

Experimental Performance Analysis of New LH*RS
Scenarios and Architecture Design

Rim Moussa

CERIA Lab. Université Paris IX Dauphine.
http://ceria.dauphine.fr/Rim/EvRim/html

Rim.Moussa@dauphine.fr

July 2003

http://ceria.dauphine.fr/Rim/EvRim/html
mailto:Moussa@dauphine.fr

Table of Contents

1 Introduction... 3
2 System Architecture.. 3
3 Pre-experimentation ... 4

3.1 Log pre-calculus.. 4
3.2 New Generator Matrix → 1st row of ‘1’s.. 5

4 Parity Bucket Creation... 6
4.1 Parity Bucket Creation Scenario... 6
4.2 First configuration... 6
4.3 Second configuration .. 7
4.4 Comparison 1st /2nd configuration... 8

4.4.1 CPU component.. 8
4.4.2 Network component ... 9

5 Data Buckets’ Recovery ... 10
5.1 Data Buckets Recovery Scenario.. 10
5.2 One DB recovery .. 11

5.2.1 First Configuration ... 11
5.2.2 Second Configuration ... 11
5.2.3 Comparison 1st /2nd configuration... 12

5.3 Two DBs recovery .. 13
5.3.1 First Configuration ... 13
5.3.2 Second Configuration ... 14
5.3.3 Comparison 1st /2nd configuration... 14

5.4 Three DBs recovery .. 15
5.4.1 First Configuration ... 15
5.4.2 Second Configuration ... 16
5.4.3 Comparison 1st /2nd configuration... 16

5.5 Recover 1, 2, 3 Data Buckets, Is the time linear? ... 18
5.5.1 Scenario analysis .. 18
5.5.2 First Configuration ... 18
5.5.3 Second Configuration ... 19

6 Data Records’ Recovery ... 20
6.1 Data records recovery scenario... 20
6.2 First Configuration.. 21
6.3 Second Configuration ... 21
6.4 Comparison 1st /2nd configuration... 22

7 Search Query... 22
7.1 First Configuration.. 23
7.2 Second Configuration ... 23
7.3 Comparison 1st /2nd configuration... 23

8 File Creation .. 24
8.1 First Configuration.. 24
8.2 Second Configuration ... 26
8.3 Comparison 1st /2nd configuration... 27
8.4 Bulk Insert... 28

9 Conclusion ... 28
References.. 29

1 Introduction
We describe the new architecture and report the performance results relative to the
following scenarios:

1. Parity bucket creation scenario,
2. Data bucket’s recovery scenario,
3. Data record recovery scenario,
4. Search query scenario,
5. File creation scenario.

The experiments are done in the configurations below:
1. First Configuration:
The 1st configuration is composed of five computers running at 733Mhz, connected to
a 100Mbps network.
2. Second Configuration:
The 2nd configuration is composed of five computers running at 1.8Ghz, connected to
a 1Gbps network.

The factor between CPUs speed is equal to 2.45, and the factor between network
bandwidth is equal to 10. So, ideally, we’ll have a gain performance of 59.18% in
process time, and a gain performance of 90% in communication time.

In comparison with [ML02], our LH*RS implementation has mainly changed at the level
of use of TCP/IP connections handling. The new architecture has been adopted in all
TCP/IP- based scenarios, namely:
� Data bucket split: move of data records to a new data bucket + parity records

update.
� Recovery: receipt of data for reconstruction + sending recovered data.
� High availability: receipt of data for parity calculus.

2 System Architecture

In [M00][ML02], we have implemented our scenarios related to file creation –data

bucket split, high availability and buckets recovery, on the top of SDDS2000
architecture. SDDS2000 architecture was proposed by F. Bennour and A. W. Diène, as an
architecture for LH* and RP*. In order to have better performance results, we embedded
to SDDS2000 other components, namely an efficient TCP/IP connections handler.
In our last implementation of LH*RS scenarios mapped to SDDS2000 architecture
[ML02], the communication time dominates the total time; especially for TCP-based
scenarios, i.e., the parity bucket creation scenario and the buckets recovery scenario. To
improve the performance results, we have enriched SDDS2000 architecture with an
efficient TCP/IP connections handler, and mapped our scenarios to the new architecture.
According to RFC 793 [ISI81] and [MB00], we can open TCP/IP connections in a
passive OPEN way, i.e, a process will accept and queue incoming connection requests.
The backlog parameter designates the number of pending TCP/IP connections. The
Windows Sockets 1.1 specification indicates that the maximum allowable value for a

backlog is 5; however, Windows 2000 Server accepts a backlog of 200, and Windows
2000 Professional accepts a backlog of 5.

Figure 2, details the way we establish a TCP/IP connection in both of SDDS2000
architecture and the new devised architecture. In SDDS2000, in order to establish a
TCP/IP connection, first two messages sent through UDP are exchanged between the two
peers. Added to that overhead, the delay underwent to establish the connection while
each peer executes appropriate APIs. In our architecture, a TCP listening thread is
instantiated on the bucket creation, and handles any incoming connection. Likewise, we
don’t need to synchronize the peers to establish a TCP/IP connection between them, since
in both sides TCP/IP connections are passive OPEN, and the ‘sender’ peer executes
appropriate APIs, without asking the ‘receiver’ peer to get ready.

Figure 1: TCP/IP connection establishment in both roposed

he new architecture is proven efficient through experimentation, and has changed

3 Pre-experimentation
nfiguration, it's turned out that log pre-calculus

.1 Log pre-calculus

architectures: SDDS2000 and our p

(a) TCP/IP Connection in SDDS2000 (b) TCP/IP Connections Handler

 -Initialisation TCP /IPListening-
Execution of APIs: Socket creation,
bind, listen, and creation of TCP/IP
Listening Thread.
 -TCP/IP Listening Thread. -
for ever : execution of AcceptAt

 cr
ea

tio
n

of
 ea

ch
bu

ck
et

Execution APIs: TCP/
IP socket creation,

connect,
 Connection state: Established

Execution of API:
Recv

Execution API: send
ou TransmitFile

ReceiverSender

 -Initialisation TCP /IPListening-
Execution of APIs: Socket creation,
bind, listen, and creation of TCP/IP
Listening Thread.
 -TCP/IP Listening Thread. -
for ever : execution of Accept

Whenever the bucket "sender" wants
to send a buffer through TCP/IP

Sender

Ask for connection <UDP>

Wait for Accept

Accept. connection <UDP>

Execution APIs: TCP/
IP socket creation,

connect,

Execution APIs: TCP/
IP socket creation,
bind, listen, accept,

Execution of Recv
Execution of send or

TransmitFile

Receiver

 Connection state: Established

architecture.

