

Abstract
We argue for a new aggregate function we termed the
LIST function. It aggregates a set of values of one or more
attributes into a single value that is internally a list of
these values, perhaps ordered. The principle overcomes
important limitations of the current relational systems,
due to the use of relations in first normal form, and the
separation between the aggregate and the individual data
values in the standard SQL. LIST function can be made
often implicit, making its use even less procedural. The
function should be simple to implement. The relational
systems already provide most of the capabilities it
requires to the existing aggregate functions.

Keywords
Relational data, aggregate function, SQL, OLAP

1 Introduction
A relational database system (RDBS), e.g., MsAccess,
SQL Server, DB2 or Oracle basically uses today relations
in 1st normal form (1 NF), [1], [2], [3], [4], [5], [6]. The
attribute values are supposed atomic. An aggregate
function in an RDBS takes a selected set of values and
produces a single one, e.g., the sum. In the classical
example of Supplier-Part database S-P, described in
many books, one calculates in this way, using the GROUP
BY clause, the sum of quantities per supplier S# from the
table SP (S#, P#, QTY), [7].

S# P# Qty
s1 p1 300
s1 p2 200
s1 p3 400
s1 p4 200
s1 p5 100
s1 p6 100
s2 p1 300
s2 p2 400
s3 p2 200
s4 p2 200
s4 p4 300
s4 p5 400

Figure 1 The classical (i) SP table from the Supplier-Part
relational database and (ii) query with GROUP BY clause

calculating the total quantity of parts per supplier

In the era of data mining, an application may also often
need the individual quantities contributing to the sum for
each supplier. The way to do it in standard SQL is to issue
a separate query SELECT * FROM SP. One cannot
indeed mix this result with the aggregated one in a single
standard SQL query, although SQL dialects in some
commercial RDBSs offer non-standard extensions for it,
as we discuss later on. The result repeats S# value in each
tuple of the same supplier as many times as there are parts
P# it provides. For instance, six time for supplier S1 in S-
P. The repetition results from the 1st NF relational
calculus. Both constraints: the need for two queries and
the S# redundancy in the result may be annoying for
applications and found awkward by users, despite the
wide acceptance of the 1st NF for the base table SP. The
typical solution at present is to either use a 4GL, e.g., the
forms for MsAccess, or a programming language, [3].
Both options are beyond SQL. They require additional
capabilities from the user and the RDBS does not
optimise them, unlike an SQL query, [8].

Figure 2 Result of MSAccess SQL query requesting the name,
friends, preferred restaurants and hobbies of person identified

with ‘SS1’.

select SP.[S#], Sum(SP.Qty) AS [Total
Qty]
from SP
group By SP.[S#];

S# Total Qty

s1 1300
s2 700
s3 200
s4 900

select P.[SS#], P.Name, F.Friend, R.Rest, H.Hobby
from ((P INNER JOIN F ON P.[SS#] = F.[SS#])
INNER JOIN H ON P.[SS#] = H.[SS#])
INNER JOIN R ON P.[SS#] = R.[SS#]
where P.[SS#] ="ss1" ;

EXPLICIT AND IMPLICIT LIST AGGREGATE FUNCTION FOR
RELATIONAL DATABASES

Witold Litwin
Université Paris 9 Dauphine,

mailto:Witold.litwin@dauphine.fr

debbie

Similar situation occurs for other needs. We will show
some through the motivating examples in next section. At
present notice only that the result is especially awkward if
data to store present the multivalued dependencies, as
very often. For instance, consider a person identified with
SS# who has several hobbies, friends, and preferred
restaurants. The good relational database scheme would
separate these data adequately in 4th NF tables, [9], [7],
[8]. These could be four tables: P (SS#, Name), H (SS#,
Hobby), F (SS#, Friend) and R (SS#, Rest). Ten tuples in
each table H, F, and R for a person, e.g., (SS1, Witold),
would lead to the total of 31 tuples for Witold. However,
the application may still need all the data together for
SS1, including the name ‘Witold’. The SQL query would
lead to 1000-tuple relation. Figure 2 shows the query and
about top 30 tuples, i.e., 3 % of the result produced by
MSAccess. It appears hardly useful for anyone.

