LIN[‘M‘I—RHITE' PARIS
= DAUPHINE
DFR SCIENCES DES ORGANISATIONS

Centre de Recherche en Informatique Appliquée
THESE

Conception et Implantation d’un Systeme de
Bases de Données Distribuée & Scalable :
SD-SQL Server

Pour obtenir le titre de

Docteur en Informatique

(Arrété du 25 avril 2002)

Présentée et soutenue le 14 Juin 2006 par

Soror SAHRI
Composition du Jury

Directeur de These : Witold LITWIN
Professeur a ’'Université Paris Dauphine
Président du Jury : Philippe RIGAUX
Professeur a I'Université Paris Dauphine
Rapporteurs : Georges GARDARIN

Professeur a ’'Université de Versailles, France

Tore RISCH
Professeur a ’'Université d’Uppsala, SUEDE
Examinateurs : Jim GRAY

Directeur de E-Science Center, Microsft Research, USA

Thomas J. E. SCHWARZ, S, J.

Professeur a 'Université Santa Clara, USA

Dédicaces

A mes trés chers parents Rahima <l Tahar

Remerciements

Mes premiers remerciements vont a mon directeur de thése, Monsieur Witold Litwin,
professeur a I’Université Paris Dauphine et directeur du CERIA. Sa grande disponibilité,
sa rigueur et la pertinence de ses jugements ont été trés constructives et m’ont permis de
faire un bon travail. Merci pour tous vos conseils, votre patience et de m’avoir donné la
possibilité d’effectuer ma thése dans de bonnes conditions. Je tiens a vous exprimer toute
ma reconnaissance.

\

Je tiens a remercier Monsieur Jim Gray, Directeur de E-Science Center, Microsft
Research, USA, récipiendaire du Prix Turing 2000, d’ACM et Docteur Honoris Causa de
I’Université Paris Dauphine, pour les nombreuses suggestions, mise a ma disposition de la
base SkyServer, et pour m’avoir fait I’honneur de participer dans ce jury.

Je remercie vivement Monsieur Philippe Rigaux, professeur a 1’Université Paris
Dauphine, d’avoir accepté de juger ce travail et pour avoir présidé le jury.

Je tiens a remercier Monsieur Georges Gardarin, professeur a I'université¢ de Versailles
St-Quentin en Yvelines, d’avoir accepter d’étre rapporteur de cette these.

Je remercie également Monsieur Tore Risch, professeur a 1’Université d’Uppsala en
Suéde et directeur du Lab. UDBL, pour le vif intérét qu’il manifeste a 1’égard de mes
travaux de recherche.

Je remercie chaleureusement Monsieur Thomas Schwartz, professeur a I’Université Santa
Clara aux Etats Unis d’Amérique.

Je remercie chaleureusement Monsieur Pierre- Louis Xech, Responsable des Relations
Universitaires de Microsoft Research., pour le soutien financier, matériel et logiciel de
Microsoft. Je n’oublie pas de citer tous les bailleurs

J’adresse mes remerciements les plus vifs a Monsieur Gérard Lévy, professeur a
I’Université Paris Dauphine, pour ses conseils, son soutien moral et ses encouragements.

Toute ma gratitude et mes remerciements les plus vifs 8 Madame Régine Vignes-Lebbe,
professeur a 1’université Paris 7 et directrice de lab. LIS, pour sa confiance, son amitié
ainsi que ses conseils et ses encouragements incessants. Je la remercie aussi pour le temps
qu’elle m’a accordé pour corriger ce manuscrit.

Je remercie chaleureusement Monsieur Djamel Eddine Zegour, professeur a I’INI
d’Alger, pour son aide et ses corrections qui ont permis d’améliorer ce manuscrit.

Remerciements

Un grand merci a Mahat Khelfallah pour son amiti¢ et ses encouragements incessants.
Merci aussi pour les corrections minutieuses que t’as apportée a ce manuscrit.

Une pensée amicale a tous les membres de I’équipe CERIA notamment Riad, Rim et
Fatma pour leur amitié et bonne humeur.

Une pensée particuliere a Hani pour son aide, son soutien ainsi que ses encouragements
incessants. Je remercie aussi tous mes amis qui m’ont assistée et encouragée, avec une
pensée a Ania, Nawel, Chabane et Hakim.

Toute ma reconnaissance et mon affection pour mes trés chers parents. Tout mon
dévouement pour mon frére et mes sceurs. Sans leur amour, leur soutien, leur confiance et
leurs encouragements, je n’y serais jamais arrivé.

RESUME

Conception et Implantation d’un Systeme de Bases de
Données Distribuées et Scalables : SD-SQL Server

Le théme de recherche de cette thése concerne la conception et I’implantation d’un
systéme de gestion de bases de données distribuées et scalables (ang. Scalable Distributed
Database System, SD-DBS) que nous avons appelé SD-SQL Server. SD-SQL Server
implémente une nouvelle architecture de SGBD relationnel. Une base de SD-SQL Server,
dite base scalable, grandit par la partition dynamique, scalable et distribuée de ses tables,
dites scalables aussi. La partition et son évolution sont invisibles de 1’usager/application.
A T’heure actuelle, SD-SQL Server est le seul SGBD a offrir cette possibilit¢ a notre
connaissance. Les autres SGBDs connus, n’offrent au mieux que le partitionnement
statique, nécessitant des réorganisations périodiques globales. Leur maniement est en
général complexe et peu apprecié¢ des usagers.

Nos tables scalables sont organisées en segments d’une structure de données distribuée et
scalable (SDDS). Chaque segment est placé sur un nceud li¢ de SQL Server. A I’heure
actuelle, SQL Server supporte 250 nceuds liés, permettant a une table scalable de croitre
autant. L'expansion dynamique résulte des éclatements de segments débordant leur
capacité de stockage. Chaque éclatement est déclenché par une insertion, a I’origine du
débordement. Tout éclatement crée un ou plusieurs nouveaux segments. Les segments
sont cachés des usagers/applications derriére les vues supportant les mises a jour, dites
images. Les images sont des vues partitionnées et distribuées de SQL Server
dynamiquement ajustées. Les usagers/applications de tables scalables n’interfacent que
les images ou les vues des images.

Apres D’introduction et la discussion de 1’état de 1’art, nous présentons 1’architecture de
SD-SQL Server. Nous discutons ses composants fonctionnels et les operations qu’ils
assurent. L’attention particuliére concerne 1’expansion d’une table scalable et la gestion
évolutive des images. Nous décrivons ensuite, I’interface que SD SQL Server offre a
I’application. Notre interface consiste de requétes a syntaxe trés proche du SQL standard
et de commandes d’administration.

Nous présentons ensuite [’implémentation de notre prototype. Nous détaillons le
traitement interne des commandes, de I’éclatement des tables scalables ainsi que
I’ajustement de leurs images. Nous montrons aussi la sérialisabilité des traitements
concurrents. Nous validons ensuite le prototype par des mesures expérimentales de

Remerciements

performances. Nous effectuons nos expérimentations sur la base de test SkyServer, [G02].
Enfin, nous discutons les développements possibles.

ABSTRACT

Design and Implementation of a Scalable Distributed
Database System SD-SQL Server

Our thesis elaborates on the design of a scalable distributed database system (SD-DBS). A
novel feature of an SD-DBS is the concept of a scalable distributed relational table, a
scalable table in short. Such a table accommodates dynamic splits of its segments at SD-
DBS storage nodes. A split occurs when an insert makes a segment to overflow, like in,
e.g., B-tree file. Current DBMSs provide the static partitioning only, requiring a
cumbersome global reorganization from time to time. The transparency of the distribution
of a scalable table is in this light an important step beyond the current technology.

Our thesis explores the design issues of an SD-DBS, by constructing a prototype termed
SD-SQL Server. As its name indicates, it uses the services of SQL-Server. SD-SQL
Server repartitions a table when an insert overflows existing segments. With the comfort
of a single node SQL Server user, the SD-SQL Server user has larger tables or a faster
response time through the dynamic parallelism. We present the architecture of our system,
its implementation and the performance analysis.

After the introduction and the discussion of the state-of-the-art, we present our system
architecture. We have based it on the scalable distributed data structures (SDDSs)
principles. We present its components and their functionality. We also present our
command interface for the users/applications. We discuss the syntax and semantics of
each command. We then present the implementation and internal processing of our
prototype. We aim the discussion in particular on the efficiency and the serializability of
the concurrent processing.

Afterwards, we discuss the experiments proving the efficiency of our system. We
benchmark our processing using scalable tables loaded with experimental data from the
well-known SkyServer database, [G02]. We show that the overhead of our scalable table
management should be typically negligible. We conclude through the results, published in
international conferences, that our prototype attained its goals. We finally, discuss the
future work that would further extend the capabilities of our system.

EXTENDED ABSTRACT

Design and Implementation of a Scalable Distributed
Database System SD-SQL Server

The Goal

Our thesis explores the design of a scalable distributed database system (SD-DBS) by
constructing a specific SD-DBS termed SD-SQL Server. As its name indicates, SD-SQL
Server uses the services of SQL-Server. The original feature of our system is the dynamic
and transparent repartitioning of growing tables, avoiding the cumbersome manual
repartitioning characterizing the current technology. SD-SQL Server manages tables
partitioned into segments distributed over SD-SQL Server nodes. It repartitions
automatically any tables where inserts overflow existing segments. With the comfort of a
single node SQL Server user, the SD-SQL Server user disposes of larger tables or gets a
faster response time through the dynamic query parallelism. The transparency of the
distribution of a scalable table is in this light an important step beyond the current
technology of a parallel DBMS.

Thesis Contribution

We have validated the SD-SQL Server.architecture by its detailed design, implementation
and performance analysis. At the design level, the basic new feature of our system is the
capability to manage the scalable distributed tables, scalable tables in short. Such a table
consists of segments at SD-SQL Server storage nodes supporting dynamic splitting. Splits
are triggered when inserts make segments to overflow. Scalable tables constitute in our
system the scalable databases. These expand transparently for the application on as many
storage nodes, as needed for their tables.

We based the management of scalable tables on the scalable distributed data structures
(SDDS) principles. The user or the application sees thus a scalable table only through a
specific view, termed (client) image. In our system, it is a particular updateable
distributed partitioned union view. The application manipulates a scalable table only
through its image or a view of the image. A scalable table may have several images for
applications at different nodes.

- Ir -

Extended Abstract

Every image hides the scalable table partitioning and dynamically adjusts to its evolution.
Like in an SDDS, our images of the same scalable table may differ among them and from
the actual partitioning. The image adjustment is lazy. It occurs only when a query
referring to comes in, and finds the image outdated. Our scalable tables and databases
make in this way the global database reorganization largely useless. Similarly to B-trees
or extensible hash files with respect to the earlier file schemes.

Our system runs on a collection of SQL Server linked nodes. For every standard SQL
command under SQL Server, there is an SD-SQL Server command for a similar action on
scalable tables or views. There are also commands specific to SD-SQL Server image or
node management. We have implemented all these commands and we have also managed
their concurrent processing.

The scalable table management creates an overhead with respect to the static partitioning.
The image processing affects the query processing time, as it may be the case of a
concurrent splitting. Our design challenge was to make this overhead usually negligible.
We have validated our prototype by experimental performance analysis. The performance
measurements used especially the well-known SkyServer database, [G02]. The measures
have basically confirmed the efficiency of our design choices.

The current capabilities of SQL Server allow an SD-SQL Server scalable table to reach at
least 250 segments. This should suffice for scalable tables reaching very many terabytes.
SD-SQL Server is the first system with the discussed capabilities, to the best of our
knowledge. Our results pave the way towards the use of the scalable tables as the basic
DBMS technology.

Future work should lift some current limitations of our “proof-of-concept” type prototype
and expand its functional and processing capabilities. For instance, one should enhance
the current query error processing. Our experimental performance analysis, applied to the
Skyserver database as benchmark, should be expanded towards other well-known
benchmarks. Our implementatation on SQL Server 2000 should now be ported to SQL
2005 recently released. Our design should be also ported towards other DBSs. With
respect to the functional capabilities we currently expand our interface so to enable SD-
SQL Server to be a server of GovML documents. It should act as core component of a
virtual repository of eGov documents in a prototype system under development.
[LMSO06].

- Iif -

Extended Abstract

Publications

We have published four papers about our work in international conferences [LS04,
LSS06a, SLS06, LSS06b].

In [LS04], we report on the gross architecture and performance results of our first SD-
SQL Server prototype. The architecture extends and puts into practice the one of
[LRS02]. The performance measures essentially confirm the efficiency of splitting and of
image adjustment operations.

In [LSS06a], we detail the internal processing of the SD-SQL Server commands. We
discuss in particular our concurrent command processing, using basically the repeatable
read isolation level. We prove the serializability of our approach.

In [SLS06], we expand the SD-SQL Server architecture with new concepts, especially
that of a scalable database. We present the user/application interface and illustrate its
commands with examples.

Finally, in [LSS06b], we give an overview of SD-SQL Server. We essentially report
performance results related to the new improved architecture. We also discuss the related
works.

For convenience, we have included our two latest publications, [SLS06] and [LSS06b]
into Annexe B. Our extensive Research Report, [SLS05], is available on-line at:
http://ceria.dauphine.fr

Thesis Outline

The Thesis dissertation is divided into two parts. The first part, “Etat de [’Art”, covers the
state of the art of the partitioning methods in parallel/distributed database systems and the
scalable distributed data structures SDDSs. It consists of two chapters. The second part,
“SD-SQL Server, un Systeme de Gestion de Bases de Données Distribuées et Scalable”,
describes the SD-SQL Server architecture, its application interface, the prototype
implementation as well as performance results.

The first Chapter of the Thesis, “Introduction”, discusses the basic issues and the
motivation for the Thesis work, as well as our contribution.

In Chapter 2, “Répartition des Données dans les SGBDs Distribuées et Paralleles”, we
cover the basic features of data partitioning in the parallel/distributed database systems.
We also present the partitioning schemes in the principle current DBMSs.

-1V -

Extended Abstract

Chapter 3, “Structures de Données Distribuées et Scalables” covers with special interest
the SDDSs, being one of our thesis fundamentals. We mainly present the RP* SDDS on
which is the basis of our work.

Chapter 4, “Architecture de SD-SQL Server”, describes the SD-SQL Server architecture
with all its components. It presents the originality of this system among all current
DBMSs. It also discusses our choice of SQL Server to conceive our SD-DBS.

Chapter 5, “Interface de SD-SQL Server”, describes the syntax and semantics of each
command of the SD-SQL Server interface. Numerous examples illustrate the actual use of
SD-SQL Server.

Chapter 6, “Le Prototype SD-SQL Server”, covers the SD-SQL Server implementation. It
presents all the steps to build SD-SQL Server. It also describes its internal processing.

Chapter 7, “Mesures de Performances de SD-SQL Server”, discusses the numerous
experiments we made to prove efficiency of our prototype. We used for this the SkyServer
DB benchmark. The scalable table processing creates an overhead. The performance
analysis proved this overhead negligible for practical purpose.

Finally, the last chapter “Conclusion & Perspectives” concludes the thesis dissertation
and gives some future research directions.

The Thesis contains also “Annexe A & B’ that present our prototype. In “Annexe A *, we

present the internal processing of the SD-SQL Server commands. In “Annexe B”, we
present two of our published papers ([SLS06] and [LSSO06b]).

Table des Matiéres

1 INTRODUGCTION ...ttt e e e e e e e e e e e eeeanann s 1
1.1 IMIOTIVATIONS ...ttt 1
1.2 Contribution de 18 TRESE. ..o 3
1.3 Plan dela ThESE ... 5
2 INTRODUCTION AUX SYSTEMES DE GESTION DE BASES DE
DONNEES PARALLELESottt e e eaenees 8
2.1 INEFOAUCTION ... bbb 8
2.2 Architectures MatrielleS....... oo e 9
2.2.1 Architecture 8 Mémoires Partagéescoevveerieniieniienieeiieeieeieeie e 9
2.2.2 Architecture a Disques Partagés : Shared-Diskc..ccooevveecvenvencenenneennnn. 10
223 Architecture @ MEmoires DiStribuéesocveeveeriieiiieriieiienie e 11
2.2.4 Architecture Hybrideoooviieiiiiiiiicciecceece e 12
2.3 Partitionnement des DOMNEEScccoreiririreini e e 13
2.3.1 Schémas de Partitionnement.............cccuveeeieeeiiieeiieeeee e e 13
2.3.1.1 Partitionnement HOrizontal.............ccccoeeiiiiniiiiiienieeiieeceee e 14
2.3.1.2 Partitionnement VertiCal..........cccoevueerrierieriienieeieeeie e sve e 14
2.3.1.3 Partitionnement Hybride...........ccceerriiiiiiiiiiiiieieeeeeceeeee e 14
2.3.2 Stratégies de Partitionnement de Donneéesceevvveeviieenieeecieeecieeeen 14
2.3.2.1 Partitionnement Circulaire..........c.ceeeveeeeireeiieeeiieeeiie e 14
2.3.2.2 Partitionnement par Hachage..........cccceviieiiiiiieniiiiieceeeeeeeee 15
2.3.2.3 Partitionnement par Intervallecoocieriiiiiieniiiiiieiiceee e 17
233 Traitement Paralléle des DONNEescccooveeiieiiieiienieeieciecieeeeeee e 19
2.3.3.1 Parallélisme Indépendant..............cceecvieriieiieniienieeieeieeeee e 19
2.3.3.2 Parall€liSme en tUYaU........cceeeueiiriieeiiieeiiie et eeeeeiee e eaee e sree e e eseaee e 20
2.3.3.3 Parallélisme par fragmentation...........ccecueevereriienieesiienieeeeeee e 20
2.4 Administration de Partitions des Principaux SGBDScccocveninennnnnn. 21
24.1 Prototypes de SGBDs Paralléles issus de la Rechercheccoceveeiennnenne. 21
24.1.1 DBC/1012 de Teradata........ccccocveeerieriieiiieeiieiieere e eieesiee e eseeesveesene e 21
2.4 1.2 GAIMIMA...cuiiiiiiiieeiieeeieeeeieeeetee et eeeireeetteesbaeesseeeseseeensseesnsseesnnseesnseesanes 22

Table des Matiéres

242 SGBDS COMMETCIAIISEScuveevieiieeiieriieeiieeiteeieesiee et esereeteeseeeeseeseneensaens 23
2.4.2.1 Microsoft SQL SEIVETuvviieiiiiie et 23
W O) v To] (TS PRR 24
2.4.2.3 DBttt ettt naenteenneeneas 24
2.43 231 F: 3 T USSR 25
2.5 CONCIUSION ...t 26
3 LES STRUCTURES DE DONNEES DISTRIBUEES ET SCALABLES....... 28
3.1 INEFOAUCTION ... bbb 28
3.2 ArcChitecture des SYSTEIMEScccviiieiieie e 29

3.2.1 Architecture CHENt/SEIVEUTc.cccvieiiieiiieiieeie et 29

322 Architecture Pair @ Pail........ccccooviiiiiiiiiiieeeccceee e 30
3.3 LS SDIDISS ...ttt 31

3.3.1 Les multi-ordinateurs..........cueeecieeeiiiieciie et 31

332 Concept de Scalabilitécccoooieriiiiiiiiii e 32

333 Principes des SDIDISS ...ouiieiieiiieiieeieeee ettt ettt 33
3.3.3.1 Les SDDS LH™ ..ottt 34
3.3.3.2 Les SDDS RP¥ L.ttt 35

3.4 LS SDDSS RP™ ...ttt es 35

3.4.1 Structure d’un fichier SDDS RP*........cooooiiiiiieeeeeeee e 36

34.2 Manipulation d’un fichier SDDS RP* ..o, 37
3421 ReqUELE STMPIC...oceiiiiieiieiiieiie ettt ettt st e 37
3.4.2.2 Requéte parallCleoooviieiiiieiiieeiieceeeeee e e 37

343 Structure d’une Image SDDS RP™ ..ot 37
34.3.1 Ajustement d’une Image SDDS RP*.........cccviiiiiiiiee e, 38

3.5 CONCIUSION .ot 38
4 ARCHITECTURE DE SD-SQL SERVERoutiiiiiiiiiiiie e 40
4.1 INEFOAUCTION ... 40
4.2 Vue Générale d’un Systéme de Gestion de Bases de Données Distribuées et

SCAIADIES ... s 40

4.2.1 Objectifs A’un SD-DBS........cccooiiiiiiiiieieeeee et 43
4.2.1.1 Partitionnement Dynamique.........cc.ccoceerviiniiinieniiniieneceee e 43
4.2.1.2 Possibilité d’Extension (Scalabilit@)............cccocueeriiiiiniiiiiniiieinieennieennn 44

- VII -

Table des Matiéres

4.3) D BT @) Ty S USSR 44
4.3.1 Les Reégles Structurelles...........ccooviiriiiiiiniiniiiiiiniiniieieireeeeieeeene e 45
4.3.1.1 Vue Partitionnée Distribuée..........cccuveieviiiiiiiiiiiieieiiiee e 45
4.3.1.2 Clé de PartitioNNemMeEntccccuvreeeeruireeeniiieeeesiieeeeeserreeeessreeeessssseeessnnes 46
4.3.1.3 Contraintes d’iNte@riteccccerviiriiiiriiiiiiiniieeerre e 47
4.3.2 Architecture de REELENCEcueiiiiiiiiiiiiiiiiiieiieeeeeee e 48
4.4 Description des Composants SD-SQL SErvercccccvvevieieiieesecie e 51
44.1 La Méta-base (MDB).......ccoiiiiiiiiiiieiiesieeeeete et 51
4.4.1.1 Les Méta-tables........cooouiiiiiiiiiiiiiieeeee e 51
4.4.2 Les Serveurs SD=SQL SEIVELuuuuuuuueerieiiriiireeiiiereesesrseersreeereeneeree—————————————— 52
4.4.2.1 Les Tables SCalablesccoovciiiiiiiiiieeeciieee et e e 52
4.4.2.2 Les MEta-tablesccccueieiiiiiiiiiieeiiieeiiee ettt e 54
4.4.3 Les Clients SD-SQL SEIVEL.........uuuuuuuuuuueruriririireuuniernrnrerniernrnnnrnnnnnrn———————— 57
4.4.3.1 Les ImMages.....ccccooiiiiiiiiiiiiiiiccec e 57
4.4.3.2 Les Vues Scalablesccuuiiiiiiiiieiiiiiiee et 59
4.4.3.3 LeS MEta-tablesc.uveieeiiiiiieeiiiee e eciieee et e e estee e et e e e e e e e naaeaeeenees 60
4.4.4 Les Neuds Pairsccciiiiiiiiiiii ettt e e e e e e naeee s 61
4.5 Fonctions de SD-SQL SEIVET........ccciuiiiiiiiiiiiiiiiiiiie i 62
4.5.1 LPECIAtEmMENtoeiiiiieiiieeciiieeeiteeetee et e eitee et eestteesare e e bt e e saeeesnbeeenabeeennneeens 62
4.51.1 Allocation d’une NDBcccooiiiiiiiiiiiiiiiieeeeeee e 63
4.5.1.2 Transfert des dONNEES..........ccccviiiiiiiiiieieiiiieee e eeieee e e e aeee e 66
4.5.1.3 Types AEcClatementccceovieriieiieniiinieenieeieenee e see e 68
4.5.2 Ajustement des IMAZESccccueriueiriiiriieniinieeeeee ettt 71
4.6 L0703 o] 1 T3 Lo 3's W PP PR PP 72
5 INTERFACE D’APPLICATION SD-SQL SERVER......c.ccoviiiiiiiieie 73
5.1 INEFOAUCTION ... 73
5.2 PrelimMINAILeS .. vvvieiiiiiiii ittt 73
5.3 Description de la Benchmark SkyServerc.cccoiviviiiiiiiiiniinie, 75
5.4 Gestion des Neuds SD-SQL SELVELvvviiiiiiiiieiiiiiie e see e srraee e 76
5.4.1 Création d’un Neeud SD-SQL SEIVEr.........oooovvviiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeen, 77
5.4.2 Modification d’un NUdccuviiiiiiiiiieiiiiiee e eeeee e e e aaeeeeaes 78
5.4.3 Suppression d’un NuUdcccceeiiiiiiiiiiiiiiiee e 79
5.5 Gestion des Bases de Données Scalables...........ccccvvieiiiiiiiiiiiiiiiieiniien e siieee s 80

- VIII -

Table des Matiéres

5.5.1 Création d’une Base de Données Scalable.............ccceevvuieiniiiieniiieenieeenieene, 80
5.5.2 Modification d’une Base de Données Scalable............c....oeeiiiiiiiiiiiinnnnnnne. 81
5.5.2.1 Création d’une NDBcccoiiiiiiiiieee e 82
5.5.2.2 Suppression d’une NDB.........cccccociiiiiiiiiiiiiniiicneceeeeeceeeee 83
5.5.3 Suppression d’une Base de Données Scalable...........c.c.cocceeriiriiiniiinnecnncnnn. 84
5.6 Gestion des Tables Scalablesoccuuiiiiiiiiiiiiiii e 84
5.6.1 Création d’une Table Scalable..............cceoviiiiiiiiiiiiiiiiieeeeeeeee e 85
5.6.2 Modification d’une Table Scalablecccceeeriieiiiieiiiieeiieeeie e 86
5.6.3 Suppression d’une Table Scalablec.cccocceeriiiiiiniiiiiinieeeec 87
B.6.4 eSS INAEX .uiiiiiiiiiiiiiiiiiie et e e e e e annaas 87
5.7 Gestion des Images Secondaires............ccoooveiiiiiiiiiiiiiii 89
5.71 Création d’une Imageccooiiiiiiiiiiiiiiiiiiee e 89
5.7.2 Suppression d’une Image Secondaire.............cceoeeviiniiniiniiniiininniinieee 90
5.8 Gestion des ReqUtes.........ccoceviiiiiiiiiiiii 90
5.8.1 La reCREICREeviiiieiiiiieecee e e e e e 91
5.8.2 I HNSEITION . ..cciiiiiiiieeiiiiieeeciiee e ettt ee e ettt e e e e abeeeeeeaaeeeeestaeeeeanreaeeennnaeeeeennaaeeans 92
5.8.3 La MISE A JOUL c..eiiiuiiiiiiiieiiieeeite ettt ettt e et e sttt e st e e st e e st e e e ean e e 92
5.8.4 LA SUPPIESSION...cutiiiiiiiiiiiiieiiieite ettt ettt ettt ettt et re e sane e 93
5.9 L0703 o] 1 T3 Lo 3's PSPPSRI 94
6 LE PROTOTYPE SD-SQL SERVER......coouiiii e 95
6.1 INEFOAUCTION ..o 95
6.2 ChOIX TECNNIQUESccvveiieiie ettt e s re e 95
6.2.1 Correspondance entre SD-SQL Server et SQL Server........coccvvevvveevveeennnen. 96
6.2.2 Gestion des UHHIISAEULSceoueiiiieiiieiieee e 97
6.2.2.1 Gestion des Utilisateurs sur SQL Servercccoevueeviienieeiieniiienieeeene 97
6.2.2.2 Gestion des Utilisateurs sur SQL Serverccccoevveeviienieeiiienieenieeeene 98
6.2.3 Convention des NOMIS.ceueruieriirieriierieeiese ettt st eiees 99
6.2.3.1 Les Meta-tables......ccceruieiiiiieniieieeieieeeee e 101

6.3 Etapes Suivies dans la Configuration et I’Utilisation de SD-SQL Server 102
6.3.1 Création du Neeud Primaire SD-SQL Servercccoooveeeeviiieeeeiiieeeeeieee. 103
6.3.2 Création des autres Noeuds SD-SQL Server.......oocovveeiiieiieniiiieieeeee 104
6.3.3 Création dune SDBh.........cooiiiiiiiiieeece e 105
6.3.4 Création d’une Table Scalable.........cccoooueviiiiniiniiiinieeee 106

-IXx -

Table des Matiéres

6.3.5 Modification d’une Table Scalable...........ccccccveriieiiiiiiieiieieeiece e 108
6.3.6 Création des Images Secondairescceeeeveerieecieenieeiiienieeieenee e 108
6.3.7 Suppression d’une Image Secondaire..........ccccveeeviieeiieeeiieeeiie e 109
6.3.8 Acces a une table scalableccoooviiiiiiieiiiie e 109
6.3.9 Suppression d’une Table Scalable..........cccccoceeviriiiiniiniiniiee, 109
6.4 Traitement Interne des Commandes SD-SQL Server.........ccecvveeiveiveeinnns 110
6.4.1 Gestion des Tables Scalables.........ccoceieciieriieiieiiecieeee e 110
6.4.1.1 Création d’une Table Scalable............cccceeeieriieiiieniieiecieeceee e 110
6.4.1.2 Evolution d’une table scalable.............ccceeeiiieniiiiieee e, 113
6.4.2 Ajustement des IMaZESoocveeriiiiiiiieiiieee e 117
6.4.3 Modification d’une Table Scalable............cccceeeviiieiiiieiiieee e, 119
6.4.3.1 Modification du Schéma d’une Table Scalable.............ccoevieririnrennnnn. 120
6.4.3.2 LeS INACX ..eoiiiieiiiieiieee e e e 121
6.4.4 Suppression d’une Table Scalable............coceevviiiiiiiiiiniieieeeeeeee, 122
6.4.5 Gestion des Images SecoNdaires.........ccuveerveeerieeerieeeiieeeiieeeseeeeveeeeaee s 123
6.4.5.1 Création d’une Image Secondaire...........ccccceeevueriineineriieneenenieneeeenee 123
6.4.5.2 Suppression d’une IMage...........ceeeeviiriiiniininiiniieceeee e 124
6.4.6 Gestion des Requétes Scalables.........ccovviieiiieiiinieeiieieciceee e 125
6.4.6.1 Image BINAINGccciiiiiiiiiiieeeeee e 126
6.4.6.2 LaRecherche Scalable............cccooouieiiiiiiiiiiiieieceeeeee e 127
6.4.6.3 Les Mises a Jour Scalablesc.ccccovieiiiieiiiieiieeee e 132
6.4.6.4 L’Insertion Scalable...........cccvieiiieeiiieeieeeeeeee e 132
6.4.7 Gestion des Neeuds, des SDBs et des NDBScoooiviiiiiiiiieiiciiiee e, 133
6.4.7.1 Création d’un NEUAccceeviiiiiiiiieiie et 134
6.4.7.2 Création d’une SDB........ccccciiiiiiiiiieiecieceee e 135
6.4.7.3 Suppression d’une NDBccccooiiiiiiiiiiiinieeieeieeeeee e 137
6.4.7.4 Suppression d’une SDB.........cccociiiiiiieieee e 140
6.4.7.5 Suppression d’un NOBUd........ccceeviiriiniieiiiniinieeceeeeee e 141
6.5 GEStION dES CONCUITEINCEScuiitiiiieiieuieieie ettt sttt 141
6.5.1 Techniques de verrouillage............ceevveeiieiiieiienieeieee e 142
6.5.1.1 Isolation des tranSaACtiONcccueevreerueeiiienieeieeneeereeseeeereeseeeeneeseens 143
6.5.2 Gestion des concurrences sur SD-SQL Server.........ccoovveevveeeeieeeeieeeeieeens 144
6.5.2.1 Matrice des Conflits.......ccceeeiiieeiiieeiiie e 145
6.5.2.2 Acces ala Méta-table RP........ccccuveeeviieeiieeeiee et 148

Table des Matiéres

6.5.2.3 Acces ala méta-table IMmage...........ccceevveeevieiieniieieeie e 150
6.5.2.4 Les Segments d’une Table Scalablecccceevvieriiicienieeiieieeieeee 152
6.5.2.5 Acces a la méta-table Primary........cccoccueeevieeecieeeeiieeeceeeeie et 153
6.5.2.6 Acces ala Méta-table NDB...........coooveeevieecieeeeieeeeeeeee e 154
6.5.2.7 Acces a la méta-table SDBNOdecoeeeveeecieeeciieecieeeeeeeie e, 155
6.5.2.8 Gestion des EITEUIS.......ccceeriiiiiiiiiieieeieeee e 156

6.6 CONCIUSION ...ttt 157
7 MESURES DE PERFORMANCESo oo 158
7.1 INEFOAUCTION ... 158
7.2 Environnement EXpérimentalcccooeiiiii i 158
7.2.1 Description des EXpérimentationsc.cecveeieeriienieenieenieeneenieeieeene e 159
7.3 ECIAIEMENT ..o s 160
7.3.1 Cas-1 : Table Scalable sans IndeXcccceeeiiiiieiiiiecieecee e 161
7.3.2 Cas-2 : Table Scalable avec des INdeXcccccveeeeiieeiiiieeciieeiee e 163
7.3.3 Comparaison entre un Eclatement sur SD-SQL Server et un Eclatement direct
SUT SQL SEIVET ..ttt ettt st e s e e 164
7.4 Exécution des Commandes SD-SQL SErVercccccvvvveeieieiesece e 165
7.4.1 ReqUELE COTLEUSEvvieiiiieiiiieiie ettt e 166
7.4.2 ReqUELe RAPIAC......coiiieiiieiiieiiece ettt 168
7.4.3 Requéte adressant des images a Plusieurs NiveauX........cccoccveeeveenieecieenneenns 172
7.4.4 Comparaison entre SD-SQL Server et SQL Server........cccceeveveeeecieeenveenee, 174
7.4.4.1 Variation du Nombre de Segments.........ccccecervveriineenienieneenenieneeenne 174
7.4.4.2 Variation de la Taille d’un Segment...........cccccoerviiniininiinieninienienene 176
7.4.5 Requéte COMPIEXE....ccvevvievieeierieeieiieiieiereeie e Erreur ! Signet non défini.
7.5 CONCIUSION ..ottt 177
§ CONCLUSION & PERSPECTIVEScoiiiiiiiieee e 179
8.1 CONCIUSION ...t 179
8.2 PEISPECLIVES ...ttt 180
BIBLIOGRAPHIE ...ttt e e e e e e e e s e e e e e 182

ANNEXE A : TRAITEMENTS INTERNES DES COMMANDES SD-SQL
SERVER ... 189

- X7 -

Table des Matiéres

GLOSSAIRE

- X171 -

LISTE DES FIGURES

Figure 2-1 : Architecture @ MEmoires Partagées..........cccooveveiveiiiiieiieie e seese e 10
Figure 2-2 : Architecture @ DiSQUES Partagesccevververeereeiieiieeneeseeseesesniesaennens 11
Figure 2-3 : Architecture @ Mémoires DiStribDUEeS............ccooeviiiiieiiice e, 12
Figure 2-4 : Architecture HyBride ... 13
Figure 2-5 : Partitionnement CirCUlQITe............ccoveveiieiieie e 15
Figure 2-6 : Partitionnement par hachagecccooeiiiiiininineceee s 17
Figure 2-7 : Partitionnement par intervalleccoooveviiicie e 19
Figure 2-8 : Parallélisme iNd@pendant............cccovevieieiieie e 20
Figure 2-9 : Parallélisme en tUYAUcccoiiiiniineseee e 20
Figure 2-10 : Parallélisme par fragmentation...........cccccoveviii e 21
Figure 3-1 : Architecture CHENt/SEIVEUTccooeiieiieie e 30
Figure 3-2 Architecture Pair & Pair ..., 31
Figure 3-3 : Courbe idéale du Facteur de Rapidité.c.cccoeveiieiiiie i 32
Figure 3-4 : Courbe idéale du Facteur d’Echelle..........ccoveveiieiiiiiiiee e 33
Figure 3-5 1 Les familles des SDDSS.........cccuiiiiiiiieieiec s 35
Figure 4-1 : Présentation générale d’un SDB-DBSccccccooiiiiii v 41
Figure 4-2 : Description d’une vue partitionnée.........ccccoceveeveeieieene e seese e 46
Figure 4-3 : Architecture de SD-SQL Server.........cccooviiiiiiiiiiiiiie 50
Figure 4-4 : Eclatement suite a une insertion d’un tuple dans un segment primaire 69
Figure 4-5 : Eclatement suite a I’insertion d’un bloc de tuples dans un segment...... 70
Figure 4-6 : Eclatement suite a I’insertion d’un bloc de tuples dans plusieurs
=10 1< 1 T PSPPI 70
Figure 5-1 : Schéma Logique de la base de données SKyServer.........c.ccccovvvvevvieennnns 76
Figure 6-1 : Résultats de la création de la table scalable PhotoODbjc.ccco....... 113
Figure 6-2 : Résultat de I’éclatement de la table scalable PhotoObj 116
Figure 6-3 : Matrice des Conflits.........ccovviiieiiiii i 146

Figure 6-4 : Exécution de deux commandes utilisant le méme tuple dans Image ... 151
Figure 7-1 : Evolution du temps d’éclatement en fonction du nombre de segments

FESUITANT ...t bbb bbb 163
Figure 7-2 Temps d’Eclatement des segments avec iNdeXccccevevereninnninnnnnns 164
Figure 7-3 : Temps d’exécution de (Q2)ccccveiveiiiiiesieie e 170
Figure 7-4 : Comparaison des temps d’exécution de (Q2) sur une NDB client et une

NDB PAIT ...ttt etttk b ettt e et bbbt 172
Figure 7-5 : Temps d’exécution de (Q3) pour une image a plusieurs niveaux......... 173
Figure 7-6 : Comparaison des temps d’exécution de (Q3) sur SQL Server et SD-

SO SBIVEL .ttt bbb 176

- X111 -

Liste des Figures

Figure 7-7 : Comparaison des temps d’exécution de (Q3) sur SQL Server et SD-

SO SBIVEL .ttt bbb be e 177
Figure 7-8 : Resultats graphique de I’exécution de (Q) Erreur ! Signet non défini.
Figure A-1 : Structure interne du code de la commande sd_create_table................ 190
Figure A-2 : Structure interne du code de la commande sd_alter_table.................. 191
Figure A-3 : Structure interne du code de la commande sd_create_index............... 192
Figure A-4 : Structure interne du code de la commande sd_drop_index.................. 193
Figure A-5 : Structure interne du code de la commande sd_drop_table................... 194
Figure A-6 : Structure interne du code de la commande sd_create_image............... 195
Figure A-7 : Structure interne du code de la commande sd_drop_image................. 195
Figure A-8 : Structure interne du code de la commande sd_select..............ccocoevnnene 196
Figure A-9 : Structure interne du code de la commande sd_update............cccceun..... 197
Figure A-10 : Structure interne du code de la commande sd_insert............c........... 198
Figure A-11 : Structure interne du code de la commande sd_create_node.............. 198
Figure A-12 : Structure interne du code de la commande

sd_create_scalable_database............ccccooviiiiiiiiiicic e 199

Figure A-13 : Structure interne du code de la commande sd_drop_node_database 200
Figure A-14 : Structure interne du code de la commande sd_drop_scalable _database

- X1V -

LISTE DES TABLEAUX

Table 4-1 :

Comparaison entre les caractéristiques d’un SGBD parallele et d’un SD-

DB S et e e aeenare s 43
Table 6-1 : Correspondance entre SD-SQL Server et SQL Server.........cccccceevevvenenn. 96
Table 6-2 : Regles d’utilisation des VEFTOUSccoeveriiese i 143
Table 6-3 : NiveauX d’iSOIatIONccoviiiiiiie s 144
Table 7-1 : Configuration eXperimentalecccoeiieieiiiecicce e 159
Table 7-2 : Résultats Numériques du temps d’éclatement de PhotoObj en fonction du

nombre de segments réSUItaNTccooeiiiiieiiie e 162
Table 7-3 : Résultats Numériques des Temps d’Eclatement de PhotoObj avec index

... 163
Table 7-4 : Résultats Numériques du temps d’exécution de (Q2).......cccoecervrvvrrennnnn. 170
Table 7-5 : Résultats Numériques du temps d’exécution de (Q3).......ccccevevververneennn. 173
Table 7-6 : Résultats numériques de I’execution de la requéte (Q3)c.cecervvruenns 175
Table 7-7 : Résultats Numériques de I’exécution de la requéte (Q3).......cccceevrvrnenn. 177
Table 7-8 : Mesures Numériques de I’exécution de (Q)......... Erreur ! Signet non défini.

