Comparing LH* & Chord.
Private Communication May 2004

Witold Litwin

A: istoica@EECS.Berkeley.EDU

Cc: hari@csail.mit.edu; 'Frans Kaashoek'; 'Joe Hellerstein'; 'lon Stoica’; 'Scott Shenker;
'Sylvia Ratnasamy'; 'Richard Karp'; breitbar@cs.kent.edu

Objet: RE: Chord & LH*

Hi Ion & al.,

I finally found the time to read the Chord paper (vacations helping). Sorry for the delay
of this reply to your long enclosed message. Hope you got the short one saying I'll need
more time. I read since your paper told at the site being submitted to the IEEE journal.
If it is not out yet, I may suggest some corrections.

By now, I believe to have finally a knowledge by my own of your interesting work. Let me
first sum it up to check with you. Or rather, more generally, - to present my basic
understanding of key similarities/differences between Chord & LH*. Responding hopefully to
some questions in your message, while postponing consequently some other detailed replies.

0. Both schemes address the problem of key search. Chord basically only as distributed
lookup protocol. LH* as a data storage structure, apparently more classically.

1. Chord is basically for P2P with all nodes searching & storing data. LH* predated the
P2P concept. It was intended for the client server work. The LH* client node only searches
the data. The server node stores, forwards & sends IAMs (Image Adjustment messages) to the
client upon the need. A node can however be client & server. It is then a peer as for
Chord.

2. Chord and LH* necessarily map a physical node address into a persistent logical node
address (ID...). A fundamental assumption of Chord is that it assigns the logical address
as a persistent random integer in a large (2**m) interval. Chord maps then any key c into
node C such that c =< C. A fundamental assumption of LH* is to assign to a new server node
(peer) only, not to any client, the successive integer N >= 1. Here N is the number of
server nodes with the logical addresses already assigned. The N value is tight-controlled
as function of the storage load. For key to address mapping, bound to 0...N-1 at any time,
LH* uses a couple of hash functions: h(j-1,c) & h(j,c) where j scales with N.

3. For both schemes, the primary location of a key is the node where its address fits. So,
some nodes have to split when the file scales. LH* triggers ordered splits to avoid the
file overload. Keys move from node n (pointed by the split pointer) to new node N. Every
bucket in any N-node file eventually splits. For Chord, a random split occurs when a new
peer node P joins. Some keys from its successor move to P. A node may never split with non
zero probability. Node load can perhaps vary more than for LH*. In both cases, the
balancing that Chord calls "virtual servers" and that seems similar to that in Breitbart-
Waikum Sigmod paper we spoke earlier, may be useful.

4. To speed up the key search with respect to the sequential search (hardly scalable) of
the consistent hashing, Chord does its best to minimize the number of hops. For LH*, we
talk about minimizing the number of forwards, but this is a synonym. Chord constructs the
binary trees (tries) of its fingers at each node. LH* needs only at each node the level of
hash function used for the last split. This is possible only because the node addresses
are consecutive and deterministically assigned. The consequence on the key search are
known. For Chord, the speed has to be O0(log N). On the average about 1/2 (log N). E.g., 10
- 20 for a 1M-node file (P2P system). For an LH* client, it remains bound to at most two
hops. On the average, it can be about zero in practice (two messages per search thus all
together which is the absolute minimum). Besides, the search speed of a client improves
with IAMs. I could not see such a notion for Chord. The stabilization alg. bears
nevertheless some similarity in ideas.

Interestingly, what Chord does is probably the fastest for random logical node addresses.
It is somehow equivalent of what do best known extensible hash schemes other than LH.
Also, the address basically pointed to by i-th finger from node A that is A + 2*¥*(i-1)+A,
is the target of i-th split from LH* bucket A. Hence, it is also i-th successor of node A
in your sense.

5. There is also a consequence on the unsuccessful key search. In Chord, it is crucial.
The unsuccessful key search may silently fail (when a new node enters the picture). A
silent failure of unsuccessful search does not seem yet generally accepted for a practical
data structure. In LH*, the unsuccessful key search never fails. Also, the performance is
even the same as for the successful search, i.e., about best ever possible. Notice that
this is not always the case for a hash based org., e.g., the open addressing.

6. There are also basic implications on the addressing metadata size at a server node.
Chord node needs the storage for the physical addresses of the fingers. LH* server needs
the storage for N/2 to N addresses. This is much more. But remains easily practical, e.g.,
a couple of MB for a 1M-node file.

7. An LH* client can in contrast modulate at wish its metadata. Storing the max of the
node addresses learnt by the client, i.e., up N perhaps, minimizes the average number of
forwards. Alternatively, deciding to store less, even only one, increases this number
towards only two however at worst, depending on N. A client can hook up to the system
knowing only one address. It then improves the access performance incrementally with IAMs.
For Chord the concept of a client does not seem elaborated at present. Chord new node can
also hook up knowing only one existing address.

8. All Chord nodes perform same functions. Not in LH*. In addition to the distinction
client - server, basically one node has also the actual file state data (n,i) and
coordinates the split. It is typically node ©. This node may be replicated for
reliability. There is also a version of LH* without the coordinator (the TODS paper). Like
in Chord system. This version was not since worked out more. There was no apparent
practical need yet.