T
incontestably the performances of three scenarios: data bucket split scenario, bucket
recovery scenario, and parity bucket creation scenario.

From experiments done in the first co
option and the use of the new generator matrix improve the process time. The main
difference between the new generator matrix and the once described in [LS00] is that the
1st column and the 1st line of the new generator matrix are filled with ‘1’s. This should
improve parity calculus since Galois field multiplication is replaced with XOR calculus.

3

At initialization, a parity bucket performs log pre-calculus. It consists in computing the
exponent of each element of the corresponding column in the generator matrix. Log pre-
calculus optimizes the multiplication routine, and consequently parity encoding and
decoding processes.
To prove the efficiency of the log pre-calculus, we have conducted experiments
consisting in the creation of a parity bucket of 31250 records and using RS encoding in
GF[28]. Under the first configuration, we obtained an average process time of 2.734 sec
when log pre-calculus option disabled, and 2.640 sec when log pre-calculus option is
enabled. The improvement is of 3.45%, that’s why in further experiments the log pre-
calculus option is always enabled.

3.2 New Generator Matrix → 1st row of ‘1’s

Parity update occurs either during file creation scenario or parity bucket creation
scenario. A parity bucket, processing an update query or any update buffer incoming
from the first data bucket of the group, performs XOR calculus instead of multiplication
by 1. To valorize this save in parity computation, we proceed to the creation of a parity
bucket for different bucket sizes and through two schemes. The first scheme generates a
parity bucket using pure RS encoding along the 1st generator matrix, while the second
gets profit from the 1st line filled with ‘1’s of the new generator matrix.

The experiments were done under the 1st configuration. We report only the process time
to focus on the gain obtained thanks to the line of ‘1’s compared with pure RS calculus.

Bucket
Size

Process time -pure
RS calculus (sec)

Process time -New
Matrix, line of '1's (sec)

Improvement
(%)

5000 0,228 0,210 7,895
10000 0,483 0,453 6,211
25000 1,309 1,222 6,646
50000 2,640 2,494 5,530

Table 1: Performance gain in process time thanks to new generator matrix setting, with encoding in
GF[28].

Bucket

Size
Process time -pure
RS calculus (sec)

Process time -New
Matrix, line of '1's (sec)

Improvement
(%)

5000 0,195 0,190 2,564
10000 0,430 0,420 2,326
25000 1,154 1,104 4,333
50000 2,351 2,287 2,722

Table 2: Performance gain in process time thanks to new generator matrix setting, with encoding in
GF[216].

We notice that:

- The average improvement obtained for encoding in GF[216] is lower than the one
corresponding in GF[28]. This is due to less number of symbols implied in parity
calculus and the fact that XOR is more effective in GF[28] than GF[216].

- The improvement highlighted above and realized when creating a parity bucket from

four data buckets group size should decrease when the parameter group size increases.

4 Parity Bucket Creation
The high availability scenario ensures the increase of the availability of a group, just by
adding a parity bucket. We begin by describing the scenario, and then we report the time
to create a parity bucket in different test-beds.

4.1 Parity Bucket Creation Scenario

The skeleton of the algorithm executed by the new parity bucket is showed below at the
level of two threads involved in the parity bucket creation scenario,

A working thread…………..………………………………………………………………
For each not dummy data bucket of my group:

Send a message through UDP “Would you like to send me your contents ? ”
Wait until all buffers sent by data buckets are received and processed
………………………………………………………………………………………………

The TCP listeningThread…………………………………………………………………..
Wait for TCP/IP connections
If there is one, accept it,
Case the content of a data bucket, get the buffer, and process it
If I get all the awaited buffers, Signal the event to the worker thread.
………………………………………………………………………………………………

We can improve this scenario by relieving the TCP listen thread of the task, consisting in
“processing the buffer”. But, the parallelism can not be absolute, because the parity
bucket data structure should to be under a strong synchronization tool, to not to be
updated in the same time by different threads processing the received buffers. In that
way, the buffers sent from data buckets have to be processed one after the other. A more
sophisticated strategy to get profit from parallelism consists on when one thread finishes
the processing of x records having for instance ranks in this range [r, r+x-1]. It allows
another thread to process its buffer just for that range. When finishing the last thread will
stop waiting for permission, but allows another thread to process the same range. The
number of processed before enabling another thread is a parameter in this strategy.

4.2 First configuration

Bucket Size Total time (sec) Process time (sec) Com time (sec) Min Com (sec) Max Com (sec)

5000 1.326 0.172 1.112 0.14 2.324
10000 1.991 0.335 1.59 0.32 2.374

25000 2.598 0.937 1.526 0.731 2.293
50000 3.803 1.905 1.624 1.471 2.092

Table 3: Parity Bucket creation using XOR calculus in GF[28].

Bucket Size Total time (sec) Process time (sec) Com time (sec) Min Com (sec) Max Com (sec)

5000 0.589 0.212 0.337 0.130 1.112
10000 1.198 0.434 0.705 0.271 2.363
25000 2.155 1.135 0.875 0.721 1.462
50000 4.200 2.363 1.568 1.493 1.773

Table 4: Parity Bucket creation using the row of ‘1’s calculus in GF[28].

In GF[28], the performance gains in process time due to the use of the 1st column instead
of the other columns of the matrix are of {18.87%, 22.81%, 17.44%, 19.38%}
respectively to bucket sizes {5000, 10000, 25000, 50000}

Bucket Size Total time (sec) Process time (sec) Com time (sec) Min Com (sec) Max Com (sec)

5000 0.679 0.186 0.460 0.130 1.753
10000 1.124 0.377 0.687 0.290 2.253
25000 2.121 1.031 0.950 0.721 1.803
50000 3.745 2.055 1.420 1.371 1.473

Table 5: Parity Bucket creation using XOR calculus in GF[216].

Bucket Size Total time (sec) Process time (sec) Com time (sec) Min Com (sec) Max Com (sec)

5000 0.377 0.202 0.143 0.130 0.161
10000 0.773 0.424 0.291 0.280 0.311
25000 2.177 1.134 0.907 0.731 1.572
50000 3.778 2.107 1.400 1.352 1.472

Table 6: Parity Bucket creation using the row of ‘1’s calculus in GF[216].

