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ABSTRACT
We propose a novel string search algorithm for data stored
once and read many times. We encode the data records com-
ing for storage into their cumulative algebraic signatures.
We define two variants of our algorithm that we analyse the-
oretically and experimentally. The experiments compares
the speed of our algorithm to the Boyer-Moore scheme, usu-
ally the fastest method known. Our search was up to a
seventy times faster for DNA data, up to eleven times faster
for ASCII, and up to a six times faster for XML documents.

Our method applies to databases in general and to scal-
able distributed data structures, P2P and grid systems used
for the Database as Service (DAS) context especially. The
client sends the data for storage at the (remote) servers en-
coded. The servers match the stored data for the pattern
requested by the client without decoding. No local user can
then involuntarily discover the content of the stored data.

1. INTRODUCTION
We describe n-gram search that is novel string (pattern)

matching principle first proposed in preliminary form in [9].
We intend our method for databases and files where records
are stored once and searched many times. An application
record is encoded in a record of same size as a Cumulative
Algebraic Signature (CAS). We recall that an Algebraic Sig-
nature (AS) of a string is an element of a Galois Field (GF),
typically GF (28) in what follows [12]. When encoding, we
replace each symbol s with the AS of the prefix ending with
s. If we use the full CAS, then the prefix starts with the
first symbol in the record. If we use the partial CAS, then
the prefix is n symbols long. Converting a record to or from
one of the CAS forms is an operation with linear complexity
and without storage overhead.

The search algorithm works as follows. We pre-process
the pattern to match, calculating the AS of every n-gram in
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the pattern. Next, we attempt to match the pattern within
the record. Each attempt first compares the AS of the last
n-gram in the pattern with the AS of some n-gram in the
record. The successful match continues with one or more at-
tempts to find out whether the entire pattern matches. If an
attempt fails, we shift the pattern, similarly but not iden-
tical to the Boyer-Moore (BM) algorithm. We recall that
BM is probably the most used pattern matching scheme
and usually the fastest. In tendency, our shifts are longer,
making our search more sub-linear. The reason is that the n-
gram signatures are typically more discriminative than sin-
gle symbols. Especially, when the size of the alphabet used
is smaller than the size of GF used (DNA records) or when
only a subset of characters is frequently used. By prudently
selecting our parameter n, we can bring the average shift size
close to the minimum of the pattern length and the GF size,
i.e., to a shift by almost 256 symbols for longer patterns.

Our method presents two advantages. First, it is fast. In
particular, the experiments show it is typically several times
faster than BM. The ratio is larger for smaller alphabets.
More precisely, our search speed appears up to seventy times
faster for DNA alphabet. It is also up to eleven times faster
for ASCII, and, finally, up to a six times faster for XML
documents.

The second advantage lies in the use of distributed stor-
age. A client locally encodes the record and sends it to a
remote server. For the search, the client sends an encod-
ing of the pattern to all the servers in parallel. The servers
search for the pattern without decoding. No involuntary or
accidental data disclosure on the server or on the way to the
client is possible. A determined adversary with access to
the server can decode the stored data, but if caught, cannot
credibly claim unintentional possession. This feature makes
the method suitable for Scalable Distributed Data Struc-
tures (SDDS) over a grid or a structured P2P system. More
generally it is suitable for a Database As Service (DAS) en-
vironment.

We present two variants of the algorithm. The first de-
termines n-gram signatures dynamically from a full CAS.
The second encodes the n-grams into the partial CAS di-
rectly. The search with the latter method is faster. How-
ever, the former approach makes up for a longer search time,
by storing the records in a form amenable to other fast
searches such as prefix searches and longest common sub-
string searches [11].

Below, Section 2 recalls the basics of our method. We
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present the two variants of the algorithm in Sections 3 and 4,
respectively. Section 5 contains analytical and experimen-
tal performance analysis, including comparison to Boyer-
Moore. For experimental analysis we use DNA records,
ASCII text and XML documents. We then discuss possible
improvements (Section 6), present related work (Section 7)
and conclude.

2. PRELIMINARIES
We briefly recall here the basic features of algebraic sig-

natures. More details can be found in [LR04].

2.1 Algebraic signatures
Let G be GF (2f ), the Galois Field with 2f elements. We

call them symbols and identify them as bytes (f = 8) or
words (f = 16 or 32, etc). Let α be a primitive element
in G. The algebraic signature (AS) of any record r1 · · · ri

is given by r1α ⊕ · · · ⊕ riα
i. (This is the one component

signature sigα in [12]). The addition here is the GF addition
and implemented as the familiar xor. The implementation
of the multiplication is more involved as we show later in
this section. If the AS of two records of the same length
differ, then we know for sure that the records are different,
whereas if they are the same, (and if the records are not
random) then we conclude probabilistically that they are
the same.

2.2 Cumulative Algebraic Signature
Let RM be a record of M symbols r1 · · · rM . Consider

for each ri the AS of the prefix ending in ri, i.e., the AS
r′i = r1α⊕· · ·⊕riα

i. The record R′
M with symbols r′1 · · · r′M

is the full Cumulative Algebraic Signature (CAS) of RM .
The full CAS replaces each individual symbol r in the en-
coded string with another symbol r′ encoding not only the
current symbol but also additional knowledge of all the sym-
bols preceding r. A comparison of original symbols at same
offset in two strings only allows to conclude about the equal-
ity or difference of these symbols. One needs additional
processing to conclude anything about the matching of the
symbols preceding the visited ones, hence of the strings
themselves. The comparison of the ASs in a CAS yields
in contrast the information about likely equality or for sure
inequality of the entire prefixes ending with the matched
symbols. The result is naturally much more discriminative
for a pattern search. This is the rationale for our approach.

