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ABSTRACT 

LH*RE is a Scalable, Distributed Data Structure (SDDS) 

based on LH*. It is designed to store client data in the 

potentially hostile environment of cloud, grid, or even P2P 

computing and protects data confidentiality by client side 

encryption. Its novel feature is safe backup of the 

encryption keys used within the LH*RE-data structure itself. 

This allows administrators to recover and revoke keys 

using normal SDDS operations.  All keys used are broken 

into k+1 shares (where k is a freely chosen parameter) and 

the shares are distributed among the servers such that 

LH*RE remains k-safe, i.e. such that an attacker has to 

successfully subvert more than k servers in order to obtain a 

key and be able to read client data.  Even for intrusions 

several times wider, assurance (the probability of obtaining 

a key and hence gaining the ability to read data) is typically 

high and disclosure (the amount of data readable) after a 

successful attack is typically low. Storage costs and 

performance of LH*RE are about the same as for LH*. 

Overall, LH*RE combines client side encryption with safe 

key management and thus an attractive alternative to third 

party escrow or server-side encryption. 

General Terms 

Algorithms, Reliability, Privacy 

Keywords 
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1. INTRODUCTION 
Many applications can benefit from the fast, scalable and 

reliable storage in distributed main memory or distributed 

storage devices that Scalable Distributed Data Structures 

(SDDS) can offer. An SDDS stores data records coming 

from client nodes on a number of server nodes. The number 

of servers adjusts gracefully to the size of the data. SDDS 

schemes are intended for P2P, grids and clouds. The latter 

become very important as seen by the emergence of 

Windows Azure, Simple Storage by Amazon, GoogleApps, 

etc. The reference count for SDDS (15000 as of June 15, 

2008 on Google) shows that SDDSs enjoy significant 

interest.  Many potential SDDS applications need to 

maintain data confidentiality, as they are stored in a 

potentially hostile environment. No unauthorized 

administrator of a participating system and especially no 

attacker to a system storing SDDS data should be able to 

read the data.  Examples of such applications include data 

in companies and organizations, health related data, remote 

backup services in the cloud, grids, archive systems, P2P 

social networks, etc.  

For any such application, client-side encryption using a 

secret key is a very attractive choice for protecting the 

confidentiality of its data.  The down-side is key 

maintenance.  The key is needed for the lifespan of the data 

and its loss, destruction, or disclosure can be disastrous.  A 

third-party escrow service can safeguard keys and provide 

key recovery on request [B03], [PGP04].  These services 

are not widely used, perhaps because of legal and technical 

difficulties. Current industrial practices use server-side 

encryption, unless “data security is paramount”, [S08], 

[C08] and EFS, [MTN09].  It is questionable how users feel 

about the resulting lack of control. With EFS, an 

application encrypts the encryption key with the 

application’s public key and stores the result in the header 

of the encrypted data record (a “file” in EFS terminology). 

EFS thus requires public key infrastructure and files 

become unrecoverable once the corresponding private key 

is lost. To protect against this scenario, the encryption key 

can be additionally be encrypted with a domain (group) 

server public key that is stored as another header field in 

the file.  The domain private key is stored on some server. 

A successful intrusion to only two servers reveals all 

records in the system. 

The research prototype Potshards takes a different approach 

[SGMV07].  It targets data records stored much longer than 

the average lifespan on any encryption system.  It achieves 

data confidentiality by secret sharing. Participants break 

every record into several shares stored at different systems. 

The price tag is a high storage overhead, as every share has 

the same size as the original record. 

Database-as-a-service has become a popular paradigm 

where an encrypted client's database is stored at an external 

service provider.  A first solution of this problem was 

presented in [HMI02, HILM02, HIM03]. Different 

measures for evaluating the robustness of indexing 

techniques against inference attacks have been studied in 

[D&al05]. In [A&al06,A&al08], the authors address the 

problem of access control enforcement, proposing solutions 

based on selective encryption techniques for incorporating 

the access control policy on data. 
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In what follows, we describe an SDDS called LH*

provides client-side data confidentiality.  It is a variant of 

well-known LH*, the distributed version of Linear Hashing 

[LMS05, LNS94, LSY07, LSY08]. A Record Identifier 

(RID), a. k. a. a primary key, identifies each record.  As the 

number of records increases or decreases, the resulting 

LH*RE stretches over more or less servers of the file 

buckets (one per server).  This adjustment proceeds by 

bucket splits and merges.  RID-based operations 

retrieving, inserting, deleting or updating records 

messaging times independent of the file size. Typically, a 

client locates a record going directly to the storing server. 

At worst, there are two more hops among the servers, but 

only one additional hop is necessary in a P2P environment 

[LSY08]. These properties are unique to LH*. 

The LH*RE client encrypts every record before it inserts the 

record at a server. The application or the client chooses the 

encryption key.  Any strong symmetric encryption method 

such as AES will do.  The client can use one, several, or 

many encryption keys.  It keeps each key, but also 

each key in the LH*RE file itself using secret splitting 

[BCK96]. Each key is broken into K = k + 1 shares. 

is a file parameter, called the file safety level

k offers a trade-off between the strength of data protection 

and the costs of key recovery and replacement.

basic secret sharing algorithm [PHS03] to generate shares 

of keys and store each of them in a record, called a 

record. Using secret sharing on keys instead of records (á 

la Potshards) incurs usually negligible storage overhead. 

LH*RE guarantees that as long as the file has at least 

servers, two key share records (of the same key) never 

reside or even pass through the same server, however the 

file changes through bucket splits and merges.  An attack at 

a server has to break the record encryption (which we 

assume to be impossible) or has to recover the encryption 

key from all K shares. We call the file k

withstand k intrusions. In a file stretching over many 

servers, the number of server intrusions needed by the 

attacker to gather all k shares of a particular key is of 

course much higher (Section 4). In contrast, a legitimate 

client or an authorized administrator can recover all keys 

through routine LH*RE operations. They can similarly 

revoke any key by rekeying all records encrypted with that 

Figure 1: LH* (top) and LH*RE (bottom) Record Structure

 

An LH* record contains a unique (primary) key called the 

Record IDentifier (RID) to distinguish it from the encryption 

keys. The RID together with the file state determine the 

current bucket in which the record resides. The remainder of 

the record is made up of the non-key field, which contains 

the application data.  LH*RE records add three 

e describe an SDDS called LH*RE that 

It is a variant of 

known LH*, the distributed version of Linear Hashing 

[LMS05, LNS94, LSY07, LSY08]. A Record Identifier 

(RID), a. k. a. a primary key, identifies each record.  As the 

number of records increases or decreases, the resulting 

stretches over more or less servers of the file 

djustment proceeds by 

based operations – 

retrieving, inserting, deleting or updating records – have 

messaging times independent of the file size. Typically, a 

client locates a record going directly to the storing server. 

orst, there are two more hops among the servers, but 

only one additional hop is necessary in a P2P environment 

[LSY08]. These properties are unique to LH*.  

client encrypts every record before it inserts the 

the client chooses the 

encryption key.  Any strong symmetric encryption method 

use one, several, or 

, but also stores 

using secret splitting e.g. 