In GF[216], the performance gains in process time using XOR calculus instead of the
other columns of the matrix are of {7.92%, 11.04%, 9.08%, 2.47%} respectively to
bucket sizes {5000, 10000, 25000, 50000}

4.3 Second configuration

Bucket Size Total time (sec) Process time (sec) Com time (sec)
5000 0.153 0.109 0.031

10000 0.356 0.256 0.056
25000 0.922 0.638 0.150
50000 1.872 1.316 0.317

Table 7: Parity Bucket creation using XOR calculus in GF[28].

Bucket Size Total time (sec) Process time(sec) Com time(sec)

5000 0.184 0.140 0.019
10000 0.426 0.336 0.059
25000 1.085 0.816 0.156

50000 2.228 1.656 0.307

Table 8: Parity Bucket creation using the row of ‘1’s calculus in GF[28].

In GF[28], the performance gains in process time using XOR calculus instead of the other
columns of the matrix are of {22.14%, 23.81%, 21.81%, 20.53%} respectively to bucket
sizes {5000, 10000, 25000, 50000}

Bucket Size Total time (sec) Process time(sec) Com time(sec)
5000 0.190 0.140 0.029

10000 0.429 0.304 0.066
25000 1.007 0.738 0.144
50000 2.062 1.484 0.322

Table 9: Parity Bucket creation using XOR calculus in GF[216].

Bucket Size Total time (sec) Process time(sec) Com time(sec)

5000 0.193 0.149 0.035
10000 0.446 0.328 0.059
25000 1.053 0.766 0.153
50000 2.103 1.531 0.322

Table 10: Parity Bucket creation using the row of ‘1’s calculus in GF[216].

In GF[216], the performance gains in process time using XOR calculus instead of the
other columns of the matrix are of {6.04%, 7.32%, 3.65%, 3.07%} respectively to bucket
sizes {5000, 10000, 25000, 50000}

4.4 Comparison 1st /2nd configuration
We‘ll compare the obtained results respectively to two components, first CPU component
and second network component.

4.4.1 CPU component
Hereafter, we show the improvement in process time for different encoding schemes,
elements from GF[216] or GF[28], and 1st column or other columns.

Bucket Size 1st config. 2nd config. Improvement (%)
5000 0.172 0.109 36.63

10000 0.335 0.256 23.58
25000 0.937 0.638 31.91
50000 1.905 1.316 30.92

Table 11: Comparison between XOR encoding using GF[28] in the two configurations.

Bucket Size 1st config. 2nd config. Improvement (%)

5000 0.186 0.140 24.73
10000 0.377 0.304 19.36
25000 1.031 0.738 28.42

50000 2.055 1.484 27.78

Table 12: Comparison between XOR encoding using GF[216] in the two configurations.

Bucket Size 1st config. 2nd config. Improvement (%)

5000 0.212 0.140 33.96
10000 0.434 0.336 22.58
25000 1.135 0.816 28.10
50000 2.363 1.656 29.92

Table 13: Comparison between RS encoding using GF[28] in the two configurations.

Bucket Size 1st config. 2nd config. Improvement (%)

5000 0.202 0.149 26.24
10000 0.424 0.328 22.64
25000 1.134 0.766 32.45
50000 2.107 1.531 27.34

Table 14: Comparison between RS encoding using GF[216] in the two configurations.

Parity Bucket creation - The 2nd configuration improves the process time needed to
create a parity bucket against the 1st configuration by about 27.91%.

4.4.2 Network component

Hereafter, we show the improvement in communication time for different encoding
schemes, elements from GF[216] or GF[28], and 1st column or other columns.
The improvement obtained thanks to the 2nd configuration is computed against the
minimum communication value we get in the 1st configuration.

------------------------ ----1st Config ---- ------------------------ ----- - 2nd config.--- Improvement (%)

Com time(sec) Min Com (sec) Max Com (sec) Com. Time (sec)
1.112 0.140 2.324 0.031 77.86
1.590 0.320 2.374 0.056 82.50
1.526 0.731 2.293 0.150 79.48
1.624 1.471 2.092 0.317 78.45

Table 15: Comparison between XOR encoding using GF[28] in the two configurations.

If we compute the improvement based on the average communication time we get in
the first configuration, we’ll obtain {97.21%, 96.48%, 90.17%, 80.48%} for bucket
sizes in {5000, 10000, 25000, 50000}.

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.--- Improvement (%)

Com time(sec) Min Com (sec) Max Com (sec) Com. Time (sec)
0.460 0.130 1.753 0.029 77.69
0.687 0.290 2.253 0.066 77.24
0.950 0.721 1.803 0.144 80.00
1.420 1.371 1.473 0.322 76.51

Table 16: Comparison between XOR encoding using GF[216] in the two configurations.

If we compute the improvement based on the average communication time we get in
the first configuration, we’ll obtain {93.70%, 90.39%, 84.84%, 77.32%} for bucket
sizes in {5000, 10000, 25000, 50000}.

------------------------ ----1st Config ---- ------------------------ ----- - 2nd config.-- Improvement (%)

Com time(sec) Min Com (sec) Max Com (sec) Com. Time (sec)
0.337 0.130 1.112 0.019 85.38
0.705 0.271 2.363 0.059 78.23
0.875 0.721 1.462 0.156 78.36
1.568 1.493 1.773 0.307 79.44

Table 17: Comparison between RS encoding using GF[28] in the two configurations.

If we compute the improvement based on the average communication time we get in
the first configuration, we’ll obtain {94.36%, 91.63%, 82.17%, 80.42%} for bucket
sizes in {5000, 10000, 25000, 50000}.

------------------------ ----1st Config ---- ------------------------ ----- - 2nd config.-- Improvement (%)

Com time(sec) Min Com (sec) Max Com (sec) Com. Time (sec)
0.143 0.130 0.161 0.035 73.08
0.291 0.280 0.311 0.059 78.93
0.907 0.731 1.572 0.153 79.07
1.400 1.352 1.472 0.322 76.18

Table 18: Comparison between RS encoding using GF[216] in the two configurations.

If we compute the improvement based on the average communication time we get in
the first configuration, we’ll obtain {75.52%, 79.73%, 83.13%, 77%} for bucket
sizes in {5000, 10000, 25000, 50000}.

The communication improvements achieved meet our expectations, and realize good
performances.

5 Data Buckets’ Recovery

5.1 Data Buckets Recovery Scenario

At each iteration, the recovery manager asks participating buckets to search slice records,
corresponding to ranks: r, …, r + slice – 1. The buckets reply in the limit of the number
of records they hold. And, on the receipt of the buffers, data records having same rank are
retrieved from the buffers and from the local data structure, to compute missing records.
Finally, the recovery manager sends to each spare data bucket its slice of recovered
contents. All the buffers are sent through a TCP/IP-connection.

