
LH*RE: A Scalable Distributed Data Structure with
Recoverable Encryption

ABSTRACT

LH*RE is a Scalable, Distributed Data Structure (SDDS)

based on LH*. It is designed to store client data in the

potentially hostile environment of cloud, grid, or even P2P

computing and protects data confidentiality by client side

encryption. Its novel feature is safe backup of the

encryption keys used within the LH*RE-data structure itself.

This allows administrators to recover and revoke keys

using normal SDDS operations. All keys used are broken

into k+1 shares (where k is a freely chosen parameter) and

the shares are distributed among the servers such that

LH*RE remains k-safe, i.e. such that an attacker has to

successfully subvert more than k servers in order to obtain a

key and be able to read client data. Even for intrusions

several times wider, assurance (the probability of obtaining

a key and hence gaining the ability to read data) is typically

high and disclosure (the amount of data readable) after a

successful attack is typically low. Storage costs and

performance of LH*RE are about the same as for LH*.

Overall, LH*RE combines client side encryption with safe

key management and thus an attractive alternative to third

party escrow or server-side encryption.

General Terms

Algorithms, Reliability, Privacy

Keywords

Linear Hashing, LH*, Scalable Distributed Data Structures,

Encryption, Database as a Service.

1. INTRODUCTION
Many applications can benefit from the fast, scalable and

reliable storage in distributed main memory or distributed

storage devices that Scalable Distributed Data Structures

(SDDS) can offer. An SDDS stores data records coming

from client nodes on a number of server nodes. The number

of servers adjusts gracefully to the size of the data. SDDS

schemes are intended for P2P, grids and clouds. The latter

become very important as seen by the emergence of

Windows Azure, Simple Storage by Amazon, GoogleApps,

etc. The reference count for SDDS (15000 as of June 15,

2008 on Google) shows that SDDSs enjoy significant

interest. Many potential SDDS applications need to

maintain data confidentiality, as they are stored in a

potentially hostile environment. No unauthorized

administrator of a participating system and especially no

attacker to a system storing SDDS data should be able to

read the data. Examples of such applications include data

in companies and organizations, health related data, remote

backup services in the cloud, grids, archive systems, P2P

social networks, etc.

For any such application, client-side encryption using a

secret key is a very attractive choice for protecting the

confidentiality of its data. The down-side is key

maintenance. The key is needed for the lifespan of the data

and its loss, destruction, or disclosure can be disastrous. A

third-party escrow service can safeguard keys and provide

key recovery on request [B03], [PGP04]. These services

are not widely used, perhaps because of legal and technical

difficulties. Current industrial practices use server-side

encryption, unless “data security is paramount”, [S08],

[C08] and EFS, [MTN09]. It is questionable how users feel

about the resulting lack of control. With EFS, an

application encrypts the encryption key with the

application’s public key and stores the result in the header

of the encrypted data record (a “file” in EFS terminology).

EFS thus requires public key infrastructure and files

become unrecoverable once the corresponding private key

is lost. To protect against this scenario, the encryption key

can be additionally be encrypted with a domain (group)

server public key that is stored as another header field in

the file. The domain private key is stored on some server.

A successful intrusion to only two servers reveals all

records in the system.

The research prototype Potshards takes a different approach

[SGMV07]. It targets data records stored much longer than

the average lifespan on any encryption system. It achieves

data confidentiality by secret sharing. Participants break

every record into several shares stored at different systems.

The price tag is a high storage overhead, as every share has

the same size as the original record.

Database-as-a-service has become a popular paradigm

where an encrypted client's database is stored at an external

service provider. A first solution of this problem was

presented in [HMI02, HILM02, HIM03]. Different

measures for evaluating the robustness of indexing

techniques against inference attacks have been studied in

[D&al05]. In [A&al06,A&al08], the authors address the

problem of access control enforcement, proposing solutions

based on selective encryption techniques for incorporating

the access control policy on data.

Sushil Jajodia

Center for Secure

Information Systems (CSIS)

George Mason University

Fairfax, VA 22030-4444,

Jajodia@GMU.edu

Witold Litwin

Université Paris Dauphine,

Pl. du Mal. de Lattre,

75016 Paris, France,

Witold.Litwin@Dauphine.fr

Thomas Schwarz, S.J.

Universidad Católica de

Uruguay

Montevideo, Uruguay

TSchwarz@CalProv.org

In what follows, we describe an SDDS called LH*

provides client-side data confidentiality. It is a variant of

well-known LH*, the distributed version of Linear Hashing

[LMS05, LNS94, LSY07, LSY08]. A Record Identifier

(RID), a. k. a. a primary key, identifies each record. As the

number of records increases or decreases, the resulting

LH*RE stretches over more or less servers of the file

buckets (one per server). This adjustment proceeds by

bucket splits and merges. RID-based operations

retrieving, inserting, deleting or updating records

messaging times independent of the file size. Typically, a

client locates a record going directly to the storing server.

At worst, there are two more hops among the servers, but

only one additional hop is necessary in a P2P environment

[LSY08]. These properties are unique to LH*.

The LH*RE client encrypts every record before it inserts the

record at a server. The application or the client chooses the

encryption key. Any strong symmetric encryption method

such as AES will do. The client can use one, several, or

many encryption keys. It keeps each key, but also

each key in the LH*RE file itself using secret splitting

[BCK96]. Each key is broken into K = k + 1 shares.

is a file parameter, called the file safety level

k offers a trade-off between the strength of data protection

and the costs of key recovery and replacement.

basic secret sharing algorithm [PHS03] to generate shares

of keys and store each of them in a record, called a

record. Using secret sharing on keys instead of records (á

la Potshards) incurs usually negligible storage overhead.

LH*RE guarantees that as long as the file has at least

servers, two key share records (of the same key) never

reside or even pass through the same server, however the

file changes through bucket splits and merges. An attack at

a server has to break the record encryption (which we

assume to be impossible) or has to recover the encryption

key from all K shares. We call the file k

withstand k intrusions. In a file stretching over many

servers, the number of server intrusions needed by the

attacker to gather all k shares of a particular key is of

course much higher (Section 4). In contrast, a legitimate

client or an authorized administrator can recover all keys

through routine LH*RE operations. They can similarly

revoke any key by rekeying all records encrypted with that

Figure 1: LH* (top) and LH*RE (bottom) Record Structure

An LH* record contains a unique (primary) key called the

Record IDentifier (RID) to distinguish it from the encryption

keys. The RID together with the file state determine the

current bucket in which the record resides. The remainder of

the record is made up of the non-key field, which contains

the application data. LH*RE records add three

e describe an SDDS called LH*RE that

It is a variant of

known LH*, the distributed version of Linear Hashing

[LMS05, LNS94, LSY07, LSY08]. A Record Identifier

(RID), a. k. a. a primary key, identifies each record. As the

number of records increases or decreases, the resulting

stretches over more or less servers of the file

djustment proceeds by

based operations –

retrieving, inserting, deleting or updating records – have

messaging times independent of the file size. Typically, a

client locates a record going directly to the storing server.

orst, there are two more hops among the servers, but

only one additional hop is necessary in a P2P environment

[LSY08]. These properties are unique to LH*.

client encrypts every record before it inserts the

the client chooses the

encryption key. Any strong symmetric encryption method

use one, several, or

, but also stores

using secret splitting e.g.

+ 1 shares. Here k

file safety level. The choice of

off between the strength of data protection

and the costs of key recovery and replacement. We use a

haring algorithm [PHS03] to generate shares

of keys and store each of them in a record, called a share

Using secret sharing on keys instead of records (á

usually negligible storage overhead.

e file has at least K

servers, two key share records (of the same key) never

reside or even pass through the same server, however the

file changes through bucket splits and merges. An attack at

a server has to break the record encryption (which we

to be impossible) or has to recover the encryption

k-safe as it can

. In a file stretching over many

servers, the number of server intrusions needed by the

articular key is of

course much higher (Section 4). In contrast, a legitimate

client or an authorized administrator can recover all keys

operations. They can similarly

revoke any key by rekeying all records encrypted with that

key. The client can also adjust the number of keys with the

file size. This can help control the damage resulting from a

potential large scale intrusion. The properties of our

scheme offer an attractive alternative to

The next section describes the basic LH*

Section 3 analyzes security. We define our thread model,

prove k-safety under this model, analyze assurance and

determine the likely disclosure in the case of a successful

attack. Section 4 discusses briefly some variants of the

basic scheme. These add capabilities or target other SDDSs

than LH* as the basis. We conclude in Section 5.

limitations force us to assume that the reader has some

familiarity with SDDS and LH* in particular. G

references are [LNS96], [LMS05], [LSY07]

recalls the properties of LH* that we need.

2. The LH*RE Scheme

2.1 File Structure and Addressing
With respect to its internal structure and its manipulation

by an application, an LH*RE file is a normal LH* file

[LNS94]. First, any LH*RE file is a collection of records.