The ASs have two basic properties that we exploit and dis-
cuss now, as well as some others we introduce progressively.
First, we have:

r′i = r′i−1 ⊕ riα
i (1)

We may thus calculate the CAS in linear time. Reversely,
we have

ri = (r′i 	 r′i−1)/αi (2)

The decoding of CAS into the original record can be thus
in linear time as well. Note, that in a Galois field GF (2f ),
addition is the same as subtraction. We again postpone the
discussion of multiplication, as well as of the division by the
powers of α.

2.3 Partial CAS and n-grams
An n-gram within RM is any substring of length n, i.e.,

ri−n+1ri+n−2 · · · ri, where i ∈ {n, · · · , M}. A partial CAS

of RM consists of the record where each symbol, let it be
r′′i , is either the AS over the n-gram terminating with ri, or
over the i-gram terminating with ri for i < n, i.e., at the
beginning of RM . Formally, we have:

r′′i =

{
r1α⊕ · · · ⊕ riα

i for i < n
ri−n+1α⊕ · · · ⊕ riα

n otherwise
(3)

The following algebraic properties of our signatures are
further useful for our goal. They determine the AS of any
n-gram in RM from a full CAS. They thus also define the
relationship between the partial and full CAS of RM , i.e.,
R′

M and R′′
M contents. First, for any i ≥ n, we have :

r′i 	 r′i−n = ri−n+1α
i−n+1 ⊕ · · · ⊕ riα

i

Therefore, the searched n-gram signature is:

AS(ri−n+1, ri−n+2, ..., ri) = (r′i 	 r′i−n)/αi−n (4)

2.4 Calculating the GF Multiplication and Di-
vision

There are several methods for multiplying and dividing
in a GF. In our context, the use of logarithm and antiloga-
rithm tables appeared to be most efficient [10]. The tables
precalculate the log and antilog values. The logarithm of a
GF element x 6= 0 is the (unique) integer i, 0 ≤ i ≤ 2f−2,
such that αi = x. We define the logarithm of 0 to be 2f−1.
The calculus of (4), in our implementation, is then:

AS(ri−n+1, ri−n+2, · · · , ri) =

antilogα[logα[r′i ⊕ r′i−n]− i + n mod (2f − 1)] (5)

Here, the operator ⊕ denotes XORing, i.e., a GF addi-
tion and substraction. Other additions/subtractions are the
usual ones. Similarly, we move between the original record
and its full CAS through the calculus:

r′i = r′i−1 ⊕ antilogα[(logα[ri] + i) mod (2f − 1)] (6)

ri = antilogα[logα[r′i ⊕ r′i−1]− i mod (2f − 1)] (7)

3. PATTERN MATCHING IN FULL CAS
We present now the first variant of our algorithm. We

assume the records encoded in their CAS forms, using prop-
erty (1, when coming for storage. As we said, we presume
a typical database behavior where a record is stored, hence
encoded, once, and searched many times. Our search starts
with the pattern pre-processing phase, followed by the actual
matching calculus through the records. We only discuss the
processing within a record, discussion of inter-record navi-
gation is beyond the scope of this paper.

3.1 Pattern Pre-processing
We use n for the number of symbols in an n-gram. Typ-

ically n ∈ {1, 2, 3, 4}, Let P = (p1, p2, · · · , pK) be the pat-
tern to match. We only search for patterns of length K ≥ n.
We start with the encoding of P into its CAS P ′. In the
distributed case, this is done at the client. We hash every
n-gram in the pattern, starting from the beginning, into a
value h that is an entry in an auxiliary table T [0, .., 2f ] called
shift table. We use T to encode the shifts of the search pat-
tern against the records. The h value is the logarithm logα

of the n-gram’s AS (we call it Logarithmic AS, and note
LAS). Equation (5) now becomes:



2-gram Shift
da 6
au 5
up 4
ph 3
hi 2
in 1
ne 0

All other digrams 7

Table 1: The shifts for each 2-grams in Dauphine

h = LAS(pi−n+1, pi−n+2, · · · , pi)

= logα[p′i ⊕ p′i−n]− i + n mod (2f − 1) (8)

We store the LAS of the final n-gram in a variable V , and
the LAS of the full pattern in a variable W . We then set
each T [i] according to the following rules. First we preset
every entry to T [i] = K − n + 1. For every LAS h for an
n-gram in P other than the last one, we set T [h] to the offset
in P with respect to K, of the rightmost n-gram with h as
LAS. If h = V that is thus the LAS of last n-gram, we set
T [h] to the offset of the previous occurrence in P of an n-
gram with h = V provided there is such occurrence. Notice
that this structure of T differs from that in [L+06], turning
out to be faster. Here is the preprocessing algorithm.

Algorithm PrepareSearch
Input: a pattern P , the ngram size n
Output: the encoded pattern P ′, the shift table T
begin

// First encode the pattern
for (i := 1 to size(P ))

// Apply equation (1)
if (i = 1)

P ′[i] := αP [1]
else

P ′[i] := P ′[i − 1]xorαiP [i]
endif

endfor
// Compute table T . First initialize with the maximal shift
for (i = 0 to size(GF ))

T [i] := size(P ) − n + 1
endfor
// For each ngram, add en entry [log(ngram), shift] in T
for (i = n to size(P ))

T [LAS(P [i − n + 1] · · ·P [i])] := size(P ) − n − i
endfor

end

Example 1. Consider the pattern P = Dauphine. We
choose n = 2, i.e., we intend to perform the 2-gram (digram)
based search. We initialize every T [i] to K −n + 1 = 7. We
then set T [LAS(da)] = 6, T [LAS(au)] = 5, etc. Table 1
below illustrates the result, (thought it does not show the
actual i for each shift).

2

3.2 Pattern Search Processing
We now describe the search for P = (p1, p2, · · · , pK) within

an encoded record R = (r1, r2, · · · , rM ) of length M , or a
non-key field of size M of a record, e.g., in an SDDS. Let
Rn

i = (ri−n+1, ri−n+2, · · · , ri) denote the n-gram in R end-
ing with ri. Similarly, we use P n

i = (pi−n+1, pi−n+2, · · · , pi)
to denote the n-gram in P ending with pi.