To measure the performance results of our scenario, we create a k-available LH*RS file, k
= 1,2,3, containing 125000 records. The created file spreads over four data buckets, such

that each bucket holds 31250 records. At each experiment, we simulate the failure of k
data buckets, and then we recover them. We have varied the slice size, which is the
number of data records recovered per iteration, to determine best performance, slice ∈
{1250, 3125, 6250, 15625, 31250}.

5.2 One DB recovery

5.2.1 First Configuration

Slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)

1250 4.654 0.677 3.882 1.631 5.376
3125 5.027 0.701 4.288 1.430 6.649
6250 4.278 0.683 3.575 1.382 5.177

15625 2.498 0.696 1.790 1.422 2.774
31250 2.328 0.683 1.630 1.352 2.473

Avg PT : 0.688

Table 19: One Data Bucket Recovery using XOR decoding in GF[28].

slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)

1250 5.410 0.521 4.438 1.522 7.090
3125 9.238 0.536 7.188 4.797 11.506
6250 4.524 0.536 3.976 1.422 5.037

15625 2.889 0.530 2.351 1.382 2.774
31250 2.591 0.536 2.048 1.352 3.364
Avg PT: 0.532

Table 20: One Data Bucket Recovery using XOR decoding in GF[216].

The gain performance in decoding for data bucket recovery using GF[216] instead of
GF[28] is equal to 22.67%.

5.2.2 Second Configuration

Slice Total time (sec) Process time(sec) Com Time (ms)
1250 0.746 0.285 0.371
3125 0.707 0.275 0.300
6250 0.664 0.277 0.289

15625 0.739 0.278 0.298
31250 0.738 0.277 0.328

Avg PT: 0.278

Table 21: One Data Bucket Recovery using XOR decoding in GF[28].

Slice Total time (sec) Process time(sec) Com Time (ms)

1250 0,688 0,257 0,391
3125 0,590 0,249 0,305
6250 0,645 0,250 0,293

15625 0,707 0,246 0,305
31250 0,707 0,246 0,335

Avg PT: 0,250

Table 22: One Data Bucket Recovery using XOR decoding in GF[216].

The gain performance in decoding done for one data bucket recovery using GF[216]
instead of GF[28] is equal to 10.07%.

5.2.3 Comparison 1st /2nd configuration

We‘ll compare the obtained results respectively to two components, first CPU component
and second network component.

5.2.3.1 CPU component

1st config. 2nd config. Improvement (%)
0.688 0.278 59.59

Table 23: Comparison of process time of one DB recovery through XOR decoding in GF[28].

1st config. 2nd config. Improvement (%)

0.532 0,250 53.01

Table 24: Comparison of process time of one DB recovery through XOR decoding in GF[216].

The 2nd configuration improves the process time needed for one DB recovery
(through XOR decoding), against the 1st configuration by 59.59% using GF[28], and
by 53.01% using GF[216].

We notice also that in the 2nd configuration the improvement realized using GF[216]
instead of GF[28], and performing XOR decoding is of 10.07%. The latter is lower
than the corresponding improvement obtained in the 1st configuration (22.67%).

5.2.3.2 Network component

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

3.882 1.631 5.376 0.371 77.25
4.288 1.430 6.649 0.300 79.02
3.575 1.382 5.177 0.289 79.09
1.790 1.422 2.774 0.298 79.04
1.630 1.352 2.473 0.328 75.74

Table 25: Comparison of communication time of one DB recovery through XOR decoding in GF[28].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {90.44%, 93%, 91.92%, 79.88%} for slices in {1250,
3125, 6250, 15625, 31250}.

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

4.438 1.522 7.090 0,391 74.31
7.188 4.797 11.506 0,305 93.64
3.976 1.422 5.037 0,293 79.39
2.351 1.382 2.774 0,305 77.93
2.048 1.352 3.364 0,335 75.22

Table 26: Comparison of communication time of one DB recovery through XOR decoding in GF[216].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {91.19%, 95.76%, 92.63%, 87.03%, 83.64%} for slices
in {1250, 3125, 6250, 15625, 31250}.

Comparison between communication times obtained using GF[28] and GF[216]
In both configuration 1 and configuration 2, there’s an overhead due to the use of
GF[216].
For instance,

− In the 2nd configuration the overhead is of {5.12%, 1.64%, 1.37%, 2.30%,
2.09%} respectively for slice in {1250, 3125, 6250, 15625, 31250}.

5.3 Two DBs recovery

5.3.1 First Configuration

slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)

1250 8,719 2,398 6,244 5,769 7,962
3125 6,664 2,402 7,217 5,758 11,474
6250 10,477 2,373 8,079 5,709 9,815

15625 8,536 2,368 5,372 5,678 6,589
31250 8,230 2,424 5,788 5,778 5,798

Avg. PT : 2,393

Table 27: Two Data Buckets Recovery using RS decoding in GF[28].

Slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)

1250 10,255 1,642 8,545 4,507 6,759
3125 7,191 1,647 7,096 5,499 8,960
6250 7,666 1,627 6,027 4,476 7,864

15625 6,369 1,630 4,732 4,426 5,568
31250 6,121 1,635 4,463 4,457 4,466

Avg. PT: 1,636

Table 28: Two Data Buckets Recovery using RS decoding in GF[216].

The gain performance in decoding done for recovery of two data buckets using
GF[216] instead of GF[28] is equal to 31.63%.

5.3.2 Second Configuration

slice Total time (sec) Process time (sec) Com Time (ms)
1250 1,865 1,248 0,472
3125 1,791 1,235 0,364
6250 1,844 1,261 0,380

15625 1,781 1,255 0,401
31250 1,776 1,250 0,422

Avg. PT: 1,250

Table 29: Two Data Buckets Recovery using RS decoding in GF[28].

slice Total time (sec) Process time (sec) Com Time (ms)

1250 1,234 0,590 0,519
3125 1,172 0,599 0,400
6250 1,172 0,598 0,365

15625 1,146 0,609 0,443
31250 1,088 0,599 0,442

Avg. PT: 0,599

Table 30: Two Data Buckets Recovery using RS decoding in GF[216].

The gain performance in decoding for recovery of two data buckets using GF[216]
instead of GF[28] is equal to 51.49%.

5.3.3 Comparison 1st /2nd configuration

We‘ll compare the obtained results respectively to two components, first CPU component
and second network component.

5.3.3.1 CPU component

1st config. 2nd config. Improvement (%)
2,393 1,250 37.27

Table 31: Comparison of process time of two DBs recovery in GF[28].