The fundamental reason is that any current RDBS, the
MSAccess used here being just one example, would
create, according to the relational calculus rules in use,
all the tuples with all the combinations of a hobby, a
friend and of a restaurant. It would also repeat 1000 times
that the person’s name is Witold. Basically, the query
output would be a denormalized relation fragment of the
4th NF relations stored, with the well-known anomalies
characterizing a non 4th NF relations, [9], [7], [8]. The
only solutions at present are basically to either issue four
separate SQL queries, missing thus the goal of all the
desired data together, or, again, to use a 4GL interface, or
a programming language.

In the above examples, one may observe that the problem
disappears if one aggregates the values non functionally
dependent on others in the query output. This aggregation
cannot be done to a single value in the classical sense for
an RDBS, such as an integer or real or a few byte long
character string. However, one can still aggregate into a
single value being a list. Internally, the list may be multi-
valued, or include a value expression, or a DISTINCT or
TOP predicate, or refer to an aggregate function computed
elsewhere in the query, or include a scalar function… One
can nevertheless assimilate it to a character string. The
string can be possibly longer than a classical one for an
RDBS, but it is still a single value for the RDBS1. Hence
the table remains flat, i.e., in 1 NF at least. This is
precisely the intention in the LIST aggregate function we
will discuss here.

In our 1st example, the QTY values should be aggregated
in that way into the single list of six values. Only one
tuple per supplier will result from. Likewise, in 2nd
example, one should be able to have only one tuple for
our person to show, with its SS# and name once only, and
three comparatively short lists of ten elements each. This,
instead of the 1000 tuples in Figure 2.

1 Notice that RDBSs routinely manage longer text attributes, e.g.
even the “small” MsAccess accepts 255-byte long strings. This
is more than enough for any motivating example below.

We proposed the LIST function in [10]. In what follows,
we argue further for it through an expansion of its
capabilities. We start by recalling some motivating
examples from [10], and the features of the LIST function
they implied there. On this basis, we extend this features
with the implicit LIST we introduce here. We refer
backward to the core form of LIST as explicit. We show
that a query can mix both forms.

Section 2 presents the explicit LIST. Section 3 describes
the implicit LIST, and motivates it through the analysis of
the recalled examples. Section 4 discusses the
implementation of LIST and the related work. We
conclude in Section 5.

2 The LIST Aggregate Function
We first analyse the capabilities the function should
provide through additional motivating examples. We then
propose its basic syntax and semantics. We use the
MsAccess SQL dialect as the basis. For the intended
queries with LIST, we consider only the capabilities it
already provides to the existing aggregate functions. We
finally elaborate the capabilities of the implicit LIST.

2.1. Examples
Example 1

Consider again the SP relation. The LIST function should
be invoked similarly to the classical query calculating the
total quantity per supplier in Figure 1. Thus the query for
the total quantity and contributing individual ones
together could be:

(Q1) Select S#, sum (Qty) AS [Total Qty], LIST (Qty)
AS Histogram from SP group by S#;

S# Total Qty Histogram
 s1 1300 300, 200, 400,200;100, 100

s2 700 300, 400
s3 200 200
s4 900 200, 300, 400

Figure 3 The expected result of (Q1) with LIST aggregate

function requesting together the total quantity and the histogram
of parts supplied per supplier.

The expected result would be the table in Figure 3. There
is one tuple per S# with the 4th column of character string
type with lists, e.g. of six values for S1. The lists are
presented here horizontally. Longer lists could appear at
the screen as a combo boxes, as usual today for
MSAccess.

Incidentally, we did not find any way to formulate this
query as a single one in SQL dialect of MSAccess, even
considering the non-standard extension, e.g., the Pivot and
Transform clauses. We welcome any hints.

