)  be a vector of different non-zero elements of the Galois field.  We 
call α the n-symbol  signature base, or simply the base. The (n-symbol) P signature, or P 
n-signature, or simply P signature, based on α,  is vector : 

1 2
sig ( ) (sig ( ),sig ( ),...,sig ( )).α α α α=

n
P P P P  

Here, for each α, sigα (P) denotes :   
1

0
sig ( ) l i

ii
P pα α−

=
= ∑ . 

Some choices of α coordinates, perhaps pseudo-random, are possibly interesting for 
cryptographic needs. It is not our goal here. Besides, it is quite clear that best 
randomizing (hashing) of P should occur when all α are primitive. Our primary interest is 
nevertheless in α exhibiting the following pattern for some primitive α : 

α = (α, α2, α3…αn)  with n << ord(a) = 2f - 1. 

We denote sigα in this case as sigα,n.  Clearly, the collision probability of sigα,n can be at 
best 2-nf. If n = 1, this may be insufficient in practice for our f values. Value n ≥ 2 appears 
the least practical choice  from this perspective.  

Next, our interest is in signatures we denote sig2
α,n whose all coordinates of α are 

primitive as we have discussed and which is: 

α = (α, α2, α4, α8…α2n). 

 The sig2
α,n calculus schema offers potentially better randomization for n > 2, (for 

n ≤ 2, we have sig2
α,n = sigα,n, since α2 is primitive in any GF(2f)). Intuitively, the highest 

possible order of each element  should avoid some collisions that sigα,n must leads to. We 
prove it more formally for the cut and paste operation in pages of length smaller than 2f -
 1 below. 

The basic new property of sigα,n calculus scheme is that any change of up to n symbols 
within P changes the signature for sure. This is our primary rationale in this scheme. 
More formally we stay this property as the following proposition.   

Proposition 1: Provided the page length l is l < ord(α) which is 2f – 1 for sigα,n 
signature as α is primitive, the sigα,n signature discovers any change of up to n symbols 
per page. 

Proof:  Assume that the file symbols at locations i1, i2, … in has been changed, but that 
the signatures of the original and the altered file are the same.  Call dν the difference 
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between the respective symbols in position iν.  By taking the difference of the component 
signatures, we conclude : 
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=
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Thus, the dν are the solutions of a homogeneous linear system:  
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The coefficients in the first row are all different, since the exponents iv < ord(α).  
Therefore the matrix is of Vandermonde type and hence invertible.  Hence, the vector of 
differences  is the zero-vector.  This contradicts our 
assumption. Therefore the sig

( t
4321 nddddd )
α,n signature can detect any up to n-symbol change. CQFD 

Notice that Proposition 1 holds also for a non-primitive α, as long as one chooses 
smaller l which should be l < ord(α) < 2f-1. However, a generalization of sigα,n scheme to 
a base using a non-primitive α does not seem of practical interest. We now prove our 
intuitive claim with respect to the collision probability of  sigα,n and, naturally, of sig2

α,n 
with n ≤ 2. 

Proposition 2: Assuming that page length is l < ord(α) and that every possible page 
content is equally likely, the probability that the signatures of two different pages 
coincide is 2-nf. 

Proof: The n-symbol signature is a linear mapping between the vector spaces GF(2f)l 
and GF(2f)n.  This mapping is an epimorphism, i.e., every element in GF(2f)n is the 
signature of some page, element of GF(2f)l.  Consider indeed map φ producing the 
signatures of pages where all but the first n symbols are zeros.  We have thus φ: GF(2f)n 

→ GF(2f)n mapping any (x1,…,xn) to the signature of a page with symbols 
(x1,…,xn,0,…0).  Furthermore: 
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 φ  
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The matrix is of Vandermonde type, hence is invertible. Consequentially, φ is an 
isomorphism and every Galois field element is the signature of a page with all but the 
first n symbols equal to zero.  According to linear algebra, the set of pages with a given 
signature s is the coset (p1, … pn, 0, 0,… 0) + kernel(sig), where (p1,…pn, 0, 0, … 0) is 
the uniquely determined page with all but the first n elements dummy that has signature s.  
All cosets have the same cardinality. The selections of all possible pages being equally 
likely to appear, our proposition follows. CQFD 

We qualified our schemes algebraic claiming that they support some form of the 
algebraic calculus of new signatures from the signatures only. Here is first motivating 
property of sigα,n scheme. Its practical importance concerns pages where the change is 
localized to a rather small substring (or several substrings). The case is usual in 
databases, with the changes localized to the attributes with a few symbols. We show that 
one may then update the sigα,n signature only knowing the changed symbols and the 
before signature. This may clearly largely speed up the signature calculus with respect to 
the full calculus again (necessary for the more traditional signature schemes we are aware 
of, SHA1 in particular).  Formally: 