Client nodes (clients for short) store records in an LH*

file on a behalf of one or more, possibly distributed

applications. The records are stored in buckets (with log

addresses 0, 1 ... N – 1), each of which resides at a

server node (server for short). N is called the

file. Clients in LH*RE have the additional role of encrypting

and decrypting records. They manage the encryption keys

autonomously as we will see below. When a file is created,

the creator specifies the file safety level

extent G ≥ k.

As clients insert more records into the file, one of the

existing buckets will eventually overflow. The bucket

reports this event to a specific coordinator

coordinator then initiates a split operation which appends a

new bucket to the file (with number

half of the records of a designated bucket to the new

bucket. The bucket that has been split is usually not the

one that reported the overflow. Similarly, a bucket

underflow prompts a merge operation which undoes the last

split. Merges may shrink the file extent back to the initial

value G.

(bottom) Record Structure

An LH* record contains a unique (primary) key called the

tinguish it from the encryption

keys. The RID together with the file state determine the

current bucket in which the record resides. The remainder of

key field, which contains

records add three more fields to

the LH* record (Figure 1). The I-

application that has inserted the record and can also contain

authorization information, though authorization and

authentication are not parts of the scheme. The

discussed below) identifies the encryption key and is

necessary for key recovery and revocation. Field F is a flag

e client can also adjust the number of keys with the

file size. This can help control the damage resulting from a

. The properties of our

an attractive alternative to current practices.

the basic LH*RE algorithmic.

ty. We define our thread model,

safety under this model, analyze assurance and

determine the likely disclosure in the case of a successful

discusses briefly some variants of the

basic scheme. These add capabilities or target other SDDSs

than LH* as the basis. We conclude in Section 5. Space

to assume that the reader has some

familiarity with SDDS and LH* in particular. Good

references are [LNS96], [LMS05], [LSY07]. Appendix A

recalls the properties of LH* that we need.

File Structure and Addressing
With respect to its internal structure and its manipulation

file is a normal LH* file

file is a collection of records.

for short) store records in an LH*RE

file on a behalf of one or more, possibly distributed

. The records are stored in buckets (with logical

1), each of which resides at a different

is called the extent of the

have the additional role of encrypting

and decrypting records. They manage the encryption keys

When a file is created,

the creator specifies the file safety level k and an initial file

insert more records into the file, one of the

existing buckets will eventually overflow. The bucket

coordinator node. The

coordinator then initiates a split operation which appends a

bucket to the file (with number N) and moves about

half of the records of a designated bucket to the new

bucket. The bucket that has been split is usually not the

one that reported the overflow. Similarly, a bucket

underflow prompts a merge operation which undoes the last

may shrink the file extent back to the initial

- field identifies the

application that has inserted the record and can also contain

authorization information, though authorization and

authentication are not parts of the scheme. The T-field (to be

discussed below) identifies the encryption key and is

necessary for key recovery and revocation. Field F is a flag

indicating whether a record is a data record or a (key) share

record. Finally, the P-field contains encrypted application

data of a LH* data record or the key share for a share record.

 A record in the LH* file is stored in the correct

bucket, i.e., with the address given by the linear hash

function (LH-function) applied to its RID. The LH-function

result depends on the current file extent N. The coordinator

does not push updates to N to servers or clients, which might

therefore store an outdated view of N. In this case, the client

can make an addressing error. If the client’s view of N is

smaller than the true N and the discrepancy results in an

error, then the server receiving a request (retrieval, insert,

delete, or update) for the false bucket is guaranteed to have a

better view of the file extent and can therefore forward the

request to a bucket closer to the true one. In fact, at most two

forwards can occur. The server with the correct bucket sends

an Image Adjustment Message (IAM) to any client with an

addressing error. The client uses the IAM to update its view.

If the client has a view of N that is larger than the true value

(as the result of one or more merges), then the client can send

a request to a server with non-existing bucket. A time-out or

normally an error message informs the client who then

resends the request to the server that would have hosted the

record when there were only G servers and sets its view of

the file extent to G. The operation proceeds then as usual,

probably with forwarding and an update to the client’s

image.

An LH* file application can also request a scan operation

from the client. The scan searches in parallel over every

bucket and retrieves all records matching given conditions on

the non-key contents. For LH*RE the scan is obviously

limited to non encrypted data. It is only used for operations

related to encryption keys.

2.2 Operations on Data Records
The application interacts with LH*RE as with any other LH*

structure. Its local client translates application records to

LH*RE records and hides the structure of LH*RE records.

Given a LH* data record (Figure 1) with RID r, the client

generates the associated LH*RE record (with the same RID)

as follows.

When the client creates an LH*RE data record from an LH*

record, it retains the RID r. It sets the F-field to indicate a

data record. The P-field receives the payload encrypted with

a key. The keys are stored in an encryption key chain

organized as a table T[0,…,t –1]. The client selects a specific

key based on the RID and the table size, e.g. as T[i] with i ≡

r mod t. It stores i in the T-field. For the encryption, we can

use any strong, fast, symmetric method. Finally, the client

identifies the creating application in the I-field that can also

be made to contain access rights data.

The key chain can be extensible. The client generates the

keys using a cryptographically secure random number

generator.

Reversely, given an LH*RE data record, a client uses the I-

field to determine the generating application and determine

access rights. It then uses the T-field to determine the

encryption key. With the key, it decrypts the P-field,

yielding the LH* payload. The RID remains the same.

For an insert, a client creates the LH*RE record and inserts it

as any LH* record. For a record lookup, the client uses the

RID to calculate the address. The correct bucket sends the

data record, if found. The client recreates the LH* record and

hands it to the application. Updates and deletes are processed

analogously.

2.3 Encryption Key Operations

2.3.1 Key Backup
The client backs up every key in the key chain T at the

servers. It uses secret splitting to create k+1 share records of

each key. The client creates shares for an encryption key C as

follows. It first generates (k–1) random strings of the same

length as C. These become key shares C0, C1…Ck-1. The last

share is Ck = C0 ⊕ C1 ⊕ C2 ⊕ ... ⊕ Ck-1 ⊕ C. We recover C

from the shares just by XORing all shares. The client also

needs to generate a RID for each key share. The set of RIDs

needs to fulfill two conditions: (1) Knowing the RID of one

(or more) shares should not allow any conclusions on the

RID of other shares. (2) In a file with extent G, the k shares

need to be stored in different buckets. The requirements on

share records provide the central property for the correctness

of our schema: No two shares or messages including a share

ever end up in the same bucket as long as the file retains at

least G buckets. Otherwise, we could not guarantee k-safety.

We prove the property in Section 3. Finally, no key should

be used for encryption that has not already been backed up.

2.3.2 Key Recovery
Key recovery is the process of recovering encryption keys

from backup. The operation can become necessary for a

variety of reasons: A user may lose the laptop that served as

the client. A company may need to recover the key(s) of an

abruptly departed employee. In an emergency, a patient

health data may need to be decrypted without his (otherwise

required) consent. A court order may mandate data

decryption for a variety of reasons, etc.

Key recovery uses the LH* scan operation over the I-, T-,

and F-fields. Each server finds all records that are shares,

created by the application, and possibly have a specified

offset into T. The latter can be used to only recover specific

keys or to partition a large recovery process. The client sorts

all key shares by the key of which they are shares and XORs

the payload in order to recover the key.

In addition to key recovery, we also allow recovery by

certain authorized sites. This fact needs to be known to all

servers or (more easily) encoded in the I-field. In this case,

the key recovery operation can specify that the recovered

keys are sent to a different client.

2.3.3 Key Revocation
In some cases, a client or an authority needs to revoke one or

more keys. This need can be caused by a theft of a laptop

with key chain or if access by an employee needs to be

terminated, etc. First, the key to be revoked might need to be

recovered. Using a scan based on the I-, T-, and F-field, all

records encrypted with the key to be revoked are recovered,

their P-field re-encrypted with a newly created and backed-

up key that takes the place of the revoked key in the key

chain, and reinserted into the LH*RE file so that all servers

replace the previous version of these records.

2.3.4 Scalable Number of Keys
Many keys for a small file are burdensome, but for a larger

file, the expected disclosure of records in case of a successful

attack shrinks as the number of encryption keys used

increases. LH*RE allows for an increase in the number of

keys t used by a client. To limit disclosure, keys should be

used for encrypting about the same number of records. One

could use a key only for a certain number of records and then

create a new one or one could use a linear hashing scheme

that places records encrypted with the same key into a virtual

bucket. During a split of the virtual bucket, about half of the

records would be assigned a new virtual bucket, which

triggers rekeying these records with a newly created key.

Merging these virtual buckets and removing the last key

created in this scheme seems to be hardly of any practical

interest.

3. Analysis
We first define our threat model. Next, we focus the analysis

on the safety and assurance of an LH*RE file. We then

analyze the storage occupancy and access performance.