9. Both orgs address the need for nodes randomly coming and leaving. LH* clients are
those. Their arrival/leave does not bother any server's metadata. They could be the "free
riders" in P2P, also frequent (50-70% of nodes according to Freenet papers). Chord has a
harder time with those. Especially, the leaver has to move its keys to the successor &
pointers among nodes should be adjusted. This is somehow equivalent to an LH* server
leaving. That event is however considered as deterministically forced and usually less
frequent. It basically results from the underload control. It triggers the merge operation
and N := N -1.

This approach could be easily be adapted to the (new) P2P voluntary leave case. Besides,
LH* servers may be protected against failures (unavailability) in various ways published
since. Especially, by an erasure correcting coding in LH*rs (Sigmod 2000). In Chord, the
node replication seems the main approach to this need at present.

Hope my above understanding of Chord correct. Please help correcting with your comments.
It will help my perception of your innovative work and facilitate our further coop
consequently. We can in particular discuss more if any of you comes for SIGMOD to Paris.

Best regards,

Witold Litwin <http://ceria.dauphine.fr/witold.html>
ACM Fellow <http://www.acm.org/awards/fellows_citations/litwin.html>

/Professeur U. Paris Dauphine/ <http://www.dauphine.fr/> /Directeur du CERIA
<http://ceria.dauphine.fr/> / /P1l. du Mal. de Lattre, 75016 Paris, France/

Bureau A 410 (Nouvelle Aile)
tel & fax (0)1-44-05-48-80 ou tel 41-21 (secr.)

2

————— Message d'origine-----

De : istoica@EECS.Berkeley.EDU [mailto:istoica@EECS.Berkeley.EDU]

Envoyé : samedi 27 mars 2004 11:19

A : litwin.witold@wanadoo.fr

Cc : hari@csail.mit.edu; 'Frans Kaashoek'; 'Joe Hellerstein'; 'Ion Stoica'; 'Scott
Shenker'; 'Sylvia Ratnasamy'; 'Richard Karp'; breitbar@cs.kent.edu Objet : Re:

Dear Witold,

Thank you for your e-mail. We certainly did a poor job of citing your work and discussing
it in the context, and we apologize for this. We will definitely correct this issue.

After reading your ACM/TODS paper and going through your PowerPoint presentations
(available on your home page) here is our understanding about the similarities and
differences between DHTs and LH*. Please let us know if we are missing any important
aspects.

At the high level DHTs and LH* are similar in that they both partition a linear ID space
among a set of nodes.

However, DHTs and LH* differ in how they achieve and maintain this partition. In
particular, they differ in the following three aspects:

1) The hash function in DHTs is used to map a document/key to an ID in the ID space. The
hash function is independent of the size of the DHT and the ID space is fixed. DHTs use
then a lookup/routing protocol to find the node that is responsible for that ID.

In contrast, the hash function in LH* is used to map a key directly to the ID of a server,
where both the hash function and the size of the ID space depend on the system size. Then
LH*, at least in its basic design, assumes that the client knows the mapping between the
ID of each server in the system and its IP address, so the lookup operation (i.e., finding
the machine with a given ID) is straightforward. (Even when a dynamic table is used to
maintain the set of servers, as far as I understand from sec 3.5 of the ACM/TODS paper, in
steady state, each client ends-up maintaining the addresses of all servers it has accessed
data on.)

Thus, a DHT protocol is primarily concerned with mapping IDs to physical machines, that
is, finding the physical machine responsible for a given ID; the mapping of keys to IDs is
trivial. On the other hand, LH* is primarily concerned with mapping a key to a logical ID;
finding the machine with a given ID is arguably the secondary task.

2) The way in which the system evolves is different. In LH* the system grows/shrinks as
the load increases/decreases. The system starts with one node/server and then grows when
the node becomes "overloaded". In contrast, DHTs grows/shrinks as nodes join and leave the
system, and data is spread across all the available nodes.

3) DHTs were designed for highly dynamic environments where node failures are common. This
assumption lead to designs in which each node knows only about a limited number of other
nodes in the system (e.g., 0(log N)). Thus, any change in the system such as a node
joining or leaving affects only a relatively small number of other nodes.

In addition, DHTs protocols are *symmetric* in that every node plays the same role in the
topology, i.e., every node is a root of an embedded tree.

Finally, because DHTs were designed from the beginning for the Internet, minimizing the
lookup latency is an integral part of the system design. Virtually all DHTs use proximity

aware routing algorithms, and various replication/caching strategies that allow a
requester to find a nearby replica of the requested data.

In contrast, it seems to us that LH* was designed for a more stable environment, where the
node (server) population is quite stable over time. In such an environment it makes sense
to have a coordinator that knows about all the servers in the system. Again, in the
original DHT designs there is no entity that knows about all nodes in the system.

Also, it appears to us that in LH* the server roles are not completly symmetric, as a
server maintains state about all the buckets it has created, so servers which joined
earlier will maintain more state than servers that joined later. Also, as I mentioned
above, it seems each client will end-up maintaining the addresses of all servers on which
it has accessed data. Actually, this is required to achieve one hop lookup operations in
the common case.