1st config. 2nd config. Improvement (%)

1,636 0,599 57.33

Table 32: Comparison of process time of two DBs recovery in GF[216].

The 2nd configuration improves the process time needed for two DBs recovery
(through RS decoding), against the 1st configuration by 37.27% using GF[28], and
by 57.33% using GF[216].

5.3.3.2 Network component

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

6,244 5,769 7,962 0,472 64.70
7,217 5,758 11,474 0,364 69.42
8,079 5,709 9,815 0,380 67.70
5,372 5,678 6,589 0,401 63.67
5,788 5,778 5,798 0,422 62.77

Table 33: Comparison of communication time of two DBs recovery in GF[28].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {67.39%, 75.60%, 99.97%, 61.60%, 62.84%} for slices
in {1250, 3125, 6250, 15625, 31250}.

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

8,545 4,507 6,759 0,519 69.05
7,096 5,499 8,960 0,400 77.69
6,027 4,476 7,864 0,365 70.84
4,732 4,426 5,568 0,443 65.41
4,463 4,457 4,466 0,442 64.06

Table 34: Comparison of communication time of two DBs recovery in GF[216].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {83.67%, 82.71%, 78.35%, 67.65%, 64.10%} for slices
in {1250, 3125, 6250, 15625, 31250}.

We notice that in both configurations, for the recovery of two DBS the use of GF[216]
improves the communication time.

For instance,

− In the 2nd configuration the improvement is of {31.48%, 30.32%, 29.23%,
25.79%, 25.52%} respectively for slice in {1250, 3125, 6250, 15625, 31250}.

5.4 Three DBs recovery

5.4.1 First Configuration

slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)

1250 14,277 3,766 10,795 6,929 13,810
3125 13,517 3,780 9,799 6,970 14,991
6250 14,631 3,762 10,773 8,030 13,220

15625 11,646 3,798 7,834 6,899 8,773
31250 10,823 3,760 7,032 6,919 7,360

Avg. PT : 3,773

Table 35: Three Data Buckets Recovery using RS decoding in GF[28].

slice Total time (sec) Process time(sec) Com Time (ms) Min Com (sec) Max Com (sec)
1250 12,480 2,592 9,811 7,811 11,237
3125 11,017 2,588 8,373 6,279 9,793
6250 10,063 2,598 7,437 5,407 9,895

15625 8,021 2,590 5,421 5,367 5,467
31250 8,615 2,577 6,019 5,388 8,432

Avg. PT : 2,589

Table 36: Three Data Buckets Recovery using RS decoding in GF[216].

The gain performance in decoding for recovery of three data buckets using GF[216]
instead of GF[28] is equal to 31.38%.

Let’s notice that we get an improvement of the same scale of size when recovering
two DBs (31.63%) (see §5.3.1).

5.4.2 Second Configuration

Slice Total time (sec) Process time(sec) Com Time (ms)
1250 2,457 1,874 0,459
3125 2,495 1,864 0,407
6250 2,448 1,875 0,380

15625 2,443 1,860 0,442
31250 2,464 1,865 0,459

Avg. PT : 1,868

Table 37: Three Data Buckets Recovery using RS decoding in GF[28].

Slice Total time (sec) Process time(sec) Com Time (ms)
1250 1,589 0,922 0,522
3125 1,599 0,928 0,383
6250 1,541 0,907 0,401

15625 1,578 0,891 0,520
31250 1,468 0,906 0,495

Avg. PT : 0,911

Table 38: Three Data Buckets Recovery using RS decoding in GF[216].

The gain performance in decoding for recovery of three data buckets using GF[216]
instead of GF[28] is equal to 51.23%.

Let’s notice that we get an improvement of the same scale of size when recovering
two DBs (52.07%) (see §5.3.2).

5.4.3 Comparison 1st /2nd configuration

We‘ll compare the obtained results respectively to two components, first CPU component
and second network component.

5.4.3.1 CPU component

1st config. 2nd config. Improvement (%)
3,773 1,868 37.77

Table 39: Comparison of process time of three DBs recovery in GF[28].

1st config. 2nd config. Improvement (%)

2,589 0,911 56.01

Table 40: Comparison of process time of three DBs recovery in GF[216].

The 2nd configuration improves the process time needed for three DBs recovery
(through RS decoding), against the 1st configuration by 37.77% using GF[28], and
by 56.01% using GF[216].

Let’s notice that we get similar results when comparing 2 DBs recovery using the
Galois fields in the two configurations (see §5.3.3.1).

5.4.3.2 Network component

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

10,795 6,929 13,810 0,459 67.20
9,799 6,970 14,991 0,407 71.84

10,773 8,030 13,220 0,380 73.92
7,834 6,899 8,773 0,442 66.10
7,032 6,919 7,360 0,459 64.08

Table 41: Comparison of communication time of three DBs recovery in GF[28].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {78.94%, 79.97%, 80.56%, 70.14%, 64.66%} for slices
in {1250, 3125, 6250, 15625, 31250}.

------------------------ ----1st Config ---- ------------------------ ------ 2nd config.-- Improvement (%)
Com. Time (sec) Min Com (sec) Max Com (sec) Com. Time (sec)

9,811 7,811 11,237 0,522 78.25
8,373 6,279 9,793 0,383 78.16
7,437 5,407 9,895 0,401 72.48
5,421 5,367 5,467 0,520 68.85
6,019 5,388 8,432 0,495 79.05

Table 42: Comparison of communication time of three DBs recovery in GF[216].

If we compute the improvement based on the average communication time we get in the
first configuration, we’ll obtain {82.68%, 83.63%, 79.99%, 69.16%, 81.24%} for slices
in {1250, 3125, 6250, 15625, 31250}.

We notice that in both configurations, for the recovery of two DBS the use of GF[216]
improves the communication time.

For instance,

− In the 2nd configuration the improvement is of {25.25%, 30.16%, 28.94%,
28.52%, 54.57%} respectively for slice in {1250, 3125, 6250, 15625, 31250}.

5.5 Recover 1, 2, 3 Data Buckets, Is the time linear?

5.5.1 Scenario analysis

The parity bucket doing recovery get at most m-1 slices per iteration (less if some data
buckets are dummy), from alive buckets, and that’s to recover f failed data buckets.
Recovering one more data bucket has a process cost relative to decoding, and a
communication cost relative to sending one more buffer per iteration to a spare bucket.
Let:

cc be the communication cost of recovery of one data bucket,
dc be the decoding cost of recovery of one data bucket,

Decoding cost of recovery of f data buckets should be equal to f*dc, except if we use a
different decoding scheme (in particular the case of recovering of 1 DB through XOR
decoding, and recovery of 2 DBs through RS decoding)

Communication cost of recovery of f data buckets is lower than f*cc. Indeed, the
communication time spent on receiving buffers from alive buckets is common to
recovery of one data bucket and f data buckets.