Example 2

In our 2nd example above discussed, the LIST function
should serve as usual in an SQL query:

(Q2) select P.SS#, Name, LIST (DISTINCT (Friend)),
LIST (DISTINCT (Rest)),
LIST (DISTINCT (Hobby))

from P, F, R, H
where P.SS# = F.SS# and F.SS# = R.SS# and R.SS#
= H.SS# and P.SS# ="ss1"
group by P.SS#, Name ;

The output should be similar, e.g. one tuple with three
lists of ten elements each for our example person,
Figure 4. Compare this output to the usual one at present
of 1000 tuples in Figure 2. Although the table above could
appear visually as 0 NF (unnormalized relation with non-
atomic attributes, [7]), it is not. In fact, again, each list is
an atomic attribute of character string type as any other
such attribute in a currently used RDBS. Hence, this table
is also in 1 NF at least. We stay in the usual framework of
the relational calculus. The presentation of the string is
supposed chosen by RDBS here. At Figure 4a, it uses the
text boxes for a printout fitting best the available width of
the paper sheet. In Figure 4b, it was intended for a screen,
each box being a combo box. As usual for MsAccess,
only the 1st few values of each list would appear, one in
our case2, till one click into the box, opening it
completely.

Figure 4 Intended result of (Q2) with three LIST functions, to
compare with the result in Figure 2, presented with text boxes

(a) and with combo boxes for a screen (b)

Some SQL dialects, e.g., MsAccess, do not offer the
DISTINCT predicate within an aggregate function. If
LIST function should only reuse the current
implementation of DISTINCT, a way around today is to
use the nested FROM clause, [10]:

select P.[SS#], Name, Fr as Friend, Re as Rest, Hb as Hobby
from Pers as P,
 (select F.[SS#], LIST (F.Friend) AS Fr, Re, Hb from F,
 (select R.[SS#], LIST (R.rest) AS Re, Hb from R,
 (select H.[SS#], LIST (H.Hobby) AS Hb From H
where [ss#] = 'ss1' Group By H.[SS#])
 where R.[ss#] = H.[ss#] group by R.[SS#], Hb)
 where F.[ss#] = R.[ss#] group by F.[SS#], Re, Hb)
where P.[SS#] = F.[SS#] ;

2 The output was simulated using the Min aggregate function
instead of List in (Q2)

Example 3

In above examples, one needed to list values of a single
attribute only. This example motivates the multi-attribute
LIST function.

a. A user wishes the ID and the total quantity of
each part in the warehouse and a 2-d histogram with
quantities per contributing supplier. One can satisfy the
need as:

(Q3) select P#, SUM (Qty) as [Total Qty], LIST (S#,
Qty) as [Per supplier] from SP group by P#;

The result of (Q3) is in Figure 5. Each element of each list
is now constituted internally from two values. Each
element is presented on a new line. However, as before,
the whole list remains for the RDBS an atomic character
string. In particular the use of LIKE clause remains
legitimate. For instance, the following query (Q4) would
limit the output to parts supplied by ‘s4’ among other
suppliers, i.e., to lines 2,4,5 only in Figure 5:

Figure 5 Intended result of (Q3) with the multi-attribute LIST
function

(Q4) select P#, SUM (Qty) as [Total Qty], LIST (S#,
Qty) as [Per supplier] from SP
group by P# having [Per supplier] like ‘*s4*’;

b. Consider that S-P user wishes to see for each
supplier S its data S (S#, SNAME, STATUS, CITY) and
all its supplies. While most users of an RDBS are
convinced that 1 NF is a great idea for the stored form of
data, it is Polishinel’s secret that most of them are also
annoyed with the traditional 1 NF output of:

select S.*, P#, Qty From S, SP where S.S# = SP.S# ;

The reason is that all supplier’s data are uselessly repeated
in each tuple of the supply, e.g., again, six time for S1.
The LIST function responds to the need simply as
follows:

(Q5) select S.*, LIST (P#, Qty) From S, SP
where S.S# = SP.S#
group by S#, SNAME, STATUS, CITY;

The intended result is in Figure 6.