Proposition 3:  Let us change P = (p0, p1, … pl-1) to page P’ where we replace the 
symbols starting in position r and ending with position s-1 with the string q q . 
We define ∆-string as ∆ = (δ

1 1, , ,r r sq+ −

0, δ1, … δs-r-1) with δi = pr+i – qr+i .  Then for each α in our 
base α we have: 

sig ( ') sig ( ) sig ( ).rP Pα α αα= + ∆

)r

 
Proof: The difference between the signatures is : 

1

1

1

1

0

sig ( ') sig ( ) ( )

( ( )

( )

( )

sig ( ).

s
i

i i
i r

s
r i

i i
i r
s

r i r
i r

i r
s r

r i
i

i
r

P P q p

q p

α α

α

α

α α

α δ α

α δ α

α

−

=

−
−

=

−
−

−
=

− −

=

− = −

= −

=

=

= ∆

∑

∑

∑

∑

 

CQFD. 
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Back to Proposition 1, beyond its explicitly stated goal, it proves also the sure 
detection of any cut and paste, the switch, in other words, of length up to int (n/2). We 
now finally for this section prove the practical interest of sig2

α,n schema for these frequent 
operations of length above that one. 

Proposition 4  Let it be an arbitrary page P, and three indices r, s, t of appropriate 
sizes. We cut a string T of length t beginning with position r and move it into position s in 
P.  We use of a scheme sigα  with arbitrary base α = α0, α1, … αn-1.  Assume that ord(αi) 
is above P length, 0 ≤ i ≤ n-1.  Next, B contains at least n symbols or T contains at least n 
symbols. Then, the probability that sigα(P) changes is 2-nf. 
 
 
 

Cα

Cα

 
 
 
 
 

 

C 

C 

A 

A 

B 

B 

T 

T 

s+tsr
Pold: 

Pnew: 

   

 

 

 

 

 

 

r+tsr 

B 

B 

T 

T 

A 

A 

C 

C 
Pold 

Pnew 

Figure 1: Cut and Paste Illustration for Proposition 4. 

Proof:  We only treat the case of length(B) ≥ n, the other one being analogue.  Next, 
without loss of generality we assume a forward move of a region T within the file from 
position r to position s.  A backward move just undoes this operation and thus has the 
same effect on the signature.  Figure 1 defines names for the regions of the block and 
makes a spurious case distinction depending on whether r+t < s or not.  For any α ∈{α0, 
α1, … αn-1}, the α signature of the “before” page (the top scheme for both situations) is :  

oldsig ( ) sig ( ) sig ( ) sig ( ) sig ( ).r r t s tP A T Bα α α αα α α+ += + + +  

The after page signature is: 
newsig ( ) sig ( ) sig ( ) sig ( ) sig ( ).r s s tP A B Tα α α αα α α += + + +  

The difference of the two signatures is: 
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( )
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This expression is zero only if the right hand side, or the following expression where we 
use γi as an abbreviation is zero: 
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We now fix the whole situation with the exception of the first n symbols in B.  The 
change in signature is:  
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which is zero if and only if:  
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0 0 0

, ,..., ( , ,..., ).
n n n

n nb b bν ν ν
ν ν ν

ν ν ν

α α α γ γ γ
− − −

− −
= = =

  = 
 
∑ ∑ ∑ 1  

The left hand side is a linear mapping in the (b0, b1, … bn-1), which has a matrix that is 
invertible, because it has a Vandermonde type determinant.  Therefore, there exists only 
one combination (b0, b1, … bn-1) that is mapped by the mapping onto the right hand 
vector.  This combination will be attained for a randomly picked B with probability 2-nf. 
CQFD   

To obtain the strongest property of a sigα,n signature schema, one should thus choose 
the defining Galois field elements α whose αi have the maximal order. The natural choice 
is that of primitive αi. This is precisely the rationale in sig2

α,n, assuming the need for 
n > 2. Notice that for GF (216), the collision probability is already small enough in 
practice, as we discuss more in Section 5.2.   