5.5.2 First Configuration

We‘ll compare the obtained results respectively to two components, first CPU component
and second network component.

5.5.2.1 CPU component

1 DB . 2 DBs. 3 DBs
0.688 2,393 3,773

Table 43: Process time to recover k DBs in seconds, k ∈ {1, 2, 3}, symbols belong to GF[28].

1 DB . 2 DBs. 3 DBs
0.532 1,636 2,589

Table 44: Process time to recover k DBs in seconds, k ∈ {1, 2, 3}, symbols belong to GF[216].

5.5.2.2 Network component
The two tables below show the min values of communication time we obtained.

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 1.631 5.769 6.929
3125 1.430 5.758 6.970
6250 1.382 5.709 8.030

15625 1.422 5.678 6.899
31250 1.352 5.778 6.919

Table 45: Min Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[28].

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 1.522 4.507 7.811
3125 4.797 5.499 6.279
6250 1.422 4.476 5.407

15625 1.382 4.426 5.367
31250 1.352 4.457 5.388

Table 46: Min Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[216].

The two tables below show the average values of communication time we obtained.

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 3.882 6.244 10.795
3125 4.288 7.212 9.799
6250 3.575 8.079 10.773

15625 1.790 5.372 7.834
31250 1.630 5.788 7.032

Table 47: Average Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[28].

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 4.438 8.545 9.811
3125 7.188 7.096 8.373
6250 3.976 6.027 7.437
15625 2.351 4.732 5.421
31250 2.048 4.463 6.019

Table 48: Average Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[216].

5.5.3 Second Configuration

We‘ll compare the obtained results respectively to two components, first CPU component
and second network component. The performances are shown to scale.

5.5.3.1 CPU component
1 DB . 2 DBs. 3 DBs

0.278 1,250 1,868

Table 49: Process time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[28].

1 DB . 2 DBs. 3 DBs
0,250 0,599 0,911

Table 50: Process time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[216].

5.5.3.2 Network component

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 0.371 0,472 0,459
3125 0.300 0,364 0,407
6250 0.289 0,380 0,380
15625 0.298 0,401 0,442
31250 0.328 0,422 0,459

Table 51: Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[28].

Slice 1 DB (s) 2 DBs (s) 3 DBs (s)
1250 0,391 0,519 0,522
3125 0,305 0,400 0,383
6250 0,293 0,365 0,401

15625 0,305 0,443 0,520
31250 0,335 0,442 0,495

Table 52: Communication time to recover k DBs, k ∈ {1, 2, 3}, symbols belong to GF[216].

6 Data Records’ Recovery

6.1 Data records recovery scenario

The routine “recover one record” follows the steps hereafter:

1. Looks for the data record’s key inside the parity bucket structure,
2. Sends search queries to alive buckets,
3. Waits until receipt replies to sent queries,
4. Computes the missing data record,
5. Sends the recovered record to the client.

For performance analysis, we create an LH*RS, 1-available file of 125000 records. Then,
we simulate the failure of one data bucket. Tables below summarize the performance
results of recovering x records from the failed data bucket.

The results announced estimate the time needed for a parity bucket (performing the 5
steps) to recover one data record. But, don’t take into account the client time-out, that
when elapsed the client would advert the coordinator of a possible failure.

6.2 First Configuration

Number of Records Total Time RS (sec)* /record RS (ms) Total Time XOR (sec) /record XOR (ms)

1000 1,622 1,622 1,587 1,587
5000 8,157 1,631 7,967 1,593

10000 16,434 1,643 16,023 1,602
15000 24,590 1,639 24,060 1,604
20000 32,867 1,643 32,076 1,604
25000 41,079 1,643 40,138 1,606

Average 1,637 1,599

Table 53: Data Records’ recovery using XOR and RS decoding in GF[28].

Number of Records Total Time RS (sec)* /record RS (ms) Total Time XOR (sec) /record XOR (ms)
1000 1,622 1,622 1,587 1,587
5000 8,157 1,631 7,967 1,593

10000 16,434 1,643 16,023 1,602
15000 24,590 1,639 24,060 1,604
20000 32,867 1,643 32,076 1,604
25000 41,079 1,643 40,138 1,606

Average 1,637 1,599

Table 54: Data Records’ recovery using XOR and RS decoding in GF[216].

 GF[28] GF[216] Improvement (GF[28]/GF[216]) (%)

RS 1,612 1,637 1,527
XOR 1,582 1,599 1,063

Improvement (XOR/ RS) (%) 1,861 2,321

Table 55: Time to recover a record using 1st configuration test-bed.

The degradation of performance due to the use of GF[216] instead of GF[28] is of 1.55%
for RS decoding and of 1.07 % for XOR decoding.

6.3 Second Configuration

Number of Records Total Time RS (sec)* /record RS (ms) Total Time XOR (sec) /record XOR (ms)

1000 2,032 1,305 1,281 1,281
5000 6,492 1,298 6,383 1,277

10000 13,109 1,311 12,890 1,289
15000 19,648 1,310 19,273 1,285
20000 26,257 1,313 25,796 1,290
25000 32,812 1,312 32,281 1,291

Average 1,308 1,285

Table 56: Data Records’ recovery using XOR and RS decoding in GF[28].

Number of Records Total Time RS (sec)* /record RS (ms) Total Time XOR (sec) /record XOR (ms)
1000 1,328 1,328 1,289 1,289
5000 6,750 1,350 6,422 1,284

10000 13,203 1,320 12,968 1,297
15000 19,734 1,316 19,453 1,297
20000 26,367 1,318 26,242 1,312
25000 33,266 1,331 32,516 1,301

Average 1,327 1,297

Table 57: Data Records’ recovery using XOR and RS decoding in GF[216].

 GF[28] GF[216] Improvement (GF[28]/GF[216]) (%)

RS 1,308 1,327 1,432
XOR 1,285 1,297 0,925

Improvement (XOR/ RS) (%) 1,758 2,261

Table 58: Time to recover a record using 2nd configuration test-bed.

The degradation of performance due to the use of GF[216] instead of GF[28] is of 1.43%
for RS decoding and of 0.93 % for XOR decoding.
.