Observe interestingly in (Q5) that GROUP BY clause
enumerates all the attributes of S. The enumeration of all

(b)

(a) P Name Friend Rest Hobby
SS1 Witold Alexis,

Christopher,
Ron, Jim,
Donna,
Elisabeth,
Dave,
Peter, Per-
Ake,
Thomas

Bengal, Cantine
Paris 9, Chef
Wu, Ferme de
Condé, Miyake,
Louis XIII,
Mela, North
Beach Pizza,
Pizza Napoli,
Sushi Etoile

Bike,
Classical
Music, Good
food, Hike,
Movie,
Science
Fiction, Ski,
Swim, Tennis,
Wine

 P Name Friend Rest Hobby
SS1 Witold Alexis Bengal Bike

P# Total Qty Per supplier

p1 600 s1 300
s2 300

p2 1000 s1 200
s2 400
s3 200
s4 200

p3 400 s1 400
p4 500 s1 200

s4 300
p5 500 s1 100

s4 400
p6 100 s1 100

but S# is in fact useless here as they are all functionally
dependent on S#. Since the enumeration is a quite long
list besides, it should be typically be annoying to the user.
The constraint steams from the general property P that (i)
in SQL at present any attribute in SELECT clause that is
not aggregated has to be a grouping one, and (ii) SQL
does not accept at present ‘*’ in the GROUP BY clause.

A clever use of LIST function may avoid the constraint.
One needs to formulate the query so that every attribute A,
single or composite, included ‘*’, not aggregated by any
other function, is declared as LIST (A) in SELECT
clause. The query would respect the property P and it is
no more necessary to declare A as the grouping attribute.
The obvious reason is that in this case LIST (A) = A. For
(Q5), the alternative would be as follows :

(Q6) select LIST (S.*), List (P#, Qty) From S, SP
where S.S# = SP.S#
group by S#;

Figure 6 Intended output table of query (Q5)

2.2. Core Syntax and Semantics of LIST
function
The motivating examples should make the intended
syntax and semantics of the LIST function clear enough.
If A is an attribute, perhaps composite, i.e., A =
(A1,…,Ak), then LIST (A) produces for each group G of m
tuples, resulting from the GROUP BY and possibly
HAVING clauses, a character string T formed by
concatenating tuples t from the projection of G on A, i.e.;
T = t1 &…& tm. The tuples may be ordered according to
ORDER BY clause. The projection is the SQL one, i.e., is
the k-d bag with the duplicates, and, perhaps, nulls. The
RDBS may allow for the DISTINCT predicate in an
aggregate function, as discussed for (Q2) above. One
should be able to invoke then the LIST (DISTINCT (A)),
eliminating the duplicates.

Likewise, one should be able to invoke the popular TOP n
predicate, limiting accordingly each T to at most the min
(n, m) top concatenated tuples with respect to the ORDER

BY clause3. The variant: TOP N percent should apply as
well. One should also be able to invoke the scalar
functions and value expressions within LIST, as for the
other aggregates accepted by the RDBS (see the
motivating examples in [10], providing results impossible
with any current SQL dialect). The default separator
between the concatenating values is ‘ ‘. In practice, a
more elaborated syntax for LIST than used above could
easily allow for the definition of other separators. For
instance, following upon the related actual syntax of SQL
Server and of MsAccess dialects, the expression:

LIST (A1 & ‘, ‘ & A2 & ‘, ‘ & A3 & ‘ ;’),

could mean that ‘, ‘ separates each t1, t2 and t3 and that
each list terminates with ‘ ;’. The result of LIST of a
single value, i.e., for m = 1, reduces simply to that value.
The concatenation of a tuple with a null value within,
keeps the null in T. Likewise, the concatenation should
keep a null tuple, if the SQL dialect of the RDBS used has
chosen to generally do it as well. By the same token, the
currently used aggregate functions nest in a subquery in
WHERE or FROM clauses. Hence LIST should as well.
Finally, one should be able to refer to LIST in ROLLUP
and CUBE clauses. We recall that these well-known
clauses generalize, the GROUP BY in new dialects, [11].
Again, the reason for this semantics is that the other
aggregate functions are already in use in this way.