Shift

Record

Pattern

r’r’
y

i−n i

y

y V

V

Figure 1: The n-gram shift, with y =
LAS(ri−n+1, · · · , ri) and V 6= y

We begin by attempting to match Rn
K and P n

K . We do this
by comparing LAS(Rn

K) computed according to (8) applied
to the symbols in the record, with LAS(P n

K) that is in V .

1. If there is the match, then we match LAS(RK
K) and

LAS(P K
K ) that is in W . If again we have the match,

then we report a likely successful search.

2. If LAS(Rn
K) 6= LAS(P n

K), then we lookup table T with
index i = LAS(Rn

K). We then shift P by j = T [i]
positions to the right. We follow with the attempt to
match Rn

K+j and P n
K . We repeat the whole process

until the shift reaches or attempts to exceed rM .

Pattern

Record

Shift

r’ r’
y
ii−n

V

V

Figure 2: The n-gram shift, when y =
LAS(ri−n+1, · · · , ri) is not found in the pattern

Figures 1 and 2 illustrate a matching attempt at position
i. Variable V stores the value of the final n-gram LAS in P .
The encoded record is examined at position i for the values
of the CAS r′i−n an r′i. From Equation (5) we obtain the
LAS of the n-gram of R at i: y = LAS(ri−n+1, · · · , ri). Now
assume that V 6= y. Then either y is found in the pattern
by looking up table T , and the shift superposes the position
of y in the pattern with the current position in the record
(Figure 1), or y is not found in the pattern, in which case
the shift found in T is K − n + 1 (Figure 2).

Since we match the signatures, there is typically, thought
not always (see Section 6), small but non-zero probability
of a collision, in the orders of 1/2f . That is, an n-gram
or the whole P may not match, while the LAS does. For
sure result, one has to check a likely match symbol by sym-
bol. In an SDDS it should be typically at the client site,
where every matching records are sent for the decoding, us-
ing property (2) above.

Example 2. Consider the search in a French text, for R
= ’Universite de Technologie Paris Dauphine’, and P
= ’Dauphine’, assuming the choice n = 2 (Figure 3). We
pre-process P , as in Example 1 and Table 1. We set in
particular V = LAS(ne), since ’ne’ is the terminal digram.
The processing phase starts with the attempt to match the
digrams ’si’ ending at the offset R8, since K = 8 for our
P , and of ’ne’ (underlined at the figure). We calculate i =
LAS(si), using (5), from the AS found within the symbols



(a) Universite de Technologie Paris Dauphine

Dauphine Dauphine Dauphine

Dauphine Dauphine Dauphine

(b) Universite de Technologie Paris Dauphine

Dauphine Dauphine Dauphine Dauphine

Dauphine Dauphine Dauphine

Figure 3: n-gram search in (encoded) French text
using (a) n = 2 and (b) n = 1

of the CAS at offset 8 (’i’ at the figure), and that at offset 6
(’r’ there). We have i 6= V , assuming no collision (what we
did not test for this example). We read T [LAS(′si′)] and
find 7 there.

We shift for the next attempt by 7 positions, i.e., to the
digram ’ T’ ending a R15. We calculate LAS(′ T′). It does
not match V , hence we access T at i = LAS(′ T′). We
find 7 again, (also assuming no collision with any digram
in ’Dauphine’), etc. We underlined the visited digrams. As
Figure 3 shows, the search using n = 2 needs 6 attempts and
thus 5 shifts. We show the successive shifts one after the
other in two lines under the pattern. The 5th attempt using
’up’ finds T [LAS(′up′)] = 4 and thus moves the pattern into
the correct position under the string. Our algorithm tests
that the pattern and the sub-string have the same LAS. Since
this test is successful, our algorithm terminates with success.

Our search with n = 2 took six attempts (Figure 3.a).
Except for the last shift, all shifts are over K − n + 1 = 7
symbols (with K = 8 and n = 2 here). A search with n = 1
needs 7 attempts (Figure 3.b). Now two other shifts are
smaller than the maximal shift of K − n + 1 = 8 and the
average shift of 5.8 symbols is almost 20% smaller than for
n = 2. Our search with n = 1 has the same shifts as the
Boyer Moore algorithm [2]. 2

In our example, using 3-grams would actually lead to an
additional matching attempt than using digrams. This il-
lustrates the influence of the choice of n on the behavior of
the algorithm. As far as we know, our algorithm is unique in
this regard. It appears that in general, larger n work better
for smaller alphabets or if only few symbols are frequently
used.

Example 3. This example illustrates this facet of our ap-
proach for a DNA sequence which is adapted by one in [4]
(Figure 4). We have the four-letter alphabet of nucleotides:
A, C, G, T. The pattern is ’AGACAGAT’. For such small al-
phabet, one can choose a representation that leads to zero
collisions. This means that any 4-gram has a unique LAS.
In our example, choosing n = 1 leads to twelve attempts and
an average shift of less than 1.5 symbols. Choosing n = 2
reduces the search cost threefold to four attempts. Unlike for
the text, the best choice is however n = 3. It leads to only
three attempts with an average shift length of 5.6 symbols.
It thus accelerates the search by factor of four. No larger n
does better. Notice that Boyer-Moore would need again the
same number of attempts as for n = 1. However, BM needs
less processing for each matching attempt, and the process-
ing should be theoretically faster by a factor of two. This
still results in a performance advantage for our algorithm.
2

(a) AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

AGACAGAT AGACAGAT

(b) AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGATAGACAGAT

AGACAGAT AGACAGAT

(c) AGCATATAAAGCGAGTGCGGAGCAT

AGACAGAT AGACAGAT

AGACAGAT AGACAGAT

AGACAGAT AGACAGAT

AGACAGAT AGACAGAT

AGACAGAT AGACAGAT

AGACAGAT

AGACAGAT

Figure 4: n-gram search in (encoded) DNA sequence
for (a) n = 3, then (b) n = 2 and (c) n = 1.