+ 1 shares. Here k 

file safety level. The choice of 

off between the strength of data protection 

and the costs of key recovery and replacement. We use a 

haring algorithm [PHS03] to generate shares 

of keys and store each of them in a record, called a share 

Using secret sharing on keys instead of records (á 

usually negligible storage overhead.  

e file has at least K 

servers, two key share records (of the same key) never 

reside or even pass through the same server, however the 

file changes through bucket splits and merges.  An attack at 

a server has to break the record encryption (which we 

to be impossible) or has to recover the encryption 

k-safe as it can 

. In a file stretching over many 

servers, the number of server intrusions needed by the 

articular key is of 

course much higher (Section 4). In contrast, a legitimate 

client or an authorized administrator can recover all keys 

operations. They can similarly 

revoke any key by rekeying all records encrypted with that 

key. The client can also adjust the number of keys with the 

file size. This can help control the damage resulting from a 

potential large scale intrusion. The properties of our 

scheme offer an attractive alternative to 

The next section describes the basic LH*

Section 3 analyzes security. We define our thread model, 

prove k-safety under this model, analyze assurance and 

determine the likely disclosure in the case of a successful 

attack.  Section 4 discusses briefly some variants of the 

basic scheme. These add capabilities or target other SDDSs 

than LH* as the basis. We conclude in Section 5.  

limitations force us to assume that the reader has some 

familiarity with SDDS and LH* in particular. G

references are [LNS96], [LMS05], [LSY07]

recalls the properties of LH* that we need.

2. The LH*RE Scheme  

2.1 File Structure and Addressing 
With respect to its internal structure and its manipulation 

by an application, an LH*RE file is a normal LH* file 

[LNS94]. First, any LH*RE file is a collection of records. 

Client nodes (clients for short) store records in an LH*

file on a behalf of one or more, possibly distributed 

applications. The records are stored in buckets (with log

addresses 0, 1 ... N – 1), each of which resides at a 

server node (server for short). N is called the 

file. Clients in LH*RE have the additional role of encrypting 

and decrypting records.  They manage the encryption keys 

autonomously as we will see below. When a file is created, 

the creator specifies the file safety level 

extent G ≥ k. 

As clients insert more records into the file, one of the 

existing buckets will eventually overflow.  The bucket 

reports this event to a specific coordinator

coordinator then initiates a split operation which appends a 

new bucket to the file (with number 

half of the records of a designated bucket to the new 

bucket.   The bucket that has been split is usually not the 

one that reported the overflow.  Similarly, a bucket 

underflow prompts a merge operation which undoes the last 

split. Merges may shrink the file extent back to the initial 

value G. 

(bottom) Record Structure 

An LH* record contains a unique (primary) key called the 

tinguish it from the encryption 

keys. The RID together with the file state determine the 

current bucket in which the record resides. The remainder of 

key field, which contains 

records add three more fields to 

the LH* record (Figure 1). The I-

application that has inserted the record and can also contain 

authorization information, though authorization and 

authentication are not parts of the scheme. The 

discussed below) identifies the encryption key and is 

necessary for key recovery and revocation. Field F is a flag 
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file size. This can help control the damage resulting from a 
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an attractive alternative to current practices. 
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When a file is created, 
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existing buckets will eventually overflow.  The bucket 

coordinator node. The 

coordinator then initiates a split operation which appends a 

bucket to the file (with number N) and moves about 

half of the records of a designated bucket to the new 

bucket.   The bucket that has been split is usually not the 

one that reported the overflow.  Similarly, a bucket 

underflow prompts a merge operation which undoes the last 

may shrink the file extent back to the initial 

 

- field identifies the 

application that has inserted the record and can also contain 

authorization information, though authorization and 

authentication are not parts of the scheme. The T-field (to be 

discussed below) identifies the encryption key and is 

necessary for key recovery and revocation. Field F is a flag 



indicating whether a record is a data record or a (key) share 

record. Finally, the P-field contains encrypted application 

data of a LH* data record or the key share for a share record.

 A record in the LH* file is stored in the correct 

bucket, i.e., with the address given by the linear hash 

function (LH-function) applied to its RID. The LH-function 

result depends on the current file extent N. The coordinator 

does not push updates to N to servers or clients, which might 

therefore store an outdated view of N.  In this case, the client 

can make an addressing error.  If the client’s view of N is 

smaller than the true N and the discrepancy results in an 

error, then the server receiving a request (retrieval, insert, 

delete, or update) for the false bucket is guaranteed to have a 

better view of the file extent and can therefore forward the 

request to a bucket closer to the true one.  In fact, at most two 

forwards can occur.  The server with the correct bucket sends 

an Image Adjustment Message (IAM) to any client with an 

addressing error.  The client uses the IAM to update its view. 

If the client has a view of N that is larger than the true value 

(as the result of one or more merges), then the client can send 

a request to a server with non-existing bucket. A time-out or 

normally an error message informs the client who then 

resends the request to the server that would have hosted the 

record when there were only G servers and sets its view of 

the file extent to G. The operation proceeds then as usual, 

probably with forwarding and an update to the client’s 

image. 

An LH* file application can also request a scan operation 

from the client. The scan searches in parallel over every 

bucket and retrieves all records matching given conditions on 

the non-key contents. For LH*RE the scan is obviously 

limited to non encrypted data. It is only used for operations 

related to encryption keys.    

2.2 Operations on Data Records 
The application interacts with LH*RE as with any other LH* 

structure. Its local client translates application records to 

LH*RE records and hides the structure of LH*RE records.  

Given a LH* data record (Figure 1) with RID r, the client 

generates the associated LH*RE record (with the same RID) 

as follows.   

When the client creates an LH*RE data record from an LH* 

record, it retains the RID r.  It sets the F-field to indicate a 

data record.  The P-field receives the payload encrypted with 

a key.  The keys are stored in an encryption key chain 

organized as a table T[0,…,t –1]. The client selects a specific 

key based on the RID and the table size, e.g. as T[i] with i ≡ 

r mod t. It stores i in the T-field.  For the encryption, we can 

use any strong, fast, symmetric method. Finally, the client 

identifies the creating application in the I-field that can also 

be made to contain access rights data.  

The key chain can be extensible.  The client generates the 

keys using a cryptographically secure random number 

generator.   

Reversely, given an LH*RE data record, a client uses the I-

field to determine the generating application and determine 

access rights. It then uses the T-field to determine the 

encryption key.  With the key, it decrypts the P-field, 

yielding the LH* payload.  The RID remains the same. 

For an insert, a client creates the LH*RE record and inserts it 

as any LH* record.  For a record lookup, the client uses the 

RID to calculate the address. The correct bucket sends the 

data record, if found. The client recreates the LH* record and 

hands it to the application. Updates and deletes are processed 

analogously.   

2.3 Encryption Key Operations 

2.3.1   Key Backup 
The client backs up every key in the key chain T at the 

servers. It uses secret splitting to create k+1 share records of 

each key. The client creates shares for an encryption key C as 

follows.  It first generates (k–1) random strings of the same 

length as C.  These become key shares C0, C1…Ck-1.  The last 

share is Ck = C0 ⊕ C1 ⊕ C2 ⊕ ... ⊕ Ck-1 ⊕ C. We recover C 

from the shares just by XORing all shares. The client also 

needs to generate a RID for each key share. The set of RIDs 

needs to fulfill two conditions: (1) Knowing the RID of one 

(or more) shares should not allow any conclusions on the 

RID of other shares. (2) In a file with extent G, the k shares 

need to be stored in different buckets. The requirements on 

share records provide the central property for the correctness 

of our schema: No two shares or messages including a share 

ever end up in the same bucket as long as the file retains at 

least G buckets. Otherwise, we could not guarantee k-safety. 

We prove the property in Section 3. Finally, no key should 

be used for encryption that has not already been backed up. 

2.3.2 Key Recovery 
Key recovery is the process of recovering encryption keys 

from backup. The operation can become necessary for a 

variety of reasons: A user may lose the laptop that served as 

the client. A company may need to recover the key(s) of an 

abruptly departed employee. In an emergency, a patient 

health data may need to be decrypted without his (otherwise 

required) consent. A court order may mandate data 

decryption for a variety of reasons, etc.  