6.4 Comparison 1st /2nd configuration

We notice that, in both configurations, the record recovery time using GF[28] is better
than when using GF[216]. At the implementation point, there is only one difference,
which is converting the GFElement string to character string, before sending the buffer.
The latter point is done at the level of the participating buckets in the recovery process.
The parity bucket doing recovery since the receipt of a reply does the conversion to
GFElement string. And finally conversion to character is done before sending the
recovered record to the client. So the additional overhead is due to data conversion.

 1st config. 2nd config. Improvement (%)
XOR + GF[28] 1,582 1,285 18,774
RS + GF[28] 1,612 1,308 18,859

XOR + GF[216] 1,599 1,297 18,887
RS + GF[216] 1,637 1,327 18,937

Table 59: Comparison between the 1st configuration and the 2nd one.

The 2nd configuration improves the time needed for one record recovery, against the 1st
configuration by about 19%.

7 Search Query

We measure both parallel searches, during which a client sends a flow of search
messages in parallel to the four data buckets, and synchronized search, where the client

waits for a reply before issuing another request. The tables below present the times for a
file of size 125000 distributed over 4 buckets. The search times per record are essentially
independent of the number of searches.

7.1 First Configuration

Ack Parallel Search Synchronized Search
Key total time(ms) /record(ms) total time(ms) /record(ms)

10000 881 0,0881 3475 0,3475
20000 1893 0,0947 6980 0,3490
30000 2664 0,0888 10475 0,3492
40000 3455 0,0864 14030 0,3508
50000 4186 0,0837 17605 0,3521
60000 4947 0,0825 21190 0,3532
70000 5718 0,0817 24785 0,3541
80000 6479 0,0810 28371 0,3546
90000 7280 0,0809 31966 0,3552

100000 7941 0,0794 35561 0,3556

Nr replies 92353 100000
Average 0,0847 0,3521

Table 60: Search performances in the 1st configuration.

7.2 Second Configuration

Ack Parallel Search Synchronized Search
Key total time(sec) /record(ms) total time(sec) /record(ms)

10000 0,547 0,0547 2,391 0,2391
20000 1,125 0,0563 4,781 0,2391
30000 1,687 0,0562 7,203 0,2401
40000 2,250 0,0563 9,625 0,2406
50000 2,813 0,0563 12,078 0,2416
60000 3,375 0,0563 14,531 0,2422
70000 3,937 0,0562 17,016 0,2431
80000 4,453 0,0557 19,500 0,2438
90000 5,000 0,0556 22,000 0,2444

100000 5,578 0,0558 24,516 0,2452

Nr replies 99919 100000
Average 0,0559 0,2419

Table 61: Search Performances in the 2nd configuration..

7.3 Comparison 1st /2nd configuration

 1st config. 2nd config. Improvement (%)
Parallel Search 0,0847 0,0559 34,002

Synchronized Search 0,3521 0,2419 31,298
Improvement (%) 75,944 76,891

Table 62: Comparison of search performances

The 2nd configuration improves the search queries performances, against the 1st
configuration by about 33%.

8 File Creation

We report the time needed to create an LH*RS, k-available file (k ∈ {0, 1, 2}). We insert
25000 records, that will be distributed on 4 data buckets along LH* scheme. Each record
is 100 bytes.

8.1 First Configuration

 Average Improvement (%) Improvement (%)
 | New Matrix GF[28] -> GF[216]

k = 0, GF[28] 13,720
k = 0, GF[216] 13,845 0,902853016

k = 1,RS, GF[28] 15,773

k = 1,XOR, GF[28] 15,703 0,443796361

k = 1,RS, GF[216] 15,883 0,692564377
k = 1,XOR, GF[216] 15,938 -0,346282189 1,474463546

k = 2, GF[28] 17,315
k = 2, GF[216] 17,020 -1.733254994

Table 63: Time to create a k-available LH*RS file, k ∈ {0, 1, 2}.

There's an insignificant improvement (0.05 %) using the new matrix instead of the old
matrix for the schema k = 1. We notice also that this improvement is not permanent from
one experiment to another.

The overhead due to the use of GF[216] instead of GF[28] is estimated to 0.33%.

 GF[28] Overhead of 1 PB (%) GF[216] Overhead of 1 PB (%)
k = 0 13,720 13,845
k = 1 15,703 12,62816022 15,938 13,13213703
k = 2 17,315 10,26555435 17.020 6.357

Table 64: Cost due to a supplement parity bucket.

The Table above shows the cost of using an additional parity bucket. Passing from 0-
availability scheme to 1-availability scheme there's an overhead of almost 13%. Updating
an additional parity bucket has an overhead of 10%. This is reasonable, cause this
overhead should be inferior than the overhead comparing k = 1 to k = 0. Indeed,

- From k = 0 to k = 1, update buffer preparation (at level of the splitting bucket
and the new bucket) + send to 1 PB.
- From k = 1 to k = 2, one additional update buffer is sent to 1 PB.

13,690
15,683
17,215

0
2
4
6
8

10
12
14
16
18
20

0
15

00
30

00
45

00
60

00
75

00
90

00
10

00
1
11

50
0
13

00
0
14

50
0
16

00
0
17

50
0
19

00
0
20

00
1
20

00
4
21

00
0
22

50
0
24

00
0

Inserted keys

In
se

rt
 T

im
e

(s
ec

) k = 0
k = 1
k = 2

Figure 2: Look of file creation curves using GF[28].

Ack Key k = 0 k = 1 k = 2

500 0,460 0,520 0,582
9000 0,480 0,520 0,580
9500 0,482 0,540 0,580

10000 0,460 0,542 0,582
10001 1,322 1131,000 1161,000
10500 0,520 0,563 0,623
11000 0,482 0,540 0,600
11500 0,480 0,522 0,602
20000 0,482 0,540 0,580
20001 0,000 0,000 0,000
20002 0,880 0,000 10,000
20003 0,000 0,000 0,000
20004 0,000 931,000 961,000
20005 0,322 0,000 0,000
20500 0,800 0,608 0,770
21000 0,542 0,580 0,702
21500 0,520 0,582 0,640
22000 0,520 0,600 0,640
24500 0,520 0,580 0,642
25000 0,522 0,582 0,640

Table 65: Time to insert a record expressed in ms, for a k-available file, k ∈{0, 1, 2}.

We notice that the time needed to insert a record is almost constant, except the case when
the insert record query causes a data bucket split (cause the data bucket is locked during
the split).

8.2 Second Configuration

 Average Improvement (%) Improvement (%)
 | New Matrix GF[28] -> GF[216]

k = 0, GF[28] 7,896
k = 0, GF[216] 7,985 1,115

k = 1,RS, GF[28] 10,011

k = 1,XOR, GF[28] 9,990 0,209776239

k = 1,RS, GF[216] 10,151 1,379
k = 1,XOR, GF[216] 10,125 0,256140812 1,333

k = 2, GF[28] 10,963
k = 2, GF[216] 10,974 0,100236924

Table 66: Time to create a k-available LH*RS file, k ∈ {0, 1, 2}.