- XV -

1 INTRODUCTION

1.1 Motivations

Lors de cette derniere décennie, la croissance rapide du volume de données a stocker et a
traiter a rendu les bases de données de plus en plus volumineuses et difficiles a gérer.
Toutefois, les progrés technologiques impressionnants réalisés ne sauraient faire face aux
traitements de tels volumes de données. En effet, les performances des microprocesseurs
augmentent d’environ 50% par an et la capacité mémoire par un facteur de 16 tous les six
ans. Ce qui est loin d’étre le cas des mémoires secondaires dont le temps de réponse et le
débit n’ont augmenté que d’un facteur de 2 durant les dix dernieres années [V93].

La solution qui s’imposait était alors de distribuer les données, organisées dans des tables,
sur différents sites de stockage. L’ensemble de ces sites constitue les systemes de bases de
données distribuées. Ces systeémes permettent aux utilisateurs de manipuler des données
sur plusieurs bases distribuées dans un réseau de maniére transparente, comme une base
de données globale.

Le probléeme essentiel auquel ont été confrontés les systemes de bases de données
distribuées est le probleme d’entrées/sorties qui constituent un véritable goulot
d’étranglement. En effet, le temps d’acces disque est environ cent mille fois plus lent que
le temps d’accés mémoire. Les solutions matérielles a ce probléme ont vite été
abandonnées a cause du rapport prix/performance qu’elles induisent, et la recherche s’est
vite orientée vers l’utilisation du parallélisme afin d’augmenter la bande passante des
entrées/sorties. Ainsi, les systemes de bases de données paralleles ont apparus. En effet, si
on stocke une base de données de taille D sur un seul disque de débit 7, le débit du
systéme sera borné par 7. Cependant, si on partitionne la base de données sur n disques,
chacun de capacité D/n et de débit 7, on aura un débit de n*7"’ qui pourra étre mieux
exploité par plusieurs processeurs.

L’obstacle majeur a I’obtention de bonnes performances dans les systémes de bases de
données paralleles réside dans I’équilibrage de la charge entre les différents processeurs.
Ceci est d au critére de partitionnement de données. Les SGBDs commercialisés actuels
(Microsoft SQL Server, Oracle, DB2,...) fournissent uniquement un partitionnement
statique des données [BMO00, L03, LBO5]. Si une table monte en échelle, I’administrateur
de base de données doit redéfinir manuellement la partition et exécute des utilitaires de

Introduction

redistribution de données. Ceci est devenu une préoccupation croissante pour les
utilisateurs des bases de données paralléles [SL96, RZLMO02, GGO5].

Ce probleme est similaire a celui rencontré, il y a 40 ans, pour les systémes de gestion de
fichiers dans I’environnement centralisé¢. La méthode d’acces séquentiel indexée (ISAM)
¢tait utilisée pour le partitionnement ordonné des fichiers. De méme, les méthodes d’acces
basées sur le hachage statique ont ét¢ connues pour le partitionnement des fichiers. Ces
deux approches de partitionnement demandent la réorganisation des fichiers lorsque les
insertions provoquent des dépassements de la capacité des fichiers. Suite a cela, les
arbres-B et les méthodes de hachage dynamique (extensible et linéaire) ont été introduits
pour pallier aux problémes de partitionnement statique. Ils remplacent la réorganisation
des fichiers par des éclatements incrémentaux de chaque fichier.

La recherche dans le domaine de la gestion des données distribuées a montré les mémes
besoins particulierement avec 1’apparition des multi-ordinateurs qui représentent des
réseaux de stations de travail ou ce qui est connu aujourd’hui sous le nom de Peer-to-Peer
[ADO1, SMKBO1] ou Grid Computing [FO1, AO1]. Leur but est la conception de systémes
distribués. La recherche sur les multi-ordinateurs a proposé 1’utilisation de nouvelles
structures de données pour fournir, a haut débit, un bon temps de réponse, sur les gros
volumes de données gérées par ces systemes. Il s’agit des structures de données
distribuées et scalables (SDDSs). Les données d’une SDDS sont réparties dans la
mémoire distribuée d’un multi-ordinateur. Les fichiers SDDS s’adaptent dynamiquement
a l’accroissement du volume des données. Ils montent en échelle d’une maniere
transparente a travers des éclatements distribués, d’ou 1’appellation de fichiers scalables.

Les SDDSs supportent le traitement parallele et assurent des temps d’acceés aux données
beaucoup plus rapides que ceux aux fichiers traditionnels sur disques. Elles permettent le
partitionnement dynamique ainsi que la scalabilit¢ dans les multi-ordinateurs. La
scalabilité (ang. scalability) ou la montée en échelle est donc la capacité d’une application
de maintenir le méme niveau de performances, lorsque la charge augmente et la
configuration matérielle évolue par I’ajout de processeurs et/ou de capacités de stockage.

Le probléme du partitionnement dynamique et de la scalabilit¢ a été largement étudié
pour les systemes de gestion de fichiers [LS90]. Il n’en est pas de méme pour les SGBDs.
Dans un systeme distribué a grande échelle, les bases de données sont nombreuses. La
gestion de données dans un tel contexte pose des problémes de gestion difficiles car les
techniques doivent passer a 1'échelle tout en supportant les nouveaux besoins liés a la
distribution des données. Ces problémes constituent les axes principaux de notre
recherche.

Introduction

1.2 Contribution de la Thése

Dans cette thése, nous nous intéressons au probléme du partitionnement dynamique et de
la scalabilité des bases de données et des tables ainsi que leur acces. Nous avons donc
proposé¢, mis en ceuvre et évalué un systéme de gestion de bases de données distribuées et
scalables. Nous avons étendu 1’architecture de bases de données paralleles dans le but
d’obtenir une nouvelle architecture de SGBD capable de gérer des bases de données et
des tables distribuées et scalables. Nous avons appelé ce systeme SD-SQL Server.

Nous avons congu SD-SQL Server a partir du SGBD SQL Server. Les nceuds de stockage
SD-SQL Server représentent les instances du SGBD SQL Server liées entre elles, qui sont
connues sous le nom de serveurs liés. L architecture du systeme SD-SQL Server supporte
des bases de données et des tables distribuées et scalables. Une base du systeme SD-SQL
Server, dite scalable, grandit par la partition dynamique de ses tables, dites scalables
aussi. Une table scalable est organisée en segments. Chaque segment est placé sur un
neeud de stockage SD-SQL Server. Nous avons utilisé les principes des SDDSs pour gérer
les tables scalables. Une table scalable est alors un ensemble de segments d’une structure
de données distribuées et scalable (SDDS).

SD-SQL Server permet a une table scalable de croitre sur ses différents noceuds distribués.
Cette expansion résulte des éclatements de segments débordant leur capacité de stockage.
Chaque éclatement est déclenché par D’insertion de tuples, qui est a [’origine du
débordement, et crée un ou plusieurs nouveaux segments. Ces nouveaux segments ont le
méme schéma que les segments éclatés. Ce qui différe entre eux est leur plage de valeurs
définies par les contraintes d’intégrité au niveau de chaque segment d’une table scalable.
Les contraintes d’intégrité définissent alors le partitionnement par intervalle de chaque
segment d’une table scalable.

Tout comme les SDDSs, les segments d’une table scalable sont cachés des
usagers/applications derriere des images représentées par des vues supportant les mises a
jour. Les images sont les vues partitionnées et distribuées de SQL Server dynamiquement
ajustées pour toute évolution des partitions. Elles rendent transparent le partitionnement
des tables scalables et ceci en se basant sur les contraintes d’intégrité de leurs segments.
Les usagers/applications n’interfacent que les images ou leur vues. SQL Server est le seul
SGBD qui permet la mise a jour des vues partitionnées, d’ou notre utilisation de ce
SGBD.

Les usagers/applications manipulent les objets du systéme SD-SQL Server en utilisant des
commandes dédiées a SD-SQL Server. Nous avons appelé ces commandes : commandes
SD-SQL Server ou commandes scalables. Ces commandes permettent de gérer les noeuds
de stockage de SD-SQL Server, ses bases de données scalables, ses tables scalables ainsi
que leurs images. Les commandes sur les tables scalables et leurs images (vues)

Introduction

permettent les mémes manipulations que les schémas et les requétes SQL usuels.
Cependant, ces commandes, sont personnalisées afin de traiter la scalabilité¢ et le
partitionnement des tables sur SD-SQL Server. De plus, elles peuvent aussi €tre exécutées
sur des tables non scalables. Nous avons également pris en compte la concurrence entre
les différentes commandes. Afin de préserver la sérialisabilit¢ de ’exécution de ces
commandes, nous avons propos¢ des schémas de concurrence qui évitent les conflits entre
les différentes commandes s’exécutant en paralléle.

La gestion des tables scalables par SD-SQL Server permet de créer un overhead.
Minimiser cet overhead était notre principal objectif. L’analyse des performances du
prototype, en utilisant le benchmark de la base de données (base de test) SkyServer [G02],
montre que I’overhead est négligeable. Les mesures de performance prouvent que la
gestion de tables scalables peut offrir une amélioration de 25% du temps de réponse des
requétes sur des tables scalables.

1.3 Plan de la Theése

Cette these est organisée en deux parties. La premiére partie intitulée Etat de [’Art, situe
cette thése dans son contexte scientifique, et se consacre a 1’état de 1’art en matiere sur les
bases de données paralleles et les structures de données distribuées et scalables. La
deuxieéme partie s’intitule SD-SQL Server : Un systeme de gestion de bases de données
distribuées et scalables. Elle détaille les fondements théoriques, la conception et la
validation expérimentale du systéeme de gestion de bases de données distribuées et
scalables SD-SQL Server.

Dans la premicre partie, nous présentons en détail, dans le chapitre 2, I’ensemble des
notions nécessaires a la compréhension de cette thése. Nous passons en revue les concepts
des SGBDs paralleles. Nous décrivons leurs architectures matérielles, les schémas et
stratégies de partitionnement qu’ils adoptent. Ensuite, nous donnons quelques exemples
de SGBDs paralléles commercialisés ou issus de la recherche. Nous insistons sur le
probléme de partitionnement dynamique sur les SGBDs existants, objet d’étude de cette
these, en présentant un bilan a la fin de ce chapitre.

Le chapitre 3 est consacré a la présentation des structures de données distribuées et
scalables, une nouvelle classe d’organisation de données, définie spécifiquement pour les
multi-ordinateurs. Nous présentons en premier lieu les architectures des systémes répartis
sur lesquelles peuvent reposer de telles structures. Ensuite, nous exposons les principes
de base de ces structures. Nous insistons en particulier sur la famille des SDDSs RP* sur
laquelle notre travail repose.

Dans la deuxiéme partie, le chapitre 4 présente le systéme de gestion de bases de données
distribuées et scalables SD-SQL Server que nous proposons. Nous définissons tout

Introduction

d’abord les objectifs de ce systéme et les régles structurelles nécessaires a sa conception.
Ensuite, nous décrivons en détail I’architecture de SD-SQL avec tous ses composants.

Le chapitre 5 présente ’interface d’application dédiée au systéme SD-SQL Server. Nous
détaillons toutes les commandes du systeme SD-SQL Server qui comprennent : la gestion
des nceuds, des bases scalables, des tables scalables, des images ainsi que la gestion des
requétes.

Le chapitre 6 décrit le prototype SD-SQL Server. Nous commengons par présenter nos
choix techniques pour la mise en ceuvre de SD-SQL Server. Ensuite, nous détaillons les
traitements internes de chaque commande SD-SQL Server.

Le chapitre 7 présente I’environnement expérimental et les mesures de performances.

Le chapitre 8 conclut ce document et présente les perspectives et les axes de recherche qui
pourront étre poursuivis.

PARTIE I :

ETAT DE L’ ART

CHAPITRE

. INTRODUCTION AUX
SYSTEMES DE
GESTION DE BASES
DE DONNEES
PARALLELES

2.1 Introduction

Un systéme de gestion de bases de données (SGBD) est aujourd’hui un logiciel de base
essentiel dans un systeme informatique de gestion. De fagon intuitive, il permet a des
utilisateurs concurrents de manipuler, rechercher, modifier, insérer efficacement des
données contenues dans une base de données. Historiquement, les SGBDs ont connu
plusieurs organisations selon la technique employée pour leur implantation physique.
Ainsi, on est passé¢ des SGBDs centralisés [Gar93] aux SGBDs parall¢les en transitant par
les SGBDs distribués [GVI91]. L’approche centralisée permet a un ensemble
d’applications distribuées d’accéder de fagon efficace a un serveur de base de données
unique. Toutefois, cette approche souffre des limitations traditionnelles des systemes
centralisés. Les développements remarquables faits dans des domaines aussi divers que
les réseaux de communication, les mini et micro-ordinateurs ont permis a 1’approche
bases de données réparties de devenir une solution alternative a la centralisation [V93].
Outre ce besoin de décentralisation, d’autres problémes étaient posés par la suite. Il s’agit
en particulier des volumes de données qui s’accroissent de jour en jour ainsi que des
requétes complexes. La solution qui s’ imposait était alors de combiner la gestion de bases
de données et le traitement parallele afin d’augmenter la performance et la disponibilité
des données [OV99]. Et c’est ainsi que sont apparus les SGBDs paralléles.

Introduction aux systémes de gestion de bases de données paralléles

Ce chapitre passe en revue les principaux concepts des systémes de bases de données
paralleles. Dans la premicére section, nous présentons les architectures matérielles utilisées
par les SGBDs parall¢les. Ensuite, nous nous intéressons aux stratégies et schémas de
partitionnement des données dans la deuxiéme section. Enfin, nous présentons les
concepts utilisés dans quelques SGBDs paralleles connus.

2.2 Architectures Matérielles

Le choix d’une architecture destinée a supporter un SGBD paralléle est guidé par le souci
d’atteindre tous les objectifs de traitements paralléles des transactions et des opérations
tout en garantissant le meilleur rapport prix/performances. Trois architectures ont, jusqu’a
présent, été utilisées comme support pour les SGBDs parall¢les. Nous décrivons dans ce
qui suit ces trois architectures et les architectures hybrides qui tentent de combiner les
avantages de chaque architecture, telles qu’elles sont décrites dans la littérature [DG92,
NZT96, OV99].

2.2.1 Architecture a Mémoires Partagées

Dans D’architecture a mémoires partagées (ang. shared memory), la mémoire est
accessible et partagée par 1’ensemble des processeurs de la machine comme illustré dans
la Figure 2-1. Chaque processeur a un coit uniforme d’acces a la mémoire. Un bus relie
entre eux les ¢léments matériels de la machine : processeurs, mémoires et disques. Cette
architecture permet un acces rapide aux données. De plus, comme les informations de
controle et les informations globales concernant les données sont accessibles par tous les
processeurs, les principes de conception ne sont pas trés différents de ceux d’un SGBD
centralisé. Par contre, la complexité du réseau d’interconnexion due a la nécessité de
relier chaque processeur a tous les modules augmente le colt d’une telle architecture et
limite son nombre de processeurs.

Parmi les systémes de gestion de bases de données qui utilisent ce type d’architecture,
nous citons : XPRS, DBS3 [BCV91] et Volcano [G90]. Pour les systémes commerciaux,
Oracle [D92] et Informix [Da92] proposent des solutions sur ce type d’architecture.

Introduction aux systémes de gestion de bases de données paralléles

Réseau d’interconnexion

Mémoire Globale

< T > <V > <>

Figure 2-1: Architecture a Mémoires Partagées

2.2.2 Architecture a Disques Partagés

L’architecture a disques partagés (ang. shared disk), illustrée dans la Figure 2-2, est basée
sur I’hypothése que chaque processeur a sa mémoire centrale privée, mais les disques sont
partagés par tous les processeurs. Ceci facilite la répartition de la charge de travail tandis
que la mémoire reste distribuée pour ne pas pénaliser I’extensibilit¢ [OV99]. Le disque
partagé offre donc une excellente utilisation des ressources. De plus, il fournit un bon
niveau de tolérance aux pannes avec I’ensemble des données qui restent accessibles tant
qu’il y a au moins un nceud qui fonctionne. Cependant, comme la mémoire n’est pas
partagée, une page disque peut étre dupliquée sur plusieurs nceuds de la machine. Ceci
nécessite la gestion de cohérence entre toutes les copies d’une page. Le surcoiit de la
maintenance de cette cohérence est bien stir I’inconvénient majeur de cette architecture.

Parmi les systémes de gestion de bases de données s’exécutant sur des machines a disques
partagés, nous citons principalement Oracle (Oracle Parallel Server) [D92].

Introduction aux systémes de gestion de bases de données paralléles

Mémoire 1 Mémoire 2 Mémoire n

Lg0

Réseau d’interconnexion

Disque

(EeisG
i

15

Figure 2-2 : Architecture a Disques Partagés

2.2.3 Architecture a Mémoires Distribuées

Dans cette architecture, dite aussi a partage de rien (ang. shared nothing) excepté le
réseau d’interconnexion, rien n’est partagé entre les processeurs. Chaque processeur a sa
propre mémoire centrale et son propre disque comme le montre la Figure 2-3. Le partage
de ressources matérielles et logicielles entre les différents processeurs est donc limité au
minimum. Cette architecture est ainsi facilement extensible. De plus, une bonne
disponibilit¢ des données est assurée grace a leur réplication au niveau de plusieurs
nceuds. Cependant, pour équilibrer la charge de travail entre les processeurs, la
redistribution des données est trés complexe.

De nombreux systémes de gestion de bases de données utilisent ce type d’architecture
notamment NonStopSQL de Tandem [BACC+90], Gamma [DG86] et PRISMA/DB
[AVFG+92].

Réseau d’interconnexion
Mémoire 1 Mémoire 2 Mémoire n

15
it
10

-10 -

Introduction aux systémes de gestion de bases de données paralléles

Figure 2-3 : Architecture 2 Mémoires Distribuées

2.2.4 Architecture Hybride

Une architecture hybride est une combinaison des architectures a mémoires distribuées et
a mémoires partagées. Une telle architecture combine les avantages de chaque
architecture, et compensent leurs inconvénients respectifs. L’architecture hybride illustrée
dans la Figure 2-4 combine 1’équilibre de charge des architectures a mémoire(s)
partagée(s) et I’extensibilité des architectures a mémoire(s) distribuée(s).

Réseau d'interconnexion

Proc 1 Proc 1 Proc 1

Disque Disque Disque

Proc 1

Proc 1 Proc 1

Disque Disque Disque

0o
I
0
I
0
I

Mémoire Mémoire Mémoire

Figure 2-4 : Architecture Hybride

2.3 Partitionnement des Données

Aprées avoir présenté les différentes architectures matérielles des systemes de bases de
données paralleles, nous présentons, dans cette section, le partitionnement de leurs
données. Le partitionnement des données, appelé aussi fragmentation, est 'un des
facteurs critiques qui font d’'un SGBD un systéme performant ou non. La technique de
placement des données utilisée permet de décider de la qualité de la charge assurée par le
systetme. Dans cette section, nous décrivons les différents schémas de partitionnement
ainsi que les stratégies de partitionnement de données.

2.3.1 Schémas de Partitionnement

Le partitionnement d’une table permet a des transactions portant sur des tuples différents
de cette table de s’exécuter de facon concurrente. Ainsi, les applications n’accedent qu’a

-11-

Introduction aux systémes de gestion de bases de données paralléles

des sous ensembles de tables et non a des tables enti¢res. Il existe deux schémas
fondamentaux du partitionnement : le partitionnement horizontal et le partitionnement
vertical [OV99].

2.3.1.1 Partitionnement Horizontal

Le partitionnement horizontal fragmente une table selon ses tuples. Chaque fragment a
alors un sous ensemble de tuples de la table. Il existe deux manicres de partitionner une
table horizontalement : le partitionnement primaire et le partitionnement dérive. Le
premier partitionnement est effectué¢ en utilisant des prédicats définis sur la table elle
méme. Quant au deuxieme partitionnement, il est effectué en utilisant des prédicats
définis sur une autre table.

2.3.1.2 Partitionnement Vertical

Le partitionnement vertical d’une table 7 produit un ensemble de fragments (71, ..., Tn)
contenant chacun un sous ensemble des attributs de 7 en plus de la clé primaire de la table
T. Le partitionnement vertical est beaucoup plus complexe que le partitionnement
horizontal. Ceci est essentiellement dii au grand nombre d’alternatives possibles.

2.3.1.3 Partitionnement Hybride

Dans la plupart des cas, un partitionnement horizontal ou vertical simple d’une base de
données ne satisfait pas les demandes des applications. Dans ce cas, un partitionnement
horizontal peut étre suivi par un partitionnement vertical ou vice versa.

2.3.2 Stratégies de Partitionnement de Données

Aprés avoir présenté les schémas de partitionnement des données dans un SGBD
parallele, nous présentons dans ce qui suit les différentes méthodes ou stratégies suivies
pour obtenir ces schémas. Plusieurs stratégies de partitionnement ont été proposées : le
partitionnement circulaire [T88], le partitionnement par hachage [KTMS88] et le
partitionnement par intervalle [DGG+86].

2.3.21 Partitionnement Circulaire

Le partitionnement circulaire (ang. Round Robin) est implanté dans les systemes RAID
(Redundant Arrays of Independant Disks) [PGK88]. Il est considéré comme la stratégie la
plus simple pour le partitionnement des données. Cette stratégie garantit une distribution
uniforme des données. Elle permet de partitionner une table en fragments de méme taille

-12-

Introduction aux systémes de gestion de bases de données paralléles

entre des nceuds distribués. Si N est le nombre de partitions d’une table, alors le i-éme
tuple de cette table est affecté a la partition de numéro (i mod N). Les tuples sont placés
en fonction de leur numéro d’ordre. La premic¢re donnée sera placée sur le premier
processeur. La seconde sur le deuxiéme et ainsi de suite jusqu’a placer la nouvelle donnée
sur le dernier processeur. La Figure 2-5 décrit la stratégie du partitionnement circulaire.

L’avantage majeur du partitionnement circulaire est I’optimisation du temps de réponse
des requétes tout en permettant un acces séquentiel et paralléle aux données. Cependant,
cet acces nécessite le parcours de toutes les partitions d’une table, ce qui entraine
inévitablement une dégradation des performances. De plus, le probléme avec cette
technique est que les applications désirent souvent accéder aux tuples de fagon
associative, ce qui n’est pas possible avec cette technique.

[T

Figure 2-5 : Partitionnement circulaire

2.3.2.2 Partitionnement par Hachage

La stratégie de partitionnement par hachage (ang. Hashage Partitioning), illustrée dans
la Figure 2-6, distribue 1’ensemble des tuples en utilisant une fonction de hachage % sur un
ensemble d’attributs. La fonction de hachage retourne le numéro du serveur dans lequel le
tuple sera rangé. Elle convient aux applications qui veulent accéder aux données de fagon
séquentielle et associative. L’accés associatif aux tuples ayant une valeur d’attribut
spécifique peut étre dirigé vers un seul disque, évitant ainsi le surcolit dii a un lancement
de requétes sur plusieurs disques.

Il existe deux méthodes de hachage: hachage statique et hachage dynamique.
Tant qu’il n’y a pas de débordements, le hachage statique est trés simple et donne
d’excellentes performances. Cependant, les débordements dégradent rapidement les
performances. Le hachage dynamique permet de faire grandir progressivement un fichier
haché saturé en distribuant les tuples dans de nouvelles régions allouées a une table. Deux
méthodes du hachage dynamique s’aveérent importantes : le hachage extensible et le
hachage linéaire.

-13-

Introduction aux systémes de gestion de bases de données paralléles

O Hachage Extensible

Le hachage exensible [FNPS79] est une méthode de hachage dynamique qui associe a
chaque fichier un répertoire des adresses de paquets. Au départ, M bits de la fonction de
hachage sont utilisés pour adresser le répertoire. A la premiére saturation d’un paquet, le
répertoire est doublé, et un nouveau paquet est alloué¢ au fichier. Le paquet saturé est
distribué entre 1’ancien et le nouveau paquet, selon le bit suivant (M+1) de la fonction de
hachage. Ensuite, tout paquet plein est éclaté en deux paquets, lui-méme est un nouveau
paquet allou¢ au fichier. L’entrée du répertoire correspondant au nouveau paquet est mise
a jour avec I’adresse de ce nouveau paquet si elle pointait encore sur le paquet plein.
Sinon, le répertoire est a nouveau doublé.

Le hachage extensible consiste alors a éclater un paquet plein et a mémoriser 1’adresse des
paquets dans un répertoire adress¢ par les (M+P) premiers bits de la fonction de hachage,
ou P est le nombre d’éclatements maximal subi par les paquets. Le hachage extensible est
plus robuste face aux mauvaises distributions de clés que le hachage linéaire comme nous
le présenterons dans la section suivante. Par contre, la gestion d’un répertoire est plus
lourde que celle d’un pointeur courant.

O Hachage Linéaire

Cle hachage linéaire [L80] est une méthode de hachage dynamique nécessitant la gestion
du débordement et consistant a :

o éclater le paquet pointé par un pointeur courant quand un paquet est plein ;

o mémoriser le niveau d’éclatement du fichier afin de déterminer le nombre de bits de
la fonction de hachage a appliquer avant et apres le pointeur courant.

Le hachage linéaire peut aussi s’implémenter avec un répertoire. Dans ce cas, le pointeur
courant est un pointeur sur le répertoire : il référence I’adresse de paquet suivant a éclater.

L’avantage du hachage linéaire est alors la simplicité¢ de I’algorithme d’adressage du
répertoire : on utilise (M+P) bits de la fonction de hachage. Si on est positionné avant le
pointeur courant, on utilise un bit de plus, sinon on lit I’adresse du paquet dans le
répertoire. A chaque éclatement, le répertoire s’accroit d’une seule entrée.

Le hachage linéaire est utilisé par plusieurs SGBDs. Notamment SQL Server, Postgres,
DB Library (Oracle), et MySQL. Les manuels, en ligne de chaque systeme, détaillent
I’'usage de I’algorithme.

-14-

Introduction aux systémes de gestion de bases de données paralléles

Figure 2-6 : Partitionnement par hachage

2.3.2.3 Partitionnement par Intervalle

La stratégie de distribution par intervalles (ang. Range Partitioning), illustrée dans la
Figure 2-7, distribue les tuples d’une table en fonction de la valeur d’un ou de plusieurs
attributs, formant alors une valeur unique dite c/é, par raport a un ordre total de I’espace
des clés. Les fonctions de hachage en général n’offrent pas ce type de partition. Les
attributs formant la clé sont appelés alors aussi attributs ou clés de partitionnement. La
table ou le fichier partagé sont dits ordonnés. La méthode générale du partitionnement par
intervalle consiste en deux phases. La premiére phase permet de diviser 1’espace des
valeurs des attributs sélectionnés en intervalles puis chaque intervalle est affect¢ a un
nceud. Quant a la deuxieme phase, elle assigne chaque tuple ¢ au nceud 7 si les valeurs
d’attributs spécifiés du tuple ¢ appartiennent a 1’intervalle de 7.

La stratégie de partitionnement par intervalle convient aux requétes dont le prédicat
implique les attributs de partitionnement et donc les requétes par intervalle. Cependant,
elle ne garantit pas un équilibre de charge entre les nceuds.

Dans ce qui suit, nous décrivons une des méthodes de partitionnement par intervalle les
plus utilisées, qui est la méthode des arbres-B [BM72].

U Arbres-B

Les arbres-B ont été¢ introduits afin de corriger le principal défaut des méthodes de
partitionnement ordonné connu avant dit /ndexed Sequential Access Method (ISAM),
d’IBM [IBM78]. Cette méthode générait une partition statique. Un fichier grandissant
nécessitait périodiquement une réorganisation globale. Cette contrainte posait des
problémes évidents aux applications et usages. Les arbres-B ainsi que ’organisation
largement similaire introduite par IBM a I’époque dite Virtual Sequential Access Method
(VSAM) [IBM78], évitaient cet avatar. L’idée bien connue dépuis était celle de
I’éclatement de toute page (case...) du fichier organisé en arbre m-aire, ou une insertion
créeait un débordement.

-15 -

Introduction aux systémes de gestion de bases de données paralléles

En quelques mots, puisque les arbres-B sont trés connus, les clés d’un arbre-B sont triées
selon I’ordre post-fix¢é induit par 1’arbre, afin de permettre les recherches en un nombre
d’acces n’excédant pas le niveau de I’arbre-B. L’utilisation des arbres-B « originaux »
pour réaliser des tables indexées conduit néanmoins a un taux d’acces aux disque durant
le parcours des noeuds internes qui peut étre aisément amélioré. Les arbres dit B+ atteint
cet objectif, en ne mettant dans les nceuds internes que les clés et les pointeurs. C’est cette
version qui est actuellement la plus utilisée

a-g h-m "an u-z

Figure 2-7 : Partitionnement par intervalle

2.3.3 Traitement Paralléle des Données

Pour atteindre de hautes performances, un SGBD exploite le parallélisme pour les
requétes exprimées dans un langage d’assertions [K95, ACP+99, OV99]. Le traitement
parallele est utilisé afin de maximiser le débit d’un systeme distribué¢ en réduisant le
temps total des requétes d’une part, et de minimiser le temps de réponse des requétes
d’autre part. Le partitionnement de données fournit des opportunités de traitement
parallele. Plus précisément, deux formes de parallélisme sont obtenues directement a
partir du partitionnement des données. Le parallélisme inter-requéte permet 1’exécution
paralléle de plusieurs requétes, chacune agissant sur des partitions différentes. Le
parallélisme intra-requéte permet [’exécution parallele de plusieurs opérations
relationnelles a I'intérieur de la requéte méme. Une méme opération peut étre traitée par
plusieurs processeurs. Il s’agit du parallélisme intra-opération.

Il existe trois mécanismes de base pour réaliser le parallélisme des traitements : le
parallélisme indépendant, le parallélisme en tuyau et le parallélisme par fragmentation.

2.3.3.1 Parallélisme Indépendant

Le parallélisme indépendant (ang. Independent Parallelism), illustré dans la Figure 2-8,
permet d’exécuter en paralléle plusieurs opérations indépendantes d’'une méme tache ou
requéte.

-16 -

Introduction aux systémes de gestion de bases de données paralléles

Données Données

partitionnée

Figure 2-8 : Parallélisme indépendant

2.3.3.2 Parallélisme en Tuyau

Le parallélisme en tuyau (ang. Pipelined Parallelism), illustré dans la Figure 2-9, est
utilisé dans le cas ou le résultat d’'une opération constitue les données d’entrée pour
I’opération suivante.

Données

pipeline

Figure 2-9 : Parallélisme en tuyau

2.3.3.3 Parallélisme par Fragmentation

Le parallélisme par fragmentation (ang. Partitioned Parallelism), illustré da la Figure
2-10, permet de fragmenter la charge de travail entre plusieurs processus. Cela nécessite a
la fin une fusion des résultats partiels pour produire le résultat final.

Données

éclatement

Figure 2-10 : Parallélisme par fragmentation

-17-

Introduction aux systémes de gestion de bases de données paralléles

2.4 Administration de Partitions des Principaux
SGBDs

Dans ce qui suit, nous présentons les principaux concepts de quelques prototypes de
SGBDs parall¢les issus de la recherche et commercialisés. Nous décrivons en particulier
leur partitionnement des données auquel nous nous intéressons dans notre travail.

2.4.1 Prototypes de SGBDs Parall¢les issus de la Recherche

2.4.1.1 DBC/1012 de Teradata

Teradata est une SGBD développé pour la gestion des entrpdts des données [T85]. 1l a été
construit pour fonctionner sur plusieurs serveurs. Les serveurs Teradata travaillent
comme serveurs SQL pour des programmes clients situés sur des ordinateurs
conventionnels. Les systémes Teradata peuvent inclure plus d’un millier de processeurs
et plusieurs milliers de disques. Les processeurs Teradata sont fonctionnellement divisés
en deux groupes : les processeurs interfaces (IFPs) et les processeurs d’acces (APs) [T88].

Les IFPs geérent la communication avec I’hote, la compilation, I’exécution des requétes et
la coordination des APs durant I’exécution des requétes. Chaque AP dispose de plusieurs
disques et d’une grande mémoire cache. Chaque table est partitionnée sur un ensemble
d’APs par adressage dispersé. Lorsqu’un tuple est inséré dans une relation, une fonction
de hachage est appliquée a la clé primaire du tuple afin de sélectionner 1I’AP sur lequel il
va étre stocké. Lorsqu’un tuple arrive a un AP, une autre fonction de hachage lui est
appliquée afin de déterminer sa position dans son fragment. Les tuples de chaque
fragment sont ordonnés.

Teradata a installé plusieurs systémes contenant plus de cent processeurs et des centaines
de disques. Ces systémes ont démontré une accélération (Speed-up) et une possibilité
d’extension (Scale-up) presque linéaires, dépassant de loin les vitesses des machines
dédices traditionnelles dans le traitement de grandes bases de données (Terabytes).

2.4.1.2 Gamma

Gamma, développé a I’'université du Wisconsin, est I’un des systémes pionniers pour les
architectures paralleles a mémoire distribuée. Il en est aussi ’'un des plus représentatifs.
La version actuelle de Gamma est implantée sur un hyper-cube de32 nceuds iPSC/2 avec
un disque attaché a chaque nceud. Dans Gamma, toutes les relations sont fragmentées
horizontalement sur I’ensemble des noeuds du systéme, permettant ainsi de profiter pour
chaque relation de toute la bande passante I/O du systeme matériel. Trois méthodes de

-18 -

Introduction aux systémes de gestion de bases de données paralléles

fragmentation des données sont disponibles: Round-Robin, par hachage et par intervalle
de valeurs [DGG+86].

Le mode¢le d’exécution des requétes introduit par Gamma est le modele bracket. C’est un
modele générique de processus utilis€é pour chaque type d’opérateurs (sélection,
jointure,...). Chaque processus peut recevoir et envoyer des données pour I’opérateur qu’il
contient et ne peut exécuter plus d’un opérateur a la fois.

L’entrée et la sortie d’un processus opérateur sont un flot de tuples. Le flot en sortie est
dé-multiplexé grace a une structure particuliere appelée split table. Cette table définit une
correspondance entre un ensemble de valeurs et un ensemble de processus destination.
Lorsqu’un processus produit un tuple, il utilise cette table comme un index afin d’obtenir
I’adresse (numéro) du processus destination a méme de consommer le tuple produit. Trois
types de split table sont utilisés suivant que les processus destination utilisent une relation
stockée en Round-Robin, par hachage ou par intervalle de valeurs.

2.4.2 SGBDs Commercialisés

24.2.1 Microsoft SQL Server

Le concept de partitionnement n'est pas nouveau dans SQL Server. En fait, chaque
version du SGBD (version 6, 7, 2000 et 2005) autorise déja des formes de
partitionnement. Microsoft SQL Server prend en charge le partitionnement des données
par l'intermédiaire de vues partitionnées dans SQL Server 7.0/2000. Dans SQL Server
2000, la fonctionnalité a été améliorée afin de prendre en charge les vues partitionnées
pouvant €tre mises a jour. Une vue partitionnée est particulierement adaptée lorsqu’une
table peut étre naturellement partitionnée ou divisée en tables distinctes par plages de
données. Les tables sous-jacentes de la vue partitionnée font 1’objet d'une union afin de
présenter un ensemble de données unifié. Les vues partitionnées réduisent
considérablement la complexit¢ des applications, car I’implémentation physique est
déduite des méthodes d’accés aux données par 1’application.

Dans SQL Server 2000, les vues partitionnées peuvent étre étendues afin d’inclure des
vues partitionnées distribuées, ce qui permet la fédération des bases de données sur
plusieurs serveurs/instances [BMO00].

Dans SQL Server 2005, les fonctions de partitionnement des tables et index offrent
flexibilité et performances et simplifient la création et la maintenance de telles tables.
SQL Server 2005 permet le partitionnement horizontal par plage avec la ligne de données
comme plus petite unité de partitionnement [T05].

Les partitions par plage sont des partitions de table définies par des plages
personnalisables de données. L’utilisateur définit la fonction de partition avec des valeurs

-19 -

Introduction aux systémes de gestion de bases de données paralléles

limites, un schéma de partition avec mise en correspondance des groupes de fichiers, ainsi
que des tables mises en correspondance avec le schéma de partition. Une fonction de
partition détermine a quelle partition appartient une ligne particuliére d’une table ou d’un
index. Chaque partition définie par une fonction de partition est mise en correspondance
avec un emplacement de stockage (groupe de fichiers) via un schéma de partition.

2.4.2.2 Oracle

La version paralléle d’Oracle (Oracle Parallel Server) peut fonctionner sur des machines
de type «réseau de station ». Toutefois, le modele d’exécution retenu est le mode a disque
partagé, et chaque processeur (ou plus exactement, 1’instance d’Oracle fonctionnant sur
chaque processeur) dispose donc d’un acces direct a tous les disques. Une telle approche
suppose que I’acceés aux disques soit particuliérement rapide et efficace, aussi
I’implantation se fait-elle de préférence sur des systémes possédant un réseau
d’interconnexion rapide. De plus, les entrées/sorties sont limitées grace a un gestionnaire
de verrous distribués qui permet aux différents noeuds de conserver un verrou sur une ou
plusieurs pages de données entre deux transactions [D92].

Le partitionnement permet de découper une table et/ou un index sur un ou plusieurs
criteres logiques. La table se comporte alors comme plusieurs tables de dimensions plus
petites. La distribution des données supporte la mise en place d’un index sur chaque
partition, ainsi que la possibilit¢ d’un index global correspondant a I’assemblage de
I’index de chaque partition. L’exécution des requétes est parallélisée grice a un
coordinateur de requétes, qui se charge de diffuser les sous taches paralleles aux différents
nceuds concernés puis de récupérer les résultats produits.

2423 DB2

L’¢édition parallele de DB2 (PE DB2) est une solution logicielle de base de données qui
peut s’exécuter sur n’importe quelle plate-forme parall¢le. Son modéle d’exécution est
basé sur une architecture multi-ordinateur sans mémoire partagée dans laquelle le systéme
de bases de données se compose de plusieurs nceuds logiques indépendants. Chaque noeud
logique représente une collection de ressources systémes comprenant, un processeur, une
mémoire centrale, un disque et une carte réseau. L’ensemble est contrdlé par un
gestionnaire de bases de données autonome. La communication entre les nceuds logiques
est basée sur des échanges de messages [B95].

Les tables sont fragmentées a travers les nceuds en utilisant une stratégie par hachage. Un
utilitaire de maintenance permet de redistribuer les données entre les différents noeuds
pour équilibrer la charge du systéme. L’optimiseur de données tient compte de
I’information de hachage des tables pour produire les plans d’exécution des requétes.