Key recovery uses the LH* scan operation over the I-, T-, 

and F-fields. Each server finds all records that are shares, 

created by the application, and possibly have a specified 

offset into T. The latter can be used to only recover specific 

keys or to partition a large recovery process. The client sorts 

all key shares by the key of which they are shares and XORs 

the payload in order to recover the key. 

In addition to key recovery, we also allow recovery by 

certain authorized sites.  This fact needs to be known to all 

servers or (more easily) encoded in the I-field.  In this case, 

the key recovery operation can specify that the recovered 

keys are sent to a different client.  

2.3.3  Key Revocation  
In some cases, a client or an authority needs to revoke one or 

more keys.  This need can be caused by a theft of a laptop 

with key chain or if access by an employee needs to be 

terminated, etc. First, the key to be revoked might need to be 

recovered.  Using a scan based on the I-, T-, and F-field, all 



records encrypted with the key to be revoked are recovered, 

their P-field re-encrypted with a newly created and backed-

up key that takes the place of the revoked key in the key 

chain, and reinserted into the LH*RE file so that all servers 

replace the previous version of these records.    

2.3.4 Scalable Number of Keys 
Many keys for a small file are burdensome, but for a larger 

file, the expected disclosure of records in case of a successful 

attack shrinks as the number of encryption keys used 

increases.  LH*RE allows for an increase in the number of 

keys t used by a client. To limit disclosure, keys should be 

used for encrypting about the same number of records.  One 

could use a key only for a certain number of records and then 

create a new one or one could use a linear hashing scheme 

that places records encrypted with the same key into a virtual 

bucket.  During a split of the virtual bucket, about half of the 

records would be assigned a new virtual bucket, which 

triggers rekeying these records with a newly created key. 

Merging these virtual buckets and removing the last key 

created in this scheme seems to be hardly of any practical 

interest. 

3. Analysis 
We first define our threat model. Next, we focus the analysis 

on the safety and assurance of an LH*RE file.  We then 

analyze the storage occupancy and access performance.   

3.1 Security Analysis 

3.1.1 Thread Model 
The novelty of LH*RE is tied to its distributed character. We 

are therefore not interested in the local effects at an intruded 

client, as any such intrusion poses the same dangers as in a 

stand-alone environment.  We assume that authentication and 

authorization of record access at servers successfully isolates 

an intruded client from the data belonging to other clients.  

This leaves one advantage that an intruder to a client can 

gain (in addition to control over the application and its data), 

namely information on the file state and the location of 

buckets known to the client. Since this analysis is a bit more 

involved than space allows, we have restricted discussion to 

a technical report [XX09]. We also assume that snooping 

network traffic is impossible, e.g. because of the use of 

Virtual Private Networks (VPN).  Furthermore, we assume 

that the coordinator is secure and that the information that 

clients receive in an IAM about the location of buckets is 

correct. (For example, servers receive coordinator signed 

certificates about bucket locations from the coordinator.) In 

this paper, we use a basic threat model, in which an attacker 

can gain access to one or more servers capable of hosting 

buckets, without knowing initially which bucket they host.  

The attacker is then limited to finding key shares at this 

server, either in storage or in transit. We further assume that 

a server stores at most one bucket and does not host a 

different bucket after it has once hosted a bucket.  This 

situation could otherwise arise from a history of splits and 

merges.   

3.1.2 Key Safety 
LH*RE is k-safe, which, as we recall, means that an intruder 

has to break into at least K (= k+1) servers in order to find all 

key share records belonging to a certain key.  The intruder 

can capture a key share by either finding it in the bucket of 

an intruded server or by obtaining it in transit. For example 

when a client creates a key and stores the key share records 

in the file, they are not send necessarily directly to their final 

destination but can take an additional hop and occasionally 

even two hops. The proof of k-safety requires some notation.  

When a bucket i splits into a new bucket i located at the same 

server and a bucket j, then we call i an ancestor of j and j a 

descendent of i. Recall that an LH*RE file has a minimum 

extent of K := k + 1 and an initial extent of G, G ≥ k + 1 = K. 

We define a descendent set Di, 0 ≤ i ≤ k, to be the set of all 

bucket numbers of descendents of a bucket i, descendents of 

descendents of i, descendents of descendents of descendents 

of i, ... when the file had an initial extent of k.   

Examples: Assume that k = 3 (and hence K = 4) and set G = 

4.  The “original” four buckets are those numbered 0, 1, 2, 

and 3.  The LH* rules give D0 = {0, 4, 8, 12, ...}, D1={1, 5, 9, 

13, ...}, D2={2, 6, 10, 14, ...}, and D3={3, 7, 11, 15, ...}, 

which in this case are the set of integers equivalent to 0, 1, 2, 

and 3 respectively modulo 4.   

LH* rules (see appendix A) imply the following, (assuming 

that the file extent never falls below k: 

• The sets Di are mutually disjoint and their union is the 

set of natural numbers. 

• A descendent of a bucket with number in Di has always 

a bucket number in Di. 

• An ancestor of a bucket with number in Di has always a 

bucket number in Di. 

• A RID-based query (insert, delete, retrieval, edit) for a 

record in a bucket in Di is always sent to a bucket in Di 

even if the client has an outdated view. If it is 

forwarded, then the message only passes through 

buckets with number in Di. 

• A scan results in queries to all existing buckets, 

according to the view of the client.  If a query to a 

bucket with number in Di results in a scan query 

forwarding, then the forwarded message is sent to a 

bucket in Di. 

By virtue of how key shares receive a RID, each one of all 

key shares of a newly created key are placed in a bucket in a 

different set Di. Key shares can migrate to other buckets, but 

only to and from another bucket in the same set Di. A RID-

based query might be routed through another bucket, but 

only to one with number in the same set Di in which the key 

share resides. Similarly, a scan query (which contains 

information about a key) is only forwarded from a bucket in 

Di to another bucket in Di. As a result, an attacker can only 

gather all key share records belonging to the same key if he 

has intruded into at least one bucket with number in Di (but 

might need to intrude all buckets in Di for this information). 

This implies k-safety, as an intruder needs the encryption key 

to access the contents of the record. If a client sends a scan 

request to buckets 0, 1, ... , k, then these scan requests will be 



forwarded to all buckets, but in a manner where the scan 

request to i only gets forwarded within Di. Therefore, scan 

based operations can be performed without any danger of 

revealing encryption key data to other buckets. 

3.2 Assurance 
LH*RE file safety (by electing and adjusting k) gives a simple 

measure of confidence that an intruder cannot read or write 

any data records. However, it gives only a lower bound on 

the number of systems a successful attacker would have to 

intrude.  Typically, the required number of intrusions is 

higher.  We define assurance to be the probability that an 

intrusion into x out of N buckets does not disclose any key.  

Assurance depends on the number of intrusions x, the 

number of buckets (each located at a given server), the 

number of keys, and obviously, on the choice of k. For x, we 

only count intrusions to servers containing a bucket.  We can 

use assurance calculations to obtain the average number of 

keys obtained by the intruder and from it disclosure, the 

expected amount of records now accessible to the intruder. 

The conclusion of our analysis below is that a typical LH*RE 

file even with a very low parameter of k and a moderate 

number of buckets has surprising (to us) high assurance and 

low disclosure. Adjusting the number of encryption keys a 

client uses does not change the expected portion of keys 

revealed, that is, disclosure does not depend on the number 

of keys revealed. We define conditional disclosure to be the 

proportion of records disclosed given that the attacker 

received a key. Conditional disclosure describes the expected 

amount of damage in a bad case. Our analysis reveals it to be 

controllable by adjusting the number of keys. 