4. PATTERN MATCHING IN PARTIAL CAS
The full CAS encoding allows for the dynamic choice of

n. It is also known as particularly efficient for other useful
searches such as prefix search, longest common prefix search,
or longest common substring search [10]. The variant we
describe now encodes the record into a partial CAS of preset
size n. The encoded record contains directly the ASs of all
the n-grams in the original record. The pattern matching
speeds up, although the other searches above slow down.

4.1 Encoding and Decoding
We denote the ith symbol of the encoded record with r′′i .

We define r′′i as in Equation (3). As we said in Section 2,
record R′′

M = r′′1 r′′2 · · · r′′M is the partial CAS of record RM .
Encoding of RM can again be computed in linear time. For
2 ≤ i ≤ n, we may indeed recursively calculate

r′′i = r′′i−1 ⊕ αiri

= r′′i−1 ⊕ antilog[i + log[ri] mod 2f − 1] (9)

for 2 ≤ i ≤ n. Otherwise, we observe that r′′i ⊕ αr′′i+1 =
αri−n+1 ⊕ αn+1ri+1. Therefore, our recursion becomes for
i > n:

r′′i+1 = (αri−n+1 ⊕ αn+1ri+1 + r′′i )/α

= ri−n+1 ⊕ αnri+1 + α−1r′′i

= ri−n+1 ⊕ antilog[n + log[ri+1] mod 2f − 1]

⊕ antilog[log[r′′i ]− 1 mod 2f − 1] (10)

Decoding a partial CAS is more involved than decoding
a complete CAS. First, r1 = α−1r′′1 . For 1 ≤ i ≤ n − 1,
ri+1 = α−i(r′′i+1 − r′′i ). If i ≥ n, then

ri+1 = α−n−1(r′′i ⊕ αr′′i+1 ⊕ αri−n+1)

= α−n−1r′′i ⊕ α−nr′′i+1 ⊕ α−nri−n+1)

= antilog[log[r′′i ]− n− 1 mod 2f − 1]

⊕ antilog[log[r′′i+1]− n mod 2f − 1]

⊕ antilog[log[ri−n+1]− n mod 2f − 1] (11)



Unlike for complete CAS, decoding a single symbol in the
record involves decoding all previous ones.

4.2 Pattern Pre-processing and Processing
Pre-processing of the pattern P proceeds in the same man-

ner as in the first variant. In an SDDS environment, P
should typically arrive at the server encoded by the client
into its partial CAS P ′′. The scan of P ′′ fills in table T .
However, one hashes now each AS, not the LAS.

The pattern search processing is also similar with respect
to the n-gram match attempts. There is no more however
the AS calculus for the n-grams in the record, since they
are directly encoded in R′′. This speeds up the matching. If
the matching attempt with V succeeds, we need to match, as
before, the AS of the entire P towards that of the potentially
matching string under the consideration in R. It would be
cumbersome to calculate these AS from the n-grams in P ′′

and R′′. Instead, we attempt therefore now to match the
AS of the nearest n-gram to the left of the one currently
successfully matched. If the match works, we move to the
next adjacent n-gram in P ′′ till we reach the beginning of
P ′′.

If any match attempt fails during this process, we calcu-
late from T the shift of the terminal n-gram signature. If
the successful matches reach the beginning of P ′′, the search
is presumed likely successful or successful if the probability
of the collision is known to be zero, as in Section 6. In the
former case, the client may terminate with the systematic
test, as before.

The examples from the previous section apply as is to the
partial encoding. Observe on this basis, that since there is
no more the n-gram LAS calculus, the attempts to match
an individual n-gram is faster. The attempt to match the
entire P is in contrast about K/n times slower, increasingly
thus for a longer P . The end result depends thus on the
actual data. More the n-grams are discriminative, faster
the partial CASs should be. A detailed analysis of both
variants obviously requires experiments, like those reported
in Section 5.2.

5. PERFORMANCE ANALYSIS
We now analyze the behavior of our method. First, we

study it analytically. As usual, the calculus complexity
forces simplified modeling assumptions and limits the re-
sults. We overview the basic performance factors and guide-
lines for the choice of n. We study the average shift size,
crucial for our performance factors, under the usual assump-
tions of the randomness of symbol values. Next, we complete
the formal analysis with extensive experimental campaign.
This one considers the data in our examples, i.e., ASCII text
and DNA, but also the XML text, more and more popular.
We compare the n-gram search to BM. The outcome shows
the superiority of n-grams, especially for long patterns.

5.1 Analytical Study
The pre-processing of the pattern costs O(2Kn + 1), in-

volving the (linear) encoding and the creation of T . Likewise
the encoding or decoding of a record costs O(M). The pat-
tern matching, i.e., the search cost after the pre-processing,
is O(N), where N is the number of attempts to match. The
figure assumes most attempts unsuccessful, hence reaching
the record’s end. The N value depends mostly on the aver-
age shift (sized in the number of symbols), let it be A. We

have N = (M−K)/A, where M is the record size, we recall.
Despite the same O(N) cost formulae, the search speed is in
practice faster for the n-gram (partial) CAS, since we avoid
the XOR calculus and log/antilog calculus. It seems about
impossible to determine however analytically any of those.
The experiments we report later show some values and the
about simple to double difference in general.