3.1 Security Analysis

3.1.1 Thread Model
The novelty of LH*RE is tied to its distributed character. We

are therefore not interested in the local effects at an intruded

client, as any such intrusion poses the same dangers as in a

stand-alone environment. We assume that authentication and

authorization of record access at servers successfully isolates

an intruded client from the data belonging to other clients.

This leaves one advantage that an intruder to a client can

gain (in addition to control over the application and its data),

namely information on the file state and the location of

buckets known to the client. Since this analysis is a bit more

involved than space allows, we have restricted discussion to

a technical report [XX09]. We also assume that snooping

network traffic is impossible, e.g. because of the use of

Virtual Private Networks (VPN). Furthermore, we assume

that the coordinator is secure and that the information that

clients receive in an IAM about the location of buckets is

correct. (For example, servers receive coordinator signed

certificates about bucket locations from the coordinator.) In

this paper, we use a basic threat model, in which an attacker

can gain access to one or more servers capable of hosting

buckets, without knowing initially which bucket they host.

The attacker is then limited to finding key shares at this

server, either in storage or in transit. We further assume that

a server stores at most one bucket and does not host a

different bucket after it has once hosted a bucket. This

situation could otherwise arise from a history of splits and

merges.

3.1.2 Key Safety
LH*RE is k-safe, which, as we recall, means that an intruder

has to break into at least K (= k+1) servers in order to find all

key share records belonging to a certain key. The intruder

can capture a key share by either finding it in the bucket of

an intruded server or by obtaining it in transit. For example

when a client creates a key and stores the key share records

in the file, they are not send necessarily directly to their final

destination but can take an additional hop and occasionally

even two hops. The proof of k-safety requires some notation.

When a bucket i splits into a new bucket i located at the same

server and a bucket j, then we call i an ancestor of j and j a

descendent of i. Recall that an LH*RE file has a minimum

extent of K := k + 1 and an initial extent of G, G ≥ k + 1 = K.

We define a descendent set Di, 0 ≤ i ≤ k, to be the set of all

bucket numbers of descendents of a bucket i, descendents of

descendents of i, descendents of descendents of descendents

of i, ... when the file had an initial extent of k.

Examples: Assume that k = 3 (and hence K = 4) and set G =

4. The “original” four buckets are those numbered 0, 1, 2,

and 3. The LH* rules give D0 = {0, 4, 8, 12, ...}, D1={1, 5, 9,

13, ...}, D2={2, 6, 10, 14, ...}, and D3={3, 7, 11, 15, ...},

which in this case are the set of integers equivalent to 0, 1, 2,

and 3 respectively modulo 4.

LH* rules (see appendix A) imply the following, (assuming

that the file extent never falls below k:

• The sets Di are mutually disjoint and their union is the

set of natural numbers.

• A descendent of a bucket with number in Di has always

a bucket number in Di.

• An ancestor of a bucket with number in Di has always a

bucket number in Di.

• A RID-based query (insert, delete, retrieval, edit) for a

record in a bucket in Di is always sent to a bucket in Di

even if the client has an outdated view. If it is

forwarded, then the message only passes through

buckets with number in Di.

• A scan results in queries to all existing buckets,

according to the view of the client. If a query to a

bucket with number in Di results in a scan query

forwarding, then the forwarded message is sent to a

bucket in Di.

By virtue of how key shares receive a RID, each one of all

key shares of a newly created key are placed in a bucket in a

different set Di. Key shares can migrate to other buckets, but

only to and from another bucket in the same set Di. A RID-

based query might be routed through another bucket, but

only to one with number in the same set Di in which the key

share resides. Similarly, a scan query (which contains

information about a key) is only forwarded from a bucket in

Di to another bucket in Di. As a result, an attacker can only

gather all key share records belonging to the same key if he

has intruded into at least one bucket with number in Di (but

might need to intrude all buckets in Di for this information).

This implies k-safety, as an intruder needs the encryption key

to access the contents of the record. If a client sends a scan

request to buckets 0, 1, ... , k, then these scan requests will be

forwarded to all buckets, but in a manner where the scan

request to i only gets forwarded within Di. Therefore, scan

based operations can be performed without any danger of

revealing encryption key data to other buckets.

3.2 Assurance
LH*RE file safety (by electing and adjusting k) gives a simple

measure of confidence that an intruder cannot read or write

any data records. However, it gives only a lower bound on

the number of systems a successful attacker would have to

intrude. Typically, the required number of intrusions is

higher. We define assurance to be the probability that an

intrusion into x out of N buckets does not disclose any key.

Assurance depends on the number of intrusions x, the

number of buckets (each located at a given server), the

number of keys, and obviously, on the choice of k. For x, we

only count intrusions to servers containing a bucket. We can

use assurance calculations to obtain the average number of

keys obtained by the intruder and from it disclosure, the

expected amount of records now accessible to the intruder.

The conclusion of our analysis below is that a typical LH*RE

file even with a very low parameter of k and a moderate

number of buckets has surprising (to us) high assurance and

low disclosure. Adjusting the number of encryption keys a

client uses does not change the expected portion of keys

revealed, that is, disclosure does not depend on the number

of keys revealed. We define conditional disclosure to be the

proportion of records disclosed given that the attacker

received a key. Conditional disclosure describes the expected

amount of damage in a bad case. Our analysis reveals it to be

controllable by adjusting the number of keys.

3.2.1 Single Key
We first calculate assurance in a file with a single key. We

use our basic threat model; hence the attacker does not know

which bucket is located where. Otherwise, an attacker that

has found a key share record in a bucket with number in Di

no longer needs to look for this key share in buckets with

numbers also in Di. We assume that the intruder has gained

access to x out of N buckets. We know that K, (K = k + 1), of

these buckets contain a key share record and need to

calculate the probability that all of these K buckets are

among the x accessed buckets. We determine the probability

by counting. There are then ��
� � ways to select the x buckets

that the intruder broke into, which is also the number of

possible attacks. For an attack to be successful, the attacker

has to have attacked all K sites with a key share. Of all his

attacks, x – K went to sites that did not have a key share, of

which of course there are N – K. The number of successful

attacks is hence �� − �
� − � �. The probability that the intruder

obtains a given set of K key shares with x intrusions is

��	�, �, �� = �� − �
� − � � ��

� �
�
.

The assurance against disclosure of a single key is q1(N,x,K)

= 1 – p1 (N,x,K).

Figure 2: Assurance in an LH* file with K = 4, 8, and 16

key shares (top to bottom) extending over 16, 32, 64, 128,

256, 512, and 1024 servers. The x-axis is chosen to show

the 99% (two nines) assurance level.

Figures 2 and 3 give the assurance for an LH* file with K =

4, 8, and 16 key shares and 16, 32, 64, 128, 256, 512, and

1024 sites. We plot the value of q1(N,x,K) and vary the

number x of intruded sites. Since we would often be given a

required assurance (expressed in number of nines), we drew

the x-axis at the 99% (two nines) in Figure 2 and at the

99.999% (five nines) level in Figure 3. Even for moderately

large files the required number of intrusions has to be much

larger than x. For example, for a file with extent N = 512 and

K = 8, the intrusion needs to be to ~ 300 sites to have the

assurance fall below the 99% level. The almost even spacing

of our curves on the logarithmic x-axis show that the ratio of

intruded sites over total sites for assurance below a certain

level is almost constant, though slightly decreasing with N.

æ æ æ
æ

æ

æ

æ æ æ æ æ æ æ

à à à à à
à
à

à

à

à

à

à

ì ì ì ì ìììììììì
ì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôô
ôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ççç
çç
çç
ç
ç
ç
ç
ç
ç
ç
ç

áá

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=4

1024

æ æ æ æ æ æææ
æ

æ

æ

æ æ æ æ æ æ æ

à à à à à ààààààààà
à
à

à

à

à

à

ì ì ì ì ììììììììììììììììììììììììì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ò ò ò ò ò òò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

çç
çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

áá

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=8

1024

æ æ æ æ æ ææææææææææ

æ æ æ æ æ æ æ

à à à à à àààààààààààààààààà

à

à

à

ì ì ì ì ììììììììììììììììììììììììììììììììììììììì
ì
ì
ì

ì

ì

ì

ì

ì

ò ò ò ò ò òò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ççç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

áá
ááá
á
á
á

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=16

1024

Figure 3: Assurance in an LH* file with K = 4, 8, and 16

key shares (top to bottom) extending over 16, 32, 64, 128,

256, 512, and 1024 servers. The x-axis is chosen to show

the 99.999% (five nines) assurance level.

Figure 4: Ratio ρρρρ of assurances with random placement

over assurance with the LH*RE placement scheme for N =

256 sites, K = 4, 8, and 16.