3.2.1   Single Key 
We first calculate assurance in a file with a single key. We 

use our basic threat model; hence the attacker does not know 

which bucket is located where.  Otherwise, an attacker that 

has found a key share record in a bucket with number in Di 

no longer needs to look for this key share in buckets with 

numbers also in Di.  We assume that the intruder has gained 

access to x out of N buckets.  We know that K, (K = k + 1), of 

these buckets contain a key share record and need to 

calculate the probability that all of these K buckets are 

among the x accessed buckets.  We determine the probability 

by counting. There are then ��
� � ways to select the x buckets 

that the intruder broke into, which is also the number of 

possible attacks. For an attack to be successful, the attacker 

has to have attacked all K sites with a key share. Of all his 

attacks, x – K went to sites that did not have a key share, of 

which of course there are N – K.  The number of successful 

attacks is hence �� − �
� − � �. The probability that the intruder 

obtains a given set of K key shares with x intrusions is  

��	�, �, �� = �� − �
� − � � ��

� �
�
.  

The assurance against disclosure of a single key is q1(N,x,K) 

= 1 – p1 (N,x,K).   

 

 

 

 

Figure 2: Assurance in an LH* file with K = 4, 8, and 16 

key shares (top to bottom) extending over 16, 32, 64, 128, 

256, 512, and 1024 servers. The x-axis is chosen to show 

the 99% (two nines) assurance level. 

Figures 2 and 3 give the assurance for an LH* file with K  = 

4, 8, and 16 key shares and 16, 32, 64, 128, 256, 512, and 

1024 sites. We plot the value of q1(N,x,K) and vary the 

number x of intruded sites. Since we would often be given a 

required assurance (expressed in number of nines), we drew 

the x-axis at the 99% (two nines) in Figure 2 and at the 

99.999% (five nines) level in Figure 3.  Even for moderately 

large files the required number of intrusions has to be much 

larger than x.  For example, for a file with extent N = 512 and 

K = 8, the intrusion needs to be to ~ 300 sites to have the 

assurance fall below the 99% level.  The almost even spacing 

of our curves on the logarithmic x-axis show that the ratio of 

intruded sites over total sites for assurance below a certain 

level is almost constant, though slightly decreasing with N.   
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Figure 3: Assurance in an LH* file with K = 4, 8, and 16 

key shares (top to bottom) extending over 16, 32, 64, 128, 

256, 512, and 1024 servers. The x-axis is chosen to show 

the 99.999% (five nines) assurance level. 

 

Figure 4: Ratio ρρρρ of assurances with random placement 

over assurance with the LH*RE placement scheme for N = 

256 sites, K = 4, 8, and 16. 

An alternative placement scheme to LH*RE is to just 

distribute key shares randomly among the sites. In this case, 

the probability of obtaining one specific key share is x/N, the 

probability of obtaining all K is the Kth power of this value, 

and the assurance under this random placement scheme 

(given x)   

��[������]	�, �, �� = 1 − ��
��

�
 

We measure the difference by calculating the ratio ρ = 

pi/pi
[random]. Figure 4 gives the result for N = 256 and K = 4, 8, 

and 16. As we see, the effect of the LH*RE scheme is always 

beneficial, though not pronounced for small number of 

intrusions, as the probability of having two keys located by 

chance at the same site is small. As x increases, the benefices 

of our scheme increase.  As K increases, ρ stays closer to 1 

for smaller values for x, but falls faster as the number of 

successfully site attacks increases. This probabilistic 

evaluation shows that LH*RE placement of key shares is 

superior, but hides that LH*RE gives guarantees. 

 

 

Figure 5: Assurance in an LH* file with K = 4 and r = 10 

and r = 100 keys. We vary N from 16 to 1024. The x-axis 

shows the two nines assurance level 

3.2.2 Multiple Keys 
The assurance against retrieval of one key out of r keys is qr 

= (1 – p1(N,x,K))r. Certainly, having multiple keys increases 

the chances of an attacker to gather at least one key after 

intruding into x sites. Figures 5, 6, and 7 show the effects of 

changing r. As was to be expected, assurance drops, but still 

remains quite high.  
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Figure 6: Assurance in an LH* file with K = 8 and r = 10 

and r = 100 keys. We vary N from 16 to 1024. The x-axis 

shows the two nines assurance level 

 

 

Figure 7: Assurance in an LH* file with K =16 and r = 10 

and r = 100 keys. We vary N from 16 to 1024. The x-axis 

shows the two nines assurance level  

We notice that the influence of r diminishes with increasing 

K.  

3.2.3 Disclosure size 
The disclosure d measures the quantity of data revealed by a 

successful intrusion. More precisely, we define d to be the 

expected proportion of records revealed by an intrusion into 

x servers. As we will see, d does not depend either on the 

distribution of data records to buckets nor on the distribution 

of records encrypted with a certain key.  The attacker has 

intruded into x servers each with a bucket, has harvested all 

key share records, and is now in possession of any 

encryption key for which she has gathered all key shares. She 

possesses now a given key with probability 1 − �� =
�� − �

� − � � ��
� �
�

. Since on average, she has obtained a 

proportion x/N of all data records encrypted with this key, 

and since she needs encryption key and data record to obtain 

access to an application record, she obtains on average a 

proportion of   

�	�, �, �� = �� − �
� − � � ��

� �
� �
� 

of all application records encrypted with this key. Since this 

is a proportion, the same expression not only gives the 

disclosure for a single key but also the disclosure for a 

number of encryption keys.  In particular, expected 

disclosure does not depend on the number of encryption keys 

used. 

As the number of keys increases, the number of records 

protected by a given key gets smaller and the amount of data 

disclosed in a breach becomes smaller. We capture this 

notion in what we call conditional disclosure. Conditional 

disclosure is defined to be the disclosure (measured again as 

a proportion of accessible application records over total 

application records) under the assumption that x intrusions 

resulted in a successful attack, i.e. one where the attacker has 

obtained at least one key and therefore one or more 

application records. The probability for a successful attack 

on a specific key is  

�� = �� − �
� − � � ��

��
�
 

Our model implies that obtaining one key and obtaining 

another one (through the x attacks) are events independent of 

each other. The probability of obtaining at least one out of r 

keys  is  

� = 1 − 	1 − ���� 

We notice that   

� = � ��
 � ��!	1 − ����
!�

!"�
 

 The conditional probability of obtaining exactly s out of r 

keys given that we obtain at least one key is  

��
 � ��!	1 − ����
!

�  

and the expected number of total keys obtained given that we 

obtained at least one is  

# = �
 ��

 � ��!	1 − ����
!

�
�

!"�
 

Now, this is the number of expected values of the binomial 

distribution divided by P. Thus, E evaluates to  
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Figure 8: Contour Graph for the conditional disclosure. We vary N, the number of sites, and r, the number of keys. We 

set K, the number of shares to 8, and show figures for x = 8, 9, 16 and 32 intrusions. The upper right corner of each 

picture has close to zero conditional disclosure. 

  



  

   
Figure 9: Contour graph for conditional disclosure for K = 16.  



 

# = � ��
�  

 

The proportion of records encrypted with s out of r keys is 

s/r.  Consequentially, E/r of all records are expected to be 

encrypted with a key that the attacker now possesses. The 

expected proportion of LH*RS data records obtained with x 

intrusions into N buckets is x/N (even though of course the 

expected number in LH* buckets depends usually on the 

bucket number). The conditional disclosure is given as the 

expected number of keys disclosed (given that this is a 

successful intrusion) divided by r and multiplied with the 

expected number of data records obtained, hence is  ���
��  

 

Figures 8 and 9 plot the conditional disclosure for selected 

values of K in a contour plot. There, we tread the conditional 

disclosure as a function of N and r. The shaded regions 

correspond to those areas where the conditional disclosure is 

less than a given value, ranging from 0.0005 to 0.005 (half a 

percent of all records revealed).  