The average shift is basically longer when the matching
probability is smaller. Our examples illustrated that some
choices of n = 2, 3, or 4 make n-grams quite selective, in the
sense of the matching probability of the signatures close to
(the minimal possible) of 1/2f or 1/256 for our favorite GF.
The actual value depends also on the pattern size as we’ll
see soon in depth. The n value itself depends on the alpha-
bet size, or the number of symbols actually most used. For
DNA, we have 4 symbols. Let us consider that these symbols
are equally likely to appear and not correlated. The corre-
sponding probability p1 is 1/4. This would lead for a 1-gram
(or BM) to the average shift of A = 4 symbols, whenever
K > 4. For n = 4, the similar (signature) matching proba-
bility pn for the n-gram is pn = ( 1

4
)4 = 1/256. This leads

to A = 256 for a pattern long enough. For a shorter pat-
tern, with K < 256, but K >> 4 still, it obviously leads to
A ≈ K − n + 1, where the latter is the maximal shift, i.e.,
to A = K − 3 in the occurrence.

Larger n does not improve pn under these assumptions.
While it decreases the maximal shift, hence A as well. The
result, i.e. n = 4 being the optimal value basically holds
even if the distribution of symbol values is somehow non-
uniform. The signature calculation randomizes indeed the
distribution. A larger n may however perhaps be useful for
a highly skewed case.

Consider now the ASCII text example. Assume, little
arbitrarily, that 17 values are by far the most typical. Now
n = 2 appears best choice. It leads indeed to pn = ( 1

17
)2 =

1/289. Enough for GF used. The choice should increase the
A value, with respect to n = 1 (and BM thus), already for
K about 10 (as the experiments confirm). If less symbols
are typical, e.g. 8 only, then n should be 3. Etc.

The above examples point to the possibility of zero-collision
probability for the chosen n. The necessary condition is that
the number of possible n-gram values is under the GF size.
This can be the case or not, e.g., is for DNA, but not for
ASCII above.

We now evaluate A more in depth, given is crucial impor-
tance for the search cost that appeared above. We come out
with an approximate formula, under our modeling assump-
tions, i.e., of the set up of the best n, leading to the n-gram
matching probability of 1/2f .

We note p = 2−f and q = 1 − p. First, we calculate the
average shift B, assuming the shift of the pattern P by 1
symbol if we have an initial match between the rightmost
n-gram in P and the n-gram in the record R (Figure 5.a
and 5.b). In this case, we always have a shift of 1 if the
rightmost n-gram matches to the one in R, which happens
with probability p. We shift by 2, if the rightmost n-gram
in P does not match, but the next one does. And so on.
Finally, if the n-gram in R does not match any of the n-
grams in P , then we shift by K − n + 1. This happens with
probability qK−n. As a result, we obtain



a) GGTCAAGTTTAGGCCCCCAGCGTAAAAAAGACGTAAGCCTA

TAAAAAGTT

b) GGTCAAGTTTAGGCCCCCAGCGTAAAAAAGACGTAAGCCTA

TAAAAAGTT

c) GGTCAAGTTTAGGCCCCCAGCGTAAAAAAGACGTAAGCCTA

TAAAAAGTT

Figure 5: Shifting after first hit (a) either by shift
size 1 (b) or by trying to match the field ’AGTT’ in
the search pattern, which leads to a maximal shift
by 6.

B = 1 · p + 2 · p · q + 3 · p · q2 + · · ·
+ (K − n) · p · qK−n−1 + (K − n + 1) · qK−n

Using a formula for the derivative of a finite geometric
series (or Mathematica), we can simplify to

B = (1− q) · (1 + 2q + 3q2 + · · ·+ (K − n)qK−n−1)

+(K − n + 1) · qK−n

= (1− q) · (K − n)qK−n+1 − (K − n + 1)qK−n + 1

(q − 1)2

+(K − n + 1) · qK−n

=
(K − n) · qK−n+1 − (K − n + 1) · qK−n + 1

1− q

+
(K − n + 1) · qK−n − (K − n + 1) · qK−n+1

1− q

=
1− qK−n+1

1− q

=
1− qK−n+1

p

In fact when the n-gram in R matches the rightmost n-
gram in P , we do not shift by one. Instead, we shift by
T value depending on whether the n-gram in R appears
elsewhere in P . The value of A is then calculated from B
by

A = B · p + 1 · p · q + 2 · p · q2 + · · ·
+ (K − n) · p · qK−n + (K − n + 1) · qK−n+1

Algebraic simplification shows that A ≈ B. The A value
is also approximatively bound by min(K − n + 1, 1/p), the
former being the maximal shift for a pattern and n value
used, we recall. Figure 6 plots A for GF (256) and any small
n considered so far. As one sees, A is substantially smaller
than its bound for middle-sized patterns. It is also several
times larger than a single symbol match in our examples,
showing the potential for much faster search, confirmed in
depth below.

5.2 Experimental analysis
We performed extensive experiments in order to evalu-

ate the robustness of the analytical study. We compare the

Figure 6: Graph of A and of the bound min(K − n +
1, 256)

following algorithms:

1. The Boyer-Moore algorithm, denoted BM;

2. The NGRAM algorithm based on full algebraic signa-
ture, denoted Ngrfull;

3. The NGRAM algorithm based on partial algebraic sig-
nature, denoted Ngrpart.

The difference between Ngrfull and Ngrpart lies in the
encoding of records. In the first case each symbol in the
record is encoded by the cumulative signature from the be-
ginning of the record. In the second case each symbol s is
encoded by the signature of the n-gram that ends at s.

Experimental setting
The code for Ngram search can be downloaded from
http://www.lamsade.dauphine.fr/rigaux/ngram.zip. All the
algorithms are written in C. For Boyer Moore we use the C
implementation provided by T. Lecroq (http://www-igm.univ-
mlv.fr/ lecroq). We run all the experiences under either a
mono-processor machine under Linux, or a bi-processor com-
puter 2.2 GHz Turion 64 Bytes under Windows XP. The re-
sults reported below are obtained under the latter setting.
The data sets consist of ASCII, DNA and XML files. All
files are pre-encoded (calculation of signatures uses GF (28))
and loaded in main memory before the measurements. This
phase does not influence the result. The search algorithms
then execute on the in-memory files. In order to avoid the
initialization overhead and any other side effects, each search
is performed repeatedly until the search cost stabilizes. We
report the minimal search time for one search.