We do not elaborate the formal definition of the LIST
function grammar here. It does not seem necessary and
would vary with the SQL dialect intended to support it.

3 Implicit LIST
Observe that in an SQL query at present, any attribute in
SELECT clause should be either aggregated or a grouping
one, referred to in GROUP BY. One can explore this
property to enhance the SQL non-procedurality. The idea
is to allow for non-aggregated and not grouping attributes
referred to in the query, but to consider that some LIST
implicitly aggregates any of them. More precisely, the
following rule for the implicit LIST appears the most
useful at present:

• Let A be an attribute, perhaps composite, grouping
all the attributes from the same base table or view,
referred to in SELECT clause and neither (explicitly)
aggregated nor a grouping one. Then, any such A is
considered as aggregated by the implicit LIST defined as
LIST (DISTINCT A).

We call implicit any such LIST. The query where every
implicit LIST is made explicit becomes conform to the
present SQL syntax, hence acceptable to the RDBSs. The
introduction of DISTINCT that may surprise at first
glance, steams from the wish to apply the implicit LIST
idea to (Q2). This application and similar ones, seem
more practical than those of interest otherwise, i.e., if

3 Unless, as usual, the tuples n, n+1… are duplicates with
respect to the values of attributes invoked in ORDER BY.

S# SName Status City p# Qty
s1 Smith 200 London P1

p2
p3
p4
p5
p6

300
200
400
200
100
100

s2 Jones 10 Paris p1
p2

300
400

s3 Blake 30 Paris p2 200
s4 Clark 20 London p2

p4
200
300

s4 Clark 20 London p4
p5

300
400

implicit LIST was defined so to preserve the duplicates.
The idea also means that the implicit LIST capability
naturally targets in the first place an RDBS, accepting
DISTINCT in an aggregate function.

One also needs some convention on the default attribute
naming with respect to the result of an implicit LIST.
Below, we consider that any atomic A simply keeps its
name. The name generated for a composite A is a
concatenation of the names of atomic attributes of A, with
the space as separator. We also consider that other clauses
that may syntactically refer to the attribute created by an
implicit LIST, e.g., the HAVING clause, may still refer to
the original attribute names within composite A.

To review our examples, observe first that the implicit
LIST, nicely simplifies query (Q2) to more familiar:

(Q7) select P.SS#, Name, Friend, Rest, Hobby
from P, F, R, H
where P.SS# = F.SS# and F.SS# = R.SS#
and R.SS# = H.SS# and P.SS# ="ss1"
group by P.SS#, Name ;

Here the attributes Friend, Rest, Hobby belong to each
to a different table. Hence, each is under a separate
implicit LIST. In contrast to (Q2), (Q1) should remain
the same. An implicit list would remove indeed the
duplicates of QTY. This could lead to a different result,
probably typically unintended.

Queries (Q3) and (Q4) would get respectively the
familiar formulation, provided we do not care about the
[Per supplier]:

(Q8) select P#, SUM (Qty) as [Total Qty], S#, Qty from
SP group by P#;

(Q9) select P#, SUM (Qty) as [Total Qty], S#, Qty from
SP group by P# having S# like ‘*s4*’;

Here S#, and Qty belong to the same table. Hence they
end up under the same implicit LIST and as a single
column, like at Figure 5.

To couple the implicit LIST with the use of implicit joins
and of implicit FROM clause, further enhances the non-
procedurality of SQL queries. The implicit joins, [12]12],
also called for some systems auto joins, usually avoid the
explicit writing of some joins in the WHERE or FROM
clauses. One avoids especially the equijoins (inner or
outer) along the primary-foreign key structural
constraints. Major RDBSs offer this capability. The
multirelational queries with the implicit LIST, become
substantially less procedural, e.g., (Q2) and (Q5).

The implicit FROM is not yet in practical use, as far as we
know. The basic idea is however well-known through the
research on the universal relation interface. To apply this
idea to our needs, we consider simply that FROM clause
may contain an implicit table name T for any attribute T.A
in the query that either (i) is uniquely qualified with its
proper name A, or (ii) is referred to in an implicit or
explicit inner equijoin clause in WHERE or FROM
clause, or (iii) has already another attribute referred to in

the query. In the latter cases, T can be any of tables with
A. The result will remain unaffected.