Our results in conjunction with the independence of the 

expected disclosure shows that adjusting r allows us to very 

effectively control the expected amount of disclosure 

assuming that a disclosure happened. We pay for this control 

in the higher number of incidents of disclosure. This type of 

trade-off between incident rate and incident effect might 

become very useful for obtaining or pricing an insurance 

policy to cover the effects of an intrusion.    

3.2.4 Refined Measurement of Disclosure Costs 
Up till now, we have tacitly assumed that the disclosure of 

any record costs the storage provider the same. However, this 

might often not be the case. We now consider a scenario 

where there is a fixed costs associated to any disclosure of 

records in addition to a costs per record disclosed. For 

example, assume a health care provider, credit card 

processing center, or a university registrar service center that 

store their data in a LH*RE data structure on many servers. 

Entities of these types are regulated and often forced to 

publicly acknowledge each breach of privacy of data. In 

addition, they are likely to incur costs in mitigating the 

damage for each person involved, which is usually 

proportional to the number of records revealed. We model 

this scenario by assigning a value of 1 to the maximum 

damage done, by assigning a value α, 0 < α < 1, to the fixed 

costs of a disclosure. Correspondingly, each of the total s 

records that is disclosed costs (1 – α)/s. Assuming r keys of 

which i have been disclosed, the proportion of records 

disclosed is i/r of the x/N records that the attacker can access. 

Thus, the disclosure costs for i > 0 is $ + 	1 − $� & '
� ( and the 

expected disclosure cost is   

� $ + 	1 − $� ) �
� � ��

) �
�

&"�
��	�, �, ��&	1 − ��	�, �, ����
& 

Figure 10 gives the results calculated for K = 8, N = 100, and 

α = 0, 0.1, 0.5, and 1 depending on the number of intrusions  

 

 

 

 

 

Figure 10: Refined Disclosure Proportion for N = 100, K 

= 8, α = 0, 0.1, 0.5, 1, and x (x-axis) varying between 0 and 

50. Notice the different scales on the y-axis 
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x. We can see how disclosure increases with increasing 

also how the number of keys r becomes more important. Not 

too surprisingly, with this cost model, a single key should be 

used.  

 

 

  

 

Figure 11: Small LH* structures with 6 buckets 

(top) and 10 (bottom) buckets broken into 

descendent sets for buckets 0, 1, and 2

3.2.5 Refinements of the Intrusion Scenario
Our basic intrusion scenario limits the capability of the 

attacker perhaps more than is reasonable to assume. Take for 

example an intruder that has taken over a 

“owns” all its data. This data happens to be stored in a LH*

file with data not accessible by the client.  The attacker wants 

to gain access to some of this data as well. The attacker has 

additional information not available to an attacker under our 

basic thread model.  First, some LH* buckets are about twice 

as large as the others (namely those not yet split in the 

current round of splits). These contain more key share 

records. Second, the attacker knows bucket numbers and 

therefore descendent sets.  If the attacker needs a specific 

encryption key and has already found a key share record, he 

knows that other buckets in the same descendent set cannot 

contain other key shares and therefore remove them from his 

target list. All this can be modeled as interesting optimization 

problems for the attacker, but its treatment requires advance 

knowledge of LH* properties, relegated to Appendix A.  

turns out that access to size information or even location 

We can see how disclosure increases with increasing α, but 

becomes more important. Not 

too surprisingly, with this cost model, a single key should be 

 

 

: Small LH* structures with 6 buckets 

(top) and 10 (bottom) buckets broken into 

descendent sets for buckets 0, 1, and 2 

Intrusion Scenario 
Our basic intrusion scenario limits the capability of the 

attacker perhaps more than is reasonable to assume. Take for 

example an intruder that has taken over a client and now 

. This data happens to be stored in a LH*RE 

file with data not accessible by the client.  The attacker wants 

to gain access to some of this data as well. The attacker has 

additional information not available to an attacker under our 

basic thread model.  First, some LH* buckets are about twice 

arge as the others (namely those not yet split in the 

current round of splits). These contain more key share 

records. Second, the attacker knows bucket numbers and 

therefore descendent sets.  If the attacker needs a specific 

found a key share record, he 

knows that other buckets in the same descendent set cannot 

contain other key shares and therefore remove them from his 

All this can be modeled as interesting optimization 

t requires advance 

knowledge of LH* properties, relegated to Appendix A.  It 

turns out that access to size information or even location 

information, while useful, does not dramatically change the 

picture. We observe that a true attacker would triage server

based on the results of a vulnerability scan.  The costs of an 

attack to a site depend on the site and vary among sites, 

making our model less interesting. 

different degrees of vulnerability is difficult since assigning 

any numerical values to sets of sites is simply too arbitrary 

and development of a generic theory of how to model 

vulnerability of individual sites certainly beyond the scope of 

our work here.  

Thus, the scenario we consider here 

attacker has obtained a complete map of the installation that 

tells the attacker where which bucket is located. We assume 

that breaking into any site costs the attacker a constant 

amount, either in money, or in work, or in a combination of 

both.  

We first use the examples given in Figure 11 to illustrate the 

advantages that the attacker can gain from his/her 

knowledge. Both examples use K 

unrealistically low value, but good enough to explain the 

principle). Figure 11 gives the desce

original buckets 0, 1, and 2. In addition, we label each bucket 

with the binary number representing h

evaluated at the given level. In the top of the figure, Bucket 3 

has label 11, which means that membership of a

bucket is evaluated at level 2. We notice, that Buckets 3 and 

2 contain about twice as many records as the remaining 

buckets, because the split pointer is 2 and they have not yet 

been split in the current epoch. Similarly, at the bottom, the 

split pointer is at 2 and Buckets 2, 3, 4, 5, 6, and 7 have twice 

as many records (on average), whereas Buckets 0 and 1 have 

been split into Buckets 8 and 9 and thus contain about half as 

many records as the remaining buckets.

 If N were to fall to 3, then a share would be found in bucket 

0, 1, 2 each. If there are only 6 buckets, then the key share 

originally in bucket 2 would still reside in 

Therefore, an attacker has to intrude into the site with Bucket 

2. In the second example, to obtain the ke

in Bucket 0, the attacker has to attack Buckets 0, 4, and 8. 

Bucket 4 contains about half the records in the descendent 

sets, whereas Buckets 0 and 8 contain the other half. 

Therefore, the attacker should intrude into Bucket 4 with 

priority.  

Let us consider the attacker’s optimization problem in Figure 

11 in more detail. Assume that the attacker plans 

of which x0 are directed to the descendent set of Bucket 

0, x1 to the descendent set of Bucket 1, and 

descendent set of Bucket 2. To have any chance of 

success, all values need to be non

x0 ≤ 2 and x1 ≤ 3. We can measure putative success by 

the probability to receive a single key. If 

the attacker can choose either Bucket 0 or Bucket 4 

the attack and receives key share 0 with probability

= ½. For x0 = 2, the probability is p

attacker chooses Bucket 3 giving a probability of 

½ to obtain the key share. Adding to 

information, while useful, does not dramatically change the 

We observe that a true attacker would triage servers 

based on the results of a vulnerability scan.  The costs of an 

attack to a site depend on the site and vary among sites, 

 However, modeling 

different degrees of vulnerability is difficult since assigning 

lues to sets of sites is simply too arbitrary 

and development of a generic theory of how to model 

vulnerability of individual sites certainly beyond the scope of 

 is the following. The 

d a complete map of the installation that 

tells the attacker where which bucket is located. We assume 

that breaking into any site costs the attacker a constant 

amount, either in money, or in work, or in a combination of 

We first use the examples given in Figure 11 to illustrate the 

advantages that the attacker can gain from his/her 

 = 3 (a somewhat 

unrealistically low value, but good enough to explain the 

principle). Figure 11 gives the descendent sets for the 

original buckets 0, 1, and 2. In addition, we label each bucket 

hlevel, the hash function 

In the top of the figure, Bucket 3 

has label 11, which means that membership of a RID in this 

bucket is evaluated at level 2. We notice, that Buckets 3 and 

2 contain about twice as many records as the remaining 

buckets, because the split pointer is 2 and they have not yet 

been split in the current epoch. Similarly, at the bottom, the 

plit pointer is at 2 and Buckets 2, 3, 4, 5, 6, and 7 have twice 

as many records (on average), whereas Buckets 0 and 1 have 

been split into Buckets 8 and 9 and thus contain about half as 

many records as the remaining buckets. 

a share would be found in bucket 

0, 1, 2 each. If there are only 6 buckets, then the key share 

originally in bucket 2 would still reside in Bucket 2. 

to intrude into the site with Bucket 

2. In the second example, to obtain the key share originally 

in Bucket 0, the attacker has to attack Buckets 0, 4, and 8. 