-20 -

Introduction aux systémes de gestion de bases de données paralléles

Sous DB2, une base de données peut étre également fragmentée en plusieurs parties
distinctes appelées partitions [M93]. Les enregistrements d’une table de la base de
données peuvent Etre répartis sur plusieurs partitions. Chaque partition de bases de
données a son propre journal de transaction et ses propres tables d’index.

2.4.3 Bilan

Avoir un partitionnement efficace dans les systemes de bases de données paralléles a été
I’objectif de nombreuses ¢tudes depuis plusieurs années. Des travaux ont été lancés sur la
réorganisation dans le partitionnement avec notamment quelques résultats comme nous
venons de le présenter dans notre étude des principaux SGBDs. Toutefois, dans tous les
SGBDs parall¢les, le partitionnement reste statique que ce soit pour les SGBDs
commercialisés ou ceux issus de la recherche. Si une table grandit, une intervention
manuelle est nécessaire pour la partitionner.

Une solution intéressante semble émerger : rendre le partitionnement des données
dynamique, ce qui est appelé aussi la réorganisation on-line. Plusieurs travaux de
recherche ont été proposés pour remédier aux problémes liés au partitionnement statique
des SGBDs parall¢les actuels. Il y a la contribution des éditeurs dans [SL96], a la
conception de deux méthodes de réorganisation on-line qui sont respectivement la
réorganisation en-place (ang. in-place) et la réorganisation nouvelle-place (ang. new-
place).

o La réorganisation en-place crée une nouvelle structure de disque pour y basculer
les traitements.

o La réorganisation nouvelle-place place les données parmi les pages de disque aussi
longtemps qu’il y a des places pour les données.

Parmi les contributions dans [SL96], il y a aussi la proposition de la commande de
Placement de la limite de Partition (ang. Move Partition Boundary) dans le systéme
Tandem Non Stop SQL/MP. Cette commande concerne les changements on-line des
partitions de bases de données adjacentes. La nouvelle limite ou frontiere diminue la
charge de n’importe quelle partition proche qui est pleine en assignant quelques tuples
dans une partition moins chargée. Cependant, la commande Move Partition Boundary
reste une opération manuelle. De plus, cette commande est seulement décrite, aucune
réalisation n’a été faite.

Les plus récentes stratégies de réorganisations on-line sont celles proposées dans
[RZLMO2]. 1I s’agit d’utiliser un conseiller automatique (ang. automatic advisor) qui
¢quilibre la charge de bases de données DB2 selon des réorganisations périodiques.
Cependant, ce conseiller n’est juste qu’un utilitaire offline de DB2. Autrement dit, il ne
s’exécute pas réellement d’une fagcon automatique et son utilisation reste manuelle.

-21 -

Introduction aux systémes de gestion de bases de données paralléles

Une autre proposition dans [GGO05] décrit une autre technique sophistiquée de
réorganisation basée sur le regroupement de bases de données (ang. clustering). Cette
technique est appelée Autoclust. Elle extrait des ensembles fermés puis regroupe les
enregistrements selon les clusters d’attribut. Le traitement AutoClust commence lorsque
la moyenne du temps de réponse d’une requéte de suppression par exemple suit le seuil
défini par I’utilisateur. Cependant, cette technique n’est toujours pas mise en pratique.

2.5 Conclusion

Tout au long de ce chapitre, nous avons évoqué des éléments fondamentaux pour la
compréhension des systémes de bases de données paralléles auxquels nous allons faire
référence dans les chapitres suivants. Nous pouvons conclure que le succes des produits
commerciaux et des prototypes issus de la recherche a démontré la viabilité des machines
de bases de données parall¢les. Cependant, plusieurs problémes restent non résolus dont
principalement les algorithmes de partitionnement supportant les relations a distribution
non uniforme. Lorsque le critére utilisé pour le placement change au point de dégrader
I’équilibrage de la charge, une réorganisation dynamique devrait étre faite. Une solution
intéressante est d’effectuer une telle réorganisation « on-line » de manicre efficace (a
travers le parallélisme) sans interrompre les transactions qui arrivent. De plus cette
réorganisation doit étre transparente aux programmes qui s’exécutent sur le systéme
paralléle.

Dans le chapitre suivant, nous présenterons une classe de technique qui permet le
partitionnement dynamique. Il s’agit des structures de données distribuées et scalables
(SDDSs).

-22-

CHAPITRE

3 LES STRUCTURES DE
DONNEES
DISTRIBUEES ET
SCALABLES

3.1 Introduction

L’explosion et la complexité des données rendent les bases de données de plus en plus
volumineuses. Pour faire face a cela, les noyaux des SGBDs doivent alors tirer le meilleur
parti des nouvelles architectures de machines. Les structures de bases de données
distribuées et scalables - SDDSs - ont été proposées pour constituer de telles architectures
[LNS93a, LN93b]. Elles permettent de fournir un mécanisme général d’acces a des
données réparties dynamiquement. Ces structures assurent des temps d’acces beaucoup
plus courts que les temps d’acceés aux données stockées sur les disques.

Ce chapitre présente les principes de base des SDDSs. Nous commengons par présenter
les principales architectures des systémes distribués, en particulier celles utilisées par les
SDDSs. Ensuite, nous définissons la scalabilité et nous enchainons avec la présentation
des principes des SDDSs. Nous insistons en particulier sur la famille RP* des SDDSs que
nous utiliserons par la suite dans nos travaux.

3.2 Architecture des Systémes

Dans ce qui suit, nous décrivons les différentes architectures distribuées appliquées aux
systémes de gestions de bases de données [G94, GGI6, P04].

-23-

Les Structures de Données Distribuées et Scalables

3.2.1 Architecture Client/Serveur

L’architecture Client/Serveur est un modéle d’architecture qui met en jeu une répartition
entre des serveurs et des clients. Les serveurs geérent tout ce qui concerne les données :
traitement de requétes, gestion de transactions, optimisation, etc. Les clients constituent
un support pour les applications et les interfaces utilisateurs. Ils envoient leurs requétes
aux serveurs sans les optimiser et les serveurs effectuent le traitement et retournent les
réponses des requétes aux clients. La Figure 3-1 illustre cette architecture.

11 existe plusieurs variantes de 1’architecture Client/Serveur :

0 Multiple-client-single-server, appelée aussi architecture mono-tache, ou un serveur
est associ¢ a chaque utilisateur. L’inconvénient majeur de cette architecture ne
différe pas trop de celui des bases de données centralisées puisque la base est
stockée sur seulement une machine (le serveur).

o Multiple-client-Multiple-server, appelée aussi architecture multi-tdiches, ou un
serveur est capable de traiter plusieurs requétes clients en paralléle. Une telle
architecture permet de meilleures performances en présence d’un nombre important
d’utilisateurs. Cependant, cette architecture peut conduire a un client lourd si
chaque client gére ses propres connexions a son serveur, ou un client maigre si les
fonctionnalités de gestion sont concentrées sur les serveurs.

& &
&. " ij@

Client Client

Client Client

S

Client Client

Figure 3-1: Architecture Client/Serveur

3.2.2 Architecture Pair a Pair

Le principe de I’architecture Pair a Pair (ang. Peer to Peer, P2P) est la mise en commun
de leurs ressources par un grand nombre de participants afin de fournir un service

-24 -

Les Structures de Données Distribuées et Scalables

commun. Par exemple, un tel service commun peut correspondre a un service de stockage
de données ou a un systeme de calcul. Cette architecture fortement distribuée, comme
illustré dans Figure 3-2, est souvent obtenue en exécutant des programmes identiques sur
un grand nombre de machines. Cela permet d’obtenir un certain nombre de bonnes
propriétés comparativement aux systémes basés sur 1’architecture client/serveur. En effet,
les systémes pair a pair sont souvent plus tolérants aux pannes, passent plus facilement a
I’échelle, et sont plus adaptatifs que leurs contreparties client/serveur. Parmi les sytémes a
architectures pair a pair, nous citons Napster, Gnutella et SETI@home (acronyme de
Search for Extraterristrial Intelligence at Home) [SO1].

t

Server/Cli Sefver/Client

S
Serve#ﬂe:t

S
Server/Client oerver/Client

lient

Figure 3-2 Architecture Pair a Pair

3.3 Les SDDSs

Avant de présenter le concept de la scalabilié et les principes des SDDSs, nous
commengons par définir les multi-ordinateurs, le réseau pour lequel les SDDSs ont été
introduites.

3.3.1 Les Multi-ordinateurs

Des recherches avancées sont menées pour mieux exploiter la puissance de calcul d’un
ensemble d’ordinateurs interconnectés a travers des réseaux a haut débit (>100bits/s),
[G96, CACM97, GW97, MC99]. De telles configurations existent déja dans plusieurs
organisations. Des termes sont apparus pour désigner les machines organisées de la sorte :
multi-ordinateurs, réseau de stations de travail ou plus récemment de Grid computing.
Les capacités cumulées de traitement paralléle et de stockage d’un multi-ordinateur sont
impressionnantes et méme supérieures aux performances des gros systémes. De telles

-25-

Les Structures de Données Distribuées et Scalables

configurations sont évolutives et exploitent au mieux les progrés constants au niveau du
matériel.

Les multi-ordinateurs se caractérisent par la maniere dont leurs composants de base (la
mémoire principale, le processeur et les mémoires secondaires) sont interconnectés.

3.3.2 Concept de Scalabilité

La scalabilité (ang. scalabilty) est une caractéristique des architectures multiprocesseur.
Elle permet a une base de données d’utiliser des ressources additionnelles de manicre
optimale. La scalabilité est ainsi définie comme étant la capacité d’une application a
maintenir le méme niveau de performance lorsque la charge augmente [G93, G99]. Deux
parametres principaux mesurent la scalabilit¢ d’un systeéme, il s’agit de : speed-up et
scale-up :

1. Speed-up, appelé aussi le facteur de rapidité, mesure la diminution du temps de
réponse d’une requéte pour une taille de base de données constante et une
augmentation des capacités de la configuration (nombre de noeuds). Autrement
dit, si la capacité augmente d’un facteur de », alors dans un systéme scalable, le
temps de réponse d’une requéte diminue d’un facteur de n. La Figure 3-3 illustre
le facteur de la rapidité.

A Speed-up
Linéaire
(idéal)

Sous-inéaire
(usuel)

Nombre de noeuds

Figure 3-3 : Courbe idéale du Facteur de Rapidité.

2. Scale-up, appelé aussi le facteur d’échelle, mesure la conservation du temps de
réponse d’une requéte de réponse pour une augmentation proportionnelle de la
taille de la base de données et des capacités de la configuration. Autrement dit, si
la taille d’une base de données augmente d’un facteur de n, alors il suffit
d’augmenter la capacité de la configuration. La Figure 3-4 illustre le facteur de
d’échelle.

-26 -

Les Structures de Données Distribuées et Scalables

AScaIe-up

Sous-inéaire
(usuel)

Linéaire
(idéal)

-
Quantité de Données

Figure 3-4 : Courbe idéale du Facteur d’Echelle

3.3.3 Principes des SDDSs

Les SDDSs présentent une nouvelle classe d’organisation de données définies
spécifiquement pour les multi-ordinateurs. Elles sont proposées pour contourner les
insuffisances des structures de données distribuées classiques qui se résument
en particulier dans I’acces centralisé et la fragmentation statique des données [WBW94,
KW94, LNS94, KLR94].

Les SDDSs sont congues principalement selon 1’architecture Client/Serveur. Elles
difféerent des autres schémas de gestion de données distribuées dans le fait qu’elles
permettent une extension du nombre de serveurs tout en maintenant un colit minimal.
Dans les schémas classiques, 1’ajout d’un nouveau serveur nécessitera une réorganisation
totale des données, ce qui est trés colteux. Tandis que, les SDDSs gerent 1’extension du

nombre de serveurs d’une maniére transparente et dynamique en éclatant les serveurs
débordés.

L’éclatement est basé sur un parametre important d’un serveur SDDS, qui est sa capacité
maximale en nombre d’enregistrements. Ainsi, pour toute insertion d’enregistrements, le
serveur SDDS vérifie si la taille maximale est atteinte. Dans le cas ou la capacité est
atteinte, il lance I’éclatement de ce serveur en transférant la moitié de ses enregistrements
sur un nouveau serveur. L’éclatement est bas¢ sur les champs clé des enregistrements.

Quant au client SDDS, il dispose d’une image de la structure du fichier. Celle-ci
représente les adresses des serveurs ou se trouvent les enregistrements. Afin de minimiser
les colits de communication entre clients et serveurs et éviter tout goulot d’étranglement,
les mises a jour de la structure SDDS ne sont pas envoyées au client d’une maniére
synchrone. Un client peut alors faire une erreur d'adressage de requéte. Si une erreur est
détectée, le serveur cible vérifie I’adresse de requéte et ’envoie au serveur adéquat. Ce

.27.-

Les Structures de Données Distribuées et Scalables

dernier envoie alors un message correctif au client ayant fait I’erreur d’adressage. Ce
message correctif est appelé Image Adjustment Message (IAM). Enfin, le client ajuste son
image.

La distribution des enregistrements sur 1’ensemble des serveurs est réalisée
essentiellement selon deux stratégies : par hachage linéaire (LH*) ou par intervalle (RP*).
D’ou les deux familles principales des SDDS : SDDS LH* et SDDS RP*.

3.3.3.1 Les SDDS LH*

La famille des SDDSs LH* est une version distribué¢e du hachage linéaire [LNS96]. Elle
est basée sur un algorithme de hachage extensible qui étend progressivement I’espace
d’adressage primaire d’un fichier disque [LNS93a]. Le fichier s’étend alors et se rétrécit
de mani¢re dynamique afin d’éviter les débordements et donc la détérioration des
performances d’acces. Plusieurs variantes de LH* ont été proposées notamment LH*| j et
LH*gs, comme illustré dans la Figure 3-5.

o LH*_y [KLR94] utilise deux niveaux d’indexation. Le premier niveau correspond a
LH* et permet aux clients d’accéder aux serveurs pour exécuter une requéte. Le
deuxiéme niveau permet I’indexation interne des données suivant I’algorithme LH.

o LH*rs [LMRS99, LS00] supporte la haute disponibilité. Elle permet la
reconstitution des données perdues suite a une panne d’un ou de plusieurs serveurs.
Elle utilise pour cela les codes de Reed Solomon qui mettent en ceuvre un calcul de
parité.

3.3.3.2 Les SDDS RP*

Cette famille des SDDSs réalise la fragmentation dynamique par intervalle [LNS94]. Elle
est basée sur la technique des arbres-B+ distribués [VBWS98].

-28 -

Les Structures de Données Distribuées et Scalables

LH*, LH*LH
DDH, LH*RAIS
Breitbart& al

K-RP*, K-RP*c,
k-RP*s

RP*y, RP*c, RP*g
Kroll, Widmayer
& Baton

Figure 3-5 : Les familles des SDDSs

Dans ce qui suit nous insistons sur les SDDS RP* sur lesquelles repose notre travail.

3.4 Les SDDSs RP*

Les SDDSs RP* permettent de préserver ’ordre des données [LNS94]. Elles possédent
trois variantes : RP*n, RP*c et RP*s [K73, C79, KS86].

o La premiére variante RP*n définit un partitionnement ordonné comme un arbre B+
mais sans aucun index. Elles utilisent des messages multicast envoyés a tous les
serveurs et seul le serveur concerné répond par un message unicast (point a point).

o La seconde, RP*c, est un fichier RP*n muni d’index construits au niveau des clients
a travers des IAMs. Chaque client a une image du fichier réparti sur I’ensemble des
serveurs et en cas d’erreur d’adressage, le serveur ayant recu la requéte fait une
redirection par multicast vers les autres serveurs et le serveur concerné répond en
envoyant un message correctif IJAM a I’initiateur de la requéte.

o Et enfin la troisiéme variante RP*s, elle ajoute a RP*c les index au niveau des
serveurs, ce qui procure l’avantage d’utiliser des messages umicast en cas de
redirection de la requéte.

Aprées avoir présenté les différentes variantes d’une SDDS RP*, nous décrivons dans ce
qui suit la structure et la manipulation d’un fichier SDDS RP* ainsi que la structure d’une
image RP*.

-29-

Les Structures de Données Distribuées et Scalables

3.4.1 Structure d’un fichier SDDS RP*

La structure d’un fichier RP* est similaire a celle d’un arbre-B+ (variante d’arbres-B
implémenté en mémoire centrale). Chaque fragment d’un fichier correspond a une case
pouvant contenir un maximum de b enregistrements. Ces fragments sont stockés au
niveau de la mémoire centrale des serveurs. A chacune des cases, est associé un intervalle
de clés borné par une clé¢ minimale et une clé maximale. Ainsi, un enregistrement de clé
C appartiendra a la case d’intervalle [Chusin, Crax/ 81 Cuiin <c< Cpar. L’ensemble des
cases constituera un ensemble de clés ordonnées.

Initialement, un fichier RP* est composé d’une seule case avec un intervalle initial /-oq
+oof. Toutes les insertions se font dans cette case jusqu’au dépassement de sa capacité
maximale. Un éclatement est alors provoqué transférant vers un nouveau serveur tous les
enregistrements (au nombre de b/2) dont la clé est supérieure a la clé médiane de la case.

Un gestionnaire de fichiers RP* a été proposé et implant¢ [DL00O, DLOI, DO1]. Son
prototype, appelé SDDS 2000, est téléchargeable du site web du CERIA [DO1-p].

3.4.2 Manipulation d’un fichier SDDS RP*

Les clients effectuent diverses opérations sur les fichiers présents dans les mémoires des
différents serveurs en envoyant des requétes aux serveurs concernés. Ces opérations
concernent la mise a jour, la suppression et I’insertion de nouveaux enregistrements...etc.
On distingue deux types de requétes :

3.4.21 Requéte Simple

Elle correspond a la recherche, a 1’insertion, a la suppression ou a la mise a jour d’un
enregistrement de clé cou encore au stockage et chargement des enregistrements
constituant une case d’un fichier se trouvant sur différents serveurs.

3.4.2.2 Requéte Parallele

Ces requétes concernent la recherche ou insertion d’un ensemble d’enregistrements
appartenant a un intervalle de clés. On appellera cet intervalle I’intervalle de la requéte.

3.4.3 Structure d’une Image SDDS RP*

Une image RP* est une collection d’intervalles et d’adresses des sites qui traduit la
répartition des enregistrements sur les cases et les serveurs qui les hébergent. Elle est
représentée par une table dynamique 7/0,1,.../]. Chaque ¢lément 7/i] de cette table,

-30 -

Les Structures de Données Distribuées et Scalables

contient 1’adresse d’une case et son intervalle. Logiquement, la table T est une liste
ordonnée de couples 7/i] = (4, C), ou A est ’adresse d’une case du fichier SDDS et C est
la clé maximale que la case 4 peut contenir. Initialement 7 = [(0,0)/, elle évolue en
fonction des messages correctifs (IAM) regus qui entrainent I’insertion ou la mise a jour
de couples.

3.43.1 Ajustement d’'une Image SDDS RP*

La réponse a une requéte contient un champ [AM qui permet au client de corriger son
image du fichier. L’IAM se présente sous forme d'un ou deux triplets (4, a, 4) ou [A, A]
est ’intervalle de la case serveur ayant traité la requéte et a son adresse.

L'ajustement de I'image du client se fait donc de maniére asynchrone suivant 1’algorithme
ci-dessous :

(1). S'l n'existe pas un élément ¢ appartenant a 7 avec C(¢) = A et 1 # -co alors
insérer (*A) dans T.

(2). S'il existe un ¢élément ¢ appartenant a 7T avec C(z)>A, alors

- si Ct) = + owalors ¢t = (a, A) et ajouter (* +oo) dans T.
-siC(t) < + o alors t = (a, A).

(3). S'il existe un élément ¢ appartenant a 7 avec ¢t = (* A), alors t = (a, A).

(4). S'il n'existe pas d’¢élément ¢ = (a, A) appartenant a 7, alors insérer (a, A) dans 7.

3.5 Conclusion

Nous avons présenté dans ce chapitre les principes de base des SDDSs. Nous avons aussi
montré les avantages de ces structures par rapport aux structures de données classiques en
particulier dans leur partitionnement dynamique des données. Nous nous sommes
intéressés dans la description des SDDSs a la famille des SDDSs RP* sur laquelle notre
travail repose.

-31-

PARTIE 1I : SD-SQL
SERVER, UNE
ARCHITECTURE DE BASES
DE DONNEES DISTRIBUEES

ET SCALABLES

CHAPITRE

4 ARCHITECTURE DE
SD-SQL SERVER

4.1 Introduction

Ce chapitre décrit Iarchitecture de SD-SQL Server', le systéme de gestion de bases de
données distribuées et scalables que nous proposons. Nous 1’avons appelé : SD-SQL
Server. Nous commengons par détailler les différents objectifs qui nous ont motivés a
cette proposition. Ensuite, nous décrivons 1’organisation générale du systeme. Nous
présentons ses ¢léments de base et les régles structurelles nécessaires a sa conception.
Ensuite, nous décrivons son architecture avec tous ses composants. Nous présentons aussi
ses fonctionnalités principales qui se résument dans le partitionnement des tables
scalables.

4.2 Vue Générale d’un Systéme de Gestion de Bases de
Données Distribuées et Scalables

L’architecture de référence d’un systeéme de gestion de bases de données distribuées et
scalables a ¢ét¢ introduite la premiére fois dans [LRS02]. Dans le cadre de cette thése,
nous avons fait évoluer cette architecture pour mieux répondre aux besoins d’un systéme
capable de gérer des données distribuées et scalables tant au niveau architecture qu’au
niveau fonctionnalités.

Un systéme de gestion de bases de données distribuées et scalables - SD-DBS - est une
généralisation d’un systeme de gestion de bases de données paralleles. Il est représenté
par un ensemble de SGBDs distribués et liés entre eux comme illustré dan la Figure 4-1.
Contrairement aux SGBDs paralleles ou le nombre de nceuds de stockage est constant,

" Le nom SD-SQL Server est issu du SGBD SQL Server sur lequel nous avons réalisé notre systéme.

-33-

Architecture de SD-SQL Server

dans un SD-DBS le nombre de nceuds est variable. Il varie selon 1’augmentation ou la
diminution du nombre de bases de données qu’il contient.

Nous avons défini les notions de base d’un SD-DBS a partir des notions de base des
SDDSs puisque celles-ci s’exécutent dans un environnement distribué et scalable. En
effet, un SD-DBS constitue une couche supplémentaire sur une collection d’instances de
SGBDs liés entre eux, comme illustrée dans la Figure 4-1. Cette couche est basée sur les
principes des SDDSs.

Couche SDDS

Figure 4-1: Présentation générale d’un SDB-DBS

Nous avons introduit trois notions pour concevoir un SD-DBS : les bases de données
scalables, les tables scalables et les images. Ces éléments constituent les données de base
pour un SD-DBS. Nous décrivons briévement ces éléments avant de les détailler par la
suite.

O Les bases de données scalables

Nous avons appelé les bases d’un SD-DBS des bases de données scalables (ang. scalable
distributed databases, SDBs). Une SDB est donc constituée d’un ensemble de bases
distribuées sur plusieurs nceuds représentant des SGBDs. Nous avons appelé ces bases des
bases de neeuds (ang. node databases, NDBs). Les NDBs sont percues par les applications
comme une seule base de données qui est la base scalable. Leur nombre est variable dans
une SDB, autrement dit, on peut étendre (ou rétricir) une SDB avec plus (ou moins) de
NDBs.

O Les tables scalables

L’unité de stockage dans une SDB est une table scalable. De méme, une table scalable est
constituée d’un ensemble de tables distribuées sur plusieurs nceuds d’une base scalable.
Chaque table distribuée composant une table scalable est appelée segment.

-34-

Architecture de SD-SQL Server

O Lesimages

Une image représente la définition du partitionnement d’une table scalable. Les
applications accédent aux tables scalables a travers leurs images. Ainsi, les segments qui
constituent les tables scalables restent transparents vis-a-vis des applications.

Toutes ces notions sont similaires aux notions de bases des SDDSs RP*. Tout comme les
SDDSs RP*, un SD-DBS permet de gérer 1I’extension du nombre de segments d’une table
scalable en éclatant les segments débordés d’une maniére transparente et dynamique.
L’éclatement est basé sur un parameétre important d’une table scalable : il s’agit de sa
capacité maximale en nombre de tuples, soit b cette capacité. Ainsi, pour toute insertion
de tuples, le SD-DBS vérifie si la taille maximale de la table scalable est atteinte. Dans le
cas affirmatif, il lance I’éclatement du segment débordant de cette table en transférant la
moitié¢ de sa capacité (b/2 tuples) vers un nouveau noeud. Ce nceud est une partition de la
SDB qui détient la table scalable qui éclate. S’il n’y a pas de nceuds disponibles de la
méme SDB pour héberger le nouveau segment (issu de 1’éclatement du segment débordé),
cette SDB sera ainsi étendue. De nouveaux nceuds de stockage seront ainsi ajoutés a la
SDB et seront liés a ses nceuds.

De méme que les SDDSs, chaque table scalable a une image qui représente son
partitionnement actuel. Celle-ci représente alors les nceuds de la SDB ou sont localisés les
segments d’une table scalable.

Enfin, pour mieux voir la différence entre un SD-DBS et un SGBD paralléle, la Table 4-1
suivante compare ces deux types de systéme.

SGBDs 1 op pRg
paralleles
. table
Unité de stockage table scalable
Nombre de noeuds .
fixe variable
de stockage
partitionnement statique dynamique
Instance de stockage BD SDB

Table 4-1: Comparaison entre les caractéristiques
d’un SGBD parall¢le et d’'un SD-DBS

4.2.1 Obijectifs d>un SD-DBS

Idéalement, un SD-DBS doit présenter les avantages suivants :

-35-

Architecture de SD-SQL Server

4.2.1.1 Partitionnement Dynamique

Comme nous ’avons déja mentionné, le partitionnement dynamique est le principal
objectif d’un SD-DBS. Si une table scalable monte en échelle, elle doit étre partitionnée.
Dans les SGBDs traditionnels, les administrateurs sont obligés d’intervenir pour
partitionner une table manuellement quand elle est surchargée (ce qui est connu sous le
nom de partitionnement statique).

En quoi le partitionnement dynamique peut-il étre utile ? Lorsque les tables scalables
deviennent trés volumineuses, le partitionnement dynamique peut permettre de
partitionner les données en sections plus petites et plus faciles a gérer sans faire appel aux
administrateurs. Le partitionnement dynamique est une réorganisation on-line des
données sans interrompre les transactions qui arrivent et se réalise d’une manicre efficace
a travers le parallélisme.

Le partitionnement dans un SD-DBS est horizontal. Il est effectué¢ par intervalle tout
comme le partitionnement dans les SDDSs RP*. Il permet de créer un ou plusieurs
nouveaux segments pour chaque table scalable ayant un segment a éclater. Il transfert
ainsi les tuples qui surchargent le segment éclaté vers ces nouveaux segments tout en
laissant tous les segments (d’une table scalable) a moitié¢ pleins. La table scalable aura
alors de nouvelles partitions sur de nouveaux nceuds autres que ceux qui hébergent ses
premiers segments. Toutes ces manipulations sont réalisées d’une maniére transparente.

4.2.1.2 Possibilité d’Extension (Scalabilité)

Un SD-DBS doit avoir deux caractéristiques clés : une capacité d’accroissement (scale-
up) linéaire et une accélération (speed up) linéaire. L’accélération correspond au gain de
performance obtenu en augmentant le nombre de nceuds de stockage d’une SDB dans un
SD-DBS et en laissant la taille des tables scalables utilisant ces nceuds (pour ses
segments) telle qu’elle. La capacité d’accroissement est mesurée en augmentant
proportionnellement la taille d’une table scalable et le nombre de ses segments. L’idéal
est que I’accélération augmente proportionnellement au nombre de segments et que la
capacité d’accroissement reste constante.

4.3 SD-SQL Server

SD-SQL Server est le SD-DBS que nous avons proposé. L’ensemble des nceuds qui
composent SD-SQL Server est donc constitué¢ des instances du SGBD SQL Server.
Comme les nceuds du SD-SQL Server communiquent entre eux, les instances SQL Server
sont donc les serveurs liés SQL Server [LS04].

-36 -

Architecture de SD-SQL Server

Les NDBs qui constituent une SDB du systéme SD-SQL Server sont représentées par les
bases de données se trouvant sur des nceuds distribuées SQL Server (serveur liés). Quant
aux segments composant une table scalable, Ce sont des tables du SGBD SQL Server
[LS04].

Avant de détailler I’architecture du systeme SD-SQL Server, nous présentons tout d’abord
ses regles structurelles.

4.3.1 Les Regles Structurelles

Nous avons congu SD-SQL Server en tenant compte de certaines caractéristiques qui
représentent les régles structurelles nécessaires a sa conception. Ces regles peuvent étre
différentes selon le SGBD utilis¢ pour concevoir un SD-DBS. Les régles que nous
présentons ci-dessous concernent le systéme SD-SQL Server.

4.3.1.1 Vue Partitionnée Distribuée

Nous avons utilisé les vues partitionnées afin de présenter les images des tables scalables
sur SD-SQL Server [LS04]. Une vue partitionnée distribuée est une vue qui lie
horizontalement des données partitionnées a partir d’'un ensemble de tables membres a
travers un ou plusieurs serveurs. Cette liaison horizontale présente ces données
partitionnées comme si elles forment une table unique [T05]. La Figure 4-2 illustre une
vue partitionnée distribuée.

Il y a deux types de vues partitionnées : les vues partitionnées locales et les vues
partitionnées distribuées. Dans le premier type, toutes les tables participant a la vue
résident sur différentes bases de données de la méme instance du SGBD. Dans le
deuxiéme type de vues, il y a au moins une table parmi les tables participantes, qui réside
sur un autre serveur distant. Dans notre travail, nous nous intéressons au deuxiéme type
de vues partitionnées puisque les segments d’une table scalable sont distribués.

Lorsqu’une table scalable éclate, un ou plusieurs nouveaux segments sont créés et le
partitionnement de cette table est ainsi modifié pour inclure les nouveaux segments.
Comme les images définissent le partitionnement actuel d’une table scalable, alors des
que le schéma d’une table scalable est modifi¢ son image doit I’étre modifiée aussi. Nous
entendons par la modification du schéma d’une table scalable, 1’ajout d’un ou de plusieurs
nouveaux segments résultant d’un éclatement. Puisque les images sont représentées par
des vues partitionnées, la définition de ces vues doit étre donc modifiée pour inclure les
nouveaux segments.

-37-

Architecture de SD-SQL Server

Nous rappelons que les vues partitionnées de la plupart des SGBDs ne peuvent étre
modifiées. Seul le SGBD SQL Server permet leur mise a jour [BMO00]. D’ou d’ailleurs
notre utilisation de ce SGBD pour la conception de notre SD-DBS.

SDB

Noeud 1 Noeud 2

Serveur
lié

Vue partitionnée
distribuée

Figure 4-2 : Description d’une vue partitionnée

4.3.1.2 Clé de Partitionnement

La premicre étape de partitionnement des tables scalables consiste a définir les données a
partir desquelles la clé de partitionnement est définie. La clé de partitionnement doit
exister sous forme d’un attribut unique dans chaque segment de la table scalable et doit
satisfaire un certain nombre de critéres. Cette clé représente la clé primaire de la table si
la clé primaire est construite sur un seul attribut de la table. Si la clé primaire est
composée de plusieurs attributs, un seul attribut sera pris comme clé de partitionnement.
C’est I’utilisateur du systeme SD-SQL Server qui choisit la clé de partitionnement. Sinon,
SD-SQL Server choisit aléatoirement un attribut de la clé primaire [SLS05]. Ce
mécanisme se décrit en détail ultérieurement.

La fonction de partitionnement définit le type de données sur lesquelles la clé (¢galement
appelée séparation logique des données) est basée. La fonction définit cette clé mais pas
le positionnement physique des données sur le disque. Le positionnement des données est
déterminé par le schéma de partitionnement.

Pour les partitions par intervalles de valeurs, I’ensemble des données est divisé par une
limite logique liée aux données. L'utilisation des données dicte une partition par plages de
valeurs lorsque la table est utilisée dans un schéma qui définit des limites logiques
d'analyse (également appelé plages de valeurs). La clé de partitionnement pour une
fonction de plage de valeurs peut comprendre une seule colonne. La fonction de partition
inclut l'intégralit¢ du domaine, méme lorsque les données n'existent pas dans la table (en
raison des contraintes d'intégrité sur les données). En d'autres termes, les limites sont
définies pour chaque partition, mais la premiére et la derniére partitions incluent,

-38 -

Architecture de SD-SQL Server

potentiellement, des lignes pour les valeurs les plus a gauche (valeurs inférieures a la
condition de limite la moins élevée) et pour les valeurs les plus a droite (valeurs
supérieures a la condition de limite la plus élevée). Ainsi, pour restreindre le domaine de
valeurs a un ensemble de données spécifique, les partitions doivent étre combinées a l'aide
de contraintes d’intégrit¢ CHECK [MO00, TO5]. Nous décrivons ces contraintes dans la
section suivante.

4.3.1.3 Contraintes d’intégrité

Les contraintes d'intégrité sont un moyen offert par certains SGBD pour permettre de
décrire les regles logiques que doivent respecter les données pour assurer la cohérence
d’une base [Gar99]. Une fois cette description fournie au systéme, le SGBD fait en sorte
que ces contraintes soient toujours vérifiées, en n'exécutant que les requétes de mise a
jour qui respectent toutes les contraintes. L'utilisation de contraintes d’intégrité permet
donc de restreindre I’ensemble de données pour former une plage de valeurs finie plutot
qu'une plage de valeurs infinie.

Nous utilisons les contraintes d’intégrité¢ dans notre systéeme SD-SQL Server pour définir
les limites des valeurs dans chaque segment d’une table scalable. Ces contraintes sont
appliquées sur la clé de partitionnement de chaque segment. Elles servent a limiter les
plages de valeurs dans les segments composant une table scalable. Ainsi, lors de chaque
requéte de mise a jour d’une table scalable, SD-SQL Server vérifie s’il y a des
contraintes. S'il en trouve, il les teste et effectue l'action appropriée. Les contraintes
d’intégrité sur la clé de partitionnement, d’une table scalable, permettent la mise a jour de
leurs images représentées par les vues partitionnées et distribuées.

4.3.2 Architecture de Référence

Nous avons adapté 1’architecture de notre systéme SD-SQL Server a partir de
I’architecture de référence dans [LRS02]. Nous avons développé cette architecture et nous
lui avons introduit d’autres concepts qui lui permettent de constituer un SD-DBS [LS04,
LSS06].

L’architecture du systéme SD-SQL Server est basée sur les deux architectures logicielles
client/serveur et pair a pair. Autrement dit, un nceud de stockage SD-SQL Server peut étre
un nceud serveur, un nceud client ou un neeud pair (client et serveur en méme temps).

Avec la premiere architecture (client/serveur), SD-SQL Server repose sur le principe
simple de la séparation d’une tiche de traitement en deux parties: I'une proche de
I’utilisateur (le client), et I’autre proche de la base de données distribuées et scalables (le
serveur). Les clients envoient leurs requétes au serveur a partir de I’interface d’application

-39-

Architecture de SD-SQL Server

(au niveau client). Les serveurs sont responsables de la gestion des données et de
I’exécution des taches.

Avec la deuxieéme architecture pair a pair, SD-SQL Server regroupe les taches du client et
celles du serveur dans un seul composant appelé pair. Ce dernier joue alors le role d’un
client et d’un serveur en méme temps.

SD-SQL Server est une collection de nceuds SD-SQL Server. Un nceud SD-SQL Server
représente une instance du SGBD SQL Server. Le nombre de nceuds dans I’architecture
SD-SQL Server est variable. Autrement dit, nous pouvons ajouter ou supprimer un nceud
de I’architecture SD-SQL Server d’une facon dynamique.

Parmi les nceuds SD-SQL Server, il y a un neeud primaire. 11 s’agit du premier nceud créé
pour I’architecture SD-SQL Server. Ce nceud détient la méta-base MDB. Celle-ci garde
trace de tous les nceuds du systeéme SD-SQL Server ainsi que de ses bases scalables. Elle
sert comme dictionnaire du SD-DBS SD-SQL Server.

Chaque nceud SD-SQL Server détient une a plusieurs bases de nceuds (NDBs). Ces NDBs
représentent les bases de données habituelles des SGBDs. Les NDBs peuvent partager le
méme nom sur différents nceuds SD-SQL Server. Ils forment dans ce cas ce que nous
avons appelé une base de données scalable SDB [SLS05]. Ainsi, le nom commun entre
les NDBs distribuées sur différents nceuds SD-SQL Server est le nom de leur SDB.

Selon son type (client, serveur ou pair), une NDB gére les tables scalables ou leurs images
a I’aide de son gestionnaire. Au niveau de toute NDB, il y a des méta-tables décrivant les
métadonnées gérées par la NDB.

Les NDBs de type serveur gerent les tables scalables. Ainsi, une NDB serveur détient les
tables scalables et les métadonnées les décrivant dans des méta-tables. Une NDB serveur
se charge en particulier du partitionnement dynamique d’une table scalable (son
¢clatement).

Les NDBs de type client gerent les images des tables scalables et I’interface d’application.
Elles distinguent les images primaires des images secondaires comme nous le
présenterons plus loin dans ce mémoire. En plus des images, une NDB de type client
détient une méta-table décrivant ses images. Cette méta-table aide la NDB client pour
accomplir sa tache principale qui est I’ajustement des images lorsqu’elles sont incorrectes.
La NDB client découvre qu’une image n’est pas correcte s’il y a une requéte qui
I’adresse. Les requétes sont formulées a travers 1’interface application/utilisateur qui est
gérée ¢galement par la NDB client.

Les NDBs de type pair jouent les roles de serveur et de client en méme temps. Ainsi, elles
accumulent toutes leurs taches. La

Figure 4-3 illustre I’architecture du systéme SD-SQL Server. Elle montre quelques SDBs
et leurs NDBs localisées sur les nceuds D1...Di+1.

- 40 -

Architecture de SD-SQL Server

La NDB localisée sur le nceud D/ est une NDB de type client puisque elle fait appel a des
images et elle est liée a une interface d’application. Les méta-tables de cette NDB sont
présentées par le catalogue C dans la

Figure 4-3.

Les NDBs sur tous les noeuds (D2.....Di) sont de type serveur. Elles ne sont connectées a
aucune interface d’application. Elles détiennent seulement les segments des tables
scalables et les méta-tables qui les décrivent. Celles-ci sont présentées par le catalogue S
(pour désigner Server).

Enfin, la NDB Di+1 est de type pair. Comme le montre la

Figure 4-3, la NDB du nceud Di+1 est liée a une interface d’application. Elle détient les
images ainsi que les segments des tables scalables. Le catalogue P désigne les méta-tables
de la NDB pair. Le catalogue P est en réalité 'union des deux catalogues C et S.

Les NDBs, de la

Figure 4-3, contiennent une table scalable 7. Cette table posseéde un index /. Nous
supposons que la NDB du noeud D/ détient ’image primaire de 7. Cette image est donc
I’union de tous les segments de 7 localisés sur les NDBs des nceuds D2...Di. Le segment
primaire de 7 est localisé sur la NDB du nceud D2.

La NDB pair du nceud Di+17 détient ’'image secondaire de 7 qui est nommée DI T. Le
nom de I’image secondaire est différent de celui de I’image primaire (7) comme le montre
la figure. Nous discutons cette différence des noms plus loin dans la description de ces
composants.