For each algorithm we distinguish the following phases:

1. Pre-processing: the computation of the bad character
and good suffixes table for BM, and the encoding of
the pattern and the computation of the shift table for
the NGRAM variants.

2. Processing: the search phase itself.

We measure independently both phases, since, depending
on the context, preprocessing might be performed once but
applied to many searches. This is the case for example in a
distributed environment where a server transmits both the
encoded pattern and the shift table to the storage units who
perform locally the search phase. Table 2 shows the records
used in our experiments. The ASCII file is a plain text
version of the Book of Common Prayer.



Name Type Size
ascii bcp ASCII 940,678 bytes
dna hs DNA 167,280 bytes

xml egov XML 143,108 bytes

Table 2: Records used in experiments

Figure 7: Search time for n-gram searchs and Boyer-
Moore

The main conclusions of the experimental study are sum-
marized as follows. First the outcome fully confirms the
theory. The gain increases for larger patterns as it should.
The Ngrpart algorithm based on partial algebraic signature
appears particularly efficient for longer patterns in the con-
text of the database search. The precise results depend on
the data type.

In the following experiments, the n-gram size is set to 4.
The elapsed time are in µs.

Search in DNA records
Table 3 shows the results for a pattern search in a DNA file,
with variable pattern size. Here, “Ngram search” refers to
the Ngrpart algorithm. The columns “Prepr. Time” and
“Elapsed time” denote respectively the preprocessing and
search time (the latter excluding the preprocessing phase).
Column “Nb shifts” represents the number of matching at-
tempts, whereas the column “Sum shifts” is the sum of the
shift values, for all the shifts performed during a search over
a file. Finally column “Ratio” is the ratio of the elapsed
time of BM with the elapsed time of Ngrpart.

Note that the elapsed times (and therefore the ratio) are
machine-dependent, while the other figures are not because
they only depend on the algorithmic features and the input.

We also show in the table the theoretical shift size, ob-
tained analytically from the performance study of Section 5,
and reported in Figure 6.

In our experiment, the number of shifts in Ngrpart strongly
decreases as the length of the pattern increases. When a mis-
match occurs, the algorithm searches for a match between
the signatures of the final n-gram in the record at the cur-
rent position and one of the n-grams in the pattern. When
the pattern is small, it is unlikely to find a match and we
shift by almost the length of the pattern. As the pattern be-
comes longer, the chances for a match increases, but on the
other hand, the shift amount increases even more leading to
a quick scan of the file. BM does not exhibit this behav-
ior. As a result the search time (Figure 7) becomes much
better for our algorithm as the pattern size increases. The

Figure 8: Comparison of elapsed time for Ngrfull

and Ngrpart

Figure 9: Evolution of the number of shifts with the
size of the pattern

comparison between Ngrpart and Ngrfull shows clearly the
advantages obtained by the former, due to the direct access
to the n-gram signature in the encoded record (Figure 8).
From now on the Ngram algorithm considered is Ngrpart.

Figure 9 shows how the number of shifts evolves with the
size of the pattern. For large patterns, a few attempts suffice
to process the pattern search.

Figure 10 compares the values of the average shift for BM
and Ngrpart, algorithms. With Ngrpart, the shift is equal
to K − (n − 1), with K the size of the pattern, and n the
size of ngram (we use n = 4). Therefore the shift is N − 3
when the n-gram is not found in the shift table, else the
shift is the value found in the shift table which results from
the preprocessing phase. We also plot on the same figure
the theoretical shift results. For smaller pattern length, the
match turns out to be almost perfect. For larger ones, the
experimental values surpass the prediction, mainly because
the n-grams are not evenly distributed.

Figure 11 shows the ratio between Ngrpart and BM. This
ratio was about 2 for a pattern of size 6. This ratio is much
higher for long pattern. On a bi-processor machine, the ratio
reaches 72 for a pattern size of 500 symbols. This is directly
related to the difference in the number of shifts, as reported
on the previous figure.

The speed of our algorithm is lower when we use cumula-
tive signatures. The cause are the additional xor operations
and log table accesses needed to obtain the n-gram from the
CAS stored in record. However, the number of shifts nec-
essary is the same and still yields an advantage over BM.



Boyer-Moore search Ngram search
Pattern
size

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Theor.
shift

Ratio

5 16 7745 44936 3.72 203 5758 84342 1.99 1.996 1.3451
10 12 4128 23223 7.20 194 1702 24312 6.91 6.918 2.4254
20 13 4221 23693 7.06 188 747 10187 16.49 16.47 5.6506
30 15 3943 23499 7.12 189 493 6554 25.62 25.67 7.9980
40 17 5043 29622 5.65 172 388 4874 34.45 34.45 12.9974
50 18 6038 36048 4.64 204 324 3919 42.84 43.01 18.6358
100 28 4907 29403 5.69 189 185 2053 81.74 80.86 26.5243
150 35 4208 25307 6.60 197 125 1483 113.09 111.99 33.6640
200 43 3715 22409 7.46 209 102 1223 137.14 137.59 36.4216
250 53 3343 20166 8.28 270 90 1077 155.58 158.63 37.1444
300 60 3080 18668 8.93 273 77 929 180.17 175.94 40.0000
350 72 3291 18702 8.93 248 72 858 195.05 190.17 45.7083
400 81 3217 18284 9.13 298 67 800 209.35 201.87 48.0149
450 90 3156 17941 9.30 274 62 745 224.51 211.49 50.9032
500 97 3057 17367 9.60 301 57 672 249.07 219.40 53.6316

Table 3: Results for DNA search

Figure 10: Average shift size for DNA search

Figure 11: Ratio of search time

Figure 12: Preprocessing time

We recall again that the full CAS method allows other fast
searches such as prefix searches. In addition, the CAS en-
coding works for all choices of n. The figure below shows
pre-processing time. In both cases, the pre-procesing cost is
negligible with respect to the search cost. There is no sig-
nificant differences with respect to the pre-processing costs
between Ngram search and BM search.