Bucket 4 contains about half the records in the descendent 

sets, whereas Buckets 0 and 8 contain the other half. 

intrude into Bucket 4 with 

Let us consider the attacker’s optimization problem in Figure 

in more detail. Assume that the attacker plans x intrusions, 

descendent set of Bucket 

to the descendent set of Bucket 1, and x2 to the 

et of Bucket 2. To have any chance of 

success, all values need to be non-zero. Additionally, 

≤ 3. We can measure putative success by 

the probability to receive a single key. If x0 = 1, then 

the attacker can choose either Bucket 0 or Bucket 4 for 

the attack and receives key share 0 with probability p0 

p0 = 1. For x1 = 1, the 

attacker chooses Bucket 3 giving a probability of p1 = 

½ to obtain the key share. Adding to x1 involves 



attacking Buckets 1 or Bucket 5 or both, resulting in p1 

= ¾ for x1 = 2 and p1 = 1 for x1 = 3. Finally, x2 has to 

be 1, given a success probability of 1. The attacker’s 

optimization problem given a “budget” x of sites to 

attack is to maximize p0(x0)⋅p1(x1)⋅p2(x2) for x = 

x0+x1+x2. 

In the general case, we can capture the probability of 

obtaining key share i in a function p(i,xi). Assume that 

there are a buckets in Di of which b are “big”, i.e. not 

split in the current LH-splitting round. Then 

�	), �&� = * 2�&/	- + .�; )0  �& ≤ .
	. + �&�/	- + .�; )0  �& > .3 

For example, in the lower example of Figure 11, D1 

has a = 5 and b = 3 as Buckets 3 and 5 are big.  p(1,1) 

= ¼ since the attacker will attack one of the two big 

buckets, that yield him 2/8 of all records in the 

descendent set. p(1,2) = ½ and p(1,3) = ¾ reflecting 

attacks on two or all three big buckets. Buckets 1 and 7 

only contain 1/8 of all records in the D1, therefore 

p(1,4) = 7/8 and p(1,5) = 1.  

 

 

Figure 12: Difference in disclosure between the savvy and 

the agnostic attacker for the Example in Figure 11.  

Figure 12 finally gives the result between the savvy 

attacker, defined to be the one taking location 

information into account and optimizing her attack 

plan accordingly, and the agnostic attacker, who does 

not use or does not have this information available. 

 

 

 

Figure 13: Disclosure amount differences between savvy 

and agnostic attacker for N = 64 and K = 3, 4, 5 

 

We now investigate the difference between the savvy and the 

agnostic attacker for a variety of parameter values. Let the 

reader beware of the change of scale on the y axis. We give 

results in Figure 14.  
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Figure 14: Disclosure differences between savvy and agnostic attackers  
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The differences between the savvy and the agnostic 

attackers depend on the number of big buckets versus 

small buckets, but even more on the ability to avoid to 

inadvertently allocate all resources to a single 

dependency set. 

3.3  Storage Occupancy and Access 

Performance 
Storage for the encryption keys in the file and in the cache 

should be negligible. It is O((k+2)N), where the cache 

accounts for O(N). An AES key has 32B, which allows for 

millions of keys in current RAM and for thousands if the key 

chain has to fit in the L1 or L2 cache.  The effective load 

factor of an LH*RE file should be in practice very close that 

to an LH* file of same extent with the same number of data 

records.  We recall that the average load factor of such an 

LH* bucket is ln(2) ≈ 0.7. 

Access time to a record is dominated – as usual – by 

messaging costs and therefore proportional to the number of 

messages per operation.  Cryptographic operations take time 

proportional to the size of data records. With symmetric 

encryption they should be negligible.  This conjecture still 

stands in need of experimental verification.   

The message costs of record insert or RID-based search are 

those of LH*. Thus, our variant of LH*RE uses typically one 

message per insert and two messages per search. In case of a 

(typically rare) addressing error, this increases by two at 

worst. The update and delete messaging cost each as for LH* 

as well.  

The message count cost of encryption keys creation is 

usually (k+1)N. A key recovery message cost is that of an 

LH* scan. It thus consists first of one multicast to send out 

the scan, or of N unicast messages for this purpose. The 

timing of the latter depends on the scan processing strategy. 

Assuming that the client diffuses the scan itself to every 

bucket in the image, the eventual difference between the 

maximal number of splits some bucket has encountered 

according to the client image and the actual one determines 

the number of rounds of the scan send-out [LNS96]. The 

message count does not change, but the timing does. The 

reply from the servers costs at best N unicast messages to the 

client. Some with shares and some being simple acks, we 

recall. All together, key recovery costs thus one multicast 

and N unicasts or 2N unicast messages in total, at best. The 

actual count can be higher depending on the actual 

implementation.   

The scan cost dominates the key revocation cost for a larger 

file. Assuming only unicast messaging, a scan operation 

proceeds at best in 2N messages to retrieve the records and 

the key shares of the key to revoke.  A practical 

implementation of this phase should invoke several scan 

operations, each costing at least 2N messages.  This phase is 

followed by at least 2(k+1) messages per key to rewrite the 

shares, i.e. if T has size t, then this amounts to 2t (k + 1) 

messages. Finally, there are r messages to write r re-

encrypted records, where the upper limit for r is the number 

of records in the file.  If however the client only revokes a 

few private keys for a few records, then the messaging costs 

is dominated by the 2N messages per round in a scan 

operation needed to find the records. As the rewriting of key 

share records can now be done in parallel with the scan, the 

overall timing should decrease towards the time for the scan 

and the rewrite of the records. 

4. Variants 
We now sketch some variants of the basic LH*RE scheme. In 

technical reports [XX09a] and [XX09b] we already discuss 

two variants in detail. One uses a distinct key for every data 

record. The other provides a data record with its encryption 

key encoded through a private share which contains the key 

and only distributed to entities with access rights to the 

record.  We now discuss further variants. 

4.1 Safety Level Managed by Client 
We expect a typical LH*RE client to have an exclusive set of 

encryption keys, for instance, because there is only one such 

client. Even if the client shares the encryption key with other 

clients, its shares can be made private.  This allows the client 

to set a private client safety level k’. For a single client, 

simply k’ = k.  Otherwise, k’ = k only initially. Each client 

creates and maintains K’ = k’ + 1 shares and adjusts k’ 

according to its policy based on its view of the file extent.  

(In fact, the same client could have different k’ and different 

policies for different record classes encrypted with mutually 

disjoint sets of keys.) This safety policy of the client uses the 

perceived view of the file extent. Whenever the client 

receives an IAM, it calculates whether the policy triggers a 

change in the number of key shares.   

We recall that the encryption key is the XOR of the payload 

of the key shares. To increase the number of key shares for a 

given key from K to L, the client retrieves the RIDs of all 

existing key shares, and at least some shares themselves.  