At this stage of our research, the choice of sig2
α,n appears only as a trade-off between 

smaller probability of collision for any update, and the zero probability of collision for 
updates up to any n symbols. We are able only to conjecture that there is α in GF(28) or 
GF(28) for which Proposition 1 and 2 holds.  We did not pursue the investigation further, 
since for our needs n = 2 for GF (216) sufficed (Section 5.2). Since for n ≤ 2, 
sig2

α,n = sigα,n, all the properties of both schemes coincide as well. 
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4.2 Compound Algebraic Signatures 
Our signature schemes keep the property of sure detection of n-symbol change as long 

as the page size in symbols is at most 2f – 2. For f = 16, the limit on the page size is 
almost 128 KB. For computing the signature of a larger area one needs a larger field that 
is 224 at least in practice. Manipulating such fields is less convenient in practice. An 
alternative approach is to rather to divide the area into largest possible pages and to use 
the vector of the signatures of those pages. We call such vector compound signature. 
More specifically, we qualify a compound signature of m pages, as m-fold. We refer to 
the implementation of a compound signature as to the signature map like in Section  2.1. 

The practical interest of the compound signatures stretches beyond the motivating case 
above. One may usefully apply the concept also as an alternative to a signature of an area 
A not exceeding the limit of ord (α)-1. To use an m-fold signature sigα,n for instance, one 
may divide A into equally sized pages each provided with sigα,n. One locates then for sure 
and with the granularity of l /m any up to n-symbol change with a priori unknown 
location (hence Proposition 3 does not apply). The price with respect to sigα,n(A), i.e.,  
sigα,n over entire A with the granularity thus of l, is mainly the about m times larger 
storage overhead. In practice, one can search for m leading to a reasonable compromise. 
Notice that a yet alternative choice for using the m times larger overhead  if acceptable, is 
to enhance the sure change detection resolution to mn symbols anywhere in A, using 
sigα,mn (A).  

For larger m, further practical importance of the algebraic properties of m-fold sigα,n  
scheme (and in fact similarly of sig2

α,n scheme) is that we may implement signature maps 
as trees speeding up the search for a changed sigα,n.  As we show below, with our 
schemes, we may algebraically, i.e., without reexamining the pages themselves compute 
the higher level signatures (unlike for more traditional signature schemes we are aware 
of). If a  sigα,n changes, we may update the higher level once again only algebraically. All 
these capabilities of compound signatures can be of obvious interest to our SDDS file 
backup application. 

The following proposition proves the algebraic properties we discuss for an area 
partitioned into two pages. Those can be furthermore of different sizes. This is sometimes 
a useful capability as well, e.g., when A starts with a relatively small index of the data the 
follow in A. It generalizes trivially to any larger m. It holds pages of different sizes as 
well.   

Proposition 5: Consider that we concatenate two pages P1 and P2 of length l and m, l 
+ m ≤  2f-1, into page (area) denoted P1P2. Then, the signature sigα,n (P1P2) is as 
follows, where sig denotes sigα,n : 

sigα,n (P1P2) =  (sig(P1)+al⋅ sig(P2), sig(P1)+a2l⋅ sig(P2),…, sig(P1)+anl⋅ sig(P2). 

Proof: The proof consists in applying Lemma that follows to each α coordinate α. We 
note sigα,1 as simply sigα. 

Lemma. The 1-symbol sigα (P1P2) signature is : 

sigα (P1|P2) = sig(P1)+al sig(P2). 

Proof:  Assume that P1 = {s1,s2,…,sl} and P2 = {sl+1,sl+2,…,sl+m}.  Then: 
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CQFD. 
Proposition 5 holds analogously for sig2

α,n. Together, all the propositions we have 
formulated prove the potential of our two schemes.  They have further algebraic 
properties we are currently investigating.   

5 Experimental Implementation  
5.1 Calculus tuning 

One can tune the signature calculus.  First, one may interpret the page symbols directly 
as logarithms.  This saves a table look-up. The logarithms range from 0 to 2f-2 
(inclusively) with the additional value for log(0).  One can set this one to 2f-1.   

Next, the signature calculations form the product with αi. This one has i as the 
logarithm. One does not need to look this value up neither.   

The following pseudo-code for sigα,1 applies these properties. It uses as parameters the 
address of an array representing the bucket and the size of the bucket. The constant 
TWO_TO_THE_F is 2f.  The type GFElement is an alias for the appropriate integer type.   