An alternative placement scheme to LH*RE is to just

distribute key shares randomly among the sites. In this case,

the probability of obtaining one specific key share is x/N, the

probability of obtaining all K is the Kth power of this value,

and the assurance under this random placement scheme

(given x)

��[������]	�, �, �� = 1 − ��
��

�

We measure the difference by calculating the ratio ρ =

pi/pi
[random]. Figure 4 gives the result for N = 256 and K = 4, 8,

and 16. As we see, the effect of the LH*RE scheme is always

beneficial, though not pronounced for small number of

intrusions, as the probability of having two keys located by

chance at the same site is small. As x increases, the benefices

of our scheme increase. As K increases, ρ stays closer to 1

for smaller values for x, but falls faster as the number of

successfully site attacks increases. This probabilistic

evaluation shows that LH*RE placement of key shares is

superior, but hides that LH*RE gives guarantees.

Figure 5: Assurance in an LH* file with K = 4 and r = 10

and r = 100 keys. We vary N from 16 to 1024. The x-axis

shows the two nines assurance level

3.2.2 Multiple Keys
The assurance against retrieval of one key out of r keys is qr

= (1 – p1(N,x,K))r. Certainly, having multiple keys increases

the chances of an attacker to gather at least one key after

intruding into x sites. Figures 5, 6, and 7 show the effects of

changing r. As was to be expected, assurance drops, but still

remains quite high.

æ æ æ

æ æ æ æ æ æ æ

à à à

à

ì ì ì
ì

ì

ì

ò ò ò ò ò
ò

ò

ò

ò

ò

ô ô ôôôôô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ç ç ççççççççççççççççççç
ç
ç
ç
ç
ç
ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

á á áá
áá
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á

5 10 50 100 500
x

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000
Assurance

16

K=4

1024

æ æ æ æ æ ææ

æ æ æ æ æ æ æ

à à à à à ààà
à

à

à

ì ì ì ì ì ììììììììì
ì
ì

ì

ì

ì

ì

ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ô ô ôô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ô

ç ç ççç
çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ç

á á áá
áá
á
á
á
á
á
á
á
á
á
á
á
á

5 10 50 100 500
x

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000
Assurance

16

K=8

1024

æ æ æ æ æææææææææææ

æ æ æ æ æ æ æ

à à à à à ààààààààààààà
à

à

ì ì ì ì ììììììììììììììììììììììììììì
ì
ì

ì

ì

ì

ì

ò ò ò ò ò òò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ô ô ôôô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ô

ç çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ç

ç

á á ááá
áá
á
á
á
á
á
á
á
á
á
á
á
á
á

5 10 50 100 500
x

0.999970

0.999975

0.999980

0.999985

0.999990

0.999995

1.000000
Assurance

16

K=16

1024

50 100 150 200 250
x

0.988

0.990

0.992

0.994

0.996

0.998

r

K = 4

K = 8

K = 16

æ æ æ

æ

æ æ æ æ æ æ æ

à à à à

à

à

à

ì ì ì ì ìì
ì
ì

ì

ì

ì

ì

ì

ò ò ò ò ò òòòòòòòò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ôôôôôôôôôôôôôôôôôôôôôôôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ô

ççç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

áá
ááá
á
áá

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=4 r=10

1024

æ æ æ

æ æ æ æ æ æ æ

à à à

à

à

ì ì ì ì
ì

ì

ì

ì

ò ò ò ò ò òò
ò
ò

ò

ò

ò

ò

ò

ò

ôôôôôôôôô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ô

ççççççççççççççççççççççççççççççç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ç

ç

ç

ç

ç

ç

áá
áá
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á
á

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=4 r=100

1024

Figure 6: Assurance in an LH* file with K = 8 and r = 10

and r = 100 keys. We vary N from 16 to 1024. The x-axis

shows the two nines assurance level

Figure 7: Assurance in an LH* file with K =16 and r = 10

and r = 100 keys. We vary N from 16 to 1024. The x-axis

shows the two nines assurance level

We notice that the influence of r diminishes with increasing

K.

3.2.3 Disclosure size
The disclosure d measures the quantity of data revealed by a

successful intrusion. More precisely, we define d to be the

expected proportion of records revealed by an intrusion into

x servers. As we will see, d does not depend either on the

distribution of data records to buckets nor on the distribution

of records encrypted with a certain key. The attacker has

intruded into x servers each with a bucket, has harvested all

key share records, and is now in possession of any

encryption key for which she has gathered all key shares. She

possesses now a given key with probability 1 − �� =
�� − �

� − � � ��
� �
�

. Since on average, she has obtained a

proportion x/N of all data records encrypted with this key,

and since she needs encryption key and data record to obtain

access to an application record, she obtains on average a

proportion of

�	�, �, �� = �� − �
� − � � ��

� �
� �
�

of all application records encrypted with this key. Since this

is a proportion, the same expression not only gives the

disclosure for a single key but also the disclosure for a

number of encryption keys. In particular, expected

disclosure does not depend on the number of encryption keys

used.

As the number of keys increases, the number of records

protected by a given key gets smaller and the amount of data

disclosed in a breach becomes smaller. We capture this

notion in what we call conditional disclosure. Conditional

disclosure is defined to be the disclosure (measured again as

a proportion of accessible application records over total

application records) under the assumption that x intrusions

resulted in a successful attack, i.e. one where the attacker has

obtained at least one key and therefore one or more

application records. The probability for a successful attack

on a specific key is

�� = �� − �
� − � � ��

��
�

Our model implies that obtaining one key and obtaining

another one (through the x attacks) are events independent of

each other. The probability of obtaining at least one out of r

keys is

� = 1 − 	1 − ����

We notice that

� = � ��
 � ��!	1 − ����
!�

!"�

 The conditional probability of obtaining exactly s out of r

keys given that we obtain at least one key is

��
 � ��!	1 − ����
!

�

and the expected number of total keys obtained given that we

obtained at least one is

= �
 ��

 � ��!	1 − ����
!

�
�

!"�

Now, this is the number of expected values of the binomial

distribution divided by P. Thus, E evaluates to

æ æ æ æ æ ææ

æ

æ

æ æ æ æ æ æ æ

à à à à à àààààà
à
à

à

à

à

ì ì ì ì ìììììììììììììììììì
ì
ì

ì

ì

ì

ì

ì

ì

ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ççç
çç
çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ááá

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=8 r=10

1024

æ æ æ æ æ ææ

æ

æ æ æ æ æ æ æ

à à à à à àààà
à

à

à

à

ì ì ì ì ììììììììììììì
ì
ì

ì

ì

ì

ì

ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ô

ô

ô

ô

ô

ô

ô

ççç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ááá
áá
á
á
á
á
á
á
á
á
á

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

16

K=8 r=100

1024

æ æ æ æ æ ææææææææææææææææ

æ

æ

æ

æ æ æ æ æ æ

à à à à à ààààààààààààààààààààààààààààààààà
à
à

à

à

à

à

à

ì ì ì ì ìì
ì
ì
ì
ì
ì

ì

ì

ì

ì

ì

ì

òòò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

çç
çççç
ç
çç
ç
ç
ç
ç
ç
ç

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

32

K=16 r=10

1024

æ æ æ æ æ ææææææææææææææ
æ

æ

æ

æ æ æ æ æ æ

à à à à à ààààààààààààààààààààààààààààà
à
à

à

à

à

à

ì ì ì ì ìì
ì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

òòò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ôôô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô

ô

çç
çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

5 10 50 100 500
x

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000
Assurance

32

K=16 r=100

1024

Figure 8: Contour Graph for the conditional disclosure. We vary N, the number of sites, and r, the number of keys. We

set K, the number of shares to 8, and show figures for x = 8, 9, 16 and 32 intrusions. The upper right corner of each

picture has close to zero conditional disclosure.

Figure 9: Contour graph for conditional disclosure for K = 16.

= � ��
�

The proportion of records encrypted with s out of r keys is

s/r. Consequentially, E/r of all records are expected to be

encrypted with a key that the attacker now possesses. The

expected proportion of LH*RS data records obtained with x

intrusions into N buckets is x/N (even though of course the

expected number in LH* buckets depends usually on the

bucket number). The conditional disclosure is given as the

expected number of keys disclosed (given that this is a

successful intrusion) divided by r and multiplied with the

expected number of data records obtained, hence is ���
��

Figures 8 and 9 plot the conditional disclosure for selected

values of K in a contour plot. There, we tread the conditional

disclosure as a function of N and r. The shaded regions

correspond to those areas where the conditional disclosure is

less than a given value, ranging from 0.0005 to 0.005 (half a

percent of all records revealed).

Our results in conjunction with the independence of the

expected disclosure shows that adjusting r allows us to very

effectively control the expected amount of disclosure

assuming that a disclosure happened. We pay for this control

in the higher number of incidents of disclosure. This type of

trade-off between incident rate and incident effect might

become very useful for obtaining or pricing an insurance

policy to cover the effects of an intrusion.