Each of the K key shares is located in a different of the K 

buckets of a file of extent K.  Therefore, they would be also 

located in different buckets of a file of extent L.  It is 

therefore possible for the client to find additional L – K RIDs 

for the new records such that each of the L old and new key 

shares would be located in a different one of the L buckets of 

a file of extent L.  The client then generates random L – K 

new key shares and adjusts one or more of the retrieved key 

share records so that the XOR of all shares remains the same, 

namely the encryption key.  Finally, the client stores the new 

and changed key share records. This operation proceeds in 

parallel for all encryption keys to which the policy applies. 

If the file shrinks, the client safety level might be equal or 

larger than the number of buckets.  The client is unaware of 

this situation until an IAM informs it.  Now, the client has to 

shrink the number of key share records from K to L.  It turns 

out that in a file of extent L, each bucket contains at least one 

key share.  If there are multiple key shares in a (hypothetical, 

since the actual file extent might be larger) bucket, then the 

client retrieves the key shares.  The client then XORs these 

key shares themselves and creates a new key share record 

with the RID of one of them.  Obviously, both operations 

maintain the two important invariants of key share records:  



The XOR of all key shares is the encryption key; and, if there 

are K key shares, then they would reside each in a different 

bucket of a file with extent K.    

4.2 Adapting to Other LH* Schemes 
It is useful to incorporate the high-availability into the 

scheme, especially to avoid any losses of shares. The 

simplest way is to use LH*RS, [LMS5]. Its use of erasure 

correction protects keys in a similar manner to (k, l) secret 

sharing with l > k + 1, [PHS3]. Alternatively or 

simultaneously, key share records might be made more 

resilient to the unavailability of a bucket by using these 

advanced secret sharing schemes. Furthermore, there are no 

obstacles to applying LH*RS
P2P for a P2P variant. It offers the 

advantage of minimizing message forwarding [YS09]. 

4.3 Generalizing to Other SDDSs 
Correctness of LH*RE is based in the disjointness and other 

properties of descendent sets of some initial set of buckets.  

Other well-known SDDSs have the same or similar 

properties.  This is the case for RP*S [LNS94], which allows 

for range queries, and the more recent BigTable [S&al01] 

which has a very similar basic structure to RP*S. Chord 

[S&al01] partitions using the principles of consistent hashing 

also has disjoint descendent sets. The first obstacle for 

adapting LH*RE principles is the forwarding algorithm that 

needs to change to prevent different key shares to traverse 

the same node.  The second obstacle for RP* and BigTable is 

the protection of the record keys, whose confidentiality needs 

to be protected. 

5. Conclusion  
The LH*RE scheme allows an application to manipulate data 

records without any encryption related messaging overhead. 

It offers insert, search, update and delete operations with the 

same (messaging) performance as LH* itself.  The storage 

requirements are similar. The storage overhead for the 

encryption keys at the client and at for the secrets at the 

servers may be negligible, e.g, may be as low as a few 

dozens of bytes at the client and the servers, all together.  

Successful attacks on the servers need to be massive because 

of k-safety. The applications can adjust easily this parameter 

dynamically.  The assurance analysis has shown that the file 

is resilient against intrusions several times larger than k.  For 

instance, a 100-bucket file, thus rather smaller file by today 

standards, may offer at least the 5-nine assurance for an 

intrusion into up to 40 buckets, simply by choosing k = 7 as 

file safety level, i.e. by choosing eight as the number of 

shares per key.  

We have derived formulae and numerical results that offer 

the file administrator guidance in selecting these parameters. 

All together, the analysis encourages higher values of k. The 

costs of a higher safety level only matter in the infrequent 

case of key revocation and reconstruction. 
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Appendix A: Generic LH* Scheme  

A.1.   File Structure 
As for any LH* file, an LH*RE file is a collection of records 

that belong to a collection of applications in a distributed or 

networked system.  Each node with an application contains 

an LH* client that translates between the application(s) and 

the distributed storage layer that LH* implements.  The 

records themselves are stored at buckets, each located at a 

server. A record contains a unique (primary)key (the RID in 

this paper) and non-key field(s). 

The records at the servers are stored in buckets numbered 0, 

1, 2... N – 1.  The number of buckets is also called the file 

extent. A bucket number functions as a logical address. 

Every bucket is located at a different server. A file is created 

with G buckets 0, 1, ..., G – 1. In the case of LH*RE, G has to 

be greater than k, the file safety level.  As the file grows, a 

split operation appends a new bucket.  We discuss the details 

below together with the opposite operation that shrinks the 

number of buckets in the file.   

LH* addressing is based on the notion of a family of hash 

functions hi.  Let C be the set of all possible RID values.  A 

family of hash functions is then a set {hi | i = 0, 1, 2, ...} of 

functions 

ℎ&: 6 → 80,1, … 2&; − 1< 

with the property that  

ℎ&=� 	>� =  ℎ& 	>�  or  ℎ&=� 	>� =  ℎ& 	>� + 2&;. 

We assume that both alternatives are taken with equal 

probability.  The most popular hash functions are based on 

taking remainders, namely hi  (c)  =  c mod 2i G. 

Every LH* file has a specific component, called the 

coordinator.  The coordinator resides at some dedicated node 

or is a distributed entity.  For LH*RE, the coordinator does 

not reside at any server.  The coordinator keeps the file state, 

based on the file extent.  It is stored as a couple of integer 

values (l, s), l,s = 0,1…., called file level and split pointer 

respectively. The meaning of these names will become clear 

shortly.  LH* addressing  

Next, every LH*RE file has a specific component called 

coordinator. The coordinator resides at some dedicated 

node, other than the servers and client nodes. The 

coordinator keeps the file state. This is a couple of values 

(l, s), l, s = 0,1…., called file level and split pointer 

respectively. Initially, (l, s) = (0,0).  The following linear 

hash function (LH-function) h defines the correct bucket 

h (c) where the record with RID c resides for file state (l,s): 

       if hl(c) < s then h (c) := hl (c);  else h (c) := hl + 1 (c); 

To avoid bottlenecks, the coordinator does not push file state 

changes to the clients.  Clients therefore use LH* addressing 

with a sometimes outdated view of the file state. To help 

route resulting queries directed to a false bucket, each bucket 

maintains a parameter, called the level j. The initial buckets 

are all created with level j = 0.   

Every bucket has a fixed capacity b to store records. Even a 

bucket at capacity can still receive additional records for 

storage. Such a bucket overflows. It stores the additional 

record(s) in an overflow storage area. It also informs the 

coordinator of the fact. Upon receiving such a message, the 

coordinator initiates a split operation.  The well-known 

principle of linear hashing is not to split the overflowing 

bucket but to split the bucket pointed to by the split pointer s. 

The principle allows to minimize state information 

(essentially equivalent to the file extent N) and an 

overflowing bucket will eventually be split.  In more detail, 

the split operation starts by creating a new bucket, with 

bucket number N. (In LH*RE, the hosting server was selected 

well in advance so that the same server can only store a 

predetermined bucket.) The coordinator then sends the split 

request to bucket s together with the new address of N.  It 

turns out that always N = s + 2lG.  Bucket s then recalculates 

the correct bucket address of all its records using hj+1, where j 



is the bucket level.  The RIDs c of all records in Bucket s 

have either hj+1(c) = s or hj+1(c) = N. Accordingly, the record 

remains in bucket s or is send to bucket N.  Finally, Bucket s 

increments its level j and Bucket N receives the same level.  