With the implicit joins and FROM capabilities, our
sample queries may become almost ideally non-
procedural. Thus (Q2) and (Q7) lead to their possibly
simplest expression:

(Q10) select SS#, Name, Friend, Rest, Hobby
where SS# ="ss1"
group by SS# ;

Likewise (Q3) without [Per supplier] and (Q8) lead to :

(Q11) select P#, SUM (Qty) as [Total Qty], S#, Qty
group by P#;

It may also be useful and quite non-procedural to apply
both forms of LIST in the same query, e.g. the following
one, expanding (Q1):

(Q12) select S#, SNAME, SUM (Qty)
as [Total Qty], LIST (Qty) AS Histogram group by
S#;

And so on. The overall result is the conceptual separation
between the high-level query formulation, and the actual
decomposition of the relational schema to best avoid the
design anomalies. The latter can change without affecting
the query formulation. For instance, when a single valued
property becomes a multivalued one. This gain is in the
line with the fundamental goal of non-procedurality the
relational data model [7] and makes the relational model
somehow naturally more object-oriented. See [10] for
more discussion.

4 Implementation Issues and Related Work
The motivating examples have shown that the use of LIST
function is intended to basically reuse the capabilities an
RDBS already offers for other known aggregate
functions. Hence, the implementation of LIST largely
exists. Any SQL query processor creates the single-
attribute lists for the GROUP BY based computation.
Usually, theses lists result from a two pass hash
algorithm, e.g., the linear hash LKRHash algorithm, [13],
[14], [15], largely in use in MS products, including the
SQL Server.

The 1st pass creates in each bucket the list of all the
selected tuples sharing the values of the grouping
attribute(s). This is in fact an invisible core
implementation of the LIST function already. The 2nd pass
explores the list to compute the requested function(s). One
has to enhance this processing with the list casting as a
single character string, This should be a rather fast task
for an experienced programmer. See the example for SQL
Server in [10].

Nonetheless, the “good” implementation of LIST function
is an open research problem at present. The interface for
the user-defined aggregates in an RDBS with this
capability, e.g., Oracle 8i or 9i, or DB2 7.2, may perhaps
help. There are proposals in the ‘gray” on-line literature

for the developers, for codes of user-defined aggregates
that could be the basis for at least the simplest single
attribute LIST, [16], [17], [18]4. See [10] for more on this
subject.

The analysis of the related work showed further that
major RDBs do not offer the function offered yet, e.g.,
[4], [6], [2], [5], [6]. The less known SQL Anywhere
Studio 9 does offer the single attribute explicit LIST, [21].
We have also spotted one explicit user request for LIST in
SQL Server on Feb., 16, 2002, in DbForums [10]. We did
not find any reply listed. We cannot say of course also
whether our proposal really matches his question.

The RDBSS offer at present different tools, dealing less
or more specifically with some but not all needs we have
discussed. These are 4GL forms, and limited non-standard
extensions to SQL, e.g., the TRANSFORM and PIVOT
clauses in MsAccess or COMPUTE in SQL Server or
Sybase. These are quite awkward to use with respect to
LIST as proposed. See [10] for deeper analysis.

Besides, the basic capabilities for the manipulation of lists
were proposed for the object-oriented OQL language
intended for an OODBS, e.g., for AMOS-II, [19].
Research proposals were consequently formulated for
object relational systems. List manipulation capabilities
should also characterize XML oriented systems, DBS
especially, [19], [20]. We discuss these proposals
extensively in [10]. Having the LIST function within
RDBS should facilitate all these goals as well.

5 Conclusion
The LIST aggregate function is simple and should be
useful. It creates a framework for queries to both
aggregated and individual data values. These are hard to
formulate or yet inexistent in an RDBS at present,
although potentially highly useful for the popular data
mining. The user may also naturally present and
manipulate data normalized to 4 NF. These are awkward
to deal with in practice at present. As a simple solution to
this problem, LIST function appears surprisingly overdue.
By twenty five years or so with respect to the 4 NF
invention, [9].