3.2.4 Refined Measurement of Disclosure Costs
Up till now, we have tacitly assumed that the disclosure of

any record costs the storage provider the same. However, this

might often not be the case. We now consider a scenario

where there is a fixed costs associated to any disclosure of

records in addition to a costs per record disclosed. For

example, assume a health care provider, credit card

processing center, or a university registrar service center that

store their data in a LH*RE data structure on many servers.

Entities of these types are regulated and often forced to

publicly acknowledge each breach of privacy of data. In

addition, they are likely to incur costs in mitigating the

damage for each person involved, which is usually

proportional to the number of records revealed. We model

this scenario by assigning a value of 1 to the maximum

damage done, by assigning a value α, 0 < α < 1, to the fixed

costs of a disclosure. Correspondingly, each of the total s

records that is disclosed costs (1 – α)/s. Assuming r keys of

which i have been disclosed, the proportion of records

disclosed is i/r of the x/N records that the attacker can access.

Thus, the disclosure costs for i > 0 is $ + 	1 − $� & '
� (and the

expected disclosure cost is

� $ + 	1 − $�) �
� � ��

) �
�

&"�
��	�, �, ��&	1 − ��	�, �, ����
&

Figure 10 gives the results calculated for K = 8, N = 100, and

α = 0, 0.1, 0.5, and 1 depending on the number of intrusions

Figure 10: Refined Disclosure Proportion for N = 100, K

= 8, α = 0, 0.1, 0.5, 1, and x (x-axis) varying between 0 and

50. Notice the different scales on the y-axis

10 20 30 40 50

0.002

0.004

0.006

0.008

0.010

0.012

0.014

r = 1

r = 10a = 1 r = 100

10 20 30 40 50

0.001

0.002

0.003

0.004

0.005

0.006

0.007

r = 1

r = 10

a = 0.5
r = 100

10 20 30 40 50

0.0005

0.0010

0.0015

0.0020

r = 1

r = 10a = 0.1 r = 100

10 20 30 40 50

0.0001

0.0002

0.0003

0.0004

0.0005 r = 1

r = 10

a = 0

r = 100

x. We can see how disclosure increases with increasing

also how the number of keys r becomes more important. Not

too surprisingly, with this cost model, a single key should be

used.

Figure 11: Small LH* structures with 6 buckets

(top) and 10 (bottom) buckets broken into

descendent sets for buckets 0, 1, and 2

3.2.5 Refinements of the Intrusion Scenario
Our basic intrusion scenario limits the capability of the

attacker perhaps more than is reasonable to assume. Take for

example an intruder that has taken over a

“owns” all its data. This data happens to be stored in a LH*

file with data not accessible by the client. The attacker wants

to gain access to some of this data as well. The attacker has

additional information not available to an attacker under our

basic thread model. First, some LH* buckets are about twice

as large as the others (namely those not yet split in the

current round of splits). These contain more key share

records. Second, the attacker knows bucket numbers and

therefore descendent sets. If the attacker needs a specific

encryption key and has already found a key share record, he

knows that other buckets in the same descendent set cannot

contain other key shares and therefore remove them from his

target list. All this can be modeled as interesting optimization

problems for the attacker, but its treatment requires advance

knowledge of LH* properties, relegated to Appendix A.

turns out that access to size information or even location

We can see how disclosure increases with increasing α, but

becomes more important. Not

too surprisingly, with this cost model, a single key should be

: Small LH* structures with 6 buckets

(top) and 10 (bottom) buckets broken into

descendent sets for buckets 0, 1, and 2

Intrusion Scenario
Our basic intrusion scenario limits the capability of the

attacker perhaps more than is reasonable to assume. Take for

example an intruder that has taken over a client and now

. This data happens to be stored in a LH*RE

file with data not accessible by the client. The attacker wants

to gain access to some of this data as well. The attacker has

additional information not available to an attacker under our

basic thread model. First, some LH* buckets are about twice

arge as the others (namely those not yet split in the

current round of splits). These contain more key share

records. Second, the attacker knows bucket numbers and

therefore descendent sets. If the attacker needs a specific

found a key share record, he

knows that other buckets in the same descendent set cannot

contain other key shares and therefore remove them from his

All this can be modeled as interesting optimization

t requires advance

knowledge of LH* properties, relegated to Appendix A. It

turns out that access to size information or even location

information, while useful, does not dramatically change the

picture. We observe that a true attacker would triage server

based on the results of a vulnerability scan. The costs of an

attack to a site depend on the site and vary among sites,

making our model less interesting.

different degrees of vulnerability is difficult since assigning

any numerical values to sets of sites is simply too arbitrary

and development of a generic theory of how to model

vulnerability of individual sites certainly beyond the scope of

our work here.

Thus, the scenario we consider here

attacker has obtained a complete map of the installation that

tells the attacker where which bucket is located. We assume

that breaking into any site costs the attacker a constant

amount, either in money, or in work, or in a combination of

both.

We first use the examples given in Figure 11 to illustrate the

advantages that the attacker can gain from his/her

knowledge. Both examples use K

unrealistically low value, but good enough to explain the

principle). Figure 11 gives the desce

original buckets 0, 1, and 2. In addition, we label each bucket

with the binary number representing h

evaluated at the given level. In the top of the figure, Bucket 3

has label 11, which means that membership of a

bucket is evaluated at level 2. We notice, that Buckets 3 and

2 contain about twice as many records as the remaining

buckets, because the split pointer is 2 and they have not yet

been split in the current epoch. Similarly, at the bottom, the

split pointer is at 2 and Buckets 2, 3, 4, 5, 6, and 7 have twice

as many records (on average), whereas Buckets 0 and 1 have

been split into Buckets 8 and 9 and thus contain about half as

many records as the remaining buckets.

 If N were to fall to 3, then a share would be found in bucket

0, 1, 2 each. If there are only 6 buckets, then the key share

originally in bucket 2 would still reside in

Therefore, an attacker has to intrude into the site with Bucket

2. In the second example, to obtain the ke

in Bucket 0, the attacker has to attack Buckets 0, 4, and 8.

Bucket 4 contains about half the records in the descendent

sets, whereas Buckets 0 and 8 contain the other half.

Therefore, the attacker should intrude into Bucket 4 with

priority.

Let us consider the attacker’s optimization problem in Figure

11 in more detail. Assume that the attacker plans

of which x0 are directed to the descendent set of Bucket

0, x1 to the descendent set of Bucket 1, and

descendent set of Bucket 2. To have any chance of

success, all values need to be non

x0 ≤ 2 and x1 ≤ 3. We can measure putative success by

the probability to receive a single key. If

the attacker can choose either Bucket 0 or Bucket 4

the attack and receives key share 0 with probability

= ½. For x0 = 2, the probability is p

attacker chooses Bucket 3 giving a probability of

½ to obtain the key share. Adding to

information, while useful, does not dramatically change the

We observe that a true attacker would triage servers

based on the results of a vulnerability scan. The costs of an

attack to a site depend on the site and vary among sites,

 However, modeling

different degrees of vulnerability is difficult since assigning

lues to sets of sites is simply too arbitrary

and development of a generic theory of how to model

vulnerability of individual sites certainly beyond the scope of

 is the following. The

d a complete map of the installation that

tells the attacker where which bucket is located. We assume

that breaking into any site costs the attacker a constant

amount, either in money, or in work, or in a combination of

We first use the examples given in Figure 11 to illustrate the

advantages that the attacker can gain from his/her

 = 3 (a somewhat

unrealistically low value, but good enough to explain the

principle). Figure 11 gives the descendent sets for the

original buckets 0, 1, and 2. In addition, we label each bucket

hlevel, the hash function

In the top of the figure, Bucket 3

has label 11, which means that membership of a RID in this

bucket is evaluated at level 2. We notice, that Buckets 3 and

2 contain about twice as many records as the remaining

buckets, because the split pointer is 2 and they have not yet

been split in the current epoch. Similarly, at the bottom, the

plit pointer is at 2 and Buckets 2, 3, 4, 5, 6, and 7 have twice

as many records (on average), whereas Buckets 0 and 1 have

been split into Buckets 8 and 9 and thus contain about half as

many records as the remaining buckets.

a share would be found in bucket

0, 1, 2 each. If there are only 6 buckets, then the key share

originally in bucket 2 would still reside in Bucket 2.

to intrude into the site with Bucket

2. In the second example, to obtain the key share originally

in Bucket 0, the attacker has to attack Buckets 0, 4, and 8.