In conclusion, it is true that LH* and DHTs offer the same abstraction, but the way they
achieve it is quite different.

This difference is mainly the result of the different assumptions that each system makes
about the dynamicity and the reliability of the underlying network system. Please let us
know if we are missing something.

Best regards,

Ion

-------- Original Message --------

Date: Tue, 23 Mar 2004 00:16:02 +0100

From: Witold Litwin <litwin.witold@wanadoo.fr>

Reply-To: litwin.witold@wanadoo.fr

To: 1istoica@cs.berkeley.edu

CC: yuri Breitbart <breitbar@cs.kent.edu>, karp@cs.berkeley.edu, Joe Hellerstein
<jmh@cs.berkeley.edu>, kaashoek@lcs.mit.edu

Dear Ion,

I have attended last week the EDBT conf. At Springer's booth, your book from
P2P II was on display. I bought a copy. So your kind offer from some months
ago, to send a copy when published, does not need to be fulfilled anymore.
Thanks. The book is also very instructive and nicely edited. Congratulations
to both editors.

At EDBT I gave an invited talk on SDDSs and P2P computing. After the talk I
got a good question, I guess. To which I did not have a good answer. Even
after looking into your book later on. The question was about the
relationship of LH* (Scalable Distributed Linear Hashing)to DHTs for
structured P2P systems, as you called them, in Choord it seems. Apparently,
the question was triggered by the lack of references in the Choord papers to
that work, and to the SDDS papers in general. I did not look through the
Choord papers. I am yet on the plane on the way back from EDBT. So I do not
have a personal opinion. If it is true, however, then perhaps you might help
and I'll forward the reply. It is true in contrast for most of Choord
derived and related papers in the workshop. I could look through them on the
previous segment of my flight.

The story is somehow intriguing. On the one hand, main papers on SDDSs,
including on LH*, have been published in ACM-SIGMOD, VLDB, EDBT, ICDE and
ACM-TODS. These are the most respectable database research conf/journals.
Hence not exactly those where a paper is supposed to get unnoticed. Besides,

4

the 1st papers appeared at Sigmod already 1993. Hence, one had ample time to
notice them. As many citations to it (including D. Knuth's new edition)
show. Perhaps it is worth to suggest to P2P folks to talk more to Joe
(Hellerstein), very aware of the SDDS work (or Hector, or S. Gribble
alternatively). All these folks are able to suggest the database conferences
journals etc worth reading in the P2P context.

There is little more on to the mystery, given you're at UCB. The LH*
algorithm was proposed while I was visiting at UCB for two years. The 1st
public talk was on the kind invitation of R. Karp to his research group
seminar (reason while I cc him here). Back to 1992-93. The SDDS work was
rather well known there at those old times (when the term P2P did not even
exist yet).

A technical consequence of all this is that some claims or results in the
seminar's papers are to my understanding at least partly unfounded. The
number of forwards between the data servers (or as one now calls it hops in
some papers in your book) to deliver a message to the correct server among N
is 2 at worst for LH* (which makes 4 messages all together per search in the
worst case, and 2 usually). Hence the claims in some papers that log2 N is
the lowest bound, given the fingering DHT scheme in Choord or close to it in
Koord etc., seem wrong. These results also ignore the papers by Nardelli &
al, and Kroll & Widmayer, also a Sigmod paper BTW. I attend in two weeks the
ICDE in Boston, if Mr. Kashoek is around we may have an instructive
discussion. The concept of a virtual server for load balancing, is quite
close to the approach by Breitbart & Waikum in their Sigmod paper, from 93
or 94 I believe. Not quoted neither by the papers in the seminar I could
look through. I cc this message to Prof. Breitbart for a direct discussion
if anyone is interesting. The proposals on fault tolerence for P2P, the
high-availability especially, ignores our Sigmod 2000 paper on RS erasure
correcting coding for this purpose in general in the scalable distributed
environment, P2P & Grids included. Etc.

Coming back to the original question from my audience, would the lack of the
discussed referencing to earlier related work indicated a gap between the
emerging P2P community and the database community ? If so, we should correct
the anomaly. But perhaps there is another good answer. May be, I am just
speculating, it is due to a different terminology, as terms P2P or Grid did
not exist by those times. Folks rather spoke about multicomputers in
Tanenbaum sense, networks of workstations, client nodes and/or server nodes
(while a P2P node seems systematically both) etc. May be, it is due to other
things. So, I am in the waiting loop for your expert opinion.

Best regards,

Witold Litwin <http://ceria.dauphine.fr/witold.html>
/Professeur U. Paris 9 Dauphine/ <http://www.dauphine.fr/>
/Directeur du CERIA <http://ceria.dauphine.fr/> /

/Pl. du Mal. de Lattre, 75016 Paris, France/

Bureau A 410 (Nouvelle Aile)
tel & fax (0)1-44-05-48-80 ou tel 41-21 (secr.)

	Texte1: Comparing LH* & Chord.
Private Communication May 2004