Notons enfin que les segments de 7 ont tous le nom D/ T. Ce nom est présenté par le
couple (neeud de création, nom de la table). Nous 1’avons formulé ainsi afin d’éviter les
conflits des noms sur les différentes NDBs de la méme SDB. Ceci est le cas par exemple
de plusieurs tables scalables nommées 7 mais créées sur différentes NDBs client. Nous
discutons ces détails plus loin dans ce mémoire.

-41-

Architecture de SD-SQL Server

Application Application
SD-SQL SD-sQL -« — — —- | _| sbsaL
client serveur serveur
<]] s
SQL Server
liés oo |
[T) R e |
A Y Mt LSS D1_T D1_T [
NDB: — —
S D1 D2 - Di

Figure 4-3 : Architecture de SD-SQL Server

4.4 Description des Composants SD-SQL Server

Apres avoir décrit ’architecture générale de SD-SQL Server, nous passons maintenant a
la description détaillée des différents composants de cette architecture [SLSO05].

4.4.1 La Méta-base (MDB)

Les informations sur les différents nceuds ainsi que sur les SDBs de I’architecture SD-
SQL Server, sont stockées dans la méta-base, que nous avons appelée MDB (ang. Meta
Database). MDB est une base de données de type systéme dans SD-SQL Server. Elle
permet de décrire ses nceuds et ses SDBs.

La MDB est gérée uniquement par I’administrateur du systeme (SD-DBA, Scalable
Distributed Database Administrator). Elle est créée lors de I’initialisation du systeme SD-
SQL Server. Le premier nceud créé dans I’architecture SD-SQL Server, que nous avons
appelé neeud primaire, détient la MDB. Les données qu’elle décrit sont organisées dans
des méta-tables que nous décrivons dans la section suivante.

4.4.1.1 Les Méta-tables
Nous avons distingué les méta-tables décrivant les nceuds SD-SQL Server de celles
décrivant les SDBs. Ces méta-tables ne se trouvent que sur la MDB.

Pour la gestion des nceuds SD-SQL Server, il y a la méta-table appelée Nodes décrite
ainsi :

-42-

Architecture de SD-SQL Server

O Nodes (Node, Type)

Chaque tuple de cette méta-table enregistre un nceud SD-SQL Server qui fait partie de
I’architecture du systéme SD-SQL Server. Les attributs de la table Nodes sont comme
suit :

0 Node affecte le nom d’un nceud SD-SQL Server.

o Type indique le type du nceud SD-SQL Server. Un nceud peut étre de type serveur,
client ou pair. Ainsi le champ Type peut avoir les valeurs ‘server’, ‘client’ ou
‘peer’.

O SDB (SDB_Name, Node, NDBType)

Chaque tuple de cette méta-table enregistre une SDB. Les colonnes de la table SDB sont
présentées comme suit :

o SDB Name affecte le nom de la SDB.

0 Node indique le nceud SD-SQL Server ou la NDB primaire de la SDB a été créée.
Ce nceud est de type serveur ou pair.

o NDBType indique le type de la NDB primaire de la SDB. Ce champ affecte alors les
valeurs ‘server’ ou ‘peer’ puisque la NDB primaire d’'une SDB est de type serveur
ou pair.

4.4.2 Les Serveurs SD-SQL Server

Les serveurs SD-SQL Server sont les nceuds SD-SQL Server de type serveur. Ces nceuds
détiennent les nceuds de bases de données (NDBs) de type serveur. Chaque NDB au
niveau d’un nceud serveur présente un composant parmi les autres NDBs d’une SDB. Les
NDBs détiennent les tables scalables et les méta-tables qui les décrivent. Les sections
suivantes décrivent les différents composants d’une NDB serveur.

4.4.2.1 Les Tables Scalables

Une table scalable T est formellement un tuple (7, S), ou T est ’image primaire de la table
scalable T et S est I’ensemble de ses segments. Les segments d’une table scalable sont
stockés sur les NDBs des nceuds serveurs. Quant a I’image primaire 7 de la table, elle est
stockée sur sa NDB client comme nous le décrivons plus tard. Une table scalable 7 monte
en échelle a travers les éclatements de ses segments qui exceédent leur capacité.

Un segment d’une table scalable est présenté comme une table du SGBD SQL Server, que
nous avons désignée dans notre systeme par fable statique, munie de parametres

-43-

Architecture de SD-SQL Server

spécifiques sous SD-SQL Server. Nous distinguons, dans les segments d’une table
scalable, le segment primaire et les segments secondaires.

O Segment Primaire

Le segment primaire est le premier segment créé pour une table scalable. Il est créé lors
de la création initiale de sa table. Il est localisé sur la NDB de type serveur de la SDB qui
détient cette table. Cette NDB est considérée comme la NDB primaire de la table scalable
en question.

O Segments Secondaires

Les segments secondaires sont tous les autres segments qui composent une table scalable.
Ils résultent de I’éclatement du segment primaire ou des autres segments secondaires. Ils
sont localisés sur les autres NDBs, que nous avons appelé NDB secondaires, de la SDB
qui détient leur table.

Le segment primaire et les segments secondaires de la méme table scalable ont les mémes
caractéristiques. Chaque segment posséde une capacité. 11 s’agit de sa taille maximale
calculée en nombre de tuples. Lorsqu’un segment exceéde cette capacité, suite a une
insertion, il deviendra surchargé¢ et éclatera ainsi. L’éclatement est lancé par un
déclencheur attaché au segment. Ce déclencheur se trouve sur chaque segment d’une
table scalable. Le segment éclate en une ou plusieurs partitions horizontales selon sa
taille. Les nouvelles partitions résultant de 1’éclatement constituent les nouveaux
segments de la table scalable correspondante. Ils sont distribués sur les nceuds de stockage
(les NDBs) de la SDB courante (celle qui détient la table scalable).

Parmi les propriétés spécifiques a une table scalable, il y a aussi les contraintes
d’intégrité. Chaque segment posséde une contrainte d’intégrité (ang. check constraint).
Celle-ci définit les intervalles de valeurs de partitionnement de la clé d’une table scalable.
Ces intervalles partitionnent donc la clé de partitionnement d’une table scalable. Les
conditions sur les contraintes d’intégrit¢ rendent possible les mises a jour des vues
distribuées et partitionnées comme nous I’avons déja mentionné dans la Section 4.3.1.
Elles constituent donc une condition nécessaire et suffisante pour qu’une table scalable
sous SD-SQL Server soit mise a jour.

SD-SQL Server sauvegarde toutes ces propri¢tés des tables scalables dans les méta-tables
que nous décrivons dans la section suivante.

4.4.2.2 Les Méta-tables

Les méta-tables sont des tables qui se trouvent sur chaque NDB du systéeme SD-SQL
Server. Au niveau des NDBs de type serveur, elles permettent le stockage des

44 -

Architecture de SD-SQL Server

métadonnées décrivant ces NDBs et les tables scalables qu’elles détiennent. Les
fonctionnalités principales de ces méta-tables se résument en ce qui suit :

o Définition des segments qui composent chaque table scalable en les référant
aux NDBs qui les hébergent.

o Définition de I’état actuel du partitionnement des tables scalables, autrement
dit, la définition de la NDB qui localise chaque segment d’une table.

o Sauvegarde des noms des NDBs de type serveur disponibles dans la SDB
courante afin de les utiliser lors de 1’éclatement d’un segment. Les NDBs
disponibles sont celles qui n’ont pas encore ¢été utilisées pour héberger de
nouveaux segments de tables scalables.

o Définition de la NDB qui détient le segment primaire pour chaque segment
composant une table scalable.

o Stockage des informations sur les capacités (taille maximale) des tables
scalables.

Les méta-tables des NDBs de type serveur constituent un catalogue logique que nous
avons appelé S-Catalog. S-Catalog se trouve donc sur chaque NDB de type serveur,
comme illustré dans la

Figure 4-3. Il est composé des méta-tables suivantes :

U RP (SgmNd, CreatNd, Table)

La méta-table RP permet de définir le partitionnement distribué¢ actuel de chaque table
scalable Table. Elle stocke alors les tuples décrivant tous les segments des tables scalables
ainsi que les nceuds de stockage qui les hébergent. La table RP est définie par les colonnes
suivantes :

o SgmNd indique les noms des NDBs serveurs qui détiennent les segments d’une
table scalable.

o CreatNd indique le nom de la NDB de type client qui lance initialement la création
d’une table scalable.

o Table est la colonne qui affecte le nom de la table scalable.

Le tuple (SgmNd, CreatNd, Table) est inséré dans la méta-table RP si la table scalable
Table aura un nouveau segment créé sur la NDB SgmNd suite a un éclatement de 1’un de
ses segments. Nous précisons que la méta-table RP de la NDB primaire, d’une table
scalable, est la seule qui sauvegarde les tuples décrivant les segments d’une table. Les
autres méta-tables RP resteront vides tant que leurs NDBs ne détiennent pas un segment
primaire d’une table scalable.

- 45 -

Architecture de SD-SQL Server

Soit la table scalable 7 initialement créée sur la NDB client D localisée sur le nceud client
C (notée C.D). Nous supposons que 7 est partitionnée en deux segments : un segment
primaire sur la NDB S7.D et un segment secondaire sur la NDB S2.D. Ainsi pour garder
trace du partitionnement de la table scalable 7, les tuples suivants seront insérés dans la
méta-table RP de la NDB primaire : (S/, C, T) et (S2, C, T). Nous gardons trace seulement
des nceuds SD-SQL Server sans leur NDBs puisque celles-ci (les NDBs) sont les bases
courantes.

O Size (CreatNd, Table, Size)

Cette méta-table permet de définir la capacité d’une table scalable et donc la capacité de
ses segments. Elle est définie par les colonnes suivantes :

o CreatNd garde trace de la NDB de type client qui lance la création d’une table
scalable.

o Table affecte le nom d’une table scalable.

o Size indique la taille maximale calculée en nombre de tuples pour chaque table
scalable et donc pour chacun de ses segments.

Un tuple (CreatNd, Table, Size) de la méta-table Size explique que la capacité de la table
scalable, initialement crée sur la NDB client CreatNd, est de Size tuples. Le tuple
(CreatNd, Table, Size) est inséré dans la méta-table Size de la NDB primaire qui détient la
table Table.

O Primary (PrimNd, CreatNd, Table)

La méta-table Primary permet de garder trace du noeud de la NDB primaire ou est
localisée chaque table scalable. Nous rappelons que la NDB primaire d’une table scalable
est la NDB qui détient le segment primaire de cette table. La méta-table est définie par les
colonnes suivantes :

o PrimNd indique les NDBs (serveurs) primaires des tables scalables. En d’autres
termes, PrimNd pointe vers le nceud de la NDB qui contient le segment primaire
d’une table scalable.

o CreatNd est la NDB client qui lance la création d’une table scalable.
o Table est le nom de la table scalable.

Nous supposons la table scalable 7T initialement créé par la NDB client C.D et qui a son
segment primaire sur la NDB S7.D et son segment secondaire sur S2.D. Ainsi, dans
chaque NDB D des nceuds S/ et S2, la méta-table Primary aura le tuple (SI, C, T) ou S1
indique le nceud primaire de la table 7 et C le nceud de la NDB client ou 7 a été créée.

U SDBNode (Node)

- 46 -

Architecture de SD-SQL Server

La méta-table SDBNode pointe vers la NDB primaire qui compose sa SDB. Elle est
définie par la colonne Node :

0 Node affecte le nceud SD-SQL Server qui détient la NDB primaire de la SDB
courante.

Soit D, la NDB courante ou se trouve la méta-table SDBNode. D est donc une NDB parmi
les NDBs qui constituent la SDB D. Nous insistons qu’il ne s’agit que des NDBs de type
serveur puisque ce sont celles-ci qui détiennent les segments des tables scalables. Comme
chaque SDB a une NDB primaire, donc chaque NDB de type serveur devrait garder trace
de sa NDB primaire. Nous avons propos¢ ’utilisation de la méta-table SDBNode pour
faciliter la suppression d’une SDB, la gestion de pannes, etc.

Dans le cas de la table scalable T utilisée dans les exemples précédents, la méta-table
SDBNodes est alors localisée sur la NDB S2.D (qui n’est pas primaire) et elle sauvegarde
le tuple (S1) qui pointe vers le nceud de la NDB primaire de la SDB D.

O MDBNode (Node)

Cette méta-table pointe vers le nceud primaire qui détient la MDB. Elle est donc définie
par la colonne Node :

0 Node qui affecte le nom du nceud primaire du systéme SD-SQL Server.

Cette table est utile en cas de panne d’un nceud ou d’une NDB du systéme SD-SQL
Server.

4.4.3 Les Clients SD-SQL Server

Les clients SD-SQL Server présentent tous les nceuds de type client de 1’architecture SD-
SQL Server. Ils détiennent les NDBs de type client de chaque SDB. Ces NDBs permettent
de stocker les images des tables scalables et les méta-tables qui les décrivent. Les NDBs
client sont connectées aux interfaces d’application/utilisateurs. Celles-ci envoient leurs
requétes aux NDBs client. Les requétes adressent les images des tables scalables ou leur
vues scalables. Nous décrivons dans ce qui suit les images et les vues scalables ainsi que
les méta-tables sauvegardées dans les NDBs de type client.

4.4.3.1 Les Images

SD-SQL Server crée pour chaque table scalable son image. Les applications/utilisateurs
interrogent les tables scalables a travers leurs images. Les requétes des clients n’adressent
pas alors les tables scalables mais plutot leurs images. Les segments d’une table scalable
restent transparents vis-a-vis des utilisateurs.

-47-

Architecture de SD-SQL Server

Une image représente I’ensemble des segments d’une table scalable ainsi que leurs
emplacements (les NDBs serveurs qui les détiennent). Les images définissent alors le
partitionnement des tables scalables. Cette définition ne correspond pas nécessairement au
partitionnement exact d’une table. Autrement dit, une image ne présente pas forcément
tous les segments qui composent une table scalable. Dans ce cas, on dit que I’image est
non ajustée ou incorrecte. Elle doit donc étre ajustée.

L’ajustement d’une image s’effectue uniquement lorsqu’il y a des requétes qui
I’interrogent. Nous avons ¢évité d’effectuer I’ajustement des images au moment du
partitionnement des tables scalables qu’elles présentent afin de ne pas encombrer le
systéme. Ainsi, si une table scalable a un nouveau segment suite a un éclatement, ce
segment ne sera présenté par I’image de la table que si cette image est interrogée. Nous
décrivons ce point en détail plus loin dans ce rapport.

La définition interne d’une image se présente sous forme d’une vue partitionnée
distribuée. Celle-ci définit I’'union des segments d’une table scalable comme nous I’avons
décrit précédemment dans la Section 4.3.1.

Nous avons défini deux catégories d’images: les images primaires et les images
secondaires :

O Image Primaire

Une image primaire est créée au moment de la création de sa table scalable. Chaque table
scalable n’a qu’une seule image primaire. Celle-ci est créée sur la NDB de type client qui
lance la création de la table. Initialement, ’image primaire présente seulement le segment
primaire de la table scalable. Dans la vue partitionnée distribuée qui la définit, il n’y a que
le segment primaire et sa localisation (la NDB qui le détient). C’est seulement lorsqu’il y
a des requétes qui adressent 1’image primaire qu’elle est ajustée pour contenir tous les
autres segments de sa table scalable. L. image primaire partage le méme nom que sa table
scalable.

Exemple

Soit la table scalable T créée a partir la NDB client D du nceud C de I’architecture SD-
SQL Server. Nous supposons que le segment primaire de 7 est créé sur la NDB serveur D
du nceud S/, c¢’est-a-dire S71.D. Ainsi, ’image primaire, correspondant a la table scalable
T, sera créée sur la NDB client C.D lors de la création de T et elle sera définie comme
suit’ :

? Nous utilisons les noms logiques (sana référence au propriétaire de la base) des segments ainsi que ceux

des images. Nous décrivons leurs noms physiques plus loin dans ce rapport.

- 48 -

Architecture de SD-SQL Server

CREATE VIEW T AS
SELECT * FROM S1.D.T

O Image Secondaire

Une image secondaire est créée en différé de la création de sa table scalable. Une table
scalable peut avoir plusieurs images secondaires. Celles-ci sont créées sur des NDBs de
type client du systtme SD-SQL Server. Ces NDBs sont différentes de celle qui détient
I’image primaire de la méme table scalable.

Les images secondaires ont la méme définition que I’image primaire sauf que celle-ci est
créée sur la NDB client ou est créée la table scalable. De plus, le nom d’une image
secondaire est différent de celui d’'une image primaire. Contrairement a cette dernicére qui
garde le méme nom que sa table, les noms des images secondaires font référence a la
NDB client qui lance la création de leur table scalable. Nous décrivons ce point plus en
détail plus tard.

4.4.3.2 Les Vues Scalables

Les applications peuvent adresser des vues scalables dans leurs requétes. Une vue
scalable est présentée comme une vue SQL d’un SGBD. Ce qui la différencie des autres
vues est le fait qu’elle fait appel a des images de tables scalables d’une maniére directe ou
indirecte. Dans le premier cas, une image est adressée dans la définition méme de la vue
scalable. Dans le deuxiéme cas, la vue scalable adresse d’autres vues, qui elles mémes
adressent des images. De ce fait, nous avons défini les vues scalable a plusieurs niveaux :

O Une vue scalable est de niveau 1 si elle contient dans sa définition méme
une référence a une image. La vue V ci-dessous est une vue scalable de
niveau 1 puisqu’elle fait appel a ’image 7 directement dans sa définition :

CREATE VIEW V AS
SELECT * FROM T

O Une vue scalable est de niveau i si elle fait référence a une autre vue scalable
de niveau i-/. La vue scalable VI suivante est de niveau 2 puisqu’elle fait
référence a la vue scalable 7 de niveau 1.

CREATE VIEW V1 AS
SELECT * FROM V

-49-

Architecture de SD-SQL Server

4.4.3.3 Les Méta-tables

Les méta-tables des NDBs client permettent le stockage des métadonnées décrivant les
images des tables scalables. Les fonctionnalités principales de ces méta-tables se
résument en ce qui suit :

o Définition des tables scalables représentées dans des images primaires ou

secondaires.

o Définition du nombre de segments d’une table scalable présentés dans chaque

image (ceci aide dans 1’ajustement de 1’image).

o Sauvegarde des noeuds de type serveur qui servent de nceud primaire pour la

création des tables scalables.

Notons que les vues scalables ne sont pas présentées dans les méta-tables. Nous rappelons
que les vues scalables servent a adresser des images a plusieurs niveaux.

Les méta-tables qui se trouvent sur les NDBs de type client constituent un catalogue
logique que nous avons appelé C-Catalog. C-Catalog se trouve donc sur chaque NDB
client, comme il a été illustré dans la Figure 4-3. Il est composé des méta-tables
suivantes :

O Image (Name, Type, PrimNd,Size)

La méta-table Image permet de définir chaque image de la NDB courante (ou la table
Image se trouve). Elle sauvegarde toutes les informations décrivant les images primaires
et secondaires. La table /mage est définie par les colonnes suivantes :

(o)

(o)

Name indique les noms des images.

Type précise si une image est de type primaire ou secondaire. Ainsi, ce champ peut
avoir la valeur ‘Primary’ ou ‘Secondary’.

PrimNd indique pour chaque image le nceud de la NDB ou se trouve le segment
primaire de la table scalable représentée par cette image. Ceci aide pour
I’ajustement de 1’image plus tard.

Size indique pour chaque image le nombre de segments de la table scalable qu’elle
référencie. De méme, ce nombre aide pour I’ajustement de I’image.

Par exemple, le tuple (7, Primary, S1, 1) de la méta-table /mage indique qu’il existe sur la
NDB client courante une image primaire représentant un seul segment (Size=1) de la
table scalable 7. Cette table a son segment primaire sur la NDB du nceud S1.

O Server (Node)

-50 -

Architecture de SD-SQL Server

La méta-table Server met un certain nombre de nceuds serveur ou pair a la disposition des
NDBs client. Celles-ci utilisent la table Server pour pouvoir choisir un nceud pour
héberger les segments primaires des tables scalables qu’elles vont créer. L’enregistrement
des nceuds de type serveur dans la méta-table Server se fait lors de ’initialisation (ou la
création) de ces nceuds.

4.4.4 Les Nceceuds Pairs

Un neeud SD-SQL Server de type pair est un noceud qui joue le role d’un noeud serveur et
d’un nceud client en méme temps. Les NDBs qu’il détient sont alors de type pair, client ou
serveur. Une NDB hérite le type du nceud qui ’héberge. Ainsi, un nceud de type pair,
englobant toutes les fonctionnalités d’un nceud serveur et d’un nceud client, peut héberger
des NDBs de type pair, de type client ou de type serveur. Par contre, un nceud client, ne
peut pas héberger une NDB de type serveur ou pair. Il en est de méme pour les noeuds de
type serveur.

Les NDBs de type pair sauvegardent toutes les méta-tables décrivant les tables scalables
et leurs images. Ces méta-tables, représentées par P-Catalog dans la Figure 4-3, sont donc
I’union des catalogues S et C décrits précédemment.

4.5 Fonctions de SD-SQL Server

Les fonctionnalités du systtme SD-SQL Server sont partagées entre ses clients et ses
serveurs. Au niveau de chaque NDB, il y a un gestionnaire qui assure ces fonctionnalités.
Sur les NDBs serveurs, il y a les gestionnaires de type serveur qui permettent de
compléter les éclatements des segments débordants. Sur les NDBs client, leurs
gestionnaires ajustent les images non correctes et permettent de traiter toutes les requétes
qui passent par I’interface d’application du systéme SD-SQL Server [SLS05]. Dans ce qui
suit, nous décrivons les taches principales du systéeme qui sont 1’éclatement des tables
scalables et 1’ajustement des images. Quant aux commandes des interfaces d’application,
nous les développerons dans le chapitre suivant.

4.5.1 L’Eclatement

L’une des caractéristiques les plus importantes d’une table scalable est de pouvoir
s’étendre dynamiquement sur différentes NDBs d’une SDB. Cette extension est possible
grace aux éclatements des segments d’une table scalable. Pour réaliser cette opération, il
est nécessaire d’avoir un algorithme pour déterminer quelle NDB doit recevoir les

-57-

Architecture de SD-SQL Server

nouveaux segments et quelle stratégie doit étre adoptée pour réaliser un transfert efficace
des données.

Avant de décrire les étapes de I’algorithme d’éclatement, nous énumérons d’abord ses
objectifs qui se résument en ce qui suit :

O L’éclatement supprime les tuples débordant du segment qui éclate tout en
laissant ce segment a moitié plein. Afin de supprimer la surcharge de tuples
du segment éclatant, 1’éclatement transfére quelques tuples vers au moins un
nouveau segment. Chaque nouveau segment finit a moitié plein aussi. Le
résultat final d’un éclatement est alors des segments pleins a un facteur
d’environ 70%.

O Le temps d’un éclatement, déclenché par une insertion, peut étre plus long
que le temps de l’insertion elle méme. Ainsi, pour ne pas pénaliser
I’insertion, le traitement de I’éclatement vise a ne pas conduire 1’insertion
qui le déclenche en temps mort (ang. timeout).

O L’allocation des NDBs pour les nouveaux segments issus d’un éclatement
doit permettre d’équilibrer la charge entre les différents nceuds du systéme
SD-SQL Server. L’algorithme d’éclatement alloue les mémes nceuds aux
segments successifs de différentes tables scalables créées sur la méme NDB
client. Ce principe d’éclatement permet de réduire les temps d’exécution des
requétes puisque celles-ci interrogent généralement les tables du méme
client.

O L’exécution concurrente de I’éclatement et des requétes doit étre cohérente.
Autrement dit, s’il y a une requéte scalable concurrente qui utilise le méme
segment que 1’éclatement utilise, cette requéte sera exécutée soit avant ou
apres 1’éclatement.

L’algorithme d’éclatement décrit le mécanisme d’éclatement d’une table scalable tout en
respectant les objectifs cités ci-dessus. Nous avons organisé les différentes étapes de cet
algorithme dans un agent asynchrone que nous avons appelé éclateur (ang. splitter).
L’éclateur est li¢ au déclencheur du segment qui éclate. Ainsi, si un segment excede sa
capacité, suite a une insertion, son déclencheur lance I’éclateur. L’éclatement est effectué
d’une fagon asynchrone, par rapport a I’insertion (qui le déclenche) ou toute autre requéte,
afin de ne pas pénaliser ces requétes.

Nous passons maintenant a la description des étapes de 1’algorithme d’éclatement :

-52-

Architecture de SD-SQL Server

4.51.1 Allocation d’une NDB

Le choix d’une nouvelle NDB, pour héberger un nouveau segment résultant de
I’éclatement, est a la charge de la NDB qui détient le segment en débordement. La liste
des NDBs disponibles pour I’allocation de nouveaux segments est connue a 1’avance par
toutes les NDBs de type serveur. Elle est définie a 1’aide de la méta-table NDB localisée
au niveau de chaque NDB du segment primaire. La méta-table NDB contient tous les
nceuds qui détiennent les NDBs de la SDB courante, ainsi que les types de ces nceuds.
Pour avoir une NDB disponible, il suffit que 1’éclateur sélectionne un nceud de type
serveur (ou pair) de la méta-table NDB. Ensuite, il utilise la NDB en question du nceud
sélectionné pour héberger un nouveau segment d’une table scalable. Il y a deux cas qui se
présentent pour accéder a la méta-table NDB afin de sélectionner une NDB disponible :

o Si le segment qui éclate est un segment primaire, alors I’éclateur accede
directement a la méta-table NDB qui se trouve sur sa NDB méme. Nous
rappelons que toutes les informations concernant une table scalable sont
principalement stockées dans les méta-tables de la NDB qui détient le
segment primaire.

o Si le segment qui éclate est un segment secondaire, alors son éclateur cherche
la méta-table NDB dans la NDB du segment primaire de la méme table
scalable. Comme nous I’avons déja présenté, dans chaque NDB il y a la méta-
table Primary qui sauvegarde les noms des NDBs disposant des segments
primaires. Ainsi, un segment secondaire récupere le nom de sa NDB primaire
a partir de la méta-table Primary. Ensuite, il cherche la liste des NDBs
disponibles dans la méta-table NDB de la NDB trouvée.

Une fois I’éclateur accede a la méta-table NDB, il sélectionne un nceud disponible pour la
SDB courante. Ce nceud est choisi de telle fagon qu’il n’y ait pas une NDB hébergeant
déja un segment de la méme table scalable qui éclate. Nous désignons cette table par 7.
Pour vérifier cette condition, 1’éclateur utilise aussi la méta-table RP localisée sur la
méme NDB du segment éclatant. En effet, il sélectionne de cette méta-table, les nceuds
(désignés par Iattribut SgmNd) des tuples décrivant la table scalable 7. Ensuite, il
s¢lectionne les nceuds Nodes de type serveur (ou pair) de la méta-table NDB. Enfin, il
choisit les nceuds sélectionnés de la méta-table NDB qui n’existent pas dans RP. Le
résultat sera donc un nceud qui détient une NDB, de la SDB courante, qui n’a pas encore
hébergé un segment de la table 7. Si le résultat correspond a plusieurs nceuds disponibles,
I’éclateur choisit alors le premier nceud dans la liste. La requéte SQL suivante permet de
donner ces résultats :

SELECT TOP 1 Node FROM NDB WHERE NOT EXISTS
(SELECT SgmNd FROM RP WHERE tab= “T” AND SgmNd = Node)
AND (NdbType='server' or NdbType ='peer')

-53-

Architecture de SD-SQL Server

Dans le cas ou la requéte ci-dessus ne retourne pas de résultat, ceci signifie qu’il n’existe
pas des NDBs disponibles, dans la SDB courante, pour héberger des nouveaux segments.
Ainsi, il faut étendre cette SDB pour contenir de nouvelles NDBs. Nous supposons son
extension par une seule nouvelle NDB. Pour cela, il faut avoir un nceud SD-SQL Server
disponible qui ne détient pas encore une NDB de la SDB courante. Pour cela, I’éclateur
suit les étapes suivantes :

o Il cherche dans la méta-table Nodes de la MDB un nceud qui vérifie les conditions
ci-dessous :

= (e nceud ne doit pas étre le nceud primaire de la SDB courante, c’est-a-dire
il n’existe pas dans la méta-table SDB de la MDB.

* De plus, il faut que ce nceud n’existe pas dans la table NDB qui compose
les noeuds des NDBs de la base courante.

o Une fois un nceud est trouvé, SD-SQL Server crée donc une nouvelle NDB sur ce
nceud. Cette NDB sera la localisation du nouveau segment qui résulte de
I’éclatement de la table scalable 7.

Si I’éclateur ne trouve pas un nceud SD-SQL Server pour en créer une nouvelle NDB de
la SDB courante, donc les étapes ci-dessus ne peuvent étre accomplies. Il faut étendre
ainsi le nombre de nceuds dans le systeme SD-SQL Server. Pour cela, il faut chercher un
nceud SQL Server libre qui soit un serveur lié et qu’il n’est pas encore utilisé dans
I’architecture SD-SQL Server.

Apres avoir présenté les détails, avec tous les cas critiques qui peuvent exister, sur
I’allocation d’une NDB pour héberger un nouveau segment d’une table scalable, nous
passons maintenant a la description du transfert des données débordant vers la nouvelle
NDB sélectionnée.

4.5.1.2 Transfert des données

Une fois la phase d’allocation de NDB terminée, 1’éclateur commence la phase de
transfert des données. Cette phase consiste a faire migré les tuples qui surchargent un
segment de sa capacité. Notons b la capacité du segment éclatant. Celle-ci est
sauvegardée dans la méta-table Size.

L’¢éclatement est effectué selon le schéma de partitionnement du segment a éclater. Ce
schéma consiste a ajouter N (N>=1) segments a sa table scalable. Soit 7 cette table, et soit
P P’ensemble des tuples qui déclenchent I’éclatement de I'un de ses segments. Chaque
NDB du segment éclaté coupe P en portions successives PI, P2..., Pn. Chaque portion Pi
représente la moitié de la capacité b de la table 7, c’est-adire Pi regoit ayant la partie
entiere de b/2 tuples (INT(b/2)). Au moment de I’éclatement d’un segment, SD-SQL

-54-

Architecture de SD-SQL Server

Server transfére la moitié¢ supérieure b/2 de ses tuples vers un nouveau segment sur la
NDB sélectionnée dans I’étape précédente. Pour cela il suit les étapes suivantes :

O Création de nouveaux segments

Avant de transférer les tuples débordant du segment qui éclate, SD-SQL Server crée
d’abord le(s) nouveau(x) segment(s) sur les NDBs sélectionnées. Chaque nouveau
segment aura le méme schéma que le segment éclatant. Ce schéma inclut la méme
définition du segment, son nom, sa clé primaire et ses index. Seulement les contraintes
d’intégrités seront modifiées comme nous ’expliquerons plus tard. Nous supposons les
hypothéses suivantes :

o Sestle segment a éclater ;
o Pi est une portion des tuples a transférer tel que Pi=INT (b/2) ;
o Cest la clé primaire du segment S ;
o Si est le nouveau segment, de la NDB Ni, qui recevra la portion Pi.
La création d’un nouveau segment exécute la requéte SQL suivante pour tout i=/ a N :
SELECT TOP Pi WITH TIES * INTO Ni.Si FROM S ORDER BY C ASC

Cette requéte permet de créer un segment Si sur la NDB Ni (sélectionnée dans 1’étape
précédente) avec les mémes attributs du segment éclatant S. De plus, elle transfert une
portion Pi du segment S dans le nouveau segment Ni.Si. Par contre, la clé primaire, les
index et les contraintes d’intégrités ne sont pas établis.

Notons aussi 'utilisation du mot clé WITH TIES dans la requéte. Celui-ci permet de
transférer les tuples ayant des duplicatas dans leur clé¢ de partitionnement. Ce cas se
présente tout particulicrement dans le cas d’une clé primaire composée de plusieurs
attributs clé. Le fait de transférer tous les duplicatas de la clé de partitionnement nous
¢vite des problémes dans la définition des contraintes d’intégrité.

O Etablissement du schéma de partitionnement

Une fois le nouveau segment est créé, I’éclateur compléte son schéma de partitionnement.
Tout d’abord, il modifie le schéma du nouveau segment en lui appliquant une clé
primaire. Il s’agit de la méme clé primaire du segment original S. L’éclateur cherche
’attribut doté d’une clé dans le segment S éclatant et 1’applique ensuite sur le méme
attribut pour chaque nouveau segment Si. Ensuite, 1’éclateur détermine les index du
segment original S et les applique sur chaque nouveau segment Ni.Si.

Pour définir chaque segment Si comme une partition de la table scalable 7, SD-SQL
Server lui définit une contrainte d’intégrité. Nous rappelons qu’une contrainte d'intégrité
est une clause permettant de contraindre la modification de tables. Soit C(S) la contrainte

-55-

Architecture de SD-SQL Server

d’intégrité qui définit les limites inférieure L et supérieure H d’une clé de partitionnement
d’un segment Si. Ainsi, C(Si) est définie comme suit :

C(Si)={C : L<C<H}

Une contrainte d’intégrité n’est pas forcément créée pour un segment primaire lors de la
création initiale de sa table scalable. Cependant, lors de la création de nouveaux segments
pour une table scalable suite a un éclatement, les contraintes d’intégrités doivent &tre
calculées pour chaque segment de la table scalable.

Soit Hi la plus grande valeur de la clé de partitionnement dans la portion Pi (i>1)
transférée. Soit Hy+; la plus grande valeur de la clé dans le segment éclatant. Ainsi, les
limites inférieure et supérieure du nouveau segment Si qui regoit la portion Pi sont L=H,,
et H=H,. Quant au segment éclatant, il garde sa valeur inférieure L qu’il avait déja lors de
la création. Par contre, il aura comme valeur supérieure la nouvelle valeur H'=Hy+; ou
H’<H. En appliquant ces contraintes d’intégrité, la table scalable T sera partitionnée par
intervalle.

Une fois, les nouveaux segments résultant de 1’éclatement sont créés, 1’éclateur effectue
les étapes suivantes :

o Il enregistre les informations sur le(s) nouveau(x) segment(s) dans les méta-tables
correspondantes. Il insére les tuples décrivant le segment Si dans la méta-table
Primary de la NDB courante (du segment Si), et la méta-table RP de la NDB du
segment primaire de la table scalable 7. Il insére aussi le tuple décrivant la capacité
du segment Si dans la méta-table Size de sa NDB.

o Enfin, il supprime les tuples transférés vers les nouveaux segments du segment S
qui a éclaté.

4.51.3 Types d’Eclatement

L’éclatement d’une table scalable varie selon les paramétres suivants :
o Le nombre de segments a éclater dans une table scalable.
o Le nombre de tuples insérés dans une table scalable.

Selon ces parametres, nous avons défini les trois types d’éclatement suivants :

O Eclatement dG & une insertion d’un tuple dans un segment primaire

Soit N le nombre de segments issus d’un éclatement. Si I’insertion d’un tuple déclenche
I’éclatement d’un segment Si, donc un seul nouveau segment résultera de cet éclatement
comme illustré dans la Figure 4-4. Dans ce cas 1a, N sera égal a 1.

- 56 -

Architecture de SD-SQL Server

O Eclatement d(a une insertion d’un bloc de tuples dans un segment

Si une insertion d’un bloc de tuples dans un segment Si déclenche son éclatement, alors
plusieurs nouveaux segments (N>1) résulteront de cet éclatement, comme [D’illustre la
Figure 4-5.

O Eclatement di a une insertion multiple dans plusieurs segments

Ce type d’éclatement, illustré dans la Figure 4-6, regroupe les deux types précédents.
Ainsi, une insertion d’un bloc de tuples, qui déclenchel’éclatement, concerne plusieurs
segment de cette table.

b+1

b+1-p

S S S

p = INT(b/2)
C(S) =@ 2 {c: c <h=c (btl-p)}
C(S;) = {c: ¢ 21 =c (b+l-p)}

Figure 4-4 : Eclatement suite a une insertion d’un tuple dans un segment primaire

-57-

Architecture de SD-SQL Server

(a) (b)
bt pq
b b
Pn
b+t-np [T 7
S S

()

b+t-np

P1

Sq

Pn

Swn

p = INT(b/2)

C(8) = {c: 1 < c < h}
2> {c: 1< c<h’
C(S;) = {c: ¢ (b+t-p) < ¢ < h}

C(Sy) = {c: c (b+t-Np)

c (b+t—-Np)}

< c < c (b+t-(N-1)p)}

Figure 4-5 : Eclatement suite a 'insertion d’un bloc de tuples dans un segment

_J

—-
|
|
B -

Bty
NN
——

)

S Sk

Sq

s1, n1

Sk

Figure 4-6 : Eclatement suite a ’insertion d’un bloc de tuples
g P

4.5.2 Ajustement des images

dans plusieurs segments

sk, nk

L’ajustement d’une image est effectué¢ lorsqu’il y a une requéte qui interroge cette image.

Nous avons appelé de telles requétes, adressant des images de tables scalables, des
requétes scalable. Elles constituent les paramétres des commandes SD-SQL Server que
nous décrirons ces requétes dans le chapitre suivant. L image adressée dans une requéte

- 58 -

Architecture de SD-SQL Server

scalable peut étre une image primaire ou secondaire. Elle peut étre invoquée directement
dans une requéte ou par le biais d’une vue scalable.

L’ajustement d’image est effectu¢ sur une NDB de type client (ou pair). Le gestionnaire
de cette NDB extrait a partir d’une requéte scalable Q une requéte SQL O’ qui peut étre
exécutée sur le SGBD SQL Server. C’est O’ qui sera exécutée et non pas Q. QO adresse la
vue partitionnée distribuée présentant une image, soit 7' cette image. Avant d’exécuter la
requéte Q’, SD-SQL Server vérifie si I’image T est correcte, c’est-a-dire si elle définit
tous les segments de sa table scalable 7. Pour cela, le gestionnaire SD-SQL Server suit les
¢tapes suivantes :

o II cherche le nombre de segments définis dans 1’image 7 en utilisant la méta-table
Image. Ce nombre est sauvegardé dans la colonne Size du tuple décrivant I’image 7,
4.4.3.3), soit N ce nombre.

o Ensuite, il récupére le nombre de segments (qui composent réellement la table
scalable 7) en utilisant la méta-table RP. Pour cela, il exécute la requéte SQL
suivante qui retourne le nombre de ces segments” :

SELECT COUNT(*) FROM RP WHERE TAB="T"
Soit N’ le nombre de segments retourné.
o Il compare Net N'.

e Si N<N’, I’image T ne correspond pas au partitionnement actuel de sa table
scalable 7. L’image T doit €tre alors ajustée en rajoutant les segments qui
manquent dans sa définition. Il récupére ces segments a partir de la méta-
table RP aussi.

= Si N=N’, I’'image T correspond bien au partitionnement de sa table sclabale
T. Autrement dit, elle représente dans sa définition tous les segments de la
table scalable 7.

o Une fois I'image T ajustée, SD-SQL Server exécute la requéte qui I’interroge.

4.6 Conclusion

Tout au long de ce chapitre nous avons décrit I’architecture du systéme de gestion de
bases de données distribuées et scalable SD-SQL Server que nous avons proposé. Nous
avons présenté les régles structurelles qui permettent de concevoir une telle architecture.