After the split has been completed by Bucket s, the 

coordinator updates the file state by executing 

s := s +1; if s = 2l  then s := 0, l := l +1; 
Since the hash functions are uniform, every split moves 

about half of the records to the new bucket. The progression 

of buckets to split is 0, 1…G-1; 0, 1…2G – 1; 0…2iG – 1; 0, 

1…  

While most files only grow, LH* also let the file extent 

shrink if many deletions lead to underflow at buckets. The 

mechanism is similar. If the number of records falls below a 

certain threshold (such as b/3), then the underflowing bucket 

reports this fact to the coordinator who initiates a merge. A 

merge basically undoes the split.  We skip the details. Using 

merges and splits, an LH* file reaches an average storage 

occupancy of about 70%.  

Every server needs to know some physical addresses of other 

servers, as it will need to forward some queries to other 

buckets and as it will have to upgrade some clients view of 

the file.  The coordinator has all addresses of existing (and in 

LH*RE future) buckets.  Obviously, a server receives the 

addresses of all buckets that have been split from the bucket 

residing on the server. This information is sufficient to allow 

forwarding, but in order to make updates of client images 

more efficient, the coordinator provides all bucket servers 

with the addresses of all servers in use when a bucket splits. 

A.2  Record Addressing 
LH*RE uses this calculation of the correct bucket given a RID 

for the search, insert, delete and update operations. This 

calculation is only exact if clients have the same file state as 

the coordinator.  However, maintaining file state at clients 

that might not be active for a long time and even maintaining 

a list of all clients overloads the coordinator.  Therefore, LH* 

allows a discrepancy between the correct view of the file 

state (by the coordinator) and by clients and servers.  Each 

client contains a local image of the file state.  The initial 

image is (0,0), and the only physical addresses known to the 

client are those of the initial G buckets.  The client uses its 

image (s’, l’) to calculate the bucket address of a record and 

its lists of bucket location to find the correct server.  

As the file grows and shrinks, all client images, even if 

currently correct, become outdated.  As a result, a client can 

make an addressing error. Every server receiving a query 

verifies therefore whether it has the correct bucket for this 

RID. If not it forwards the query to a bucket (likely the 

correct one). The receiving bucket uses the same algorithm.. 

The servers use the following Test and Forward algorithm.  

Here a is the address of the executing server:  

a' := hj 	C� ; if a' = a : exit ; 
a'' := hj-1 	C� ; if a'' > a  : forward to a'' ; exit ; 
forward to a' ; exit ; 

 

Finally, the correct bucket receiving a forwarded query sends 

an Image Adjustment Message (IAM) to the client. The IAM 

contains the triplet (j, a', j') where a' and j' are respectively 

the address and level of last traversed bucket, say a'. The 

client updates then the image as follows.  

i’ = j’ – 1 ; if j < j’  or a > 2i’  :  a := a’ endif  

n’ := a + 1 ;  if n’ ≥ 2i’  : n’ := 0 ; i’ := i’ + 1  endif  

 

As a result, no client errs twice in the same way. The IAM 

contains also the server addresses that the server has, but the 

client, based on the error committed, does not. The analysis 

shows also that the addressing scheme has a maximum of 

two forwards, but that the vast majority of queries usually 

goes directly to the correct bucket, [LNS96].   

In case of a merge, the client might have a view of a file with 

extent larger than the true extent and therefore send queries 

to servers with non-existing buckets. Such a query either is 

not answered at all, or with an error message.  In this case, 

the client resets its image to (0,0), i.e. to an extent of G, 

resends the query to a bucket calculated with this new file 

view, and typically receives an IAM that moves its view of 

the extent closer to the actual file state.  

A.3   Scans   
A client uses a scan operation to retrieve all records matching 

a query on the contents of the non-key values.  This limits its 

usefulness for LH*RE almost exclusively to scans looking for 

key share records.  A client initiates a scan using multicast or 

unicast messages to all buckets it knows of.  The servers 

process the scan locally and deliver the records satisfying the 

query to the client. If the client uses unicast, then the possible 

difference between view and actual file state causes certain 

buckets to be missed. Servers therefore need to check for 

client view and their view of the file state and forward the 

scan message to buckets not in the view of the client.  An 

alternative implementation of scan uses forwarding almost 

always. In this case, the client only sends the scan message to 

buckets 0, 1, ... , G – 1, i.e. uses an artificial view of (0,0).  In 

more detail, forwarding is based on comparing the view of 

the file state by the client (included in the scan message) with 

the bucket level, determine whether the view has the same 

level l’ as the bucket level j and if not, forward the scan 

message to buckets s + 2l’G, s + 2l’+1G, ... s + 2j-1G.  These 

are all descendents, namely the buckets that have been split 

recently from the receiving bucket recently. See [LNS96] for 

an easy algorithm.   

During the collection phase, every server sends all local 

records matching the query to the client.  There are two 

possible termination protocols. The probabilistic termination 

protocol has only servers reply to the scan message if they 

have relevant messages.  The client therefore has to use a 

time-out to determine whether all messages have arrived and 

has no means to diagnose lost messages.  The deterministic 

termination protocol (used for LH*RE) requires a reply from 

every server and allows the client to ascertain that all servers 

have responded. We achieve the latter by having all 

responding buckets include their level in the response. This 

allows the client to obtain the correct file state as a side 



effect. If the client misses responses from servers, the client 

resends, restarts the record, or as a final resort, contacts the 

coordinator.  

A.4   Descendent Sets 
We defined the descendent set Di to be the set of all (number 

of) buckets that are directly or indirectly split from one of the 

initial buckets i ∈ {0, 1, ... G–1} and stated a number of 

properties of these descendent sets.  First, we claim that Di = 

{i + Gj | j ∈ N}, the set of all natural numbers ≡ i modulo G.  

If x ∈ Di, then the bucket split from Bucket x has number x + 

2jG, where j is the bucket level of Bucket x.  Therefore, the 

bucket numbers of buckets split (directly or indirectly) from 

Bucket i form a subset of Di. Since all possible bucket 

numbers have to make up the set N of natural numbers and 

since the Di, 0 ≤ i < G, form a partition of N, it follows that 

they have to be identical.  A merge operation merges a 

Bucket x with a Bucket x + 2jG, which again implies that 

merge operations take place within Di. A scan operation will 

be send either to Buckets 0, 1, ..., G–1 or to a superset.  

When scan queries are forwarded, they will only be 

forwarded to buckets split from the receiving bucket, so that 

scan operations stay also with sets Di.  Finally, the rules for 

forwarding RID based queries only allow forwards to 

descendents of the bucket that they were sent to.  Thus, if a 

given key share record is currently located in a Bucket x with 

x ∈ Di, then any file state view by the client has the query 

sent to Bucket i or to a Bucket y that descended from Bucket 

i. Thus follow the claims made in the main body of this 

paper. 

Attackers intrude servers, and not buckets. If we allow 

merges (and not every LH* structure allows for merges 

because it assumes an always growing file) then servers 

might see various buckets stored on them.  This causes a 

problem for addressing that can be fixed, but only by 

changing the LH* addressing operations, but it also would 

destroy our security assumptions, since the buckets could 

belong to different descendent sets. To exemplify the 

problem assume G = K = 3 and a file with extent 3, 4, 3, 4, 5, 

4, 3, 4, 5, 6, 5, ...  A server might obtain Bucket 4 the first 

time that the file grows, but looses it with the next merge 

operation. When the file starts growing again, the server 

hosts Bucket 5.  It loses the bucket again, but gets Bucket 6 

in the next round of growth.  The same server could thus 

store all three different key shares of a given key. We 

therefore have to adhere to the LH* scheme literally, only 

storing a given bucket on a fixed server.  LH*RS, the scalable 

high availability variant of LH*, achieves high availability 

by using erasure correcting codes to generate parity buckets 

and then allows buckets on an unavailable server to be 

reconstructed on a spare server.  LH*RE security requires 

special care with these migrating buckets.    

 

 

 

 

 

 