There's an insignificant improvement (0.23 %) using the new matrix instead of the old
matrix for the schema k = 1, in both schemes GF[2^8] and GF[2^16]. We notice also that
this improvement is not permanent from one experiment to another.

The overhead due to the use of GF[2^16] instead of GF[2^8] is estimated to 1%.

 GF[28] Overhead of 1 PB (%) GF[216] Overhead of 1 PB (%)
k = 0 7,896 7,985
k = 1 9,990 20,96096096 10,125 21,13580247
k = 2 10,963 8,875307854 10,974 7,736468015

Table 67: Cost due to a supplement parity bucket.

The Table below shows the cost of using an additional parity bucket. Passing from 0
availability scheme to 1 availability scheme there's an overhead of almost 21%. Updating
an additional parity bucket has an overhead of 8.30%. This is reasonable, cause this
overhead should be inferior than the overhead comparing k = 1 to k = 0. Indeed,

- From k = 0 to k = 1, update buffer preparation (at level of the splitting bucket
and the new bucket) + send to 1 PB.
- From k = 1 to k = 2, one additional update buffer is sent to 1 PB.

 7,896

 9,990
10,963

0

2

4

6

8

10

12

0

15
00

30
00

45
00

60
00

75
00

90
00

10
00

1

11
50

0

13
00

0

14
50

0

16
00

0

17
50

0

19
00

0

20
00

1

20
00

4

21
00

0

22
50

0

24
00

0

Inserted keys

In
se

rt
 T

im
e

(s
ec

) k = 0
k = 1
k = 2

Figure 3: Look of file creation curves using GF[28].

Ack Key k = 0 k = 1 k = 2

500 0,282 0,344 0,342
9000 0,294 0,314 0,376
9500 0,282 0,342 0,344

10000 0,312 0,314 0,374
10001 219,000 890,000 907,000
10500 0,313 0,315 0,375
11000 0,282 0,312 0,344
11500 0,280 0,344 0,374
20000 0,290 0,312 0,376
20002 219,000 0,000 0,000
20003 0,000 250,000 297,000
20004 0,000 625,000 594,000
20005 93,000 0,000 0,000
20500 0,317 0,347 0,378
21000 0,312 0,344 0,376
21500 0,282 0,312 0,374
22000 0,312 0,344 0,376
24500 0,294 0,344 0,344
25000 0,312 0,376 0,374

Table 68: Time to insert a record expressed in ms, for a k-available file, k ∈{0, 1, 2}.

We notice that the time needed to insert a record is almost constant, except the case when
the insert record query causes a data bucket split (cause the data bucket is locked during
the split).

8.3 Comparison 1st /2nd configuration

 1st Config. 2nd Config. Improvement (%)
k = 0 13,720 7,896 42,44897959
k = 1 15,703 9,990 36,38158314
k = 2 17,315 10,963 36,68495524

Table 69: Comparison file creation (using GF[28]) performances in the two configurations.

 1st Config. 2nd Config. Improvement (%)
k = 0 13,845 7,985 42,32574937
k = 1 15,938 10,125 36,47258125
k = 2 17.020 10,974 35.52291421

Table 70: Comparison file creation (using GF[216]) performances in the two configurations.

The 2nd configuration improves the file creation performances, compared to the 1st
configuration, by about 38.64%.

8.4 Bulk Insert

The client performs bulk inserts when it sends insert queries to data servers, with out
waiting for acknowledgements. The file is created quickly, but we expect a message lost
rate.
The file creation scenario described is changed in a way that the coordinator don’t allow
simultaneous data buckets split to occur. From the client side, the file is created in few
seconds, exactly the time needed to formulate and send insert queries.

In fact, we have two constraints that affect this scenario:

1. First, an overloaded data bucket adverts its overload one time to the coordinator,
and not every time it processes an insert query while it’s overloaded. This strategy
is adopted to avoid specific process of overload messages incoming to the
coordinator.

2. Second, creating a file while acknowledging insert queries allows the coordinator
to send orders to split to different data buckets at the same time. This is
impossible in bulk insert scenario, cause the coordinator could send an order to
split to a data bucket not yet created, for sure in the beginning of the creation of a
file, for instance the case of bucket one.

We notice that the record’s repartition among the data buckets is different.

9 Conclusion

Æ When we map scenarios devised in [M00] for LH*RS scheme, to the new architecture,
where a TCP/IP connections Handler was embedded in SDDS2000, the communication
performances were incontestably improved. Indeed, if we compare the new
implementation results to the one’s reported in [ML02], we notice 80% of improvement
for TCP/IP based scenarios, namely bucket recovery scenario and parity bucket creation
scenario.

Æ We compared performances results of encoding/ decoding in two Galois Fields GF[28]
and GF[216]. It’s turned out that GF[216] performs better than GF[28] in most of the
scenarios, despite the light overhead observed in UDP-based scenarios.
Æ We conducted experiments in two hardware configurations. The new hardware
configuration improves performances of CPU component of 30%, and Network
component of 80%.

References
[ISI81] Information Sciences Institute, RFC 793: Transmission Control Protocol (TCP) –
Specification, Sept. 1981, http://www.faqs.org/rfcs/rfc793.html.
[L00] M. Ljungström, Implementing LH*RS: a Scalable Distributed Highly-Available
Data Structure, Master Thesis, Feb. 2000, CS Dep., U. Linkoping, Sweden.
[LS00] W. Litwin & J.E. Schwarz, LH*RS, A High-Availability Scalable Distributed Data
Structure using Reed Solomon Codes, p.237-248, Proceedings of the ACM SIGMOD
2000.
[M00] R. Moussa, Implantation partielle & Mesures de performances de LH*RS,
Université Paris Dauphine, MSc Report in French, October 2000,
http://ceria.dauphine.fr/Rim/dea.pdf.
[MB00] D. MacDonal, W. Barkley, MS Windows 2000 TCP/IP Implementation
Details, http://secinf.net/info/nt/2000ip/tcpipimp.html.
[ML02] R. Moussa & W. Litwin, Experimental Performance Management of LH*RS
Parity Management, WDAS 2002 proceedings, pp. 87-98.

http://www.faqs.org/rfcs/rfc793.html
http://ceria.dauphine.fr/Rim/dea.pdf
http://secinf.net/info/nt/2000ip/tcpipimp.html