Bucket 4 contains about half the records in the descendent

sets, whereas Buckets 0 and 8 contain the other half.

intrude into Bucket 4 with

Let us consider the attacker’s optimization problem in Figure

in more detail. Assume that the attacker plans x intrusions,

descendent set of Bucket

to the descendent set of Bucket 1, and x2 to the

et of Bucket 2. To have any chance of

success, all values need to be non-zero. Additionally,

≤ 3. We can measure putative success by

the probability to receive a single key. If x0 = 1, then

the attacker can choose either Bucket 0 or Bucket 4 for

the attack and receives key share 0 with probability p0

p0 = 1. For x1 = 1, the

attacker chooses Bucket 3 giving a probability of p1 =

½ to obtain the key share. Adding to x1 involves

attacking Buckets 1 or Bucket 5 or both, resulting in p1

= ¾ for x1 = 2 and p1 = 1 for x1 = 3. Finally, x2 has to

be 1, given a success probability of 1. The attacker’s

optimization problem given a “budget” x of sites to

attack is to maximize p0(x0)⋅p1(x1)⋅p2(x2) for x =

x0+x1+x2.

In the general case, we can capture the probability of

obtaining key share i in a function p(i,xi). Assume that

there are a buckets in Di of which b are “big”, i.e. not

split in the current LH-splitting round. Then

�), �&� = * 2�&/	- + .�;)0 �& ≤ .
	. + �&�/	- + .�;)0 �& > .3

For example, in the lower example of Figure 11, D1

has a = 5 and b = 3 as Buckets 3 and 5 are big. p(1,1)

= ¼ since the attacker will attack one of the two big

buckets, that yield him 2/8 of all records in the

descendent set. p(1,2) = ½ and p(1,3) = ¾ reflecting

attacks on two or all three big buckets. Buckets 1 and 7

only contain 1/8 of all records in the D1, therefore

p(1,4) = 7/8 and p(1,5) = 1.

Figure 12: Difference in disclosure between the savvy and

the agnostic attacker for the Example in Figure 11.

Figure 12 finally gives the result between the savvy

attacker, defined to be the one taking location

information into account and optimizing her attack

plan accordingly, and the agnostic attacker, who does

not use or does not have this information available.

Figure 13: Disclosure amount differences between savvy

and agnostic attacker for N = 64 and K = 3, 4, 5

We now investigate the difference between the savvy and the

agnostic attacker for a variety of parameter values. Let the

reader beware of the change of scale on the y axis. We give

results in Figure 14.

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0

Disclosure

Fig. 11 top

savvy

agnostic

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0

Disclosure

Fig. 11 bottom

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Disclosure

N=64, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.01

0.02

0.03

0.04

0.05

0.06

Disclosure

N=64, K=4 savvy

agnostic

5 10 15 20 25 30
x

0.005

0.010

0.015

0.020

0.025

Disclosure

N=64, K=5

savvy

agnostic

Figure 14: Disclosure differences between savvy and agnostic attackers

5 10 15 20 25 30
x

0.1

0.2

0.3

0.4

0.5

0.6

Disclosure

N=44, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.05

0.10

0.15

0.20

0.25
Disclosure

N=58, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.05

0.10

0.15

0.20

Disclosure

N=60, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.05

0.10

0.15

Disclosure

N=62, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Disclosure

N=64, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Disclosure

N=66, K=3

savvy

agnostic

5 10 15 20 25 30
x

0.1

0.2

0.3

0.4

Disclosure

N=44, K=4

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

0.12

Disclosure

N=58, K=4

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

0.10

Disclosure

N=60, K=4

savvy

agnostic

5 10 15 20 25 30
x

0.02

0.04

0.06

0.08

Disclosure

N=62, K=4

savvy

agnostic

5 10 15 20 25 30
x

0.01

0.02

0.03

0.04

0.05

0.06

Disclosure

N=64, K=4 savvy

agnostic

5 10 15 20 25 30
x

0.01

0.02

0.03

0.04

0.05

0.06

Disclosure

N=66, K=4

savvy

agnostic

The differences between the savvy and the agnostic

attackers depend on the number of big buckets versus

small buckets, but even more on the ability to avoid to

inadvertently allocate all resources to a single

dependency set.

3.3 Storage Occupancy and Access

Performance
Storage for the encryption keys in the file and in the cache

should be negligible. It is O((k+2)N), where the cache

accounts for O(N). An AES key has 32B, which allows for

millions of keys in current RAM and for thousands if the key

chain has to fit in the L1 or L2 cache. The effective load

factor of an LH*RE file should be in practice very close that

to an LH* file of same extent with the same number of data

records. We recall that the average load factor of such an

LH* bucket is ln(2) ≈ 0.7.

Access time to a record is dominated – as usual – by

messaging costs and therefore proportional to the number of

messages per operation. Cryptographic operations take time

proportional to the size of data records. With symmetric

encryption they should be negligible. This conjecture still

stands in need of experimental verification.

The message costs of record insert or RID-based search are

those of LH*. Thus, our variant of LH*RE uses typically one

message per insert and two messages per search. In case of a

(typically rare) addressing error, this increases by two at

worst. The update and delete messaging cost each as for LH*

as well.

The message count cost of encryption keys creation is

usually (k+1)N. A key recovery message cost is that of an

LH* scan. It thus consists first of one multicast to send out

the scan, or of N unicast messages for this purpose. The

timing of the latter depends on the scan processing strategy.

Assuming that the client diffuses the scan itself to every

bucket in the image, the eventual difference between the

maximal number of splits some bucket has encountered

according to the client image and the actual one determines

the number of rounds of the scan send-out [LNS96]. The

message count does not change, but the timing does. The

reply from the servers costs at best N unicast messages to the

client. Some with shares and some being simple acks, we

recall. All together, key recovery costs thus one multicast

and N unicasts or 2N unicast messages in total, at best. The

actual count can be higher depending on the actual

implementation.

The scan cost dominates the key revocation cost for a larger

file. Assuming only unicast messaging, a scan operation

proceeds at best in 2N messages to retrieve the records and

the key shares of the key to revoke. A practical

implementation of this phase should invoke several scan

operations, each costing at least 2N messages. This phase is

followed by at least 2(k+1) messages per key to rewrite the

shares, i.e. if T has size t, then this amounts to 2t (k + 1)

messages. Finally, there are r messages to write r re-

encrypted records, where the upper limit for r is the number

of records in the file. If however the client only revokes a

few private keys for a few records, then the messaging costs

is dominated by the 2N messages per round in a scan

operation needed to find the records. As the rewriting of key

share records can now be done in parallel with the scan, the

overall timing should decrease towards the time for the scan

and the rewrite of the records.

4. Variants
We now sketch some variants of the basic LH*RE scheme. In

technical reports [XX09a] and [XX09b] we already discuss

two variants in detail. One uses a distinct key for every data

record. The other provides a data record with its encryption

key encoded through a private share which contains the key

and only distributed to entities with access rights to the

record. We now discuss further variants.

4.1 Safety Level Managed by Client
We expect a typical LH*RE client to have an exclusive set of

encryption keys, for instance, because there is only one such

client. Even if the client shares the encryption key with other

clients, its shares can be made private. This allows the client

to set a private client safety level k’. For a single client,

simply k’ = k. Otherwise, k’ = k only initially. Each client

creates and maintains K’ = k’ + 1 shares and adjusts k’

according to its policy based on its view of the file extent.

(In fact, the same client could have different k’ and different

policies for different record classes encrypted with mutually

disjoint sets of keys.) This safety policy of the client uses the

perceived view of the file extent. Whenever the client

receives an IAM, it calculates whether the policy triggers a

change in the number of key shares.

We recall that the encryption key is the XOR of the payload

of the key shares. To increase the number of key shares for a

given key from K to L, the client retrieves the RIDs of all

existing key shares, and at least some shares themselves.

Each of the K key shares is located in a different of the K

buckets of a file of extent K. Therefore, they would be also

located in different buckets of a file of extent L. It is

therefore possible for the client to find additional L – K RIDs

for the new records such that each of the L old and new key

shares would be located in a different one of the L buckets of

a file of extent L. The client then generates random L – K

new key shares and adjusts one or more of the retrieved key

share records so that the XOR of all shares remains the same,

namely the encryption key. Finally, the client stores the new

and changed key share records. This operation proceeds in

parallel for all encryption keys to which the policy applies.

If the file shrinks, the client safety level might be equal or

larger than the number of buckets. The client is unaware of

this situation until an IAM informs it. Now, the client has to

shrink the number of key share records from K to L. It turns

out that in a file of extent L, each bucket contains at least one

key share. If there are multiple key shares in a (hypothetical,

since the actual file extent might be larger) bucket, then the

client retrieves the key shares. The client then XORs these

key shares themselves and creates a new key share record

with the RID of one of them. Obviously, both operations

maintain the two important invariants of key share records:

The XOR of all key shares is the encryption key; and, if there

are K key shares, then they would reside each in a different

bucket of a file with extent K.

4.2 Adapting to Other LH* Schemes
It is useful to incorporate the high-availability into the

scheme, especially to avoid any losses of shares. The

simplest way is to use LH*RS, [LMS5]. Its use of erasure

correction protects keys in a similar manner to (k, l) secret

sharing with l > k + 1, [PHS3]. Alternatively or

simultaneously, key share records might be made more

resilient to the unavailability of a bucket by using these

advanced secret sharing schemes. Furthermore, there are no

obstacles to applying LH*RS
P2P for a P2P variant. It offers the

advantage of minimizing message forwarding [YS09].

