
Stored and Inherited Relations With Implicit Naturally Inherited Attributes:
Proof-of-Concept Demo

Witold LITWIN

U. Paris Dauphine
witold.litwin@dauphine.fr

Oct., 2023 1

 The proof-of-concept implementation of an SQL DBS with Stored and Inherited Relations (SIRs) on SQLite3, evolved. The demo illustrates
now also the processing of Create Table for SIRs with, so called, Primary Key Named Foreign Keys (PKN FKs). Such Create Table leaves
implicit every, so-called, naturally inherited attribute (NIA). Ultimately, one may avoid specifying any IAs for the SIR. The demo illustrates
the preprocessing of such Create Table into the one defining every NIA explicitly. The previous demo addressed only the latter schemes.
 The major advantage of schemes with NIAs being implicit only is that SIR DBs may be typically defined as DBs could be at present, while
providing for the Logical Navigation Free (LNF) queries to the base tables, in the sense of Maier & Ullman, unlike the latter. The LNF
queries are usually substantially less procedural. E.g., consider a SIR DB, i.e., a DB supporting SIRs, to recall, termed S_P1 defined in the
demo by the scheme of our favorite “biblical” Codd’s S-P DB. Then, unlike for S-P, the usual Create Table SP is for S_P1, the SIR SP scheme
with implicit NIAs. This results from PKN FKs in S-P.SP. These are SP.S# and SP.P#, referencing, respectively S.S# and P.P#, as it will appear
more in depth later. Then, S_P1 supports, e.g., the LNF query of obvious practical interest, if S-P was real:
 Select P#, PNAME, QTY From SP Where SNAME = 'Smith';.
The equivalent query to S-P must in contrast be:
 Select SP.P#, PNAME, QTY From SP Left Join S On SP.S#=S.S# Left Join P On SP.P#=P.P# Where SNAME = 'Smith'; .
Likely for any SQL clients, the latter is substantially more awkward than the former. The obvious reason is the necessary LN. In particular,
that one makes the query about twice more procedural.
 S-P is 'the mother of all the relational DBs’, as we all know. The property generalizes accordingly to likely any practical SQL DBs. We
apparently talk about trillions+ at present, (VLDB 22).
 More in depth, the Create Table with implicit NIAs we demonstrate, is possible for any SIRs with foreign keys (FKs) in Codd’s initial sense,
i.e., as defined in his landmark CACM article. PKN FKs is our denomination for these, reflecting their central property. To simplify the
formalism that follows, sufficient for the demo, consider atomic PKN FKs only. The explicit schema of a SIR R, i.e., the explicit Create Table
R, would then be as follows. Let us denote as R_, the relation that the implicit Create Table R would define at present. Suppose also some
typical table constraints in it, like PRIMARY KEY(…,), FOREIGN Key… . Let F1…Fn be the PKN FKs in R_, referencing respectively R’1,…R’n
base tables. Supposed all of these defined as at present as well for an SQL DB. Let us denote also as usual in SQL all the R_ attributes as
R_.* and for every R’, let us denote all the non-key attributes as R’.#. Then, assuming R_.* and every R’.# expanded to all the qualified
attribute names, Create Table R with explicit NIAs would be:
 Create Table R (R.*{R’1.#,...R’n.# From R_ left join R’1 on R_.F1=R’1.F1 … left join R’n on R_.Fn=R’n.Fn} <table options);
NIAs names and values are defined by the expression in {} brackets.
Queries to SIRs address the schemes with explicit NIAs. That is what makes the LNF queries possible. See the literature on SIRs for more.
The demo produces the explicit Create Table SP for S_P1.SP, from the implicit one that, at present, would create S-P.SP. The LNF queries
to S_P1 become possible through further processing of the explicit one. That one was subject of the first demo.
 This demo is accordingly a front-end to the latter. Likewise, it’s a self-running Python program using SQLite3. It first creates S_P1 DB with
S and P base tables only, with schemes supposedly from S-P. Next, the demo centers on the processing of the Create Table SP that could
complete S-P as well. Unlike Create Table for S and the one for P, this one defines PKN FKs, hence is the SIR SP scheme with implicit NIAs.
To find whether the submitted statement is effectively such a scheme, the demo first searches for every, so-called, declared PKN FK.
These are the present SQL FKs, named upon the referenced primary keys. The demo finds that SP.P# referencing P.P# is indeed a declared
PKN FK, being the only one such FK. Next, the demo searches for every, so-called natural (PKN) FKs. These are implicit, hence beyond the
present SQL definition of the concept, although FKs as well for Codd. They contribute to the NI but do not imply the referential integrity.
The demo finds from the SQLite meta-table that SP.S# is the only natural FK, referencing S.S#.
 Since the submitted Create Table SP contains PKN FKs, the demo defines the NIAs of SP. These are sourced in every non-key attribute of
P or S. One appends then the NIAs to the (stored) attributes of the Create Table SP, as in the above formula. Finally, the demo inserts the
(explicit) From clause, after every NIA & before any table constraints, again as in the formula. Numerous prints & comments help to dig
through Python code or to modify the demo schemes. The whole program is in beta version, surprises are thus not excluded.
 To access the prototype, click here. The program will show up at the on-line Python interpreter site. Click “Run” to start the demo. One
can also save the original or any modified code in a private window on the site, by pressing F9 key. Or download it by clicking on “Floppy
Disk” icon. On may upload every download later to a private window at the site, by clicking on “Open Folder” icon there.

1 Latest update: November 2, 2023.

https://www.lamsade.dauphine.fr/%7Elitwin/Prototype%20SIR-Layer.pdf
https://www.online-python.com/t5AMgwOo9c