? Notons que nous avons juste donné la requéte SQL sans préciser la syntaxe réelle concernant le chemin

global de la méta-table RP. Tous ces détails seront décrits par la suite.

-59-

Architecture de SD-SQL Server

Nous avons ensuite décrit en détail les différents composants du systéme SD-SQL Server.
Le chapitre suivant décrit I’interface qui permet d’accéder au systéme SD-SQL Server.

-60 -

5 INTERFACE
D’APPLICATION SD-
SQL SERVER

5.1 Introduction

Comme tout SGBD, SD-SQL Server permet de décrire ses données, de les interroger, de
les mettre a jour, de transformer des représentations de données, d’assurer les controles
d’intégrité et de concurrence. Toutes ces fonctionnalités sont illustrées a travers son
interface d’application. Dans ce chapitre, nous décrivons les différentes opérations
qu’offre I’interface d’application SD-SQL Server.

Tout au long de ce chapitre, nous décrivons en détail les commandes SD-SQL Server tout
en les illustrant par des exemples. Nous les avons organisées selon leurs
fonctionnalités qui se résument dans la gestion des nceuds SD-SQL Server, des SDBs, des
tables scalables, des images et enfin des requétes scalables.

5.2 Préliminaires

Les applications/utilisateurs peuvent manipuler les tables scalables en utilisant des
commandes spécifiques au systtme SD-SQL Server que nous avons appelé commandes
SD-SQL Server ou commandes scalables. Comme nous ’avons déja mentionné, les
commandes SD-SQL Server interrogent les tables scalables a travers leurs images. La
plupart de ces commandes que nous avons définies peuvent aussi étre exécutées sur des
tables ou vues statiques. Ces dernieres présentent les tables et les vues habituelles de tout
SGBD.

Les commandes SD-SQL Server exécutent des manipulations et des requétes usuelles du
langage SQL. Ce qui les différencie des commandes SQL habituelles est la manipulation
des tables scalables. De plus, une commande scalable peut inclure des parameétres
additionnels spécifiques a 1’environnement scalable de I’architecture SD-SQL Server
(capacité d’un segment, clé de partitionnement,...) [SLS05].

-61-

Interface d’Application SD-SQL Server

La régle que nous avons appliquée pour nommer une commande SD-SQL Server est
basée sur I’utilisation des noms des commandes SQL traditionnelles. Nous préfixons
celles-ci par le mot ‘sd " pour désigner la scalabilité et la distribution de nos commandes
(scalable distributed). S’il y a des blancs dans une requéte SQL, nous remplagons ces
blancs par le caractere ‘ . Ainsi, la requéte SQL SELECT, par exemple, sera présentée
sur notre systéeme par la commande sd_select. Quand a la requéte SQL CREATE TABLE,

par exemple, elle sera présentée par la commande sd_create_table.

Les informations spécifiques aux données scalables ont été présentées comme des
parametres d’entrée dans les commandes SD-SQL Server. Ces parametres représentent
généralement les requétes SQL qui correspondent aux commandes SD-SQL Server. Par
exemple, la commande SD-SQL Server sd_select doit avoir comme paramétre la requéte
SQL SELECT. En effet, sd select interroge une table scalable, mais comme celle-ci est
constituée de segments qui sont des tables du SGBD SQL Server, le résultat de
I’exécution de la commande sd select est donc celui de I’exécution de la requéte
SELECT. Ainsi, c’est cette derniére qui sera exécutée par le SGBD qui supporte notre
systéme. Nous avons appelé ces paramétres des requétes scalables, puisque elles ne
contiennent pas toute la syntaxe d’une requéte SQL. Nous présentons les détails sur ces
parametres par la suite.

Nous avons réparti les commandes SD-SQL Server selon leur usage. Nous avons défini
les commandes concernant les manipulations suivantes [SLS06]:

o La gestion des nceuds de stockage SD-SQL Server.
o La gestion des bases de données scalables.

o La gestion des tables scalables.

o La gestion des requétes scalables.

Dans ce qui suit, nous décrivons en détail chacune de ces catégories de commandes
scalables tout en discutant leur syntaxe et leur sémantique. Nous illustrons ces
commandes par des exemples utilisant le benchmark de la base de données SkyServer.
Nous présentons tout d’abord ce benchmark.

5.3 Description de la Benchmark SkyServer

SkyServer est une base de données qui permet un acces aux données publiques du Sloan
Digital Sky Survey (SDSS) pour les astronautes et I’éducation scientifique. SDSS est une
vue générale du ciel du nord (Northern) a une résolution d’environ 2 arc-second en
utilisant un télescope moderne basé sur la terre. Il caractérise environ 200 Méga objets
dans 5 bandes optimales et mesure le spectre d’un million d’objets [ASGA+02].

-62 -

Interface d’Application SD-SQL Server

Le traitement SDSS est en cours de réalisation dans le laboratoire Fermilab. 11 examine
les images a partir du télescope et identifie les objets photo comme étant des étoiles, des
galaxies, etc. La taille de ces données est 80GB contenant environ 14 millions objets et
cinquante milles spectres [GO02].
(http://skyserver.sdss.org/). SDSS a initialement développé la base de données SkyServer
sur ObjectivityDB. Ensuite, cette conception sur ObjectivityDB a été transformée en un

Ces données sont accessibles via SkyServer

schéma relationnel. La Figure 5-1 suivante présente ce schéma.

Segment Plate
B | segmentlD " | platelD A
run T
camCol | plate
rerun [t
fieldd | maphd
nFields ¥ e
¢ i
) raBoresight
Frame TiL [| decBoresight
7[feldD G |fieldin A exgTine
7 | z00m ;::un : expTimeB1
run camcol | |expTimeB2 v
rerun
Synonym camcol ﬁe‘d_
7 |obD feld nObjects)
¢ | match_objin L e -
lkeiond Srsiii] o ¢ linelnd
[r— PhotoObj B specObjID A [A———on SDEC "‘? _"d 2
SiD = T |wocal B |specineindexID
Survey gﬁ CrossiD g 2 fu; v [|name
ﬂsurveym 7 [obiD rern Neighbors | |fiberD — E:N
survey % |surveylD ™ camcol 7 |htmID [|z — ::S”
@ | surveyObjlD ™ fed 7] objin | |#&T —
UsNo source M= obj 7 | neighborQbilD | |#Conf — TEQE".
_|deltz likelihood T |mode distanceMins | wtatus | avekin
|| (match] [when] " |nchid ahiType | |specClass __|waveMax
_ propermotion] type hna) neighborObjType L ZWarning L |z
| |ange O S Il | abjPrimary | |veDisp L ::ecabJID
| :Jll:ée : flags neighborPrimary __|velDispErr M : nserfTime
— rowc v
T7obin ’—‘3’ =
SpecLine
| @ |speclineld
First ™ Rosat photoz Profile L |nawe
delta delta ~ pld ~ nProf_u XCRedshift ELRedshift | |waveErr
| mateh] | mateh] " rank nProf g 7 [xcRedshifto A ¥ [eRedshiftiD | |waveMin
" |peak s " |version nProf_r | temprio z || waveMax
" |intear | hardt " |dass nProf | T [peakivo Fig | sigma
" |ms 7 |hard2 " Jobjip nProf z T |ehift 2Conf || sigmagrr
| major ™ extent " |chisq profMean Tz nFit sinmaMin
" |minor | exposure Tz profErr = wiFit
H pa Il poserr e @ |objID r specObjID
T lid 7| psErr It zconf insertTime
™ lambda ™ |herdien Rosat = " |height
etz | hard2emr B c_it | width
E objlD : extentlike v : otz w | widtherr v

Figure 5-1: Schéma Logique de la base de données SkyServer

5.4 Gestion des Neeuds SD-SQL Server

Pour la gestion des différents nceuds serveur, client et pair, SD-SQL Server permet les
manipulations suivantes :

o Création d’un nceud.

o Modification du type d’un nceud.

-63-

Interface d’Application SD-SQL Server

o Suppression d’un nceud.

La description de chacune de ces manipulations est comme suit :
5.4.1 Création d’un Nceeud SD-SQL Server

Une application peut créer des nceuds type serveur, client ou pair, dans un systéme SD-
SQL Server, en exécutant la commande suivante :

sd_create_node ‘new_node’ [, node_type|’
Cette commande a deux paramétres en entrée :

o Le paramétre ‘new node’ correspond au nom du nceud que 1’application veut créer.
Les noms des nceuds doivent représenter des serveurs SQL liés pour pouvoir les
utiliser en tant que noceuds SD-SQL Server.

o Le parameétre ‘node type’ correspond au type du nceud a créer. Ce parametre peut
avoir la valeur ‘client’, ‘serveur’ ou ‘pair’. Il peut étre aussi optionnel. Si aucune
valeur n’est entrée dans le paramétre ‘node type’, le type qui sera pris par défaut
sera serveur.

Remargue

Notons que pour pouvoir utiliser les commandes SD-SQL Server, celles-ci doivent exister
déja sur la MDB. Nous rappelons que la MDB est une base systétme qui permet
d’initialiser tous les nceuds du systéme SD-SQL Server et ses SDBs. Elle est créée sur le
noeud primaire du systeéme en exécutant un script SQL. Le nceud primaire est de type
serveur ou pair. Il est initialis¢ par défaut par 1’administrateur du systeme. Nous
supposons que ce nceud est Nodel, de type pair, dans tous les exemples qui illustrent les
commandes SD-SQL Server. Les détails sur I’initialisation du systéme SD-SQL Server
seront décrits dans le chapitre suivant.

Exemple

Soit le nceud Nodel, le noceud primaire (de type pair) du systeme SD-SQL Server. Nous
utilisons ce neeud pour créer de nouveaux nceuds Node2, Node3 et Node4, en exécutant
respectivement les commandes suivantes:

sd_create_node Node2’
sd_create_node ‘Node3’, ‘client’
sd_create_node Node4’, ‘peer’

Le nceud SD-SQL Server Node2 sera pris comme un nceud de type serveur par défaut
puisque aucun type n’a été indiqué pour sa création. Les noeuds Node3 et Node4 sont
respectivement de type client et pair comme les commandes 1’indiquent.

-64 -

Interface d’Application SD-SQL Server

5.4.2 Modification d’un Neceud

Une application peut modifier un nceud SD-SQL Server en modifiant son type. On peut
transformer un nceud de type client (ou serveur) en un nceud de type pair. Elle peut aussi
réduire les fonctionnalités d’un nceud pair en le transformant en un nceud client (ou
serveur). La modification des types des nceuds SD-SQL Server est réalisée par la
commande suivante :

sd_alter_node ‘node_name’, ‘ADD/DROP client/server’
La commande sd_alter node a deux parameétres en entrée :

o Le parametre node name’ indique le nom du nceud dont 1’application veut modifier
le type.

o Le paramétre ‘ADD/DROP client/server’ indique en quel type le nceud en question
sera transformé. En combinant ADD/DROP et client/server, ce paramétre peut avoir
I’une des valeurs suivantes :

e ‘ADD server’ si une application veut rajouter a un nceud client les
fonctionnalités d’un nceud serveur, c’est-a-dire transformer ce nceud client
en un neceud pair.

e ‘DROP server’ si une application veut supprimer a un nceud pair ses
fonctionnalités de serveur, c¢’est-a-dire le transformer en un noeud client.

e ‘ADD client’ si une application veut rajouter a un nceud serveur les
fonctionnalités d’un noeud client, c¢’est-a-dire le transformer en un nocud
pair.

e ‘DROP client’ si une application veut supprimer a un nceud pair ses
fonctionnalités de client, ¢’est-a-dire le transformer en un noeud serveur.

Toute autre combinaison entre ADD/DROP et client/server pour transformer d’autres
types de nceuds que ceux que nous venons de décrire n’est pas possible. Par exemple, une
application ne peut entrer la valeur ‘ADD server’ pour un nceud de type pair parce que ce
dernier a déja les fonctionnalités d’un serveur....

Exemple

Soit le nceud Node200 de type client. La commande ci-dessous transforme le nceud client
Node200 en un nceud pair. Le nceud Node200 peut alors se comporter comme un nceud
client et serveur en méme temps.

sd_alter_node ‘Node200’, ‘ADD server’

Quant a la commande suivante, elle transforme le nouveau nceud pair Node200 en un
nceud serveur.

- 65 -

Interface d’Application SD-SQL Server

sd_alter_node ‘Node200’’DROP client’
5.4.3 Suppression d’un Neeud

Une application peut supprimer un nceud SD-SQL Server en exécutant la commande
scalable sd_drop node comme suit :

sd_drop_ node ‘node_name’

Le résultat de cette commande scalable est un systétme SD-SQL Server sans le nceud
‘node_name’. La suppression d’un nceud de type client ou pair supprime toutes les tables
scalables qu’il a créé. Les nceuds supprimés de 1’architecture SD-SQL Server deviennent
en effet des nceuds libres représentant leur SGBD comme a ’origine.

Exemple
La commande suivante supprime le nceud Node211 de I’architecture SD-SQL Server.

sd_drop_node ‘Node211’

5.5 Gestion des Bases de Données Scalables

La gestion des SDBs consiste a créer une nouvelle SDB, ajouter ou supprimer des NDBs
dans une SDB et enfin supprimer une SDB. Nous rappelons qu’une SDB est une
collection de NDBs dont une NDB primaire. Le nombre de NDBs dans une SDB peut
s’étendre quand ses tables scalables se partitionnent dynamiquement.

Nous décrivons dans ce qui suit la syntaxe et la sémantique des différentes commandes
qui manipulent une SDB.

5.5.1 Création d’une Base de Données Scalable

La création d’une SDB est réalisée par I’administrateur du systéme SD-SQL Server (SD-
DBA). Cette opération permet a un SD-DBA de créer la NDB primaire d’une SDB. La
commande qui réalise cette opération est décrite par la syntaxe suivante :

sd_create_scalable_database ‘sdb_name’ [,'node_name’] [,‘type’] [,‘extent’]
Cette commande dispose des parametres suivants en entrée :

o Le parametre ‘sdb_name’ indique le nom de la SDB a créer. Il s’agit du nom de
toutes ses NDBs aussi y compris la NDB primaire.

- 606 -

Interface d’Application SD-SQL Server

o Le paramétre ‘node _name’ correspond au nom du nceud sur lequel la NDB primaire
de la SDB sera crée. Ce parametre est optionnel. S’il n’est pas entré dans la
commande, la SDB sera alors créée sur le nceud de I’exécution de la commande.

o Le paramétre ‘extent’ est optionnel. Il indique le nombre d’extensions (NDBs)
qu’une application veut créer pour la SDB. Il permet donc la création simultanée de
n (n>1) NDBs dont principalement la NDB primaire. Si le paramétre ‘extent’ n’est
pas précisé, une seule extension de la SDB sera créée (sa NDB primaire).

o Le paramétre ‘?ype’ est un parametre optionnel. Il indique si la NDB primaire de la
SDB a créer est de type client, serveur ou pair. Par défaut, la NDB primaire hérite le
méme type du nceud SD-SQL Server sur lequel elle sera créée, c’est-a-dire le type
du nceud ‘node name’. Par exemple, si le de la SDB est de type serveur, donc la
NDB primaire créée sera de type serveur...etc. En conséquence, la commande
sd_create_scalable database ne peut pas créer une NDB de type client sur un nceud
serveur ou vice versa.

Exemple

Nous utilisons dans ce qui suit, des noms composés du nom SkyServer (de notre
benchmark) pour les SDBs que nous créons.

La commande suivante créée une NDB primaire pour une nouvelle SDB nommée
SkyServer sur le nceud Nodel qui est de type pair. Comme le type de la NDB primaire
SkyServer n’est pas mentionné dans les paramétres de la commande, donc cette NDB aura
le méme type que son nceud Nodel, c’est-a-dire pair.

sd_create_scalable_database ‘SkyServer’, ‘Node1’

La commande qui suit crée la NDB primaire d’une nouvelle SDB nommée SkyServer! sur
le noeud Nodel. Comme Nodel est de type pair, et la NDB primaire SkyServerl est
déclarée de type client dans la commande, donc SkyServerl peut étre créée sur Nodel et
elle jouera le réle d’un client.

sd_create_scalable_database ‘SkyServerl’, ‘Node1’, ‘Client’

Pour la commande ci-dessous, la création de la SDB SkyServer2 sera annulée. Ceci est di
au fait que sa NDB primaire est déclarée de type client et le nceud ou elle sera créée est de
type serveur. Un conflit est alors généré au niveau de la hiérarchie des clients, serveurs et
pairs.

sd_create_scalable_database ‘SkyServer2’, ‘Node2’, ‘Client’

-67 -

Interface d’Application SD-SQL Server

5.5.2 Modification d’une Base de Données Scalable

La modification d’une SDB consiste a modifier le nombre de ses NDBs. Il s’agit de créer
de nouvelles NDBs pour cette SDB ou de supprimer des NDBs qui existent déja. Nous
décrivons ces deux opérations dans ce qui suit.

5.5.2.1 Création d’une NDB

Une application peut créer une nouvelle NDB dans une SDB en exécutant la commande
suivante :

sd_create_node_database ‘sdb_name’ [, ‘node_name] [, ‘type’]

Le résultat de I’exécution de cette commande est une nouvelle NDB dans la base SDB
nommée ‘sdb name’. Cette NDB aura bien sir le méme nom que la SDB, c¢’est-a-dire
‘sdb_name’. Elle est créée sur le nceud ‘node name’. Les parameétres de la commande
sd_create_node_database sont :

o Le parameétre ‘sdb name’ indique le nom de la SDB pour laquelle une nouvelle
NDB sera créée.

o Le paramétre node name’ est optionnel. S’il n’est pas indiqué dans la commande,
la nouvelle NDB sera créée sur le nceud courant de 1’exécution de la commande,
c’est-a-dire cette NDB sera de type client ou pair. Dans le cas ou ce nceud ne
correspond pas au type de la NDB a créer, SD-SQL Server sélectionnera alors un
noeud disponible de la méta-base MDB.

o Le paramétre ‘type’ indique le type de la NDB a créer. C’est un parameétre
optionnel. S’il n’est pas indiqué dans la commande, le NDB en question hérite le
type du nceud qui va la détenir.

Exemple

Le résultat de la commande ci-dessous sera la création d’une nouvelle NDB sur le noceud
Node?2 pour la SDB nommée SkyServer. Puisque le type de la NDB SkyServer n’est pas
précis¢ dans la commande, elle aura alors le type du nceud Node2 sur lequel elle sera
créée. Le type du nceud Node? est serveur d’apres nos exemples précédent. Ainsi, la NDB
SkyServer sera de type serveur.

sd_create_node_database ‘SkyServer’, ‘Node2’

Soit le nceud Node4 de type pair. La commande qui suit, exécutée sur le noeud Node4,
crée une nouvelle NDB pour la SDB SkyServer. Comme le noeud, sur lequel cette NDB
sera créée, n’est pas mentionné dans la commande, la NDB SkyServerl sera alors créée
sur le noeud courant de I’exécution de la commande, c-a-d Node4. La NDB SkyServel
sera donc de type pair tout comme le type du nceud Node4.

- 68 -

Interface d’Application SD-SQL Server

sd_create_node_database ‘SkyServer’, ‘client’

La commande suivante annule la création d’une nouvelle NDB pour la SDB SkyServer
sur le noeud Nodel. Cette création est annulée parce qu’il existe déja une NDB de la SDB
SkyServer (la NDB primaire) sur ce nceud Nodel. Celle-ci constitue la NDB primaire de
la SDB SkyServer, elle a été créée dans I’exemple précédent, Section 5.5.1.

sd_create_node_database ‘SkyServer’, ‘Nodel’

5.5.2.2 Suppression d’une NDB

Une application peut supprimer une NDB d’une SDB en exécutant la commande
sd_drop node database selon la syntaxe suivante :

sd_drop_node_database ‘sdb_name’, ‘node_name’
Cette commande possede deux parametres en entrée. Il s’agit de :
o ‘sdb name’ qui indique le nom de la SDB de laquelle une NDB sera supprimée ;
0 ‘node_name’ qui indique le nom du nceud ou se trouve la NDB a supprimer.

Avant de supprimer la NDB ‘sdb name’ (elle a le méeme nom que sa SDB) du nceud
‘node_name’, SD-SQL Server s’assure que toutes les données et métadonnées ont été
transférées vers d’autres NDBs de la méme SDB ‘sdb name’. Ceci évite la pertedes
données dépendant des autres nceuds.

Exemple

La commande suivante supprime la NDB localisée sur le noeud Node2 de sa SDB
nommée SkyServer.

sd_drop_node_database ‘SkyServer’, ‘Node2’
5.5.3 Suppression d’une Base de Données Scalable

La suppression d’une SDB est assurée par le SD-DBA. Cette opération permet de
supprimer toutes les NDBs d’une base scalable avec toutes les métadonnées
correspondantes. Elle est réalisée en exécutant la commande suivante :

sd_drop_scalable_database ‘sdb_name’

Exemple

Soit la SDB SkyServer composée de trois NDBs localisées sur Nodel, Node2 et Node3
respectivement. La commande suivante supprime la SDB SkyServer. Ainsi toutes ses
NDBs sur Nodel, Node2 et Node3 seront supprimées avec toutes leurs données.

sd_drop_scalable_database ‘SkyServer’

- 69 -

Interface d’Application SD-SQL Server

Aprés avoir décrit les commandes concernant la gestion des nceuds, des SDBs et des
NDBs dans un systtme SD-SQL Server, nous passons maintenant a la description des
tables scalables, des images et des requétes. Avant cela, notons que les commandes que
nous venons de voir ne peuvent étre exécutées que sur notre systétme SD-SQL Server.
Elles ne peuvent concerner d’autres architectures de SGBDs. Par contre, les commandes
des sections suivantes peuvent concerner des objets du SGBD SQL Server (par exemple)
comme nous allons le voir. En effet, ces commandes sont les requétes SQL habituelles
adaptées a un environnement distribué et scalable.

5.6 Gestion des Tables Scalables

La gestion des tables scalables inclut toute opération effectuée sur le schéma d’une table
scalable. Ces opérations se résument en :

o la création d’une table scalable ;

o la modification d’une table scalable ;

o

la gestion de ses index ;

o

et la suppression des tables scalables.

5.6.1 Création d’une Table Scalable

Soit une application s’exécutant sur une NDB de type client(ou pair) du systéme SD-SQL
Server. Cette application peut créer une table scalable 7 en exécutant la commande
scalable sd_create_table selon la syntaxe suivante :

sd_create_table ‘SQL: Create Table T clauses’, ‘Segment_size’ [, ‘Partitioning Key’]
Cette commande est définie par trois parametres en entrée :

o Le parametre ‘SQL: Create Table T clauses’ affecte le texte de la requéte SQL
CREATE TABLE. Le nom de la table scalable a créer peut étre un nom global dans
ce parametre. Autrement dit, le nom de la table peut étre préfixé par le nom du
nceud et celui de la NDB ou la table sera créé (son chemin). Ce paramétre posseéde
les mémes propriétés que la requéte SQL traditionnelle CREATE TABLE.
Cependant, il y a quelques propriétés qui sont propres a SD-SQL Server et qui
doivent étre vérifiées. Il s’agit de la définition d’une clé primaire pour chaque table
scalable créée. La clé primaire peut étre définie sur un ou plusieurs attributs de la
table scalable. Elle servira apres pour la définition de la clé de partitionnement et
des contraintes d’intégrité lors du partitionnement de la table scalable.

- 70 -

Interface d’Application SD-SQL Server

o Le paramétre ‘Segment size’ définit la capacité de la table scalable a créer. Il s’agit
de sa taille maximale en nombre de tuples. Cette taille sera sauvegardée dans la
méta-table Size, (cf. Section 4.4.2.2). Elle sera vérifiée lors de chaque insertion dans
une table scalable. Si une table scalable excéde cette capacité, elle éclatera.

o Le parametre ‘Partitioning key’ est un parametre optionnel. Il indique un attribut
clé parmi les attributs constituant la clé¢ primaire de la table scalable 7. En effet,
c’est sur cet attribut clé que la table 7 sera partitionnée par la suite. S’il n’est pas
entré dans la commande sd create table, SD-SQL Server partitionne la table 7" sur
un de ses attributs clé. Nous décrirons le choix de cet attribut dans le prochain
chapitre.

Exemple

Nous supposons que la SDB SkyServer crée dans les exemples précédents n’a pas été
supprimée. Soit sa NDB SkyServer du nceud Nodel sur laquelle nous créons la table
scalable PhotoObj. Le nom de cette table est tiré de notre benchmark SkyServer que nous
avons présenté dans la section précédente. Supposons que la table scalable PhotoObj a
une capacité de 10000 tuples. Donc, il exécute la commande scalable de création comme
suit:

sd_create_table ‘PhotoODbj (objid BIGINT PRIMARY KEY'...)’, 10000

Le résultat de cette commande sera alors la table PhotoObj ayant la clé primaire Objid, et
la capacité de 10000 tuples.

5.6.2 Modification d’une Table Scalable

Pour de modifier le schéma d’une table scalable 7, 1’application exécute la commande
sd_alter table selon la syntaxe suivante :

sd_alter_table ‘SQL : ALTER TABLE T clauses’ [,‘Segment _Size’|

La commande sd_alter table joue le méme role que la requéte SQL ALTER TABLE mais
sur les tables scalables. De plus, la commande sd_alter table peut modifier la capacité
d’une table scalable qui était déja définie lors de sa création. Pour cela, cette commande
dispose de deux parametres en entrée. Il s’agit de :

0o ‘SQL: ALTER TABLE T clauses’ qui correspond a la clause SQL usuelle ALTER
TABLE. Toutes les modifications que permet ALTER TABLE sont possibles sur les
tables scalables sauf pour les contraintes d’intégrité. Ces derni¢res définissent le
partitionnement d’une table scalable donc elles ne peuvent étre modifiées que par le
systéme lui méme lors d’un éventuel éclatement d’un segment d’une table scalable.

-71-

Interface d’Application SD-SQL Server

o Le paramétre ‘Segment Size’ est optionnel. Il correspond a la nouvelle capacité
d’une table scalable. ‘Segment Size’ remplace I’ancienne taille maximale de cette
table scalable sauvegardée dans la méta-table Size.

Exemple

Soit la table scalable PhotoObj que nous avons crée dans I’exemple précédent. Si un
utilisateur veut modifier cette table scalable en lui rajoutant une nouvelle colonne ¢ de
type entier, il exécute alors la commande sd_alter table comme suit :

sd_alter_table ‘PhotoObj ADD t INT’

Le résultat de ’exécution de cette commande est donc la table scalable PhotoObj avec
une nouvelle colonne ¢ de type entier au niveau de chacun de ses segments distribués.

Si cet utilisateur veut modifier aussi la capacité de la table scalable PhotoObj pour la
rendre a 20000 tuples, il exécute alors la commande sd_alter table comme suit :

sd_alter_table ‘PhotoObj’, 20000

Le résultat de I’exécution de cette commande scalable est la modification de la capacité,
déja sauvegardée dans la méta-table Size pour la table scalable PhotoObj, a 20000 tuples.

5.6.3 Suppression d’une Table Scalable

Pour supprimer une table scalable 7, ’application utilise la commande sd drop table
selon la syntaxe suivante :

sd_drop_table ‘SQL : DROP TABLE T clauses’

Cette commande supprime tout ce qui est lié a la table scalable 7. Elle supprime ses
segments, ses images et toutes ses métadonnées. Son parameétre d’entrée est défini par la
clause SQL DROP TABLE.

Exemple

La commande suivante supprime la table scalable PhotoObj créée précédemment.
sd_drop_table ‘PhotoObj’

Le résultat de cette commande est un systéme SD-SQL Server sans aucune trace de la
table scalable PhotoObj.

5.6.4 Les Index

Une application/utilisateur peut manipuler des index sur une table scalable. Nous avons
appelé un index d’une table scalable ‘un index scalable’. Un index scalable se propage

-72-

Interface d’Application SD-SQL Server

alors sur tous les segments d’une table scalable. L’interface d’application SD-SQL Server
permet d’ajouter ou de supprimer des index pour une table scalable tout comme n’importe
quelle autre table statique. Nous décrivons dans ce qui suit les commandes SD-SQL
Server gérant les index scalables.

O Création d’un index

Une application peut créer un index distribué et scalable / sur une colonne d’une table
scalable 7, en exécutant la commande scalable sd create index selon la syntaxe
suivante :

sd_create_index ‘SQL: CREATE INDEX I ON T clauses’

Le résultat de cette commande est la création de I’index [sur tous les segments distribués
de la table scalable 7. Cette commande crée un index scalable en utilisant son paramétre
en entrée défini comme suit :

o Le paramétre ‘SQL : CREATE INDEX I ON T clauses’ correspond a la clause SQL
CREATE INDEX.

Exemple

La commande suivante, exécutée sur le noeud pair Nodel, crée I’index scalable run_index
sur la colonne run de la table scalable PhotoObyj :

sd_create_index ‘run_index ON Photoobj (run)'

O Suppression d’un index

Une application supprime un index scalable / de la table 7 en exécutant la commande
sd_drop_index selon la syntaxe suivante :

sd_drop_index ‘SQL : DROP INDEX T.I clauses’

Le paramétre en entrée de la commande est la clause SQL DROP INDEX. De méme que
la création d’un index scalable, la suppression d’un index est propagée sur tous les
segments qui composent la table scalable.

Exemple

La commande suivante, exécutée sur la NDB SkyServer du nceud Nodel, supprime
I’index run_index de la table scalable PhotoObj :

sd_drop_index PhotoObj.run_index’

-73-

Interface d’Application SD-SQL Server

5.7 Gestion des Images Secondaires

Comme nous I’avons déja présenté, une application/utilisateur accéde a une table scalable
a travers ses images (primaire ou secondaires). Pour cela, la gestion des images est
nécessaire. L’interface d’application de SD-SQL Server permet la création et la
suppression des images secondaires seulement. Les images primaires ne peuvent étre
manipulées par les applications. Elles sont créées et supprimées avec leurs tables
scalables. Nous décrivons ces deux opérations dans les sections suivantes.

5.7.1 Création d’'une Image

Une application peut créer des images secondaires sur des NDBs de type client (pair) en
exécutant la commande sd_create image selon la syntaxe suivante :

sd_create_image ‘Primary_node’, “T'able’
Cette commande posseéde un parametre :

o ‘[Primary node]’ indique le nceud de la NDB client qui détient I’image primaire
correspondant a I’image secondaire a créer. Ce parametre nous aide a composer le
nom de 1’image secondaire en question.

o ‘Table’ indique le nom de la table scalable pour laquelle on veut créer une image
secondaire.

Sur chaque NDB client, il n’existe qu’une seule image (primaire ou secondaire) d’une
table scalable donnée. Si une application veut utiliser un autre nom pour les images
secondaires, elle utilise alors la requéte SQL CREATE VIEW.

Exemple

Nous supposons que la table scalable PhotoObj n’est pas encore supprimée. Une
application peut créer une image secondaire de la table PhotoObj en exécutant la
commande suivante sur la NDB Node4.SkyServer par exemple :

sd_create_image ‘Nodel.PhotoOby’

Nodel est le nom du nceud de la NDB SkyServer qui détient I’image primaire. Le résultat
de la commande est une image secondaire sur la NDB de I’exécution de la commande.

5.7.2 Suppression d’une Image Secondaire

La suppression des images concerne seulement les images secondaires. Les images
primaires ne peuvent pas étre supprimées sinon I’interrogation des tables scalables

- 74 -

Interface d’Application SD-SQL Server

devient impossible. Une application peut supprimer une image secondaire en exécutant la
commande suivante :

sd_drop_image ‘image_name’

Le paramétre ‘image name’ peut correspondre a une image locale (sur la méme NDB de
I’exécution de la commande), comme il peut correspondre a une image sur une autre
NDB. Dans ce dernier cas, ‘Tmage name’ contiendra le nom global de I’image pour
indiquer la NDB ou elle est localisée.

Exemple

La commande suivante, exécutée sur la NDB Node4.SkyServer, supprime 1’image
secondaire de la table scalable PhotoObj se trouvant sur la NDB courante de 1’exécution
de la commande.

sd_drop_image ‘PhototObj’

Si cette commande n’est pas exécutée sur la NDB Node4.SkyServer (celle qui détient
I’image secondaire & supprimer), il faut donc indiquer le chemin global de 1’image dans le
parametre de la commande

5.8 Gestion des Requétes

La gestion des requétes par SD-SQL Server concerne toutes les requétes de sélection,
d’insertion, de mise a jour et de suppression. Ces requétes jouent le méme réle que les
requétes SQL. Elles s’exécutent sur des tables scalables a travers leurs images. Elles
peuvent aussi €tre exécutées sur des tables statiques. Nous décrivons dans les sections
suivantes les commandes SD-SQL Server qui servent de requétes de recherche et de mise
a jour (insertion, modification et suppression) des tables scalables.

5.8.1 La Recherche

Une application peut exécuter une requéte de sélection sur des tables scalables en utilisant
la commande sd_select, sur sa NDB client, selon la syntaxe suivante :

sd_select ‘SQL: SELECT clauses’, ‘Segment_size’, ‘Primary_key’

Cette commande joue le méme role que la requéte SQL SELECT. Elle dispose des
parameétres en entrée suivants :

o Le parameétre ‘SQL: SELECT clauses’ est la requéte SQL SELECT avec sa syntaxe
usuelle. Ce paramétre peut contenir des requétes avec des agrégations, des jointures,
des alias, des sous requétes...etc.

- 75 -

Interface d’Application SD-SQL Server

o Les paramétres ‘Segment size’ et ‘Primary key’, sont des parameétres optionnels. Ils
sont utilisés dans la commande sd select quand il s’agit d’une requéte SELECT
INTO. L’utilisation d’une requéte SELECT INTO sur SD-SQL Server permet de
créer une table scalable a partir d’une table statique.

= Le parameétre Segment size’ indique la capacité de la table statique que
I’application souhaite transformer en une table scalable.

e Le parametre ‘Primary_key’ indique la colonne qui sera définie comme clé
primaire et qui servira par la suite dans le partitionnement de la table.

Exemple
L’utilisateur peut exécuter une requéte de sélection sur une table scalable comme suit :
sd_select * FROM PhototObj’
Le résultat de cette commande est 1I’exécution de la requéte SQL :
‘SELECT * FROM PhototOby’

La commande suivante crée une nouvelle table scalable, S PhotoObj, a partir de la table
statique PhotoObj. La capacité de la nouvelle table scalable S PhotoObj est 500 tuples.
Quant a sa clé primaire, elle est définie sur la colonne Objid.

sd_select INTO S_PhotoObj * FROM PhototOby’, 500, ‘Objid’

5.8.2 L’Insertion

Une application peut effectuer une insertion dans une table scalable en exécutant la
commande sd_insert selon la syntaxe suivante :

sd_insert ‘SQL: INSERT clauses’

Cette commande peut étre exécutée sur une table statique ou une table scalable. Son
paramétre d’entrée ‘SQL : INSERT clauses’ correspond a la commande SQL usuelle
INSERT. Une application peut utiliser les clauses SELECT dans la requéte INSERT.

Exemple
La commande suivante permet d’insérer le tuple (2255031257923860) dans la colonne
Objid de la table scalable PhotoObj :
sd_insert INTO PhotoODbj (objid) values (2255031257923860)

La commande sd_insert permet d’insérer des tuples dans la table scalable PhotoObj, se
trouvant sur le nceud Peerl, a partir de la table statique PhotoObj se trouvant sur le nceud
Peers.

- 76 -

Interface d’Application SD-SQL Server

sd_insert INTO PhotoObj SELECT * FROM Peer5.PhotoObj
WHERE objid NOT EXISTS IN (SELECT objid FROM PhotoOb;j)’

5.8.3 La Mise a Jour

Une application met a jour une table scalable en exécutant la commande scalable
sd_update comme suit :

sd_update SQL: Update clauses’

Le paramétre d’entrée est la commande SQL usuelle UPDATE, qui peut contenir,
¢ventuellement, la clause SELECT. La mise a jour des données d’une table scalable doit
respecter les contraintes d’intégrité précédemment définies sur cette table.

Exemple

La commande suivante met a jour la valeur de la colonne run de la table scalable
PhotoObj pour le tuple dont la clé Objid est égale a 2255031257923860.

sd_update ‘PhotoObj set run= 752 where objid=2255031257923860’

Quant a la commande ci-dessous, elle effectue une mise a jour de la table scalable
PhotoObj en utilisant la clause SELECT. Elle modifie la valeur de la colonne run a 752
pour les dix premiers tuples de la table.

sd_update ‘PhotoObj set run= 752 where Objid in
(SELECT TOP 10 Objid FROM PhotoObj)’

5.8.4 La Suppression

Une application peut supprimer des tuples d’une table scalable en utilisant la commande
suivante :

sd_delete ‘SQL: Delete clauses’

Le parameétre en entrée de cette commande est la clause SQL DELETE. L’utilisation de
cette commande doit respecter les contraintes d’intégrité déja définies.

Exemple

La commande suivante supprime de la table scalable PhotoObj le tuple dont la clé Objid
est égale a 2255031257923860.

sd_delete TROM PhotoObj WHERE objid=2255031257923860’

-77 -

Interface d’Application SD-SQL Server

5.9 Conclusion

Dans ce chapitre, nous avons décrit toutes les commandes de I’interface d’application du
systtme SD-SQL Server, tout en illustrant leur utilisation par des exemples. Le chapitre
suivant présentera I’implantation du prototype SD-SQL Server. Nous détaillerons aussi,
dans le chapitre suivant, les traitements internes de chacune des commandes SD-SQL
Server. Nous discuterons également la gestion de concurrence de ces commandes.

-78-

0 LE PROTOTYPE SD-
SQL SERVER

6.1 Introduction

Ce chapitre décrit la mise en ceuvre de notre prototype SD-SQL Server. Il décrit la
structure et le traitement internes des différents composants fonctionnels de 1’architecture.
Nous commengons par justifier nos choix techniques dans I’implémentation de SD-SQL
Server. Ensuite, nous décrivons 1’architecture fonctionnelle de SD-SQL Server. Par la
suite, nous décrivons en détail la structure et le traitement internes de chaque composant
de I’architecture ainsi que toutes ses fonctionnalités. Nous illustrons ces traitements en
utilisant la base de test SkyServer déja présentée dans le chapitre précédent.

6.2 Choix Techniques

Nous présentons dans cette section nos choix techniques dans 1’implantation de SD-SQL
Server. Nous justifions notre choix pour [’utilisation du SGBD SQL Server dans
I’implantation de notre systéme tout en présentant une correspondance entre les
composants des deux systemes. Afin d’éviter quelques restrictions posées par SQL
Server, nous avons propos¢ des mécanismes propres a SD-SQL Server. Il s’agit en
particulier de la gestion des rdles des utilisateurs du systéme SD-SQL Server ainsi que les
conventions sur les noms clés des objets utilisés.

6.2.1 Correspondance entre SD-SQL Server et SQL Server

Comme nous 1’avons déja mentionné, nous avons utilisé le SGBD Microsoft SQL Server
2000 pour I’implantation de notre SD-DBS. Nous avons superposé I’architecture du
systtme SD-SQL Server sur I’architecture d’un ensemble d’instances SQL Server liées.
SD-SQL Server constitue alors une couche scalable et distribuée sur le SGBD SQL
Server.

-79.