4.3 Generalizing to Other SDDSs
Correctness of LH*RE is based in the disjointness and other

properties of descendent sets of some initial set of buckets.

Other well-known SDDSs have the same or similar

properties. This is the case for RP*S [LNS94], which allows

for range queries, and the more recent BigTable [S&al01]

which has a very similar basic structure to RP*S. Chord

[S&al01] partitions using the principles of consistent hashing

also has disjoint descendent sets. The first obstacle for

adapting LH*RE principles is the forwarding algorithm that

needs to change to prevent different key shares to traverse

the same node. The second obstacle for RP* and BigTable is

the protection of the record keys, whose confidentiality needs

to be protected.

5. Conclusion
The LH*RE scheme allows an application to manipulate data

records without any encryption related messaging overhead.

It offers insert, search, update and delete operations with the

same (messaging) performance as LH* itself. The storage

requirements are similar. The storage overhead for the

encryption keys at the client and at for the secrets at the

servers may be negligible, e.g, may be as low as a few

dozens of bytes at the client and the servers, all together.

Successful attacks on the servers need to be massive because

of k-safety. The applications can adjust easily this parameter

dynamically. The assurance analysis has shown that the file

is resilient against intrusions several times larger than k. For

instance, a 100-bucket file, thus rather smaller file by today

standards, may offer at least the 5-nine assurance for an

intrusion into up to 40 buckets, simply by choosing k = 7 as

file safety level, i.e. by choosing eight as the number of

shares per key.

We have derived formulae and numerical results that offer

the file administrator guidance in selecting these parameters.

All together, the analysis encourages higher values of k. The

costs of a higher safety level only matter in the infrequent

case of key revocation and reconstruction.

References

[A&al06] M. Anisetti, C. Ardagna, V. Bellandi, E.

Damiani, S. De Capitani di Vimercati, P.

Samarati: OpenAmbient: a Pervasive Access

Control Architecture, Emerging Trends in

Information and Communication Security

(ETRICS), 2006.

[A&al08] C. Ardagna, M. Cremonini, S. De Capitani di

Vimercati, P. Samarati: A Privacy-Aware

Access Control System, Journal of Computer

Security (JCS), vol. 16(4), 2008.

[B03] M. Bishop: Computer Security. Addisson-

Wesley, 2003. ISBN 0-201-44099-7.

[BCK96] M. Bellare, R. Canettiy, H. Krawczyk: Keying

Hash Functions for Message Authentication.

Advances in Cryptology: Crypto 96. Lecture

Notes in Computer Science Vol. 1109, N.

Koblitz ed., Springer-Verlag, 1996.

[C&al06] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D..

Wallach, M. Burrows, T. Chandra, A. Fikes, R.

Gruber: Bigtable: A Distributed Storage System

for Structured Data. OSDI'06

[C08] Cleversafe Opensource Community: Building

Dispersed Storage Technology.

http://www.cleversafe.org/

[D&al05] E. Damiani, S. De Capitani di Vimercati, S.

Foresti, P. Samarati, M. Viviani: Measuring

Inference Exposure in Outsourced Encrypted

Databases, Workshop on Quality of Protection

(QoP), 2005

[HILM02] H. Hacigümüs, B. Iyer , C. Li, S. Mehrotra:

Executing SQL over Encrypted Data in the

Database-Service-Provider, SIGMOD 2002.

[HIM03] H. Hacigümüs, B. Iyer , S. Mehrotra: Ensuring

the Integrity of Encrypted Databases in the

Database-as-a-Service, Data and Applications

Security XVII (DBSEC) 2003.

[HMI02] H. Hacigümüs, S. Mehrotra, B. Iyer: Providing

Database as a Service, Proceedings of ICDE

2002.

 [LMS05] W. Litwin, R. Moussa, T. Schwarz: LH*rs - A

Highly Available Scalable Distributed Data

Structure. ACM-TODS, Sept 2005.

[LNS94] W. Litwin, M-A. Neimat, D. Schneider: RP*: A

Family of Order-Preserving Scalable Distributed

Data Structures. VLDB-94.

[LNS96] W. Litwin, M-A. Neimat, D. Schneider: LH*: A

Scalable Distributed Data Structure. ACM-

TODS, (Dec. 1996).

[LSY07] W. Litwin, H. Yakoubin, T. Schwarz: LH*RS
P2P:

A Scalable Distributed Data Structure for P2P

Environment. Google TechTalk, June 19, 2007.

Video at

http://www.youtube.com/watch?v=bcTkFig6kyk

[LSY08] W. Litwin, H. Yakoubin, T. Schwarz: Th.

LH*RS
P2P: A Scalable Distributed Data Structure

for P2P Environment. NOTERE-08, June 2008.

[MMJ03] A. Mei, L. Mancini, S. Jajodia: Secure Dynamic

Fragment and Replica Allocation in Large-Scale

Distributed File Systems. IEEE Transactions on

Parallel and Distributed Systems, vol. 14(9),

2003.

[MTN09] Microsoft TechNet. Using Encrypting File

System. http://technet.microsoft.com/en-

us/library/bb457116.aspx#EIAA

[PHS03] Pieprzyk, J., Hardjono, TH., Seberry, J.

Fundamental of Computer Security. Springer,

2003, 673.

 [S79] A. Shamir: How to share a secret.

Communications of the ACM, vol. 22(11), 1979

[S08] ENCRYPTION STRATEGIES: The Key to

Controlling Data. A Sun Microsystems–Alliance

Technology Group White Paper Jan. 2008

[SGMV07] M. Storer, K. Greenan, E. Miller, K. Voruganti:

POTSHARDS: Secure Long-Term Storage

without Encryption. 2007 Annual USENIX

Association Technical Conference.

[MZ08] B.N. Mills, T. F. Znati, SCAR - Scattering,

Concealing and Recovering data within a DHT.

41st Annual Simulation Symposium, 2008.

[PGP04] Method and Apparatus for Reconstituting an

Encryption Key Based on Multiple User

Responses. PGP Corporation. U.S. Patent

Number 6,662,299.

[S&al01] I. Stoica, R. Morris, D. Liben-Nowell, D.

Karger, M. Kaashoek, F. Dabek, H.

Balakrishnan: Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications.

SIGCOMM’01.

[XX09] Anonymous Authors: Technical Report 2009

[YS09] H. Yakouben, S. Sahri: LH*RS
P2P: A Fast and

High Churn Resistant Scalable Distributed Data

Structure for P2P Systems. International Journal

on Internet Technology and Secured

Transactions, (to appear).

Appendix A: Generic LH* Scheme

A.1. File Structure
As for any LH* file, an LH*RE file is a collection of records

that belong to a collection of applications in a distributed or

networked system. Each node with an application contains

an LH* client that translates between the application(s) and

the distributed storage layer that LH* implements. The

records themselves are stored at buckets, each located at a

server. A record contains a unique (primary)key (the RID in

this paper) and non-key field(s).

The records at the servers are stored in buckets numbered 0,

1, 2... N – 1. The number of buckets is also called the file

extent. A bucket number functions as a logical address.

Every bucket is located at a different server. A file is created

with G buckets 0, 1, ..., G – 1. In the case of LH*RE, G has to

be greater than k, the file safety level. As the file grows, a

split operation appends a new bucket. We discuss the details

below together with the opposite operation that shrinks the

number of buckets in the file.

LH* addressing is based on the notion of a family of hash

functions hi. Let C be the set of all possible RID values. A

family of hash functions is then a set {hi | i = 0, 1, 2, ...} of

functions

ℎ&: 6 → 80,1, … 2&; − 1<

with the property that

ℎ&=� 	>� = ℎ& 	>� or ℎ&=� 	>� = ℎ& 	>� + 2&;.

We assume that both alternatives are taken with equal

probability. The most popular hash functions are based on

taking remainders, namely hi (c) = c mod 2i G.

Every LH* file has a specific component, called the

coordinator. The coordinator resides at some dedicated node

or is a distributed entity. For LH*RE, the coordinator does

not reside at any server. The coordinator keeps the file state,

based on the file extent. It is stored as a couple of integer

values (l, s), l,s = 0,1…., called file level and split pointer

respectively. The meaning of these names will become clear

shortly. LH* addressing

Next, every LH*RE file has a specific component called

coordinator. The coordinator resides at some dedicated

node, other than the servers and client nodes. The

coordinator keeps the file state. This is a couple of values

(l, s), l, s = 0,1…., called file level and split pointer

respectively. Initially, (l, s) = (0,0). The following linear

hash function (LH-function) h defines the correct bucket

h (c) where the record with RID c resides for file state (l,s):

 if hl(c) < s then h (c) := hl (c); else h (c) := hl + 1 (c);

To avoid bottlenecks, the coordinator does not push file state

changes to the clients. Clients therefore use LH* addressing

with a sometimes outdated view of the file state. To help

route resulting queries directed to a false bucket, each bucket

maintains a parameter, called the level j. The initial buckets

are all created with level j = 0.