The implicit LIST should often simplify the query with
respect to that with the explicit one only. It is further
desirable to couple it with the implicit joins and the
implicit FROM clause. The overall capabilities of LIST
that result from alleviate long standing wishes of the
relational database users.

We backed the semantics of the LIST function with the
choice of the details, so to make the implementation of
LIST function technically easy. The future work should
focus on the experimental proof of this claim, by
prototyping the implementation in the first place.

4 Located by Jim Gray

Acknowledgements

We thank Ron Fagin for suggestions to the motivating examples.
We are grateful to Jim Gray for the help with the analysis of
LIST implementation under SQL Server and the pointers to the
“gray” literature. We thank Tore Risch for the comments to the
related work. This work was partly supported by the grants from
Microsoft Research, and EEC ICONS project, no. IST-2001-
32429.

References
[1] Kreines, D., C. Oracle SQL: The Essential Reference.
O’Reilly, 2000.
[2] IBM Manual for DB2. ibm.com/software/data/db2/library.
[3] Litwin, P., Getz, K, Gilbert, M. Access 2000 Developpers
Handbook. Volume 1 & 2. Sybex, 2000.
[4] MS SQL Server Home Page. http://www.microsoft.com/sql/
[5] Oracle SQL* Plus.
http://technet.oracle.com/tech/sql_plus/content.html
[6] Sybase Transact-SQL User's Guide.
http://manuals.sybase.com/onlinebooks/
[7] Date, C., J. An Introduction to Database Systems. Addison-
Wesley, 2002.
[8] Garcia-Molina, H. Ullman, J., D., Widom, J. Database
Systems: the Complete Book. Prentice Hall, 2002.
[9] Fagin, R. Multivalued Dependencies and a New Normal
Form for Relational Databases. ACM Trans. On Database
Systems, ACM-TODS 2(3), 262-278.
[10] Litwin, The LIST Aggregate Function for Relational
Databases. CERIA Research Report 2003-06-09, 2003,
http://ceria.dauphine.fr/.
[11] Melton, J. Advanced SQL:1999 Understanding Object-
Relational and Other Advanced Features. Morgan Kaufmann,
2002).
[12] Litwin, W., Wiederhold, G., Suk Lee, B. Implicit Joins in
the Structural Data Model. IEEE-COMPSAC, Kyoto, (Sep.
1991).
[13], Larson, P-Å., Krishnan M., and Reilly, V., G. LKRhash:
Scaleable Hash Tables. Res. Rep., 1999
http://www.microsoft.com/
[14] Larson, P.-Å. Dynamic hash tables, Communications of the
ACM, Vol. 31, No 4, 1988, 446–457.
[15] Litwin, W. Linear Hashing : a new tool for file and tables
addressing. Reprint from VLDB-81. Readings in Databases. 2-
nd ed. Morgan Kaufmann Publishers, Inc., 1994. Stonebraker ,
M.(Ed.).
[16] Tropashko, V. Program Your Own Aggregate Functions.
Tip for Week of May 20, 2001. Oracle Publishing Document.
http://www.oracle.com/oramag/code/tips2001/index.html?05200
1.html

[17] Tropashko, V. Matrix Transposition in SQL. Dbazine.com,
2002. http://www.dbazine.com/tropashko2.html
[18] Bowden, B. Increase code reuse with Oracle user-defined
aggregate functions. Builder.Com. 2003.
http://builder.com.com/5100-6388-1058914.html
[19] Lin, H., Risch, T. Katchanounov, T. Adaptive data
mediation over XML data. Special Issue on Web Information
Systems Applications of Journal of Applied System Studies
(JASS), Cambridge Intl. Science Publ., 3(2), 2002.
[20] Berkeley DB XML. http://www.sleepycat.com/products/
[21] SQL Anywhere Studio 9.0.1. iAnywhere Solutions.