Le Prototype SD-SQL Server

Afin de mieux illustrer les différents composants de notre syst¢eme SD-SQL Server, nous
avons propos¢ de faire correspondre ses composants avec les composants classiques du
SGBD SQL Server. Cette correspondance est valable avec tout autre SGBD étant donné
que ce sont les mémes éléments de base sur tous les SGBDs. La table suivante résume la
présentation des objets SD-SQL Server sur SQL Server.

SD-SQL Server SQL Server
Serveur lié Neeud SD-SQL Server
Base de données NDB
Procédure Stockée Commande SD-SQL Server
Tables Systéme M¢éta-tables
Table Segment
Vue Partitionné Image

Table 6-1: Correspondance entre SD-SQL Server et SQL Server

Nous avons choisi SQL Server parmi tous les autres SGBDs actuels pour la raison
principale suivante : SQL Server est le seul SGBD qui permet la modification des vues
partitionnées et distribuées. En effet, nous utilisons les vues partitionnées pour représenter
les images des tables scalables. Comme une table scalable peut s’étendre en nombre de
segments, son image doit alors correspondre a son partitionnement actuel. Par conséquent,
il faut pouvoir modifier la définition de la vue partitionnée représentant cette image.

6.2.2 Gestion des Utilisateurs

Tout SGBD définit des contextes de sécurité de ses services afin de bien gérer les
autorisations d’acceés a ses bases de données. Nous présentons, dans ce qui suit, le
mécanisme de gestion des utilisateurs sur SQL Server. Ensuite, nous décrivons le
mécanisme que nous avons proposé pour la gestion des utilisateurs sur SD-SQL Server.

6.2.2.1 Gestion des Utilisateurs sur SQL Server

Sur SQL Server, 'acceés des utilisateurs et la sécurité sont basés sur les utilisateurs et les
roles des bases de données SQL Server. Un rdle est en fait un groupe d'utilisateurs
possédant des droits communs. Tout utilisateur peut accéder a la base et doit appartenir au
moins a un réle [MO0O0].

Pour gérer facilement les autorisations dans les bases de données sur SQL Server, il est
recommandé de définir un ensemble de roles basés sur des fonctions et d'attribuer a
chaque role les autorisations qui s'appliquent a ces fonctions au lieu d'attribuer des
autorisations a chaque utilisateur individuellement.

- 80 -

Le Prototype SD-SQL Server

SQL Server s'appuie par défaut sur le systeme d'utilisateurs de Windows [MO0O]. Des
droits sont donnés sur les différents éléments de SQL Server a un groupe ou a un
utilisateur Windows. Lors de la connexion a la base de données, 'utilisateur est identifié
grace a son login Windows. Il accéde aux ressources de la base de données auxquelles
I'administrateur lui a donné droit par l'intermédiaire de son groupe Windows ou
directement a partir de son identifiant. Lors de l'accés a une ressource extérieure, le
processus SQL Server agit par emprunt d'identité : l'utilisateur ne peut accéder par
l'intermédiaire de SQL Server qu'aux ressources auxquelles il aurait droit s'il y accédait
directement.

Lorsqu'un utilisateur est connecté a une instance, il peut disposer de droits sur l'instance
elle-méme et/ou sur chacune des bases gérées par l'instance. Les droits sur 1'instance sont
donnés par l'intermédiaire de roles d'instance prédéfinis. Les droits sur les bases de
données sont donnés par l'intermédiaire de roles de base de données, de groupes Windows
ou directement a l'utilisateur. Il existe des roles de bases de données de type systeme qui
donnent des droits spécifiques sur la base de données et d'autres définis par
I'administrateur qui donnent des droits sur les objets. Lorsque l'acceés a une instance est
donné a un utilisateur ou a un groupe Windows, celui-ci dispose d'un espace utilisateur
dans lequel peuvent étre enregistrés des objets ayant un nom identique a celui d'un autre
espace utilisateur. L'espace utilisateur par défaut des administrateurs d'une base de donnée
est dbo (ang. database owner).

Si aucun utilisateur ni role n'ont été créé pour l'exploitation des données, c'est le
propriétaire des bases par défaut (dbo) qui exerce ses droits. Ceux-ci étant illimités il est
possible pour les utilisateurs finaux de modifier, supprimer ou insérer dans toutes les
bases y compris les bases systémes, les schémas, les données comme le code (procédures
stockées et triggers notamment). Bien évidemment, cet état de fait laisse la porte grande
ouverte aux attaques de serveurs SQL Server.

6.2.2.2 Gestion des Utilisateurs sur SQL Server

Un utilisateur du systéme SD-SQL Server doit aussi disposer d’autorisations appropriées
pour accéder aux données du systtme SD-SQL Server. Comme nous avons utilisé le
SGBD SQL Server pour I’implantation de SD-SQL Server, nous nous basons alors sur les
mémes principes de gestion d’acces cités ci-dessus.

Nous avons défini un nouveau réle que nous avons appelé SD (Scalable Distributed). Ce
role est appliqué a tous les objets du systéeme SD-SQL Server qui sont transparents pour
les utilisateurs. Ces objets sont :

o Les méta-tables localisées sur les NDBs de type client, serveur et pair ainsi que sur
la MDB, autrement dit, toutes les méta-tables du systeme SD-SQL Server.

-87 -

Le Prototype SD-SQL Server

o Les segments qui composent les tables scalables.
o Les images secondaires des tables scalables.

Quant aux autres objets du systeme SD-SQL Server, nous avons utilisé¢ le role dbo pour
les accéder. Ces objets sont les images primaires et toutes les procédures stockées qui
implémentent les commandes SD-SQL Server.

6.2.3 Convention des Noms

Nous avons congu SD-SQL Server de telle maniere qu’il ait ses propres objets internes
[SLS05]. Ces objets consistent en : les bases de noeud (NDBs), les méta-tables, les
procédures stockées ainsi que les segments, les index et les images des tables scalables.
Tous les objets de type systeémes ont implémentés comme des objets du systeme SQL
Server.

Afin d’éviter les conflits des noms, en particulier entre les noms des objets sur SQL
Server créés par une application SD-SQL Server, nous avons défini ces régles de
nomination :

o Chaque NDB doit étre créée avec le role ‘SD’ dédié¢ a SD-SQL Server.

o Le nom d’une base de données, d’une table, d’une vue ou d’une procédure
stockée, ne doit pas étre le nom d’une commande SD-SQL Server. Les noms
des commandes SD-SQL Server sont considérés comme des mots clé réservés
a SD-SQL Server, tout comme les commandes SQL sur SQL Server. Les
raisons techniques de cette convention sont le fait que les procédures stockées
qui implémentent les commandes SD-SQL Server sont de type ‘public’, c’est-
a-dire elles sont implémentées sur le compte de ’utilisateur ‘dbo’. Les noms
des commandes de SD-SQL Server sont composés des noms des commandes
correspondantes sur SQL Server préfixés par ‘sd ’ et remplacant tout
caractére blanc par le caractére “ . Ainsi, la commande SQL SELECT devient

sur SD-SQL Server SD_SELECT.

o Une table scalable T représente un objet publique, c’est-a-dire, son nom
global sur SQL Server est dbo.T. Son nom doit donc étre unique sur chaque
NDB. En d’autres termes, deux usagers différents d’'une méme NDB ne
peuvent pas créer tous les deux une table scalable ayant le nom 7. En outre,
deux utilisateurs de NDBs différentes peuvent chacun créer une table scalable
avec le méme nom 7.

o Un segment d’une table scalable 7 créé par ’utilisateur du nceud SQL Server
D, aura le nom SD. D T sur SD-SQL Server. Autrement dit, le nom d’un
segment fait référence au nom du nceud ou sa table scalable a été créée.

-82-

Le Prototype SD-SQL Server

o Une image primaire d’une table scalable 7 a le méme nom (7) que sa table.
Son nom global sur un nceud est dbo.T. T est, en fait, le nom de la vue
partitionnée et distribuée SQL Server qui implémente 1’image primaire de
cette table.

o Chaque image secondaire, d’une table scalable 7" créée sur une NDB client ou
pair D, aura le nom SD.D T. Ce nom est aussi celui de la vue partitionnée et
distribuée implémentant 1’image secondaire.

Puisque toutes les commandes SD-SQL Server sont implémentées comme des procédures
stockées publiques, c’est-a-dire elles ont le role ‘dbo’, SQL Server préfixe alors
automatiquement tous les objets qui sont & accés public (qui ont le réle dbo) sur SD-SQL
Server avec le role ‘dbo.’. Ceci permet d’éviter les conflits des noms entre les différents
utilisateurs des NDBs du systéme SD-SQL Server.

Les régles (ou conventions) de noms, que nous avons définies, permettent d’éviter les
conflits de noms entre les objets systeme qui existent déja sur SD-SQL Server et ceux
créés par de nouvelles applications. En effet :

o Un nom privé d’un objet créé par une application ne peut pas étre en conflit avec le

nom d’une autre image ou d’un segment de sa table scalable existant sur la méme
NDB.

o Un nom d’une image primaire ne peut pas étre en conflit avec le nom d’un segment
de la méme NDB.

o Deux segments d’'une méme NDB appartenant a deux tables scalables ayant le
méme nom, ont des noms différents. Ainsi, ces deux segments peuvent partager la
méme NDB sans créer un conflit de noms.

o Les images primaires et secondaires peuvent tre créées sur la méme NDB pair ou
client sans conflit de noms.

Exemple

Soient Delll, Dell? et Dell3 des nceuds de type client, serveur et pair respectivement. Soit
PhotoObj le nom de deux tables scalables. L une est créée sur la NDB SkyServer du nceud
Delll et I’autre sur la NDB SkyServer du noceud Dell3. Nous supposons les cas suivants :

o Dell2.SkyServer est la NDB serveur qui détient le segment primaire de la premiére
table.

o Dell3.SkyServer est la NDB pair qui détient le segment primaire de la deuxieéme
table.

est le serveur de Delll pour la table scalable PhotoObj. Ensuite, Delll.DBI1.PhotoObj
éclate en créant un nouveau segment sur Dell3. De méme, Dell3.DB1.PhotoObj éclate en

-83-

Le Prototype SD-SQL Server

créant un nouveau segment sur Dell2. Et finalement, Dell3 posséde une image secondaire
de Delll.DBI1.PhotoObj. Nous aurons alors la situation suivante :

o La base de données Delll.DBI contient I’image primaire dbo.PhotoObj qui
constitue la wvue partitionnée et distribuée sur SQL Server nommée
DB1.dbo.PhotoObj sur Delll.

o La base de données Dell2.DB1 contient les segments SD. Delll PhotoObj et
SD. Dell3 PhotoObj.

o La base de données Dell3.DBI1 contient les segments SD. Delll PhotoObj et
SD. Dell3 PhotoObj. Elle contient aussi la vue partitionnée et distribuée nommeée
sur DB1 SD.Delll PhotoObj.

6.2.3.1 Les Méta-tables

Nous avons décrit en détail les méta-tables du systéme SD-SQL Server dans le chapitre
précédent. Nous rappelons que les méta-tables constituent un ensemble logique de
catalogues S, C et P correspondant aux NDBs de type serveur, client et pair
respectivement.

Les méta-tables SD-SQL Server sont implémentées comme des tables SQL Server. Ces
tables sont consultées et mises a jour en utilisant uniquement des procédures stockées et
des requétes SQL. Autrement dit, elles sont transparentes aux utilisateurs. C’est pour cela
d’ailleurs, que nous avons propos¢ de créer ces tables sous le role SD. Ainsi, afin

d’accéder a une méta-table dans une procédure stockée, il faut la préfixer par le nom
‘SD.".

6.3 Etapes Suivies dans la Configuration et
PUtilisation de SD-SQL Server

L’implémentation du systtme SD-SQL Server nécessite la disposition d’une
configuration initiale. Cette configuration consiste a avoir au moins deux instances, du
SGBD SQL Server, distribuées et liées entre elles. En effet, c’est 1’administrateur du
systéme qui s’occupe de la configuration initiale de SD-SQL Server.

Nous prenons le cas de figure de notre laboratoire. Nous avons sept machines liées entre
elles dans un réseau local. Sur chaque machine, nous avons installé le logiciel SQL Server
2000. Les noms des serveurs SQL sont ceux des machines : Ceria, Delll, Dell2, Dell7,
Dell8, Delll0 et Dellll.

Afin d’implémenter SD-SQL Server, ces SGBDs SQL Server doivent étre li€s entre eux
(ang. linked servers). Nous lions toutes les instances SQL Server entre elles en exécutant

-84 -

Le Prototype SD-SQL Server

des procédures stockées du systéme SQL Server qui permettent de faire cela. Nous
exécutons ces commandes sur SQL Analyser, 1’éditeur de requéte SQL.

Nous prenons I’exemple des deux serveurs Delll et Dell7. Afin de lier ces deux SGBDs
entre eux, nous procédons comme suit :

1. Exécuter le code suivant sur la premicre instance SQL Server Delll :
EXEC sp_addlinkedserver ‘Delll’, N'SQL Server'
EXEC sp_addlinkedserver ‘Dell7’
EXEC sp_configure 'remote access', 1
RECONFIGURE

2. Arréter et redémarrer I’instance Delll.

3. Exécuter le code suivant sur la seconde instance Dell7 :
EXEC sp_addlinkedserver ‘Dell7’, local
EXEC sp_addlinkedserver ‘Delll’
EXEC sp_configure 'remote access', 1
EXEC sp_addremotelogin ‘Delll’; sa, sa
RECONFIGURE

4. Arréter et redémarrer 1’instance Dell7.

Nous exécutons cette liste de commandes pour chaque couple des instances SQL Server
restant. Ainsi, nous aurons les SQL Server liés entre eux : Ceria, Delll, Dell2, Dell7,
Dell8, Delll0 et Dellll.

Ayant des serveurs li€s entre eux, nous pouvons les utiliser pour constituer les nceuds SD-
SQL Server. Pour cela, nous exécutons les étapes décrites dans les sections suivantes.

6.3.1 Création du Neeud Primaire SD-SQL Server

La premiere étape dans la configuration d’un systeme SD-SQL Server est la création de
son nceud primaire a partir d’un serveur 1i€ SQL Server. Nous choisissons un serveur li¢
SQL Server parmi la collection des serveurs liés que nous avons déja établie dans la
section précédente. Nous supposons que Delll est un serveur lié. Le premier nceud crée
pour le systtme SD-SQL Server doit étre de type pair pour pouvoir contenir la méta-base
MDB avec tous les objets (méta-tables et procédures stockées) qui permettent la gestion
de nceuds, des SDBs et des NDBs. Le nceud primaire SD-SQL Server ne peut pas étre
donc de type client ou serveur uniquement.

-85 -

Le Prototype SD-SQL Server

Nous créons alors la méta-base MDB sur le nceud primaire Delll. MDB est une base de
données SQL Server simple pour le moment. Afin de la rendre comme étant une méta-
base servant de dictionnaire dans le systétme SD-SQL Server, nous exécutons un script
SQL sur cette base. Nous avons écrit ce script pour contenir I’ensemble de transact-SQL
permettant de créer toutes les méta-tables et les procédures stockées qu’une NDB de type
pair peut contenir. L’exécution de ce script crée alors I’ensemble de ces objets sur la
MDB. Nous avons appelé ce script Install.sql. Lors de I’initialisation du nceud SD-SQL
Server primaire, et avant la création de la MDB, nous sauvegardons ce fichier dans un
répertoire appelé script, dédi¢ aux scripts SQL du systeme SD-SQL Server. Ce répertoire
se trouve sur le disque de la machine Delll qui représente ce nceud primaire. Nous
utilisons la commande suivante pour 1’exécution du script install :

EXEC master..xp_cmdshell 'osql /U sa /P /d MDB < c:\script\install.sql'
L’exécution du script install.sql sur la MDB donne les résultats suivants :
o La création des méta-tables Nodes et SDB.

o L’insertion du tuple (Delll, peer) dans la méta-table Nodes pour indiquer
I’existence du nceud primaire Delll.

o Création de toutes les procédures stockées qui permettent la création des nceuds, des
NDBs et des SDBs afin de les utiliser par la suite dans la création des premiers
nceuds et SDBs de la configuration. Ces procédures stockées sont :

® sd create_node

e sd_alter_node

* sd_drop_node

® sd create_scalable database
e sd_create_node_database

* sd_drop_node_database

* sd_drop_scalable_database
6.3.2 Création des autres Neeuds SD-SQL Server

Apres avoir créé les procédures stockées qui implémentent les commandes SD-SQL
Server permettant la création des nceuds et des SDBs, nous pouvons alors créer d’autres
nceuds SD-SQL Server avec la commande sd create node a partir de la base MDB du
nceud Delll.

- 86 -

Le Prototype SD-SQL Server

Nous supposons la création des nceuds Dellll, DellO, Dell7, Dell8 et Ceria. Nous
considérons les trois premiers noeuds (Delll 1, Dell0 et Dell7) de type serveur, Dell8 de
type pair et Ceria de type client.

L’exécution des commandes suivantes (de la MDB) sur I’analyseur SQL, permet la
création des nceuds Delll1, Dell0, Dell7, Dell§ et Ceria :

sd_create_node ‘Dellll’
sd_create_node ‘Dell10, ‘servet’
sd_create_node ‘Dell7, ‘servet’
sd_create_node ‘Dell8, ‘peer’
sd_create_node ‘Ceria’, ‘Client’

En plus de la création des nceuds, les commandes ci-dessus permettent d’insérer les tuples
décrivant ces nceuds dans les méta-tables de la MDB. Les tuples (Dell2, server), (Dellll,
client) et (Ceria, peer) seront insérés dans la méta-table Nodes de la MDB.

Si ’administrateur du systéme veut modifier le type d’un nceud existant, il exécute alors
la commande sd_alter node. Nous supposons par exemple la modification du nceud Ceria
en lui rajoutant les capacités d’un nceud de type serveur. Nous exécutons ainsi la
commande sd_alter node comme suit :

sd_alter_ node ‘Ceria, ‘ADD Server’
Pour résumer, la configuration de notre systéme possede jusqu’a maintenant six noeuds :
o Un nceud primaire de type pair, Delll contenant la MDB.
o Un nceud de type serveur, Dellll.
o Un nceud de type serveur, Delll0.
o Un nceud de type serveur, Dell7.
o Un nceud de type pair, DellS.

o Un nceud de type client, Ceria.

6.3.3 Création d’une SDB

Comme nous utilisons le benchmark SkyServer, nous allons alors garder les mémes noms
de base de données et de tables de ce benchmark. Nous supposons la création de la SDB
SkyServer avec une seule extension qui est sa NDB primaire. Nous choisissons le nceud
Dellll pour héberger la NDB primaire SkyServer. L’exécution de la commande suivante
sur la base Delll.MDB donne ces résultats :

-87-

Le Prototype SD-SQL Server

sd_create_scalable_database ‘SkyServer, ‘Delll1’

La SDB SkyServer a pour I’instant une NDB primaire. Cette NDB est de type serveur par
défaut puisque aucun type n’a ¢été indiqué dans la commande. La commande
sd_create_scalable database permet aussi la création et 1’initialisation de toutes les méta-
tables qu’une NDB serveur peut contenir, ¢’est-a-dire RP, Primary, Size, MDBNode et
SDBNodes. Les méta-tables RP, Primary et Size ne seront pas encore initialisées a ce
niveau de la configuration. Quand a la table MDBNode, elle aura comme entrée le tuple
(Delll) qui indique la localisation (le nceud) de la MDB. Ainsi que la méta-table
SDBNode, elle sera initialisée par le tuple (Delll1) qui indique la localisation de la NDB
primaire de la SDB SkyServer.

Pour pouvoir accéder a la SDB SkyServer, il faudrait qu’elle ait au moins une NDB de
type client (ou pair). Nous créons ainsi une NDB SkyServer de type client en exécutant la
commande ci-dessous. Nous créons cette NDB sur le nceud Ceria qui est de type client :

sd_create_node_database ‘SkyServer’, ‘Ceria’, ‘client’

Le résultat de cette commande est alors une nouvelle NDB (de type client), dans la SDB
SkyServer, qui sera localisée sur le nceud Delll1. En plus de la création d’une NDB, cette
commande permet de créer toutes les procédures stockées correspondant aux commandes
SD-SQL Server ainsi que les méta-tables Image et Server. La méta-table Image reste vide,
quant a la méta-table Server, elle aura comme entrée les tuples indiquant les nceuds SD-
SQL Server de type serveur ou pair qui détiennent des NDBs de la SDB courante
SkyServer. Puisque la SDB SkyServer n’a qu’une NDB serveur Dellll, le tuple (Dellll)
est donc inséré dans la méta-table Server. Ces NDBs vont servir dans la création de
tables scalables. Des lors, les utilisateurs de SD-SQL Server peuvent accéder a la SDB
SkyServer et créer ainsi des tables scalables.

6.3.4 Création d’une Table Scalable

Nous utilisons aussi le benchmark SkyServer pour la création des tables scalables. Nous
exploitons les schémas de ses tables (qui sont statiques) pour les créer comme des tables
scalables sur SD-SQL Server. Nous utilisons tout particuliérement la table PhotoObj [].

Soit un utilisateur de la NDB client Ceria.SkyServer. Nous supposons que cet utilisateur
veut créer la table scalable PhotoObj avec la capacité de 150000 tuples. Comme clé de
partitionnement, il utilise sa clé primaire Objid. 11 exécute alors la commande
sd_create_table comme suit :

sd_create_table ‘PhotoODbj (objid BIGINT PRIMARY KEY...)’, 150000

Le résultat de cette commande sera alors la création du segment primaire et de I’image
primaire de la table scalable PhotoObj. Le segment sera nommé Ceria_PhotoObj. 1l sera

-85 -

Le Prototype SD-SQL Server

localis¢ sur la NDB SkyServer du nceud Dellll. Ce nceud est sélectionné a partir de la
méta-table Server (nous détaillerons ce point plus loin dans ce rapport). Nous rappelons
que la référence au nceud Ceria dans le nom du segment désigne le nceud client (ou pair)
sur lequel a été lancé la création de la table scalable. Quant a ’image primaire, elle sera
nommée PhototObj et elle sera localisée sur Ceria.SkyServer, la NDB de ’exécution de la
commande.

Les métat-tables RP, Primary et Size auront les entrées suivantes respectivement :
(Dellll, Ceria, PhotoObj), (Dellll, Ceria, PhotoObj) et (Ceria, PhotoObj, 150000).
Quant a la clé de partitionnement, puisqu’elle n’a pas été¢ indiquée dans la commande (il
n’ y a pas de troisiéme paramétre), donc elle sera implicitement ’attribut clé¢ Objid
comme déja mentionné.

Nous donnons maintenant I’exemple de la création de la table scalable Neighbors. Cette
table a une clé primaire composée de trois attributs clé (objid, htmid et Neighborobjid),
comme modélisés sur la base du benchmark SkyServer []. Le méme utilisateur (du nceud
Ceria) choisit, par exemple, I’attribut clé Objid comme clé de partitionnement de la table
Neighbors. Pour la capacité de la table, nous supposons qu’il choisit une capacité de 500
tuples. Ainsi, il exécute la commande sd_create table comme suit :

sd_create_table ‘Neighbors (htmid BIGINT, objid BIGINT, Neighborobjid BIGINT)
ON PRIMARY KEY'...)’, 500, ‘objid’

Le résultat de cette commande est alors la table scalable Neighbors avec son segment
primaire Ceria_Neighbors localisé sur la NDB SkyServer du nceud Delll 1, et une image
primaire sur la NDB Ceria.SkyServer.

6.3.5 Modification d’une Table Scalable

Le méme utilisateur de la NDB client Ceria.SkyServer peut aussi modifier la table
scalable PhotoObj qu’il a créée. Nous supposons qu’il veut rajouter la colonne ¢ de type
INT a I’ensemble des colonnes de la table PhotoObj, et modifier aussi sa capacité de
150000 tuples a 10000 tuples. 11 exécute alors la commande sd_alter table comme suit :

sd_alter_table ‘PhotoObj ADD t INT’, 1000

Le résultat de I’exécution de cette commande sera alors le segment primaire de la table
scalable PhotoObj avec une nouvelle colonne ‘¢’ et une nouvelle capacité (10000). Le
tuple décrivant la table scalable PhotoObj dans la méta-table Size sera donc mis a jour. Sa
colonne Size qui était égale a 150000 aura la nouvelle valeur 10000.

L’utilisateur peut aussi créer un index sur une colonne de la table scalable PhotoObj. 11
exécute alors la commande sd create index comme suit :

sd_create_index ‘run_index ON Photoobj (tun)'

-89 -

Le Prototype SD-SQL Server

Si la table scalable PhotoObj éclatera, la nouvelle colonne ¢ et le nouvel index seront
propagés sur ses nouveaux segments.

6.3.6 Création des Images Secondaires

Nous avons vu lors de la création de la table scalable PhotoObj aque son image primaire
est créé sur la NDB client (Ceria.SkyServer). L’utilisateur peut créer une image
secondaire pour la table scalable PhotoObj sur la NDB SkyServer du nceud pair Dell§ par
exemple. Il exécute alors la commande sd create image sur cette NDB tout en indiquant
le nceud de la NDB primaire, Ceria, qui détient la table PhotoObj :

sd_create_image ‘Ceria’, PhotoOby’

Le résultat de I’exécution de cette commande sera alors I’image secondaire nommée
Ceria_PhotoObj localisée sur la NDB Dell8.SkyServer. Si I'utilisateur veut créer 1’image
secondaire, sous un autre nom, il exécute alors la commande SQL habituelle CREATE
VIEW.

6.3.7 Suppression d’une Image Secondaire

Si I’utilisateur n’a plus besoin de 1’image secondaire Ceria PhotoObj créée
précédemment, il peut la supprimer en exécutant la commande sd drop_image comme
suit :

sd_drop_image 'SD.Ceria_Photoobj'
6.3.8 Acceés a une table scalable

L’acces a une table scalable consiste a chercher, insérer, mettre a jour, ou supprimer des
données dans cette table. Toutes les requétes d’acceés interrogent une table scalable a
travers son image. Afin d’illustrer I'utilisation de ces commandes sur SD-SQL Server,
nous donnons I’exemple de la commande d’une insertion. Nous donnons d’autres
exemples pour toutes les commandes, dans les sections suivantes lors de 1’explication de
leur traitement interne.

Soit un utilisateur de la NDB Ceria.SkyServer qui effectue une insertion dans la table
PhotoObj (a travers son image primaire). Nous supposons qu’il exécute la commande
d’insertion comme suit :

sd_insert INTO PhotoObj SELECT * FROM Ceria5.Skyserver-S.PhotoOb;j’

Le résultat d’exécution de cette commande sera le transfert de tous les tuples de la table
statique PhotoObj, localisée sur la base statique Cerial.SkyServer-S, vers la nouvelle

-90 -

Le Prototype SD-SQL Server

table scalable PhotoObj. Si le nombre de tuples transférés dépasse la capacité qui a été
fixée pour la table PhotoObj (lors de sa création), elle éclatera en conséquence.

6.3.9 Suppression d’une Table Scalable

Pour la suppression de la table scalable PhotoObj, 'utilisateur exécute la commande
sd_drop_table comme suit :

sd_drop_table ‘PhotoOby’

Le résultat d’exécution de cette commande sera alors la suppression de I’image primaire
et de tous les segments de la table scalable PhotoObj. Toutes les métadonnées décrivant la
table scalable et son image primaire seront supprimées aussi.

6.4 Traitement Interne des Commandes SD-SQL
Server

Nous présentons, dans cette section, les détails sur la structure et le traitement interne de
chaque commande SD-SQL Server. Nous implémentons chaque commande par une
procédure stockée sur SQL Server. Les parameétres spécifiques (capacité, clé de
partitionnement...) de chaque commande, représentent les arguments d’entrée de la
procédure stockée I’implémentant. Par exemple, la commande SD-SQL Server sd_select
qui a comme paramétre la clause SQL SELECT sera implémentée par une procédure
stockée nommeée sd_select et ayant comme argument la chaine de caractére correspondant
a la clause SQL.

Quant au traitement interne de chaque commande, il sera représenté par un code dans le
corps de la procédure stockée. Ce code utilise Transact-SQL ainsi que des instructions
dynamiques. Nous détaillons, dans les sections suivantes, les traitements sur 1’évolution
des tables scalables, les images et les requétes. Nous reprenons pour cela la configuration
utilisée dans la section précédente.

6.4.1 Gestion des Tables Scalables

6.4.1.1 Création d’une Table Scalable

Nous rappelons qu’une table scalable est formellement défini par un tuple (7, §) ou T
présente son image primaire et S ses segments. La création d’une table scalable est
réalisée par D’exécution de la commande sd create table comme nous 1’avons déja
mentionné.

-97 -

Le Prototype SD-SQL Server

Nous reprenons I’exemple de la création de la table scalable PhotoObj de la section 6.3.4
afin d’expliquer les étapes du traitement interne de la commande sd create table. Nous

rappelons que nous avons exécuté cette commande sur la NDB Ceria.SkyServer comme

suit :

sd_create_table ‘PhotoObj (Objid bigint NOT NULL Primary_Key)...”, 150000

Le traitement interne de cette commande consiste a suivre les étapes suivantes :

(o)

Le gestionnaire SD-SQL Server extrait le nom de la table scalable a créer du
premier parametre de la commande. Pour cela, il utilise les fonctions sur les chaines
de caracteres SUBSTRING et CHARINDEX. 11 sauvegarde le nom de la table
scalable, qui est dans notre exemple PhotoObj, dans une variable.

Ensuite, a partir du nom de la table scalable PhotoObj et a partir du nceud de
I’exécution de la commande (Ceria), il formule le nom de son segment primaire
comme nous 1’avons déja décrit dans la section précédente. Donc le segment
primaire de la table scalable PhotoObj aura le nom Ceria PhotoObj et il sera
préfixé du réle SD, c’est-a-dire le nom global d’un segment est
SkyServer.SD. Ceria_PhotoObj.

Puisque SD-SQL Server commence par la création du segment primaire d’une table
scalable, il reformule donc la requéte entrée dans la commande en précisant le nom
du segment SD. Ceria_PhotoObj. 11 compléte aussi cette requéte en la transformant
en une requéte SQL compréhensible par SQL Server. Ainsi, la requéte devient :

CREATE TABLE SD._Cetia_PhotoObj (Objid bigint NOT NULL Primary)

Avant d’exécuter cette requéte, il sélectionne d’abord un noeud serveur ou créer ce
segment primaire. Il sélectionne ce nceud a partir de la méta-table SD.Server qui se
trouve sur la NDB courante de I’exécution (Ceria.SkyServer). Soit Delll l, le nceud
serveur qui détient la NDB SkyServer. 1l exécute alors la requéte précédente sur
Delll 1.SkyServer. Le résultat de I’exécution de cette requéte est le segment primaire
SD. Ceria_PhotoObj sur la NDB Delll 1.SkyServer.

Une fois le segment primaire, de la table scalable PhotoObj, est créé, SD-SQL
Server lui associe un déclencheur de type AFTER INSERT. Ce déclencheur fait
appel a un job asynchrone que nous avons appelé splitter. Ce dernier vérifie la taille
du segment correspondant et lance son éclatement en cas de débordement. Nous
décrivons sa structure interne dans la Section 6.4.1.2.1.

SD-SQL Server crée aussi I’image primaire qui représente le partitionnement actuel
de la table PhotoObj. Cette image sera créée sur le compte utilisateur courant de la
SDB SkyServer, c’est-a-dire ‘dbo’. Elle sera créée sur la NDB client qui lance la
commande de création, c’est-a-dire Ceria.SkyServer. La définition de I’image
primaire dbo.PhotoObj est comme suit :

-92.

Le Prototype SD-SQL Server

CREATE view PhotoObj AS

SELECT * FROM dell11.SkyServer.SD._Ceria_PhotoObj

o Une fois, le segment primaire et I’image primaire de la table scalable PhotoObj sont
créés, SD-SQL Server inseére de nouvelles entrées décrivant PhotoObj dans les
méta-tables :

Il insére le tuple (Dellll, Ceria, PhotoObj) dans la méta-table
Delll 1.SkyServer.SD.Prim.

Il insére le tuple (Ceria, PhotoObj, 150000) dans la méta-table
Dellll.SkyServer.SD.Size. La troisiéme colonne Size de la méta-table
SD.Size est affectée par la capacité entrée dans la commande
sd_create_table.

Il insére le tuple (Dellll, Ceria, PhotoObj) dans la méta-table
Dellll.SkyServer.SD.RP.

Il insere les tuples (PhotoObj, Primary, Dellll, 1) et (Dellll) dans les
méta-tables de la NDB Ceria.SkyServer : SD.Image et SD.Server
respectivement.

La figure suivante montre les résultats de la création de la table scalable PhotObj. Les

détails sur le traitement interne de la procédure stockée correspondant a la commande
sd_create_table, sont dans I’ Annexe A.

6.4.1.2

SD.Image SD.RP
PhotoObj true | Dell11 | 1| Dell11 Ceria PhotoObj
]

SD.server SD.Prim

| Dell11 | Ceria [PhotoObj |

" PhotoObj | i SD.Size
!_Distr. Part. View. | | Ceria | PhotoObj | 160000 |
Client NDB Ceria.SkyServer _Ceria_PhotoObj
Table

Server NDB Dell11.SkyServer

Figure 6-1: Résultats de la création de la table scalable PhotoObj

Evolution d’une table scalable

L’¢évolution d’une table scalable consiste a rajouter de nouveaux segments dans la table

scalable (éclatement), modifier son schéma, ajuster ses images et la supprimer. Nous

détaillons dans ce qui suit les traitements internes de chaque commande SD-SQL Server

qui réalise ces manipulations.

-93-

Le Prototype SD-SQL Server

6.4.1.2.1. Eclatement

Une table scalable est étendue sur plusieurs NDBs si elle éclate en plusieurs segments.
Son éclatement résulte d’une insertion qui fait déborder un (ou plusieurs) de ses segments.
Nous expliquons les traitements internes d’un éclatement a travers 1’exemple de la table
PhotoObj créée précédemment.

Nous supposons I’insertion de /60000 tuples dans la table scalable PhotoObj composée
d’un segment primaire jusqu’a présent. Nous utilisons la capacité b=150000 tuples déja
associée a la table PhototObj. 1l est clair que les 160000 tuples font déborder PhotoObj de
sa capacité et ainsi I’éclater. Voyons comment proceéde le gestionnaire SD-SQL Server
dans ce cas.

Lors de toute insertion dans une table scalable, le gestionnaire SD-SQL Server lance le
déclencheur du segment (des segments) qui est (sont) impliqué(s) dans cette insertion. En
effet, les tuples seront insérés dans les segments tout en respectant leurs contraintes
d’intégrité. Dans notre exemple, un sel segment est concerné par I’insertion des 160000
tuples. Suite a cette insertion, le déclencheur du segment sera lancé. Ce dernier fait appel
au splitter, qui est un programme exécuté en différé avec 1’insertion afin de ne pas la
pénaliser (en la mettant en attente). Le splitter est implémenté sur SD-SQL Server comme
¢tant un job asynchrone du systtme SQL Server. Il est invoqué dans le corps du
déclencheur, de chaque segment d’une table scalable, par la commande suivante :

EXEC msdb..sp_start_job 'splitter’

Le role du splitter est de vérifier si le segment visé par I’insertion n’a pas débordé et dans
le cas affirmatif il lance son éclatement. Pour cela, il fait appel a une procédure stockée,
que nous avons appelée split table. Cette procédure stockée a un paramétre en entrée. Il
s’agit du nom du segment a éclater. Dans notre exemple, ce parametre est affecté par le
nom SD. Ceria_PhotoObj du segment primaire de la table PhotoObj. Le traitement
interne de cette procédure consiste a suivre les étapes ci-dessous :

o Tout d’abord, le gestionnaire SD-SQL Server vérifie si la taille du segment
_Ceria_PhotoObj langant le splitter n’a pas dépassé sa capacité.

= Si le nombre de tuples dans ce segment est inférieur a sa capacité b, le
splitter termine ses traitements.

= Si b est dépassée, le splitter poursuit son traitement. Et ¢’est le cas de notre
exemple.

o En cas de débordement, le gestionnaire crée, selon la taille du segment, un (ou
plusieurs) nouveau(x) segment(s) ayant le méme nom que le segment éclatant
(_Ceria_PhotoObj). En effet, il soustrait la taille INT(b/2) (1a moitié de la capacité)
de la taille du segment Ceria PhotoObj. La taille qui est en résulte est b= 85000

-94-

Le Prototype SD-SQL Server

tuples. Puisque b’ est inférieure a la capacité b de PhotoObj, donc un seul nouveau

segment suffira pour y transférer les tuples en exces. Un nouveau segment
_Ceria_PhotoObj sera crée. Mais pour cela, il faudrait une NDB serveur disponible
de la SDB SkyServer afin d’héberger ce nouveau segment. Le gestionnaire procéde

alors comme suit :

Il sélectionne une localisation (un noeud) d’une NDB a partir de la méta-
table SD.NDB (localisée sur Delll1.SkyServer). La sélection porte sur les
NDBs de type serveur (ou pair) qui n’ont pas encore hébergé un segment
de la table PhotoObj. S’il y a plusieurs résultats, le choix se porte sur la
premiére NDB sélectionnée. Nous supposons que Delll0 est le nceud qui
détient une NDB serveur SkyServer.

Une fois cette NDB est sélectionnée, le nouveau segment
_Ceria_PhotoObj de la table PhotoObj est créée alors sur la NDB
Delll0.SkyServer en exécutant la requéte suivante :

SELECT TOP 85000 WITH TIES *
INTO Dell10.SkyServer.SD._Ceria_PhotoObj
FROM Dell11.SkyServer.SD._Ceria_PhotoOb;
ORDER BY Objid ASC

Ainsi, la table scalable PhotoObj posséde deux segments distribués sur les
NDBs SkyServer des noeuds Delll 1 et Delll(respectivement.

o Chaque nouveau segment résultant de I’éclatement aura le méme schéma (les
mémes attributs) que son segment éclatant. Or, la requéte SELECT INTO exécutée

précédemment n’applique ni les contraintes d’intégrité ni la clé primaire sur le

nouveau segment. Ainsi, le gestionnaire doit compléter ces traitements :

Tout d’abord, il crée une clé primaire sur le nouveau segment. Il la
récupere a partir du segment éclatant en utilisant la commande help _index
du systetme SQL Server ; et la sauvegarde dans une variable. Ensuite, il
utilise la requéte SQL habituelle ALTER TABLE, combiné avec le langage
SQL dynamique. La clé primaire concerne 1’attribut Objid de la table
PhotoObj dans notre exemple.

Maintenant que tous les segments distribués ont leur propre clé primaire et
ainsi leur clé de partitionnement, nous pouvons leur définir leur contrainte
d’intégrité. Sur le segment éclatant, la valeur maximale est celle de la clé
supérieure. Sur le nouveau segment, c¢’est valeur minimale.... L’intervalle
de valeurs de la contrainte d’intégrit¢ pour le segment
Delll10.SkyServer.dbo. Ceria_PhotoObj est défini entre 85000 et 160000.
Quand au premier segment Dell7.SkyServer.dbo. Ceria_PhotoObj, il aura

-95 -

Le Prototype SD-SQL Server

le reste des tuples, et sera défini dans ’intervalle des valeurs entre 1 et
84499.

o Ensuite, les informations sur le nouveau segment sont enregistrées dans les
méta-tables comme suit :

e Insertion du tuple (Dellll, Ceria, PhotoObj) dans la méta-table
Delll10.SkyServer.SD.Primary. Celui-ci pointe sur le nceud Dellll
qui détient le segment primaire de la table PhotoOby.

e Insertion du tuple (Ceria, PhotoObj, 150000) dans la méta-table
Delll10.SkyServer.SD.Size.

e Insertion du tuple (Delll0, Ceria, PhotoObj) dans la méta-table
SD.RP de la NDB Dellll.SkyServer qui héberge le segment
primaire.

o Suppression des tuples transférés du segment ¢éclatant
Delll 1.SkyServer.SD. Ceria_PhotoObj.