Every bucket has a fixed capacity b to store records. Even a

bucket at capacity can still receive additional records for

storage. Such a bucket overflows. It stores the additional

record(s) in an overflow storage area. It also informs the

coordinator of the fact. Upon receiving such a message, the

coordinator initiates a split operation. The well-known

principle of linear hashing is not to split the overflowing

bucket but to split the bucket pointed to by the split pointer s.

The principle allows to minimize state information

(essentially equivalent to the file extent N) and an

overflowing bucket will eventually be split. In more detail,

the split operation starts by creating a new bucket, with

bucket number N. (In LH*RE, the hosting server was selected

well in advance so that the same server can only store a

predetermined bucket.) The coordinator then sends the split

request to bucket s together with the new address of N. It

turns out that always N = s + 2lG. Bucket s then recalculates

the correct bucket address of all its records using hj+1, where j

is the bucket level. The RIDs c of all records in Bucket s

have either hj+1(c) = s or hj+1(c) = N. Accordingly, the record

remains in bucket s or is send to bucket N. Finally, Bucket s

increments its level j and Bucket N receives the same level.

After the split has been completed by Bucket s, the

coordinator updates the file state by executing

s := s +1; if s = 2l then s := 0, l := l +1;
Since the hash functions are uniform, every split moves

about half of the records to the new bucket. The progression

of buckets to split is 0, 1…G-1; 0, 1…2G – 1; 0…2iG – 1; 0,

1…

While most files only grow, LH* also let the file extent

shrink if many deletions lead to underflow at buckets. The

mechanism is similar. If the number of records falls below a

certain threshold (such as b/3), then the underflowing bucket

reports this fact to the coordinator who initiates a merge. A

merge basically undoes the split. We skip the details. Using

merges and splits, an LH* file reaches an average storage

occupancy of about 70%.

Every server needs to know some physical addresses of other

servers, as it will need to forward some queries to other

buckets and as it will have to upgrade some clients view of

the file. The coordinator has all addresses of existing (and in

LH*RE future) buckets. Obviously, a server receives the

addresses of all buckets that have been split from the bucket

residing on the server. This information is sufficient to allow

forwarding, but in order to make updates of client images

more efficient, the coordinator provides all bucket servers

with the addresses of all servers in use when a bucket splits.

A.2 Record Addressing
LH*RE uses this calculation of the correct bucket given a RID

for the search, insert, delete and update operations. This

calculation is only exact if clients have the same file state as

the coordinator. However, maintaining file state at clients

that might not be active for a long time and even maintaining

a list of all clients overloads the coordinator. Therefore, LH*

allows a discrepancy between the correct view of the file

state (by the coordinator) and by clients and servers. Each

client contains a local image of the file state. The initial

image is (0,0), and the only physical addresses known to the

client are those of the initial G buckets. The client uses its

image (s’, l’) to calculate the bucket address of a record and

its lists of bucket location to find the correct server.

As the file grows and shrinks, all client images, even if

currently correct, become outdated. As a result, a client can

make an addressing error. Every server receiving a query

verifies therefore whether it has the correct bucket for this

RID. If not it forwards the query to a bucket (likely the

correct one). The receiving bucket uses the same algorithm..

The servers use the following Test and Forward algorithm.

Here a is the address of the executing server:

a' := hj 	C� ; if a' = a : exit ;
a'' := hj-1 	C� ; if a'' > a : forward to a'' ; exit ;
forward to a' ; exit ;

Finally, the correct bucket receiving a forwarded query sends

an Image Adjustment Message (IAM) to the client. The IAM

contains the triplet (j, a', j') where a' and j' are respectively

the address and level of last traversed bucket, say a'. The

client updates then the image as follows.

i’ = j’ – 1 ; if j < j’ or a > 2i’ : a := a’ endif

n’ := a + 1 ; if n’ ≥ 2i’ : n’ := 0 ; i’ := i’ + 1 endif

As a result, no client errs twice in the same way. The IAM

contains also the server addresses that the server has, but the

client, based on the error committed, does not. The analysis

shows also that the addressing scheme has a maximum of

two forwards, but that the vast majority of queries usually

goes directly to the correct bucket, [LNS96].

In case of a merge, the client might have a view of a file with

extent larger than the true extent and therefore send queries

to servers with non-existing buckets. Such a query either is

not answered at all, or with an error message. In this case,

the client resets its image to (0,0), i.e. to an extent of G,

resends the query to a bucket calculated with this new file

view, and typically receives an IAM that moves its view of

the extent closer to the actual file state.

A.3 Scans
A client uses a scan operation to retrieve all records matching

a query on the contents of the non-key values. This limits its

usefulness for LH*RE almost exclusively to scans looking for

key share records. A client initiates a scan using multicast or

unicast messages to all buckets it knows of. The servers

process the scan locally and deliver the records satisfying the

query to the client. If the client uses unicast, then the possible

difference between view and actual file state causes certain

buckets to be missed. Servers therefore need to check for

client view and their view of the file state and forward the

scan message to buckets not in the view of the client. An

alternative implementation of scan uses forwarding almost

always. In this case, the client only sends the scan message to

buckets 0, 1, ... , G – 1, i.e. uses an artificial view of (0,0). In

more detail, forwarding is based on comparing the view of

the file state by the client (included in the scan message) with

the bucket level, determine whether the view has the same

level l’ as the bucket level j and if not, forward the scan

message to buckets s + 2l’G, s + 2l’+1G, ... s + 2j-1G. These

are all descendents, namely the buckets that have been split

recently from the receiving bucket recently. See [LNS96] for

an easy algorithm.

During the collection phase, every server sends all local

records matching the query to the client. There are two

possible termination protocols. The probabilistic termination

protocol has only servers reply to the scan message if they

have relevant messages. The client therefore has to use a

time-out to determine whether all messages have arrived and

has no means to diagnose lost messages. The deterministic

termination protocol (used for LH*RE) requires a reply from

every server and allows the client to ascertain that all servers

have responded. We achieve the latter by having all

responding buckets include their level in the response. This

allows the client to obtain the correct file state as a side

effect. If the client misses responses from servers, the client

resends, restarts the record, or as a final resort, contacts the

coordinator.

A.4 Descendent Sets
We defined the descendent set Di to be the set of all (number

of) buckets that are directly or indirectly split from one of the

initial buckets i ∈ {0, 1, ... G–1} and stated a number of

properties of these descendent sets. First, we claim that Di =

{i + Gj | j ∈ N}, the set of all natural numbers ≡ i modulo G.

If x ∈ Di, then the bucket split from Bucket x has number x +

2jG, where j is the bucket level of Bucket x. Therefore, the

bucket numbers of buckets split (directly or indirectly) from

Bucket i form a subset of Di. Since all possible bucket

numbers have to make up the set N of natural numbers and

since the Di, 0 ≤ i < G, form a partition of N, it follows that

they have to be identical. A merge operation merges a

Bucket x with a Bucket x + 2jG, which again implies that

merge operations take place within Di. A scan operation will

be send either to Buckets 0, 1, ..., G–1 or to a superset.

When scan queries are forwarded, they will only be

forwarded to buckets split from the receiving bucket, so that

scan operations stay also with sets Di. Finally, the rules for

forwarding RID based queries only allow forwards to

descendents of the bucket that they were sent to. Thus, if a

given key share record is currently located in a Bucket x with

x ∈ Di, then any file state view by the client has the query

sent to Bucket i or to a Bucket y that descended from Bucket

i. Thus follow the claims made in the main body of this

paper.

Attackers intrude servers, and not buckets. If we allow

merges (and not every LH* structure allows for merges

because it assumes an always growing file) then servers

might see various buckets stored on them. This causes a

problem for addressing that can be fixed, but only by

changing the LH* addressing operations, but it also would

destroy our security assumptions, since the buckets could

belong to different descendent sets. To exemplify the

problem assume G = K = 3 and a file with extent 3, 4, 3, 4, 5,

4, 3, 4, 5, 6, 5, ... A server might obtain Bucket 4 the first

time that the file grows, but looses it with the next merge

operation. When the file starts growing again, the server

hosts Bucket 5. It loses the bucket again, but gets Bucket 6

in the next round of growth. The same server could thus

store all three different key shares of a given key. We

therefore have to adhere to the LH* scheme literally, only

storing a given bucket on a fixed server. LH*RS, the scalable

high availability variant of LH*, achieves high availability

by using erasure correcting codes to generate parity buckets

and then allows buckets on an unavailable server to be

reconstructed on a spare server. LH*RE security requires

special care with these migrating buckets.