Figure 12 shows pre-processing time. BM preprocessing
appears several times faster, e.g. almost 4 times towards the
largest pattern. Howerever, in both cases the pre-procesing
cost is negligible with respect to the search cost.

Search in ASCII records
Table 4 summarizes the results for searching ASCII texts.
Recall that we search a plain text version of the Book of
Common Prayer whose size is approximately 1 MB.

The difference is less impressive than with a DNA file.
Actually the BM algorithm behaves better with alphabets
of large sizes, since a single character is highly characteristic.
Still, Ngram search performs at least as fast as BM for small
patterns, and turns out to be almost twice as fast for large
patterns. The following figure shows the compared curves
of elapsed time for both algorithm. Figure 13 shows the
compared curves of elapsed time for both algorithms.

The values of, respectively, the number of shifts and av-
erage shift size for BM and Ngrpart, algorithms are shown



Boyer-Moore search Ngram search
Pattern
size

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Ratio

6 14 4560 30168 5.30 211 3697 53868 2.98 1.2334
10 11 3364 21843 7.32 202 1630 23275 6.90 2.0638
15 13 2439 15946 10.03 171 982 13686 11.73 2.4837
20 13 1984 12051 13.27 165 716 9751 16.46 2.7709
30 15 1562 9250 17.28 201 481 6267 25.61 3.2474
50 17 1333 8324 19.20 202 308 3711 43.25 4.3279
100 25 917 5735 27.86 198 178 1976 81.19 5.1517
150 35 763 4458 35.81 233 121 1437 111.58 6.3058
200 43 660 3974 40.18 212 99 1186 135.18 6.6667
250 49 619 3821 41.78 222 83 1000 160.28 7.4578
300 58 628 3774 42.26 243 76 918 174.27 8.2632
350 66 576 3534 45.11 248 68 813 196.88 8.4706
400 75 609 3758 42.44 281 66 792 202.18 9.2273
450 86 591 3505 45.46 282 63 758 211.16 9.3810
498 92 624 3916 40.71 330 62 747 213.71 10.0645

Table 4: Results for ASCII search

Figure 13: Elapsed time for ASCII search

Figure 14: Number of shifts for ASCII search

in Figure 14 and 15.
The figures clearly illustrates the good behavior of Ngram

as patterns gets longer. As already mentioned for DNA files,
the size of the size is roughly that of the pattern for small
pattern size. Indeed the ngram signature found in the record
is unlikely to match any ngram from the pattern. While this
probability increases with large patterns, so does the size of
the shift.

Search in XML records
We searched the collection of XML and XSL descriptions
of (specifically) French certificates recognizing an out-of-
wedlock child by the father. We searched, as for ASCII,

Figure 15: Average shift size for ASCII search

Figure 16: Average shift size for XML search

for various patterns of different length. Patterns included
tags. Table 5 and Figures 16 and 17 show the results for
BM and partial CAS search.

The comparative ratio of search speed is now up to about
six in the favor of the n-gram search. It is thus lesser than
for ASCII text. In fact both methods accelerated the search
with respect to ASCII. However, BM algorithm speeds up
systematically more. The reason is apparently the repetitive
presence of quite similar long XML tags in our benchmark.
The “good suffix” case of BM takes over then more often,
generating longer shifts. The n-gram takes a lesser advan-
tage as these tags are longer than n.



Boyer-Moore search Ngram search
Pattern
size

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Prepr.
time

Elapsed
time

Nb
shifts

Avg.
shifts

Ratio

5 11 4577 30748 4.65 195 4924 72109 1.99 0.92
7 11 3430 22759 6.29 169 2500 36234 3.97 1.372
10 11 2441 15691 9.12 203 1461 20834 6,9 1.670
20 14 1702 10840 13.2 194 645 8772 16.38 2.638
30 15 1228 7568 18.9 178 432 5610 25.6 2.842
50 18 853 5214 27.43 170 279 3346 42.92 3.057
100 27 542 3239 44,12 185 165 1762 81.49 3.284
200 42 357 2195 65.04 234 84 1010 141.92 4.25
300 58 318 1517 74.08 258 70 851 168.42 4.55
400 75 269 1699 83.91 314 57 691 207.15 4.719
500 90 233 1654 86.43 270 49 668 214.67 6.423

Table 5: Results for XML search

Figure 17: Search time for XML

6. TUNING TO ZERO COLLISION PROB-
ABILITY

As usual, our algorithms are prone to various enhance-
ments. One particularly interesting direction is the reduc-
tion to zero of the probability of a collision between n-grams.
The absence of the collisions should increase the average
shift, but, more interestingly, avoids the systematic final
test of the successful matching. We discuss an approach
to the more and more popular Unicode and to DNA symbol
encoding.

6.1 Unicode
We recall a collision occurs if two different n-grams have

the same AS. Collisions obviously slow the search speed.
We recall from the theory of the algebraic signatures in [12]
that first if two n-grams differ by only one symbol, then
the probability of the collision is strictly zero (the algebraic
signatures were the first signature scheme known for this
property and its more general formulation for l-symbol sig-
natures not dealt with here.). Furthermore, if we switch
two characters in an n-gram, then the signatures of the n-
gram differ (unless of course the switch does not change the
n-grams ).