La figure suivante montre le résultat de 1’éclatement du segment primaire
Dellll.SkyServer.SD. Ceria_PhotoObj de la table scalable PhotoObj.

SD.RP
Dell7 | Dell11 PhotoObj
Dell10 | Delill PhotoObj

SD.Primary
Dell7 | Dell11 PhotoObj

Dell7.Sky
Server
NDB

SD.Size
Dell11l PhotoObj | 160000

_Dell11_PhotoObj
SD.Image

PhotoObj | true | Dell7 | 2

PhotoObj

Dell7.Sky
Server
NDB

SD.Primary
Dell7 | Dell11 PhotoObj

SD.Size
Dell1l PhotoObj | 160000

_Dell11_PhotoObj

Figure 6-2 : Résultat de ’éclatement de la table scalable PhotoObj

Considérons maintenant la méme insertion précédente mais avec une nouvelle capacité
b=100000. L’insertion dans la table PhotoObj va donc I’éclater en trois segments. Soit
Delll0 et Dell§, muni chacun de la NDB SkyServer, les nceuds disponibles pour
I’éclatement de PhotoObj. La premiere portion b/2=50000 tuples sera transféré vers la
NDB Dell10.SkyServer, par exemple. Elle remplira la moiti¢é de son nouveau segment

-96 -

Le Prototype SD-SQL Server

_Ceria_PhotoObj. Le segment primaire éclatant lui restera alors /70000 tuples, ce qui est
toujours supérieur a sa capacité b. Ainsi, I’éclatement se poursuivra et une autre portion
b/2=50000 tuples sera transférée vers I’autre nouveau segment Ceria PhotoObj de la
NDB Dell8.SkyServer comme nous 1’avons déja mentionné. Le segment primaire de la
table PhotoObj aura alors 60000 tuples, ce qui est inférieur a sa capacité b, donc
I’éclatement s’arrétera. Enfin, le segment primaire supprime tous les tuples qui ont été
transférés vers les nouveaux segments. Quant aux traitements sur la définition des
contraintes d’intégrité...etc, se sont les méme décrites précédemment.

Dans ce dernier cas, la table PhotoObj aura trois segments distribués. Ainsi, une table
scalable s’étend selon sa taille.

6.4.2 Ajustement des Images

L’ajustement des images est effectué lorsqu’il y a une requéte scalable d’une commande
SD-SQL Server qui interroge a une image. L’image peut €tre invoquée directement dans
la requéte scalable, c’est-a-dire c’est une image primaire ou secondaire. Comme elle peut
étre invoquée aussi a travers une vue scalable a plusieurs niveaux. Dans chaque
commande SD-SQL Server qui fait appel a une image, la procédure d’ajustement de cette
image est invoquée. En effet, cet ajustement permet de vérifier si une image correspond
au partitionnement actuelle de sa table scalable. Nous rappelons que si une table scalable
a de nouveaux segments suite a un €clatement, ces segments ne seront pas encore
présentés dans leur image que si celle-ci est interrogée. C’est ainsi que SD-SQL Server
effectue 1’ajustement des images dans toute commande qui les interroge. Les commandes
SD-SQL Server concernées sont celles qui ont comme parametre d’entrée une requéte
scalable. Il s’agit des commandes suivantes :

o sd_select
o sd_insert
o sd_update
o sd_delete

Nous détaillons le traitement interne de 1’ajustement des images a travers la commande
sd_select suivante :

sd_select * FROM PhotoOb'

La requéte scalable de cette commande est '* from PhotoObj'. Nous désignons par Q cette
requéte. Avant de faire appel a la procédure d’ajustement des images, SD-SQL Server
vérifie d’abord s’il y a effectivement une image qui est utilisée dans la requéte scalable.
Les détails sur ce point sont traités dans la Section 6.4.6.1. Nous nous intéressons dans
cette section a I’ajustement des images. Nous supposons donc que cette étape de

-97.

Le Prototype SD-SQL Server

vérification est déja faite et son résultat sur la requéte Q est ’image PhotoObj. Cette
derniere doit étre donc ajustée avant I’exécution de Q. Le traitement interne de la
procédure d’ajustement des images suit les étapes suivantes :

o Tout d’abord, SD-SQL Server génere une requéte SQL complete Q’ a partir de la
requéte Q. Nous voulons dire par le mot ‘complete’, le fait qu’elle soit
compréhensible par le SGBD SQL Server. C’est donc O’ qui sera exécutée par la
suite. Ce traitement est d au fait que les requétes scalables n’ont pas le mot clé
désignant la clause SQL. Dans la commande sd select, par exemple, la requéte
scalable Q en parametre n’a pas le mot clé SELECT puisque celui-ci apparait dans
le nom de la commande sd_select. C’est ainsi que SD-SQL Server génére la requéte
O’ définie comme suit :

‘SELECT * FROM PhotoObj’

o Avant de passer Q a I’exécution sur SQL Server, le gestionnaire client vérifie si
I’image PhotoObj est correcte. Pour cela, il récupere a partir de la méta-table Image
localisée sur la NDB Ceria.SkyServer, le champ Size indiquant le nombre de
segments défini dans I’image PhotoObj. Soit S; ce nombre. Dans notre exemple S;
=1, parce que I’image PhotoObj n’a pas encore été ajustée, donc elle représente
uniquement le segment primaire de la table PhotoObj.

o Il récupére ensuite la localisation (le noeud) de la NDB serveur SkyServer qui
détient le segment primaire de la table scalable PhotoObj. 1l le trouve dans le champ
PrimNd du tuple décrivant PhotoObj dans la méta-table Image. 11 s’agit du nceud
Dellll dans notre exemple. Si entre temps, la NDB primaire a été supprimée par la
commande sd_drop node database, ou elle a été déplacé suite a une exécution de
la commande sd_drop node, le client cherche la localisation de la nouvelle NDB
primaire de I’image PhotoObj dans la méta-table SD.SDB.

o Une fois la localisation de la NDB primaire est déterminée (Delll 1.SkyServer), SD-
SQL Server accéde a sa méta-table RP et détermine le partitionnement actuel de
PhotoObj. Nous supposons que PhotoObj est partitionnée en deux segments
localisés sur les NDBs SkyServer des noeuds Dellll et Delll(). Une fois sur RP, SD-
SQL Server exécute une requéte qui calcule le nombre de segments de la table
scalable PhotoObj, soit S, ce nombre. Ayant ce nombre, il procéde comme suit :

= Si S4= S, I'image PhotoObj définit le méme nombre de segments qui
existent actuellement dans sa table scalable. L’image PhotoObj est donc
correcte et elle ne sera pas ajustée.

e Si S>> S5, le gestionnaire ajuste alors Sy a la valeur de S4 dans le champ
Size du tuple correspondant a 1’image PhotoObj dans la méta-table Image.
De plus, il modifie la définition de I’image PhotoObj en lui rajoutant le(s)

-98 -

Le Prototype SD-SQL Server

nom(s) du segment(s) manquant(s). Il récupére tout ¢ca de la méta-table
Delll 1SkyServer.SD.RP. Ce cas correspond a notre exemple ou (S=1) <
(SAZZ).

o Enfin, I’image PhotoObj est ajustée, SD-SQL Server passe alors la requéte O’ a
I’exécution sur SQL Server et termine la commande correspondante sd_select.

6.4.3 Modification d’une Table Scalable

La modification d’une table scalable est réalisée par la commande sd alter table. Cette
commande offre les fonctionnalités traditionnelles de la requéte SQL ALTER TABLE qui
se résument en : ajouter, modifier ou supprimer un attribut de la table scalable. De plus de
ces fonctionnalités, la commande sd_alter table permet aussi de modifier la capacité
d’une table scalable.

Nous décrivons dans ce qui suit les traitements internes de chacune de ces fonctionnalités.

6.4.3.1 Modification du Schéma d’une Table Scalable

Nous reprenons 1’exemple de la modification de la table scalable PhotoObj de la section
6.3.5 présenté comme suit :

sd_alter_table ‘PhotoObj ADD test varchar (50)°, 100000

Nous supposons que la table scalable PhotoObj est partitionnée en deux segments. Son
segment primaire est localis¢é sur Dellll.SkyServer et 1’autre segment sur
Delll0.SkyServer.

Les traitements internes de la commande sd alter table consistent a suivre les étapes
suivantes :

o Le gestionnaire SD-SQL Server extrait le nom de la table scalable PhotoObj a partir
de la requéte scalable ‘PhotoObj add test varchar (50)° que nous désignons par Q. Il
utilise pour cela les fonctions SUBSTRING et CHARINDEX.

o Ensuite, il récupére le nom du noeud primaire de la table scalabe a modifier. Pour
cela, il accede a la méta-table Image localisée sur la NDB de I’exécution de la
commande. Il s’agit de Ceria.SkyServer dans notre exemple. Il cherche le nom de
I’image (PhotoObj) et récupere son tuple. A partir du champ PrimNd de ce tuple, il
récupére le nom de la NDB cherché, qui est dans notre exemple le nceud Delll].
Ayant le noeud primaire de la table PhotoObj, il accede a sa NDB SkyServer. 11
trouve le nom de cette NDB a partir de la NDB client courante ou la commande
sd_alter table est exécutée. Nous rappelons que ces NDBs constituent la méme
SDB SkyServer.

-99.

Le Prototype SD-SQL Server

o Il accede alors a la méta-table SD.Prim de la NDB primaire Dellll.SkyServer. 11
extrait ensuite le nom du nceud client sur lequel la création de la table scalable a été
lancée. I1 cherche, dans cette méta-table, le tuple dont le champ Tab est égal a
‘PhotoObj’. Une fois ce tuple est trouvé, il extrait le nom du neeud client a partir de
son champ CreatNd. Dans notre exemple, ce noceud est Ceria. Ce nceud sert a
formuler le nom des segments de la table scalable PhotoObj qui est
_Ceria_PhotoObj. Puisque ces derniers n’apparaissent pas dans la commande.

o Apres avoir constitué le nom de segment de la table PhotoObj, SD-SQL Server
reformule la requéte scalable Q afin qu’elle soit compréhensible par SQL Server.
De plus, il remplace le nom de ’'image PhotoObj dans Q par le nom de ses
segments parce que c’est le schéma des segments qui sera modifié. La nouvelle
requéte scalable sera alors Q. Elle est définie comme suit :

‘ALTER TABLE _Ceria_PhotoObj ADD test varchar(50)

o Ensuite, Il acceéde a la méta-table RP, localisée sur la NDB primaire
Delll 1.SkyServer, pour chercher les tuples décrivant la table PhotoObj. Pour chaque
tuple trouvé, il récupere la localisation de chacun des segments de la table scalable.
I1 utilise pour cela le champ SgmNd. Dans le cas de notre exemple, les localisations
des segments de PhotoObj sont les noeuds Delll 1l et Delll0).

o Pour chaque nceud trouvé, il accede a sa NDB SkyServer et exécute la nouvelle
requéte scalable reformulée Q. 1l sauvegarde aussi la nouvelle capacité entrée dans
la commande sd alter table (qui est 10000 tuples) pour chaque segment
_Ceria_PhotoObj. En fait, il remplace 1’ancienne capacit¢ de PhotoObyj,
sauvegardée dans la méta-table SD.Size de chaque NDB Dellll.SkyServer et
Dell10.SkyServer, par la nouvelle capacité.

Ainsi, le résultat de 1’exécution de la commande sd_alter table sera les deux segments de
la table PhotoObj Delll 1.SkyServer.SD. Ceria_PhotoObj et
Delll10.SkyServer.SD. Ceria_PhotoObj ayant chacun une nouvelle colonne ‘fest’ et une
nouvelle capacité, 10000 tuples.

6.4.3.2 Les Index

Les manipulations des index sur une table scalable se résument dans la création ou la
suppression d’index. Ces deux manipulations suivent les mémes traitements internes dans
I’exécution de leurs commandes sd_create index et sd_alter _index. Nous détaillons alors
ces traitements pour la création uniquement.

La création d’un index pour une table scalable consiste a créer un index sur chacun de ses
segments. Nous avons vu dans la section précédente que la création des index est réalisée
par la commande sd create index. Nous supposons que cette commande concerne la

- 100 -

Le Prototype SD-SQL Server

création de I’index scalable test index sur la colonne test crée précédemment sur chaque
segment de la table scalable PhotoObj. Ainsi la commande sera exécutée comme suit :

sd_create_index ‘test_index ON PhotoObj (test)’

Le gestionnaire SD-SQL Server suit les étapes ci-dessous pour effectuer les traitements
internes de cette commande :

o Il suit les mémes premicres étapes que la commande sd_alter table pour récupérer
le nom de la table scalable PhotoObj, sa NDB primaire, sa NDB client initial ainsi
que pour reformuler la requéte scalable ‘est index ON PhotoObj(test)’. Apres
toutes ces étapes, la nouvelle requéte reformulée O’ sera comme suit :

‘CREATE INDEX test_index ON SD._Ceria_PhotoODbj (test)’

o Ensuite, il boucle sur la méta-table SD.RP, localisée sur la NDB primaire
Delll 1.SkyServer, pour chercher les localisations des segments qui constituent la
table scalable PhotoObj. C’est aussi le méme traitement effectué dans la section
précédente. Pour chaque nceud trouvée (Dellll et Delll0), i1 accéde a sa NDB
SkyServer et exécute la requéte Q.

Le résultat de la commande sd create index est donc la création de I’index ‘est index’
sur la colonne ‘est’” de chacun des segments de la table PhotoObj:
Delll1.SkyServer.SD. Ceria_PhotoObj et Delll0.SkyServer.SD. Ceria_PhotoObj.

6.4.4 Suppression d’une Table Scalable

La suppression d’une table scalable est réalisée par la commande sd drop table. Cette
commande permet d’exécuter la requéte SQL DROP TABLE sur chaque segment
composant la table scalable a supprimer. Elle permet aussi la suppression toutes les
métadonnées décrivant cette table. Nous reprenons I’exemple de la table scalable
PhotoObj partitionnée en deux segments. Nous exécutons alors la commande
sd_drop_table, sur la NDB Ceria.SkyServer, comme suit :

sd_drop_table ‘PhotoObj’

Le gestionnaire suit les étapes suivantes afin d’effectuer les traitements internes de la
commande de suppression :

o Il récupére le nom de la NDB qui détient le segment primaire de la table PhotoObj.
Pour cela, il suit le traitement que nous avons déja décrit précédemment. La NDB
en question est Delll1.SkServer.

o Ensuite, le gestionnaire se place sur la méta-table Dellll.SkyServer.SD.RP et
récupere toutes les NDBs des segments de la table PhotoObj comme nous 1’avons
décrit précédemment aussi. Ces NDBs sont Delll 1.SkyServer et Delll0.SkyServer.

- 101 -

Le Prototype SD-SQL Server

o Il commence par la suppression des segments Ceria PhotoObj des NDBs
Delll 1.SkyServer et Delll(.SkyServer ainsi que leur image primaire PhotoObj
localisée sur la NDB courante de I’exécution de la commande, Ceria.SkyServer.

o Il supprime ensuite tous les tuples décrivant la table scalable PhotoObj dans les
méta-tables. Il supprime les tuples suivants :

e (Dellll, Ceria, PhotoObj) et (Delll0, Ceria, PhotoObj) de la méta-table
Delll 1.SkyServer.SD.RP.

e (Dellll, Ceria, PhotoObj) des méta-tables Dellll.SkyServer.SD.Prim et
Dell10.SkyServer.SD. Prim.

e (Ceria, PhotoObj, 10000) des méta-tables Dellll.SkyServer.SD.Size et
Dell10.SkyServer.SD.Size.

e (PhotoObj, Primary,Delll l,1) de la méta-table Ceria.SkyServer.SD.Image.
6.4.5 Gestion des Images Secondaires

6.4.5.1 Création d’une Image Secondaire

La commande sd_create_image permet de créer une image secondaire pour une table
scalable comme nous 1’avons déja présenté dans le chapitre précédent. Nous reprenons
I’exemple, de la Section 6.3.6, qui permet la création d’une image secondaire pour la table
PhotoObj sur 1a NDB client Dell8.SkyServer :

sd_create_image ‘Ceria, ‘PhotoOby’

Nous rappelons que PhotoObj est partitionnée en deux segments localisés sur les NDBs
SkyServer des nceuds Delll0 et Dellll respectivement. Le gestionnaire SD-SQL Server
suit les étapes ci-dessous pour effectuer le traitement interne de la commande
sd_create_image.

o Tout d’abord, SD-SQL Server détermine la NDB qui détient le segment primaire de
la table PhotoObj. En fait cette NDB sert a définir la nouvelle image secondaire.
Pour cela, il utilise le parametre d’entrée ‘Ceria’. Ce dernier représente le nceud de
la NDB client SkyServer qui détient I’image primaire PhotoObj ainsi que la méta-
table SD.Image. En effet, le gestionnaire accéde a cette méta-table et récupere la
valeur du champ PrimNd du tuple correspondant a la table PhotoObj. Cette valeur
sera, d’apres notre exemple, le nceud Delll].

o Ensuite, il formule le nom de I’image secondaire a partir du parametre Ceria. Son
nom sera alors SD.Ceria_PhotoObj comme nous 1’avons déja décrit.

-102 -

Le Prototype SD-SQL Server

o Ayant ces éléments, SD-SQL Server la vue partitionnée qui implémente 1’image
secondaire Ceria_PhotoObj sur la NDB client Dell8.SkyServer et définit son
contenu comme suit :

CREATE VIEW SD.Ceria_PhotoObj AS
SELECT * FROM Dell11.SkyServer.SD._Ceria_PhotoOb;j
UNION ALL SELECT * FROM Dell10.SkyServer.SD._Ceria_PhotoOb;

o Enfin, il insére le tuple (PhotoObj, Secondary, Dellll, 2) qui décrit 1’image
Ceria_PhotoObj dans la méta-table Dell8.SkyServer.SD.Image.

Notons que I’image secondaire correspond au partitionnement actuel de sa table
scalable.

6.4.5.2 Suppression d’une Image

La commande sd drop image permet de supprimer une image secondaire d’une table
scalable. Elle supprime aussi les méta-données qui la décrivent. Nous rappelons que cette
commande ne supprime que les images secondaires car les images primaires ne sont
supprimées que lors de la suppression de leurs tables scalables. Nous reprenons 1’image
secondaire Ceria_PhotoObj que nous avons crée dans la section précédente. La
suppression de cette image est réalisée par la commande sd _drop _image exécutée sur la
NDB de I’'image elle méme, Dell8.SkyServer, selon la syntaxe suivante :

sd_drop_image ‘Ceria_PhotoOby’

Le gestionnaire SD-SQL Server effectue les traitements internes ci-dessous pour exécuter
cette commande :

o Il récupére le nom de la table scalable a partir du nom de 1’image secondaire a
supprimer, puisque celui-ci est composé du nom de la table. Ce nom sera alors
PhotoOby.

o Ensuite, Il supprime la vue partitionnée distribuée, qui implémente 1’image
secondaire SD.Ceria_PhotoObj, de la NDB courante Dell8.SkyServer de I’exécution
de la commande.

o Enfin, il supprime le tuple (PhotoObj, Secondary, Dellll,2) décrivant 1’image
secondaire de la méta-table Dell8.SkyServer.SD.Image. 11 utilise pour cela la requéte
SQL SELECT avec une clause WHERE sur le nom de la table scalable PhotoObj
extrait dans la premicre étape.

-103 -

Le Prototype SD-SQL Server

6.4.6 Gestion des Requétes Scalables

Une requéte scalable constitue le paramétre d’entrée d’une commande SD-SQL Server.
Nous traitons les requétes scalables concernant une recherche, une insertion, une mise a
jour ou une suppression sur une table scalable. Les commandes SD-SQL Server qui
correspondent a ces requétes sont respectivement : sd_select, sd_insert, sd_update et
sd_delete.

Le traitement interne de chaque requéte scalable commence par la phase que nous avons
appelé phase d’analyse ou image binding. Cette phase permet d’extraire les images
interrogées dans une requéte et de vérifier ensuite 1’ajustement de chaque image extraite
avant de passer la requéte au SGBD SQL Server pour I’exécution.

Dans ce qui suit, nous détaillons le traitement interne des commandes d’acces aux tables
scalables. Nous commencons par décrire la phase d’analyse des requétes scalables que
nous désignons dans tous ce qui suit par image binding. Ensuite, nous discutons les
spécifications de chaque commande.

6.4.61 Image Binding

La phase d’image binding consiste a analyser le contenu d’une requéte scalable et extraire
les noms des tables ou des vues qu’elles interrogent. Chaque nom extrait peut étre celui
d’une image primaire, d’une image secondaire, d’une vue scalable (ou statique) ou d’une
table statique. S’il s’agit du nom d’une image (ou d’une vue scalable), SD-SQL Server
doit vérifier si cette image est correcte avant I’exécution de la requéte qui I’interroge.

Dans cette phase, SD-SQL Server cherche les noms des tables et vues dans la clause
FROM principalement, ou dans toute autre clause SQL (INSERT, DELETE, UPDATE). 11
utilise pour cela la fonction xp sscanf du systétme SQL Server ainsi que d’autres
traitements correspondants. En lui indiquant la structure de la requéte (avec ses clauses
SELECT, FROM...etc.) comme argument, la fonction xp_sscanf permet de retourner tout
le contenu de la clause utilisée comme il apparait dans la requéte. Nous expliquons ces
traitements a travers la clause FROM (il s’agit des mémes traitements pour les autres
clauses). Le contenu de cette clause représente des objets séparés par des °,’, avec des
alias, etc.

SD-SQL Server analyse la chaine de caractéres retournée par la fonction xp sscanf et
récupere chaque nom d’objet utilisé dans la clause FROM. Pour chaque nom trouvé X, il
procede comme suit :

o Il cherche le nom X dans la méta-table /mage de la NDB courante (celle de
I’exécution de la requéte). S’il trouve un tuple dont I’attribut Name est égal a X, X
correspond donc a une image.

- 104 -

Le Prototype SD-SQL Server

o Si le gestionnaire ne trouve pas le nom X dans la table /mage, il parcourt alors les
tables systemes du SGBD SQL Server sysobjects et sysdepends.

= La table sysobjects fournit pour chaque objet son type et son identifiant
interne /d. Le type d’un objet est soit une vue soit une table. Dans le
premier cas, ’attribut fype de la table sysobjects aura la valeur V"’ et dans
le deuxiéme cas, il aura la valeur ‘T

= La table sysdepends fournit pour chaque objet X de type “vue’, selon son
1d, ses objets dépendants. Ces objets peuvent étre des tables ou des vues.
La table sysdepends fournit les objets dépendants locaux uniquement.
Autrement dit, les objets dépendants de X qui se trouvent sur d’autres
serveurs distants ne seront pas fournis.

Nous supposons que 1’objet X est de type vue. En faisant la jointure des ces deux
tables, SD-SQL Server peut avoir tous les objets qui dépendent de 1’objet X
Ensuite, pour chaque objet dépendant, il refait les traitements dés le début :
vérifier s’il existe dans la méta-table /mage, etc.

Une fois toutes les images utilisées dans la clause FROM sont extraites, le gestionnaire
vérifie alors 1’ajustement de chacune d’elles comme nous I’avons présenté dans la section
4.5.2.

6.4.6.2 La Recherche Scalable

La recherche dans une table scalable est réalisée par la commande sd select. Cette
commande invoque dans son parameétre d’entrée une requéte scalable correspondant a la
requéte SQL SELECT ou SELECT INTO. Le résultat d’exécution de la commande
sd_select est donc celui de 1’exécution de sa requéte scalable en entrée. Dans le cas d’une
requéte scalable SELECT INTO, SD-SQL Server ne permet pas le transfert de données
d’une table vers une nouvelle table uniquement (comme le fait la clause habituelle
SELECT INTO). De plus, il permet la transformation de la nouvelle table créée en une
table scalable. Pour cela, elle nécessite I’entrée d’autres parameétres spécifiques a une
table scalable, dans la commande sd_select. 11 s’agit de la capacité de la nouvelle table
scalable résultante et de sa clé de partitionnement.

Nous appliquons la commande sd _select sur la table scalable PhotoObj. Nous supposons
que cette table est partitionnée en deux segments sur Dellll.SkyServer et
Delll0.SkyServer respectivement. Son image primaire est localisée sur la NDB client
Ceria.SkyServer. Nous supposons que son image n’est pas ajustée, c’est-a-dire, elle
définit un seul segment de la table PhotoObj. Sa définition est comme suit :

CREATE VIEW PhotoObj AS
SELECT * FROM Dell11.SkyServer.SD._Ceria_PhotoObj

- 105 -

Le Prototype SD-SQL Server

Si nous voulons sélectionner les dix premiers tuples de la table scalable PhotoObj, nous
exécutons alors la commande sd_select comme suit :

sd_select “TOP 10 * FROM PhotoOby’
Les traitements internes de cette commande consistent a suivre les étapes suivantes :

o Le gestionnaire SD-SQL Server récupére la requéte scalable ‘fop 10 * from
PhotoObj’ que nous désignons par Q. Il applique ensuite la phase de 1’image
binding sur cette requéte.

o Lors de I'image binding, il récupére 1’image PhotoObj de la clause FROM de la
requéte scalable. I1 vérifie si cette image est ajustée comme nous I’avons déja décrit.
Puisque PhotoObj n’est pas ajustée d’apres notre exemple, alors il I’ajuste.

o Une fois I’image est ajustée, SD-SQL Server reformule la requéte scalable QO avant
de I’envoyer a SQL Server pour 1’exécution. Il lui rajoute la clause SELECT et elle
devient alors :

SELECT TOP 10 * FROM PhotoObj

Si la commande sd_select a une requéte scalable correspondant a la clause SQL SELECT
INTO, le traitement interne de la commande changera. Pour expliquer le traitement
interne dans ce cas, nous exécutons la commande sd_select sur la table scalable PhotoObj
comme suit :

sd_select “* INTO Star FROM Dell1.SkyServerDB.dbo.Star’, 500, ‘Objid’

Cette commande permet de transferer toutes les données de la table statique
Star, localisée sur la base de données Delll.SkyServerDB.dbo (qui n’est pas une SDB),
vers une nouvelle table scalable appelée Star. Le gestionnaire SD-SQL Server suit les
étapes suivantes pour effectuer les traitements internes concernant cette commande :

o Tout d’abord, il applique la phase de I’image binding sur la requéte scalable. Il
vérifie s’il y a des images utilisées dans la requéte. Si oui, il ajuste ces images en
cas ou elles ne sont pas ajustées. Ensuite, il enregistre la table Star comme une table
scalable. Ainsi, Star aura un segment primaire et des entrées dans les méta-tables.

o Ensuite, il reformule la requéte scalable sous forme de requéte SQL compréhensible
par SQL Server comme suit :

SELECT * INTO Star FROM Delll.SkyServerDB.dbo.Star

o Il passe cette requéte a SQL Server pour 1’exécution. Le résultat de 1’exécution sera
une nouvelle table Star crée sur une NDB SkyServer de type serveur. Le nceud de
cette NDB est sélectionné a partir de la méta-table SD.Server de la NDB courante
de I’exécution de la commande (Ceria.SkyServer). Nous supposons que le nceud de
type serveur sélectionné est Dell7. Le segment primaire _Ceria Star de la table

- 106 -

Le Prototype SD-SQL Server

scalable Star sera alors crée sur la NDB Dell7.SkysServer. Les tuples de la table
statique Delll.SkyServerDB.dbo.Star seront alors transférés vers ce nouveau
segment.

o Puisque la clause SQL SELECT INTO n’applique pas les clés primaires de la table
initiale sur la nouvelle table crée, SD-SQL Server se charge alors de ce traitement.
Une fois le segment primaire Dell7.SkysServer.SD. Ceria Star est crée, le
gestionnaire utilise le parameétre en entrée ‘Objid’ qui désigne I’attribut clé de la
nouvelle table. Cet attribut sera considéré comme une clé de partitionnement de la
nouvelle table Star. Si la commande a en entrée plusieurs attributs clé, donc tous ces
attributs seront pris en compte comme une clé primaire.

o Le gestionnaire crée aussi un déclencheur sur le segment
Dell7.SkysServer.SD. Ceria_Star. Ce déclencheur fera appel a un splitter comme
nous 1’avons déja décrit. 1 est défini comme suit :

CREATE TRIGGER split_trigger_Ceria_star ON SD._Ceria_star
AFTER INSERT AS
BEGIN
EXEC msdb..sp_start_job 'splitter’
END

o Une fois la table scalable Star est crée avec son segment primaire, SD-SQL Server
enregistre les métadonnées qui la décrivent :

= Il insére le tuple (Dell7, Ceria, Star) dans la méta-table
Dell7.SkyServer.SD.Prim.

= Il insére le tuple (Ceria, Star, 500) dans la méta-table
Dell7.SkyServer.SD.Size. La troisiéme colonne Size égale a 500
correspond a la capacité entrée comme paramétre dans la
commande sd_select.

= Il insére le tuple (Dell7, Ceria, Star) dans la méta-table
Dell7.SkyServer.SD.RP.

= 1l insére le tuple (Star, Primary, Dell7, 1) dans la méta-table
Ceria.SkyServer.SD.Image.

o Enfin, il exécute le déclencheur pour vérifier si le segment créé n’excede pas sa
capacité suite au transfert des tuples. Dans le cas affirmatif, le segment éclate et le
résultat de la commande sd select sera un ou plusieurs nouveaux segments de la
table scalable Star (selon la capacité entrée).

- 107 -

Le Prototype SD-SQL Server

6.4.6.2.1. Exemples

Nous présentons une liste d’exemples sur des requétes de recherche scalable. Nous
donnons les différents cas qui peuvent se présenter pour un utilisateur. Nous utilisons
pour tous les exemples la table scalable PhotoObj initialement créée sur la NDB client
Ceria.SkyServer. Nous supposons que cette table est partitionnée en deux segments sur les
NDBs Dellll.SkyServer et Delll0.SkyServer respectivement. Comme nos exemples
précédents, Dellll.SkyServer est la NDB qui détient le segment primaire de la table
PhotoObj. Nous exécutons les commandes suivantes sur la NDB client Ceria.SkyServer.

O Recherche scalable avec plusieurs objets dans la clause FROM

Soit la commande suivante :
sd_select * FROM PhotoObj, T1’

D’apres sa syntaxe, cette commande exécute une requéte de sélection sur les tables
PhotoObj et T1. Nous supposons que PhotoObj est une image primaire et 7/ est une
table statique. La définition de I’image PhotoObj est comme suit :

CREATE VIEW PhotoObj AS
SELECT * FROM Dell11.SkyServer.SD._Ceria_PhotoObj

En appliquant le traitement interne d’une requéte de recherche sur la commande sd_select
ci-dessus, SD-SQL Server va tout d’abord récupérer les objets de la clause FROM a partir
du paramétre d’entrée de la commande sd_select. 11 s’agit de PhotoObj et T1. 1l trouve
que 71 est une table statique et PhotoObj est une image d’une table scalable. Ainsi, il
vérifie son ajustement. D’apres sa définition, 1’image PhotoObj ne définit pas réellement
le partitionnement actuel de sa table scalable PhotoObj. Elle définit uniquement son
segment primaire. Or, PhotoObj possede deux segments. SD-SQL Server ajuste alors
I’image PhotoObj avant d’exécuter la la requéte 1’interrogeant. Enfin, il passe exécute la
requéte.

O Recherche scalable avec une function d’aggrégation

Soit la commande suivante :
sd_select ‘COUNT (*¥) FROM T2’

Nous supposons que 72, utilisée dans cette commande, est une vue définie comme suit :
CREATE VIEW T2 AS SELECT * FROM PhotoOb;j

Lors du traitement interne effectué sur la commande sd_select ci-dessus, SD-SQL Server
récupere I’objet 72 de la requéte scalable entrée dans la commande sd_select. En trouvant
que 72 est une vue, alors il cherche si 72 dépend d’une table scalable directement ou
indirectement (a plusieurs niveaux). Comme 72 dépend directement de I’image PhotoObj,

- 108 -

Le Prototype SD-SQL Server

T2 sera alors considéré comme une vue scalable de niveau 1. Ainsi, SD-SQL Server
vérifie si PhotoObj est ajustée ou non et ensuite il exécutera la commande.

O Recherche scalable avec des alias et TOP
Nous supposons la commande sd_select suivante :
sd_select “TOP 5 P.objid FROM PhotoObj as P’

Cette commande exécute une requéte scalable utilisant le mot clé TOP et des alias. Le
résultat d’exécution de cette commande sera les cinq premiers tuples de la table scalable
PhotoObj. Pour son traitement interne, SD-SQL Server suit les mémes étapes
précédentes.

6.4.6.3 Les Mises a Jour Scalables

Les mises a jour sur une table scalable sont réalisées par la commande sd_update. Nous
supposons la mise a jour d’un tuple de la table PhotoObj. Nous exécutons alors la
commande sd_update sur la NDB client Ceria.SkyServer comme suit :

sd_update ‘PhotoObj set run=123 where Objid=2214566

Le gestionnaire SD-SQL Server effectue les traitements internes, de la commande
sd_update, en suivant les étapes ci-dessous :

o Tout d’abord, il récupere la requéte scalable de la commande, que nous désignons
par O, et lui applique la phase de I’image binding. 11 vérifie s’il y a des images
utilisées dans la requéte. Il trouve I’image PhotoObj, il vérifie alors si elle est
ajustée ou non. Nous supposons que 1’image PhotoObj est ajustée depuis la
commande précédente (Section 6.4.6.2).

o Ensuite, il complete la requéte O en une requéte SQL, Q’, comme suit :

‘UPDATE PhotoObj set run=123 where Objid=2214566

Il envoie O’ a SQL Server pour I’exécution. Le résultat de 1’exécution sera la
modification du tuple du segment de la table scalable qui posséde la clé Objid
¢gale a la valeur 2274566. Le choix du segment qui possede cette clé sera selon la
contrainte d’intégrité de chaque segment de la table scalable.

6.4.6.4 L’Insertion Scalable

L’insertion de nouveaux tuples dans une table scalable est réalisée par la commande
sd_insert. Le traitement interne de cette commande suit les mémes étapes que celles du
traitement interne de la commande sd_update. Ce que nous pouvons rajouté dans cette
section, est le fait q’une insertion peut déclencher 1’éclatement de la table qu’elle utilise.

- 109 -

Le Prototype SD-SQL Server

6.4.7 Gestion des Nceuds, des SDBs et des NDBs

Nous traitons dans cette section les principales commandes de la gestion des nceuds, des
SDBs et des NDBs. Notons [’utilisation de scripts SQL dans le traitement de ces
commandes. En effet, nous avons écrit quatre scripts SQL : msdb.sql, server.sql, client.sql
et peer.sql. Ces scripts contiennent les commandes SQL permettant la création des tables
et des procédures stockées utilisées pour le traitement des commandes SD-SQL Server.
Leur description est comme suit :

O Le script msdb.sql

Ce script contient les procédures stockées qui permettent principalement la création et la
suppression de bases de données sur un nceud SD-SQL Server distribué. En effet, la
commande SQL CREATE DATABASE ne permet pas la création d’une base sur un autre
nceud que le noeud courant de la création. Il en est de méme pour la requéte DROP
DATABASE. Autrement dit, nous ne pouvons pas exécuter la requéte CREATE
DATABASE, par exemple, comme suit :

CREATE DATABASE Dell11.SkyServer

Nous avons alors utilis¢ des procédures stockées que nous pouvons préfixé et ainsi
exécuté a distance. Ces procédures utilisent les requétes SQL de création et de
suppression de bases qui seront exécutées localement. Nous exécutons le script msdb.sql
sur la base de données SQL Server MSDB. Nous avons choisi cette base parce qu’elle est
créée par défaut sur chaque instance SQL Server lors de son installation. Ainsi, si un
nouveau nceud SD-SQL Server est créé, pour pouvoir y créer des NDBs, il faudra utiliser
les procédures stockées crées sur sa base MSDB.

O Le script server.sgl

Ce script contient les requétes SQL CREATE TABLE permettant de créer les méta-tables
d’'une NDB de type serveur. Il contient aussi toutes les procédures stockées qui
implémentent les traitements effectués sur une NDB serveur (éclatement, etc). Nous
exécutons ce script lors de la création de toute NDB de type serveur.

O Le script client.sql

Ce script contient les requétes SQL CREATE TABLE permettant de créer les méta-tables
d’une NDB de type client. Il contient aussi toutes les procédures stockées qui
implémentent les commandes SD-SQL Server. Nous exécutons alors ce script lors de la
création de toute NDB de type client.

- 110 -

Le Prototype SD-SQL Server

O Le script peer.sql
Le contenu de script combine le contenu des deux script server.sql et client.sql.

Apres avoir présenté les sciprts SQL, nous passons a la description des traitements
internes des commandes concernat la gestion des nceuds, des SDBs et des SDBs.

6.4.7.1 Création d’un Neeud

La création d’un nceud SD-SQL Server est réalisé par la commande sd create node.
Cette commande est localisée sur la méta-base MDB. Elle est exécuté sur un serveur lié
SQL Server pour le transformer en un nceud SD-SQL Server. Nous supposons la création
du noceud SD-SQL Server Dellll de type pair. Nous exécutons alors la commande
sd_create_node comme suit :

sd_create_node ‘Delll11’, ‘Server’

Le gestionnaire SD-SQL Server effectue les traitements internes suivants lors de
I’exécution de la commande ci-dessus :

o Tout d’abord, il vérifie si le premier parametre entré Dellll est un serveur SQL
Server lié¢ sinon la commande ne peut pas étre exécutée.

o Ensuite, il vérifie si Dellll n’existe pas dans le systéme SD-SQL Server. Pour cela,
il utilise la méta-table SD.Nodes de la MDB. Si Delll] n’existe pas, le gestionnaire
insere alors le tuple (Delll I,Server) dans la méta-table SD.Nodes.

o Enfin, SD-SQL Server exécute a partir de la MDB le script SQL msdb.sgl. Nous
exécutons ce script sur la base de données MSDB, du nceud Dellll. L’exécution de
ce script permettra la création de procédures stockées qui permettent la création et la
suppression de NDBs sur le nouveau nceud Delll 1. Ce script est exécuté en utilisant
la commande du systéeme SQL Server suivante :

EXEC master..xp_cmdshell 'osql /S dell11 /U sa /P
/d msdb <\\Dell11\script\msdb.sql

Nous ne détaillons pas les traitements de la commande sd_alter node puisque il s’agit
juste de modifier le type du nceud dans la méta-table SD.Nodes.