GFElement signature(GFElement *page, int pageLength) { 
 GFElement returnValue = 0; 
 for(int i=0; i< pageLength; i++) { 
 if(page[i]!=TWO_TO_THE_F-1)  
     returnValue ^= antilog[i+page[i]]; 
  } 
 return returnValue; 
} 

The application to the calculation of sigα,n is easy.  
In our file backup application, the bucket usually contains several pages so we 

typically calculate the compound signature. To tune this calculus, one should consider the 
best use of the processor caches, i.e., L1 and L2 caches on our Pentium machines. It 
seems advantageous to explore the cache lines on the log table. Then, it may be gainful to 
first loop upon the calculus of sigα,1 for all the pages, then move to sigα2,1 and so on. Our 
experiments confirmed this intuition. 

5.2 Experimental Performance 
We have implemented the sigα,1 schemes in our motivating applications for the 

experimental analysis. The testbed configuration consisted from 1.8 GHz nodes and from 
700 Mhz nodes over a 100 Mb Ethernet. One implementation concerned the signature 
calculus schemes alone with simulated data. In this series of experiments, we examined 
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variants of the sigα,n calculus with respect to implementation issues and some differences 
with respect to the basic scheme. We have also experimented with the sig2

α,n whose 
calculus time were understandably the same. Next, we have ported best calculus of sigα,n 
to our SDDS-2000 prototype.  

In both cases, we have set up for dividing the bucket into the pages of size of 16 KB 
with the 4-byte signature per page. This choice appears as a reasonable compromise 
between the signature size, hence its calculus time, and the overall collision probability of 
order 2-32, i.e. over 4*10-9.  For the record updates, we use the same signature size, but 
the record size is of 100 bytes.  

Internally, the bucket in SDDS-2000 has a RAM index as it is structured into a  RAM 
B-tree. The index is small, a few KB at largest. Bucket size page does not make sense 
there. We set up for the page size for the index of 128 B. 

For the concurrency control, we set up for storing the signature in each record. 
Alternatively, it was also possible to compute it on-the-fly any time needed, at the server 
and perhaps the client to unload the former. The actual computation took place only for 
the updates. Inserts were not affected.  

This analysis is presented full in [M02]. The main results are as follows. The stand-
alone experiments showed, somehow surprisingly, a large variation of the calculus time 
depending on the data symbols. The reason seemed to be the influence of the caches L1 
and L2. For a given page size, the calculus time was linear with n for sigα,n used. 

Next, the SDDS-2000 implementation led to the actual calculus times of 20-30 ms per 
1 MB of RAM bucket, manipulated as a mapped file. It was a fraction of ms for the index 
page and records tested for the concurrent updates. This timing was linear in size of the 
bucket, and, also somehow surprisingly, rather stable regardless of the signature scheme 
tested. The calculus time was smaller for a larger page: 64 KB versus 16 KB. It is 
probably due to the better cache use. The actual transfer time of 1 Mb of RAM to the disk 
is about 300 ms. Thus the backup using our signature scheme offered the expected gains. 
Likewise, the concurrency control scheme proved a practical solution as well. 

In both cases the use of the GF (216) was somehow more effective than that of GF (28). 
This despite the fact that the logarithm table of the latter could entirely enter the cache, 
accelerating thus notably the calculus, while not the former.  The former used in turn the 
calculus using at least 2-byte words, actually 4-byte words. This design appears thus a 
preferable mode and was our final choice for the SDDS-2000. 

6  Conclusion 
We have present new signature schemes that we have developed for our SDDS 

manipulation needs. The scheme exhibit new properties interesting for database and other 
application. These are sure detection of limited size updates and potential for algebraic 
operations over the signatures themselves. The scheme present also good overall behavior 
with respect to the probability of detection of typical changes such as through the 
cut/paste operation. Finally, our signatures may introduce a very small overhead in 
practice, e.g., 4 bytes per 16 KB page in our case.  The experimental implementation in 
the SDDS-2000 system has confirmed the practical interest of the schemes.  

There are further directions for perfecting the schemes. One concerns the various 
theoretical issues with respect to the algebraic properties. Variants of the basic schemes 
remain also for deeper study. The mutual behavior of the sigα,n  and sig2

α,n with respect to 

 14



the practical collision probability, apart of our assumption of the uniform probability of 
every page content, also remains to be explored. Finally, we did not study the explicit use 
of the cache managing Prefetch macro, providing perhaps substantial further calculus 
time reduction.  

Perspective applications of our scheme go beyond our motivating ones. There is in 
particular a relationship between our calculus and that of parity calculus we use for the 
LH*RS, based on the Reed-Salomon erasure correcting encoding. The signatures can help 
preserving the mutual consistency of data and parity records in presence of lost messages 
etc. Interesting possibilities appear also for the transactional concurrency. control beyond 
the prevention of the lost updates. We explore all these avenues at present. 
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