We typically choose a GF implementation in which the
primitive element is equal to 0x2. Assume that we have
ASCII text embedded in Unicode. The Unicode character
code is then equal to the ASCII code with a leading 0-byte.
Since α8 = 0x0100 is also a primitive element (because 8 and
216−1 are co-prime), we can form the signature with β = α8.
The signature of two ASCII embedded Unicode characters
0x00rs and 0x00tu (with arbitrary hex-digits r, s, t, and u)

n Maximum number of n-gram signatures
1 4
2 16
3 64
4 256
≥ 4 256

Table 6: Maximum number of signatures for DNA

is β ·0x00rs⊕β20x00tu = β(0xturs) which is different for all
possible ASCII characters. Therefore, collision probability
for digrams is zero.

6.2 DNA
In the case of DNA, the character set is the alphabet

Σ = {A, C, G, T}. If we are using GF (2f ), then the number
of possible n-gram signatures is given in Table 6. The ques-
tion arises whether we can find an encoding that actually
attains the maximum. We now give a general construction.
Galois field elements are bit strings of length f and we iden-
tify them as a polynomial of degree up to f − 1 over {0, 1}.
For example, the Galois field element 0110 0001 in GF (28)
is identified with the polynomial x6 + x5 + 1. Under this
identification, Galois field multiplication is polynomial mul-
tiplication modulo a generator polynomial g(x) of degree f .
We typically use x8 + x4 + x3 + x2 + 1 for g(x), but other
choices are possible. With this choice of g (and many other
ones), x turns out to be a primitive element and we use it for
our α. Then, multiplication by α corresponds to multiplica-
tion by x which shifts the whole bit string by one. If there is
an overflow, we XOR the result with a number derived from
g(x), in our case 0x1d = 0001 1101. For example, multiply-
ing 0101 0101 by α = 0000 0010 turns out to be 1010 1010, if
we multiply again, then we have an overflow and the result
is 0101 0100 ⊕ 0001 1101, which is 0100 1001. To repre-
sent our alphabet Σ = {A, C, G, T}, we use the Galois field
elements 0000 0000, 0000 0001, 0001 0000, and 0001 0001.
In this encoding, the choice of bits 0 and 4 (from the left)
determines the choice of character. Since the signature of a
4-gram (c3, c2, c1, c0) is α(c3 ⊕ αc2 ⊕ α2c1 ⊕ α3c0), we de-
termine the uniqueness of the second factor. In forming it,
we shift c0 three times, this is the maximum shift and it
involves no overflow. We can read the bits set in c0 from
bits 3 and 7, the bits in c1 from bits 2 and 6, the bits in c2

from bits 1 and 5 and of course the bits in c3 from bits 0 and
4. Therefore, the signatures of different 4-grams are differ-



ent. With this encoding, we have reduced the probability of
n-gram signature collision for n ≤ 4 to zero.

7. RELATED WORK
In the general computer science literature, the pattern

matching is among the fundamental problems with many
prominent contributions [4]. The popular algorithms do not
attempt to take advantage of any specific record encoding.
They were not designed for our “write once read many”
database context. BM is accepted as a very versatile and
usually the fastest search, outperforming the other promi-
nent pattern matching methods. Its match attempt and
shift complexity can be about ours for the partial CAS and
n = 1. This happens, whenever the “bad character” shift
becomes prominent with respect to the “good suffix” suffix
case. In the practical conditions similar to those addressed
in previous sections, the n-gram search time should be often
much faster. It should thus usually similarly outperform the
other well-known algorithms. As we said, the exact compar-
ison remains however an open research problem.

The SDDS-2005 system already manages the SDDS files
in distributed RAM, with records encoded into their full
CAS’s [10]. The encoding protects the records at the servers
against involuntary viewing, while the data remain available
for the parallel, distributed non-key scans. A specialized
crypto-attack at a server can decode the data by finding α.
But this is legally analogous to steaming a closed envelope,
with the same social and penal consequences.

SDDS-2005 offers several other string search algorithms
over its CAS encoded records. There is the prefix match-
ing, the longest common prefix or string matching and an
alternative pattern matching. That one uses a Karp-Rabin
like sequential traversal [8, 5]. The algorithm avoids pattern
preprocessing other than AS calculus. The AS is the only
data sent to the servers to match. This can be a security
advantage on its own. Besides, as in general for a sequen-
tial algorithm, lack of preprocessing may, perhaps, lead to a
faster search than with n-grams.

Our principles fall into the recent general direction for the
distributed database architecture termed Database As Ser-
vice (DAS) model [7]. The encryption at a DAS server is a
must. But one advocates a compromise over the strength/trust,
for an efficient parallel processing. Our partial CAS encod-
ing trades somehow minimal DAS security of stored data,
towards currently the fastest pattern matching.

Generally, while private and semi-private information on
networks has grown rapidly, mechanisms for searching for
privacy-protected information have failed to keep pace. One
set of solutions explored among others by [1] and Chang et
al. [3] uses keyword indexes to describe the contents of files.
This is still a surprisingly hard question if hard privacy guar-
antees are required. Song et al. [14] give the first practical
solution to the problem of searching encrypted data by key-
word. Golle et al. [6] extends the capabilities to conjunctive
key searches. Common to these approaches is the primary
concern of not compromising the privacy of the data, but
instead restricting the search capability. Schwarz et al. [13]
propose a different method that trades search capability for
lesser security. Unlike the other methods above, it is thus
also a solution for a DAS. Our protection is weaker. But it
offers zero storage overhead, we recall and faster processing
speed

8. CONCLUSION
Our method shows the potential for the fastest pattern

matching string search in databases, especially for longer
patterns. It should prove useful new tool for text, image,
DNA, etc. Its search without decoding capability should
also be valuable for the distributed environments like DAS,
P2P, SDDS, or grid.

Further work includes more performance studies, includ-
ing the zero collision probability encoding in Section 6. It
should be also interesting to study variants of selected al-
gorithm specs. For instance, the partial CAS may more
efficiently use table T when the rightmost n-grams match
(a kind of equivalence to the BM good suffix case). Also a
different implementation of T could prove better for the Uni-
code. A particularly promising direction consists of adding
the approximate pattern matching capabilities.
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