6.4.7.2 Création d’une SDB

La création d’une SDB est réalisée par la commande sd create scalable database. Nous
supposons la création de la SDB SkyServer avec deux NDBs dont la NDB primaire est
une NDB de type serveur localisée sur le nceud Delll7. Ainsi, nous exécutons la
commande sd_create_scalable database comme suit :

sd_create_scalable_database ‘SkyServer’/Dell11’; ‘Server’, 2

- 111 -

Le Prototype SD-SQL Server

Le gestionnaire SD-SQL Server effectue les traitements internes de cette commande en
suivant les étapes ci-dessous :

o Il exécute la procédure stockée create sdb localisée sur la base systtme MSDB de
SQL Server. Nous rappelons que cette procédure stockée a été crée sur MSDB lors
de D’exécution du script SQL msdb.sq/ dans la création du nceud Dellll. La
procédure create sdb permet de créer une nouvelle base SQL Server sur le nceud
Dellll. Cette base représente la NDB primaire de la SDB SkyServer. Cette
procédure stockée est exécutée comme suit :

EXEC Dell11.msdb.dbo.create_sdb ‘SkyServer’, ‘Server’

o Selon le type de la NDB, la procédure create sdb exécute un script SQL permettant
de créer les méta-tables ainsi que les procédures implémentant les commandes liées
a ce type de NDB. Dans notre exemple, la NDB crée, Dellll, est de type serveur,
ainsi le gestionnaire exécutera le script server.sql. Ce dernier crée les procédures
stockées ainsi que les méta-tables correspondant a une NDB serveur. Il s’agit des
méta-tables SD.NDB et SD.MDBNode.

o Une fois la NDB primaire est créée avec tous ses composants, le gestionnaire insére
alors les tuples suivants dans ses méta-tables :

e Le tuple (Dellll) dans la méta-table SD.NDB. Ce tuple indique que le
nceud Delll1 détient la NDB SkyServer courante.

e Le tuple (Delll) dans la méta-table SD.MDBNode pour indiquer la
localisation de la MDB.

o Ensuite, il garde trace de la NDB primaire Dellll.SkyServer dans la méta-base
MDB. Pour cela, il insere le tuple (SkyServer, Dellll, Server) dans la méta-table
SD.SDB de la MDB.

o Enfin, il vérifie s’il y a un nombre d’extension de la SDB SkyServer a créer. Dans
notre exemple, nous avons entré deux extensions dans la commande
sd_create_scalable database. Ainsi, SD-SQL Server crée en plus de la NDB
primaire une autre NDB de la SDB SkyServer. Cette NDB aura le méme type que la
NDB primaire (c’est-a-dire de type serveur). Quant a sa localisation, elle sera
déterminée a partir de la méta-table SD.Nodes de la MDB. Nous supposons que
Delll0 est un noeud disponible pour la création de l’autre extension (NDB)
SkyServer. Les mémes étapes décrites ci-dessus seront suivies pour sa création. De
plus, il insére le tuple (Delll(0) dans la méta-table SD.NDB de la NDB primaire
Delll 1.SkyServer pour indiquer le nouveau nceud hébergeant une NDB de la SDB
SkyServer.

-112 -

Le Prototype SD-SQL Server

Le résultat de I’exécution de la commande sd_create scalable database est la SDB
SkyServer avec une NDB primaire sur le nceud Delll1 et une autre NDB serveur sur le
nceud Dell10.

Si nous voulons créer d’autres NDBs pour la SDB SkyServer, nous exécutons la
commande sd_create_node _database. Nous ne décrivons pas le traitement interne de
cette derniere commande puisque c’est ce sont les mémes étapes suivies dans la
création de la NDB primaire et ses extensions. Par contre, la suppression d’'une NDB
nécessite d’étre détaillé et c’est que nous présentons dans la section suivante.

6.4.7.3 Suppression d’une NDB

La suppression d’une NDB est plus complexe que sa création. Trois cas se présentent
dans la suppression des NDBs :

o Si la suppression concerne une NDB de type client, le gestionnaire doit alors
supprimer toutes les tables scalables créées par les utilisateurs de cette NDB.

o Si la NDB a supprimer est de type serveur, le gestionnaire doit transférer tous ses
segments et leurs métadonnées vers d’autres NDBs (de type serveur) de la méme
SDB avant la suppression de la NDB.

o Si la NDB a supprimer est de type pair, le gestionnaire agit comme dans le cas
d’une NDB client et d’une NDB serveur en méme temps.

Nous rappelons que la suppression d'une NDB est réalisée par la commande
sd_drop node_database. Nous supposons la suppression de la NDB SkyServer du nceud
Ceria qui est de type client. Nous exécutons alors la commande sd_drop node database
comme suit :

sd_drop_node_database ‘SkyServer’, ‘Ceria’

Afin d’effectuer le traitement interne de cette commande, le gestionnaire SD-SQL Server
suit les étapes suivantes :

o Tout d’abord, il récupére le nceud qui localise la NDB primaire SkyServer. Le nceud
sélectionné est donc Delll1 d’apres nos exemples précédents. Il récupére ce nceud a
partir de la méta-table Ceria.SkyServer.SD.SDBNode. Nous rappelons que cette
méta-table insere le nom du nceud de la NDB primaire pour chaque NDB de la SDB
courante.

o Il accéde ensuite a la méta-table SkyServer.SD.NDB du nceud Dellll. Cette table
contient tous les nceuds ayant les NDBs SkyServer. 1l cherche dans cette table le
nom du nceud de la NDB a supprimer, c’est-a-dire Ceria.

-113 -

Le Prototype SD-SQL Server

o Selon le type de la NDB a supprimer, SD-SQL Server effectue des traitements
différents. Dans notre exemple, la NDB Ceria.SkyServer est de type client. Le
gestionnaire supprime alors toutes les tables scalables créés par cette NDB.

o Pour cela, il accéde a la méta-table SD.Image de la NDB Ceria.SkyServer pour
récupérer les images primaires des tables scalables créées par cette NDB. Puisque
cette NDB a lancé la création de la table PhotoObj d’aprés nos exemples
précédents, donc nous trouvons le tuple décrivant 1’image primaire PhotoObj dans
la méta-table SD./mage.

o Ayant les images primaires de la méta-table SD./mage, SD-SQL Server commence
la suppression de leurs tables scalables. Puisqu’il y a une seule image primaire
PhotoObj. SD-SQL Server lance alors la suppression de la table scalable PhotoObj
en faisant appel a la procédure stockée qui implémente la commande
sd_drop_table. Les traitements de cette commande sont dans la Section 6.4.4.

o Ensuite, il supprime le tuple décrivant la NDB Ceria.SkyServer de la méta-table
Delll 1.SkyServer.SD.NDB.

o Enfin, il supprime la base de données SkyServer correspondant a la NDB du nceud
Ceria. Pour cela, il exécute la procédure stockée sd_drop ndb comme suit :

msdb.dbo.sd_drop_ndb ‘SkyServer’, ‘Ceria’

Cette procédure a été créée sur la base MSDB de chaque nceud SD-SQL Server, en
exécutant le script msdb.sql comme nous I’avons déja présenté. Elle fera appel a la
requéte SQL DROP DATABASE pour supprimer la NDB SkyServer en question.

Ces traitements sont effectués si la NDB a supprimer est de type client. Maintenant, si la
NDB a supprimer est de type serveur, d’autres traitements sont effectués. Nous supposons
la suppression de la NDB primaire Delll0.SkyServer par exemple.

o Tout d’abord, le gestionnaire cherche un nceud SD-SQL Server pour allouer une
nouvelle NDB de la SDB SkyServer. Toutes les s tables scalables de la NDB
Delll10.SkyServer, qui sera supprimée, seront transférés vers cette nouvelle NDB.
SD-SQL Server commence par chercher dans la méta-table SD.Nodes de la MDB
s’il y a un nceud qui n’a pas encore hébergé une NDB de la SDB SkyServer. Pour
cela, il exécute une jointure avec les méta-tables SD.SDB (de la méta-base MDB) et
SD.NDB (de la NDB primaire SkyServer). La requéte SQL de cette jointure est la
suivante :

SELECT node FROM delll.metabase.sd.nodes WHERE node NOT IN
(SELECT node FROM Dell11.SkyServer.sd.ndb)

o S’il existe un nceud serveur (ou pair) qui ne détient pas la NDB SkyServer, le
gestionnaire utilise ce nceud pour y créer une nouvelle NDB SkyServer et lui

-114 -

Le Prototype SD-SQL Server

transférer les données de la NDB Dell10.SkyServer. Sinon, il doit créer un nouveau
noeud SD-SQL Server pour héberger la nouvelle NDB. Nous supposons qu’il existe
déja un nceud SD-SQL Server, soit Dell7 ce noeud. Ainsi SD-SQL Server crée une
nouvelle NDB SkyServer de type serveur sur ce nceud avec la commande
sd_create _node_database. Un nouveau tuple correspondant a la nouvelle NDB
Dell7.SkyServer sera inséré dans la méta-table SD.NDB de la NDB primaire
Delll 1.SkyServer.

o Une fois la nouvelle NDB SkyServer est créée sur le nceud Dell7, le gestionnaire
commence le transfert des données. Il transfére tous les tuples des méta-tabes
SD.Prim et SD.Size de la NDB Dell10.SkyServer a supprimer vers les méta-tables
correspondantes de la nouvelle NDB Dell7.SkyServer. 11 transfere aussi tous les
segments vers la nouvelle NDB.

o Ensuite, le gestionnaire supprime la NDB SkyServer du nceud Dell10. 11 supprime
aussi les tuples qui la décrivent dans les méta-tables SD.NDB de la NDB primaire
Delll 1.SkyServer.

Si la NDB a supprimer est une NDB primaire, d’autres traitements sont effectués. Nous
supposons par exemple la suppression de la NDB primaire Dellll.SkyServer. SD-SQL
Server suit le méme traitement interne que celui de la suppression d’une NDB serveur non
primaire. De méme pour les tuples des méta-tables NDB, Prim et Size, ils sont transférés
vers les mémes méta-tables de la nouvelle NDB Dell7.SkyServer, par exemple. La seule
différence est que tous les tuples de la méta-table Dellll.SkyServer.SD.RP seront
transférés vers la méta-table SD.RP de la nouvelle NDB Dell7.SkyServer. De plus, tous
les tuples qui ont dans leur champ SgmNd la valeur Delll] auront a la place le nceud de la
nouvelle NDB (Dell7).

Une fois toutes les données sont transférées vers la nouvelle NDB, le tuple décrivant la
NDB Dellll dans la méta-table MDB.SD.SDB sera mis a jour. Il aura la valeur Dell7 au
lieu de I’ancienne valeur ‘Dell/ll’ dans le champ node. Ceci indique une nouvelle
localisation pour la NDB primaire de la SDB SkyServer. Enfin, la NDB SkyServer sera
supprimée du nceud Delll 1.

6.4.7.4 Suppression d’une SDB

La suppression d’une SDB est réalisée par la commande sd drop scalable database.
Nous supposons la suppression de la SDB SkyServer. Nous rappelons que cette SDB est
composée des NDBs SkyServer localisées sur les noeuds Dellll, Dell7, Delll0 et Ceria.
La commande de suppression est exécutée comme suit :

sd_drop_scalable_database ‘SkyServer’

- 115 -

Le Prototype SD-SQL Server

Le gestionnaire SD-SQL Server supprime uniquement les NDBs serveurs et pairs de la
SDB SkyServer. Les NDBs de type client peuvent étre non disponibles lors de la
suppression de leur SDB (en raison d’une panne, etc). Ainsi, elles ne seront supprimées
que lors de leurs accés. Le gestionnaire effectue les traitements internes de la commande
sd_drop scalable_database en suivant les étapes ci-dessous :

o Tout d’abord, il récupere le nceud qui détient la NDB primaire de la SDB SkyServer.
Pour cela, il accéde a la méta-table SD.SDB de la méta-base, il cherche le tuple ou le
champ SDB _name est égal a ‘SkyServer’ et il récupere la valeur de son champ Node
qui est dans notre exemple ‘Dellll’.

o Ensuite, il accede a la méta-table SD.NDB de la NDB primaire Dellll.SkyServer.
Pour chaque tuple de cette table, il sélectionne son nceud. Chaque nceud sélectionné
représente la localisation de chaque NDB de la SDB SkyServer.

o Pour chaque nceud trouvé dans la méta-table SD.NDB, le gestionnaire supprime sa
NDB SkyServer en faisant appel a la procédure qui implémente la commande
sd_drop node_database.

o Enfin, il supprime le tuple décrivant la SDB SkyServer de la méta-table SDB de la
métabase.

Ainsi, la suppression d’une SDB entraine la suppression de toutes ses NDBs de type pair
et serveur. Pour les NDBs de type client, nous rappelons qu’elles ne pas sont supprimées
au moment de la suppression de leur SDB. Ceci est a cause de leur éventuelle
indisponibilité. Ainsi la NDB client sera supprimée au moment de son utilisation plus tard
lorsqu’il il s’aveére que sa SDB n’existe plus.

6.4.7.5 Suppression d’un Neeud

La suppression d’un nceud est réalisée par la commande sd drop node. Nous supposons
la suppression du noeud Dell8 par exemple. Le gestionnaire suit les étapes suivantes pour
effectuer le traitement interne de la commande sd_drop_node :

o Il sélectionne tout d’abord un nceud libre de la méta-table Nodes de la MDB. Soit
Dell5 ce nceud. Ensuite, il supprime le tuple qui enregistre le nceud Dell§ de la
méme méta-table Nodes.

o Le gestionnaire déplace ensuite chaque NDB du nceud Dell8 avec toutes ses méta-
tables vers le nouveau nceud Dell5. Ceci entraine aussi la modification des données
de quelques tuples des méta-tables. Eneffet, le gestionnaire boucle sur la méta-table
Dell8.SkyServer.SD.NDB et récupere chaque NDB trouvée. Ensuite pour chaque
NDB trouvée, a I’exception de la NDB SkyServer courante du nceud Dell8.

- 116 -

Le Prototype SD-SQL Server

o Enfin, le gestionnaire modifie la table Nodes de la MDB. Il modifie aussi la SDB
qui a une NDB localisée sur le nceud DellS.

6.5 Gestion des Concurrences

Une grande partie des applications sur les SGBDs ne peuvent se permettre d'exécuter les
programmes et requétes de leurs utilisateurs les uns apres les autres, car cela impliquerait
des temps d'attente beaucoup trop longs. Les SGBDs doivent donc exécuter
simultanément, autant que possible, les programmes et requétes des utilisateurs. Cette
simultanéité d'exécution est appelée concurrence.

Comme tous les SGBDs, SD-SQL Server a aussi un environnement concurrentiel. La
perte d’une requéte scalable et 1’écrasement de celle-ci par une autre requéte concurrente
peut étre tres fréquent. Une mise a jour d’une table scalable, par exemple, peut intervenir
au milieu d’un éclatement de la méme table. Ces deux traitements (la mise a jour et
I’éclatement) sont donc en concurrence parce qu’elles manipulent des données communes
(la méme table scalable) avec des opérations incompatibles.

Dans ce qui suit suit, nous décrivons le comportement du systéeme SD-SQL Server lorsque
deux traitements, ou plus, essaient d'accéder aux mémes données au méme moment. Le
but dans cette situation est de permettre un acces efficace pour toutes les sessions tout en
maintenant une intégrité stricte des données.

Avant de voir comment nous avons procédé pour la gestion de concurrence sur SD-SQL
Server, nous présentons d’abord quelques notions sur les techniques de verrouillage sur
lesquelles est basée la gestion de concurrence.

6.5.1 Techniques de Verrouillage

Toute unité de traitement (programme ou requéte utilisateur), exécutée sur un SGBD, est
appelée transaction. Une transaction est dite correcte si en s'exécutant seule (sans
concurrence) sur une base de données cohérente (dont toutes les contraintes d'intégrité
sont vérifiées), fournit en résultat un état cohérent de la base de données. Afin de
conserver la cohérence de la base lors de I’exécution simultanée des transactions, des
techniques de gestion de concurrence sont utilisées. Il s'agit tout particuliecrement de la
technique de verrouillage, celle que nous utiliserons par la suite dans notre travail. Cette
technique est la plus ancienne et la plus couramment utilisé pour contrdler la concurrence
des acces a des objets partagés [Gar99].

Les techniques de verrouillage ont pour principe que les transactions voulant travailler sur
un ¢lément de la base, doivent auparavant demander a obtenir le droit d'utiliser cet

-117 -

Le Prototype SD-SQL Server

¢lément. Ce droit est matérialisé par l'obtention d'un verrou. Si 1'élément n'est pas
disponible pour ce type d'usage, alors la transaction est mise en attente. Une fois le travail
effectué, la transaction libére le verrou sur 1'élément, qui devient disponible. L'élément,
unité sur laquelle on pose un verrou, est en général un tuple. Deux types de verrous sont a
considérer généralement :

o les verrous en lecture ou verrous partagés qui sont destinés a protéger les
opérations de lecture sur 1'objet verrouillé ;

o et les verrous en écriture ou verrous exclusifs qui sont destinés a protéger les
opérations d'écriture.

L'existence d'un verrou en écriture est par définition incompatible avec celle d'un autre
verrou de type quelconque sur le méme objet. Les régles suivantes, illustrées dans la
Table 6-2, sont ainsi appliquées pour les demandes d'acquisition de verrous sur une
donnée en fonction des verrous qui y sont actuellement posés. La mention impossible
signifie que le demandeur sera bloqué jusqu'a ce que le verrou conflictuel soit levé.

Demande de .
. En lecture En écriture
verrou(s) déja posé(s)
Aucun Possible possible
En lecture Possible Impossible
En écriture impossible Impossible

Table 6-2 : Régles d’utilisation des verrous

6.5.1.1 Isolation des Transaction

Les transactions spécifient un niveau d'isolement. Ce niveau définit le degré d'isolement
d'une transaction par rapport aux modifications de ressource ou de données apportées par
d'autres transactions. Les niveaux d'isolement déterminent les effets secondaires de la
concurrence (lectures incorrectes, lectures fantomes) qui sont autorisés. Le standard
ANSI/ISO SQL définit quatre niveaux d'isolation des transactions en termes de trois
anomalies qui doivent étre évités entre les transactions concurrentes. Ces phénomeénes
indésirables sont :

o La lecture impropre (ang. dirty read) ou une transaction lit des données écrites par
une transaction concurrente libre.

o La lecture non répétable (ang. non-repeatable read) ou une transaction relit des
données qu'elle a précédemment lues et trouve que les données ont été modifiées
par une autre transaction non libre.

-118 -

Le Prototype SD-SQL Server

o La lecture fantome (ang. phantom reads) ou une transaction ré-exécute une requéte
en renvoyant un ensemble de lignes qui satisfont une condition de recherche et
trouve que les lignes additionnelles satisfaisant la condition ont été insérées par une
autre transaction non libre.

Les quatre niveaux d'isolation et leur comportement correspondant sont décrits dans la
table ci-dessous ci-dessous *:

. .- Lecture Lecture non N
Niveau d'isolement . Fantome
incorrecte renouvelable
Lecture non validée Oui Oui Oui
Lecture validée Non Oui Oui
Lecture renouvelable Non Non Oui
Sérialisable Non Non Non

Table 6-3 : Niveaux d’isolation

Aprées avoir présenté les notions de base dans la gestion de concurrence, nous présentons
dans ce qui suit la gestion de concurrence sur SD-SQL Server.

6.5.2 Gestion des concurrences sur SD-SQL Server

Afin de gérer les différents conflits entre les opérations concurrentes sur SD-SQL Server,
nous avons défini une matrice qui détermine les conflits entre les différentes commandes
SD-SQL Server. Nous avons appelé cette matrice, « matrice des conflits ». En effet, nous
avons proposé des schémas de concurrence entre toutes les transactions qui peuvent créer
des conflits en s’exécutant simultanément. Ces schémas permettent 1’exécution des
transactions concurrentes tout en assurant leur sérialisabilité.

Tout d’abord, nous présentons la matrice des conflits entre les différentes opérations SD-
SQL Server. Ensuite, nous décrivons les schémas de concurrence que nous avons
proposes.

6.5.2.1 Matrice des Conflits

La matrice des conflits, que nous avons appelée C, est une matrice carrée de dimension m
x m ou m est le nombre d’opérations concurrentes sur SD-SQL Server. Les colonnes et les

* Ces niveaux d’isolation sont tous pris en charge par le SGBD SQL Server 2000.

-119 -

Le Prototype SD-SQL Server

lignes de la matrice C correspondent a toutes les commandes SD-SQL Server. Notons
qu’en plus des commandes SD-SQL Server, nous avons ajouté aussi I’éclateur (splitter)
comme ¢lément de la matrice C. En effet, 1’éclateur est déclenché par une insertion,
réalisée par la commande sd_insert, mais comme il est exécuté dans un job asynchrone, il
risque donc d’étre en conflit avec d’autres commandes ou éclateurs. Nous énumérons ces
opérations ci-dessous.

(1) sd_create_node

(2) sd_drop_node

(3) sd_alter_node

(4) sd_create_scalable_database
(5) sd_create_node_database
(6) sd_drop_node_database
(7) sd_drop_scalable_database
(8) sd_create_table

(9) sd_alter_table

(10) sd_create_index

(11) sd_drop_index

(12) sd_drop_table

(13) sd_create_image

(14) sd_drop_image

(15) sd_select

(16) sd_insert

(17) sd_update

(18) sd_delete

(19) Splitter

Un ¢élément Cj; de la matrice C qui lie la ligne i a la colonne j indique si la commande i
peut étre en conflit avec la commande j. Cet élément peut avoir la valeur ‘Oui’ (désignée
par ‘O’) pour dire que la commande i peut étre en conflit avec la commande j. S’il n’y a
pas de conflits entre deux éléments i et j, 1la de I’élement Cj; reste vide.

La matrice se présente comme suit :

-120 -

Le Prototype SD-SQL Server

@ G @E 6O E O 1)an a2 as) 14 (1s) 16 17) (18) 19

O]
©)]
3
@
®)
(©) o
™
®)

c= (9 e e) O 0 0 O O 0O O O
(10) 0 o 0O 0 0 O 0O 0O 0 O
(11) 0 0 O 0 0O O O 0 O O
12) 0 o 0O 0 0 O O 0 O O
(13) OO0 00O OO0 O0 0 O
14) O 0O 000 0 0 0 0 O
(15) OO0 000 OO0 0 0 O
(16) O 0O OO0 0 O0 0 0 O
a7 O 0O 000 0 0 0 0 O
(18) OO0 00O OO0 O0 0 O
19

Figure 6-3 : Matrice des Conflits

Dans le cas ou I’¢lément Cj; a la valeur ‘O’, ceci indique qu’il y a une ressource commune
qui pourrait générer un conflit entre deux commandes i etj se terminant par une perte
d’intégrité de la table, si la concurrence n’était pas bien gérée. Cette ressource commune
est un composant de SD-SQL Server, une métat-table par example. Pour gérér la
concurrence sous SD-SQL Server, nous avons implémenté les opérations potentiallement
concurrentes sous forme de transactions distribu¢es du standard SQL. La 1% approche
pourrait étre I’emploi du niveau SERIALIZABLE. En effet, le niveau d'isolation par défaut
sur SQL Server 2000 est la lecture validée (READ COMMITTED). Ainsi, chaque
transaction sous SD-SQL Server peut garantir au moins que le cas de lecture impropre ne
peut se produire. Or, ce niveau n'est pas trés str pour assurer la cohérence. Le deuxiéme
niveau fourni par SQL Server évite les trois types d'incohérence présentés précédemment.
11 s’agit du niveau SERIALIZABLE qui signifie que les requétes sont exécutées comme si
elles étaient lancées les unes aprés les autres. Le premier inconvénient avec ces
transactions trés slres c'est qu'elles font baisser les performances du systéme. Des
transactions commencées, bloquant 1'acces aux données, devront étre terminées avant que
la transaction "sérialisable"” ne se poursuive.

Dans notre implantation, nous avons évit¢ [utilisation du niveau d’isolation
SERIALIZABLE sur SD-SQL Server, ceci est a cause du cas suivant qui peut se présenter:

-121 -

Le Prototype SD-SQL Server

Si un éclateur aurait accedé a la table SD.RP pour effectuer une écriture (il y insére alors
toujours un tuple d’un nouveau segment d’une table scalable), alors il poserait un verrou
exclusif sur la totalit¢ de la table RP. Si entre temps, une commande SD-SQL Server,
sd_select par exemple, veut accéder a la méme table RP pour une lecture (récupérer le
partitionnement actuel d’une table scalable pour I’ajustement de son image par la suite),
cette commande pose alors un verrou partagé sur RP. Cependant, elle trouve le verrou
exclusif du splitter sur RP, donc la commande sd_select sera mise en attente jusqu’a ce
que le splitter termine, méme si la lecture concerne des tuples non utilisé par le splitter
(des tuples décrivant une autre table scalable).

Afin d’¢éviter cet inconvénient, nous gérons la concurrence sur SD-SQL Server en traitant
ses commandes comme des transactions distribuées au niveau d’isolation REPEATABLE
READ. Avec ce niveau d’isolation, le conflit avec le splitter, présenté ci-dessus, sera
évité. En effet, I’éclateur pose son verrou exclusif sur un tuples uniquement (celui
décrivant le segment qui éclate) de la table RP. Ainsi, une commande sd_select pourra
poser son verrou partagé sur d’autres tuples de la méme table RP sans aucune attente
inutile. Les autres conflits sont aussi évités avec le niveau d’isolation REPEATABLE
READ comme nous le montrerons par la suite.

La modification d’un niveau d’isolation est réalisée par l'instruction SET TRANSACTION
ISOLATION LEVEL. Au niveau de chaque procédure stockée qui implémente une
commande SD-SQL Server, nous avons limité son code par les instructions BEGIN
DISTRIBUTED TRANSACTION et COMMIT TRANSACTION.

Aprés avoir présenté comment nous gérons la concurrence sur SD-SQL Server, nous
passons dans ce qui suit aux détails sur les différents conflits qui peuvent exister et
comment notre solution les résout. Nous présentons aussi les principaux composants du
systéme SD-SQL Server qui peuvent étre des ressources partagées.

6.5.2.2 Accés ala Méta-table RP

La méta-table RP est souvent une source de conflit entre des transactions distribuées sur
SD-SQL Server. En effet, elle peut étre une ressource partagée entre les transactions
suivantes :

o Un éclateur d’une table scalable. Celui-ci accéde a la méta-table RP pour insérer des
tuples décrivant les nouveaux segments résultant de I’éclatement d’une table. Ainsi,
tout éclateur effectue une écriture sur RP, et ceci nécessite un verrou exclusif.
Comme nous I’avons déja mentionné, ce verrou exclusif est généré seulement sur
les tuples décrivant la table scalable qui éclate afin que les autres tuples utilisées par
d’autres transactions ne soient pas bloqués.

-122 -

Le Prototype SD-SQL Server

o Une commande sur une table scalable. Cette commande peut étre une commande de
modification du schéma d’une table scalable, de recherche, de mise & jour ou une
commande sur les images secondaires. En effet, les commandes sd alter table,
sd_create_index, sd_drop index et sd_drop table accédent toutes a la méta-table
RP pour récupérer les localisations des segments de la table scalable utilisée. Ainsi,
ces commandes effectuent une lecture sur RP. De méme, les commandes sd_select,
sd_insert, sd update et sd delete accédent a la table RP pour vérifier le
partitionnement actuel des tables scalables correspondant aux images qu’elles
adressent. Ainsi, toutes ces commandes génerent alors un verrou partagé sur RP.

Dans ce qui suit, nous présentons les conflits qui peuvent étre produits entre deux
transactions, de celles présentées ci-dessus :

O Concurrence entre un éclateur et une commande

Si une transaction représentant un éclateur et une autre transaction, représentant une des
commandes ci-dessus, essaient d’accéder en méme temps a la méme table RP, nous
voulons clairement que la deuxiéme transaction commence a partir de la mise a jour de la
table RP par I’éclateur. En effet, ce dernier insére de nouveaux tuples dans RP pour
représenter de nouveaux segments dans la table scalable qui éclate. Nous voulons que ces
segments (représentés par les tuples dans RP) soient pris en compte par une autre
commande utilisant la méme table scalable. Comme nous utilisons le niveau d’isolation
REPEATABLE READ, ces transactions distribuées peuvent s’exécuter sans aucun conflit.
Par contre, si une commande accéde a RP avant I’éclateur, elle s’éxécutera sans prendre
en compte les nouveaux segments de 1’éclatement. Si 1’éclateur trouve le verrou paratagé
d’une commande, il attendra que la commande termine avec RP, ensuite il génére son
verrou exclusif sur le tuple en question.

O Concurrence entre deux éclateurs

Si deux éclateurs de deux tables scalables différentes accedent en méme temps a la méta-
table RP, le niveau d’isolation REPEATABLE READ évitera tout conflit entre ces deux
transactions. En effet, si le premier éclateur accéde a RP, donc il pose son verrou exclusif
uniquement sur les tuples de la table qu’il utilise. Ainsi, si le deuxiéme éclateur arrive
pour utiliser RP, il pose son verrou exclusif sur d’autres tuples de la table RP, sans aucun
probléme.

Deux éclateurs de la méme table scalable peuvent aussi utiliser la méme table RP. Il
s’agit, des éclatements de deux segments de la méme table scalable. Dans ce cas, si un
¢éclateur trouve un verrou exclusif sur les tuples qu’il va utiliser, donc il va attendre que
I’autre éclateur termine son traitement avec RP, pour qu’il puisse poser a son tour son
verrou exclusif. Ainsi, nous éviterons tout probléme sur la définition des contraintes
d’intégrité sur les segments de la méme table scalable.

-123 -

Le Prototype SD-SQL Server

U Concurrence entre deux commandes

Deux commandes SD-SQL Server sur une image de la méme table scalable ne peuvent
pas étre en conflit puisque chaque commande génere un verrou partagé sur les tuples de
RP qu’elle utilise. De plus, méme si ces commandes concernent la méme table scalable,
aucun conflit ne se produira. Nous supposons une commande sd_select, par exemple, qui
génere un verrou partagé sur des tuples de RP. Si une autre commande sur la méme table,
sd_update par exemple, veut sélectionner les mémes tuples sur RP, elle trouve le verrou
partagé de sd_select, donc elle pourra déposer elle aussi son verrou partagé sans aucun
probléme.

6.5.2.3 Accés a la méta-table Image

La méta-table /mage peut €tre une source partagée entre toutes les commandes qui
effectuent un ajustement d’image. Ces commandes sont : sd _select, sd_insert, sd_update
et sd_delete. Chacune de ces commandes utilise la méta-table Image pour récupérer le
nombre de ses segments et si nécessaire ajuster ce nombre. Pour cela, un verrou partagé
puis un autre exclusif sont nécessaires sur le tuple qui décrit I’image interrogée dans ces
commandes.

Ces commandes sont exécutées comme des transactions distribuées, au niveau d’isolation
REPEATABLE READ, afin d’éviter tout conflit qui peut se produire en particulier les
conflits suivants :

O Concurrence entre deux commandes exécutées sur différentes images

Nous supposons une commande, sd_select par exemple, qui génére un verrou exclusif sur
le tuple de I’image qu’elle interroge. Si une autre commande sd_select, sur une image
différente, veut accéder a la table [mage, elle dépose donc son verrou exclusif (ou
partagé) sur le tuple décrivant I’image qu’elle utilise sans aucun conflit.

O Concurrence entre deux commandes exécutées sur la méme image

Si deux commandes utilisent le méme tuple de la table /mage, donc la premicre
commande qui arrive génere son verrou exclusif sur ce tuple. Quant a la deuxiéme
commande, elle attend que la premi¢re commande termine son traitement pour qu’elle
puisse a son tour poser son verrou exclusif sur le méme tuple. Quand il s’agit d’une
lecture du méme tuple dans /mage, chaque commande génére donc son verrou partagé sur
le méme tuple sans aucun probléme. Cependant, deux transactions sur la méme image,
sd_select par exemple, peuvent €tre mises en attente mutuellement quand elles ne peuvent
obtenir un verrou exclusif sur le tuple utilis¢ dans /mage. Ceci les entraine a un
interblocage (ang. deadlock). Dans un tel cas, SQL Server interviendra pour avorter ce
deadlock. L’exemple ci-dessous montre cet interblocage.

-124 -

Le Prototype SD-SQL Server

Exemple

Soient A et B les deux commandes suivantes :
A i sd_select * FROM PhotoObj’
B : sd_select ‘COUNT(*) FROM PhotoObj’
Nous présentons les traitements effectués par ces deux transactions comme suit :

o Récupérer le nom de I'image PhotoObj dans la phase de I’image binding
= Lire (Image).

o Récupérer le nombre de segments dans RP > Lire (RP).
o Récupérer le nombre de segments PhotoObj dans Image = Lire (RP).
o Modifier le nombre de segments PhotoObj dans Image => Ecrire (Image).

Temps Commande A

) _| Commande B
Lire (image) |

| Lire (image)
Lire (RP) |

| Lire (RP)
Ecrire (Image) |

I Ecrire (Image)
Attente Image |

v Attente Image

Figure 6-4 : Exécution de deux commandes utilisant le méme tuple dans Image

Dans la figure ci-dessus, la transaction A peut étre dans le conflit suivant : elle demande
un verrou exclusif pour modifier le tuple dans /mage, mais elle trouve le verrou partagé
de la transaction B.

6.5.2.4 Les Segments d’une Table Scalable

Un segment d’une table scalable peut étre une ressource partagée entre plusieurs
transactions. Il s’agit en particulier des transactions suivantes :

o Un éclateur peut bloquer un segment qui éclate afin d’utiliser sa clé de
partitionnement et lui définir une contrainte d’intégrité par la suite.

o Une commande de modification du schéma d’une table scalable. Il s’agit des
commandes sd_alter table, sd create index, sd drop index et sd drop table.

-125 -

Le Prototype SD-SQL Server

Chacune de ces commandes peut bloquer un segment pour lui rajouter (ou
supprimer) une colonne, ajouter (ou supprimer) un index...etc.

Pour gérer la concurrence entre ces transactions, nous les exécutons au niveau d’isolation
REPEATABLE READ. Chaque transaction génére un verrou exclusif sur le segment
utilisé. Ceci est afin d’éviter les conflits des concurrences suivantes :

O Concurrence entre deux éclateurs

La concurrence entre deux éclateurs de deux tables scalables différentes ne pose aucun
conflit puisque chaque table scalable a ses propres segments. Ainsi, le verrou exclusif
d’un éclateur sur son segment n’empéche pas un autre éclateur de générer son verrou
exclusif sur son propre segment. Cependant, deux éclatements de deux segments de la
méme table scalable peuvent produire un conflit. Pour éviter ce conflit, le premier
¢clateur bloque son segment avec un verrou exclusif. Ainsi, le deuxiéme €clateur sera mis
en attente jusqu’a ce que le premier termine sa tache.

O Concurrence entre un éclateur et une commande

Si un éclateur commence par générer son verrou exclusif sur un segment éclatant, toute la
table scalable correspondante sera bloquée. En effet, si une commande, sd_alter table par
exemple, s’exécutant sur la méme table scalable veut générer son verrou exclusif sur le
méme segement afin de le modifier, elle sera mise en attente jusqu’a ce que 1’éclateur
libére ce segment. Ainsi, s’il y a des nouveaux segments résultant de I’éclatement, ils
seront pris en compte par la commande sd_alter table. De méme, si cette commande
commence sa tache avant 1’éclateur, c¢’est donc 1’éclateur qui sera mis en attente. Dans les
deux cas, ces deux transactions s’exécutent d’une maniére sérialisable donc cohérente.

O Concurrence entre deux commandes

Nous supposons que la commande sd_alter table est exécutée pour modifier le type d’un
attribut d’une table scalable. Si elle commence en premier, elle génére donc un verrou
exclusif sur chaque segment de la table scalable qu’elle utilise. Si une autre commande,
sd_create_index par exemple, utilise la méme table scalable utilisera par la commande
sd_alter table, elle doit donc attendre que cette commande termine son traitement. Ainsi,
I’ajout d’un index, par la suite, pour créer un index sur le méme attribut....

6.5.2.5 Accés ala méta-table Primary
La méta-table peut étre une ressource partagée par les transactions suivantes :

o Un éclateur peut utiliser la méta-table Primary si le segment qui éclate est un
segment secondaire. Il accéde a cette méta-table pour récupérer la NDB du segment
primaire correspondant et il accéde ensuite a sa méta-table RP. Ainsi, un éclateur

-126 -

Le Prototype SD-SQL Server

peut effectuer une lecture sur la méta-table Primary. Pour cela, il génére un verrou
partagé sur le tuple qu’il utilise dans cette méta-table.

o Une commande de suppression d’une table scalable, sd drop table, ou d’une NDB,
sd_drop node database, utilisent la méta-table Primary pour leur traitement. La
premiére commande génere un verrou exclusif sur le tuple décrivant la table
scalable a supprimer et elle supprime bien slir ce tuple par la suite. La deuxiéme
commande génére aussi un verrou exclusif sur les tuples qu’elle utilise dans
Primary. En effet, la commande sd _drop node database utilise Primary si elle
supprime une NDB de type serveur. Elle remplace le champ PimNd des tuples de
Primary qui pointent sur la NDB (a supprimer) par une nouvelle valeur affectant la
nouvelle NDB qui remplace celle a supprimer.

O Concurrence entre un éclateur et une commande

Un éclateur peut utiliser la méta-table Primary simultanément avec 1’'une des commandes
citées ci-dessus. Si I’éclateur commence en premier en générant un verrou partagé sur le
tuple décrivant la table scalable qu’il utilise, alors la commande, sd drop table par
exemple, sera mise en attente. Une fois 1’éclateur termine, la commande sd_drop table
peut générer son verrou exclusif sur le méme tuple. Ainsi, s’il y a un nouveau segment
résultant de 1’éclatement, il sera pris en compte lors la suppression de sa table. Le niveau
Repeatable Read gére donc la sérialisabilité de ces transactions concurrentes.

O Concurrence entre deux éclateurs

Si deux éclateurs de la méme table scalable s’exécutent simultanément sur la méta-table
Primary donc tous les deux effectuent une lecture simultanée du tuple qu’ils utilisent. En
effet, ils générent chacun un verrou partagé sur le méme tuple sans aucun conflit.

O Concurrence entre deux commandes

Les deux commandes utilisant la méta-table Primary peuvent s’exécuter simultanément
sans interblocage. Si une commande, sd drop node database par exemple, veut accéder
au méme tuple de Primary utilisé par une autre commande (sd_drop table en particulier),
elle attendra donc que cette derniére commande termine son traitement et récupere son
verrou exclusif.

6.5.2.6 Acceés a la Méta-table NDB

La méta-table NDB peut étre utilisée simultanément par les transactions suivantes :

o Un éclateur accede a la méta-table NDB pour récupérer une NDB de type serveur
disponible qui héberge le nouveau segment résultant de I’éclatement. Il génére alors
un verrou partagé sur le(s) tuple(s) utilisé(s).

-127 -

Le Prototype SD-SQL Server

o Les commandes de suppression de NDB et de SDB utilisent la méta-table NDB. La
premiére commande, sd_drop node_database, récupere le type de la NDB a
supprimer a partir de cette méta-table, donc elle utilise un verrou partagé au début.
Ensuite, lors de la suppression du tuple décrivant la NDB a supprimer, elle génere
un verrou exclusif. La commande sd drop scalable database, génére aussi un
verrou exclusif sur les tuples décrivant les NDBs qui composent la SDB a
supprimer.

Ainsi, nous pouvons avoir les exécutions simultanées suivantes :

O Concurrence entre un éclateur et une commande

Un éclateur peut étre mis en attente pour accéder a la méta-table NDB. En effet, il peut
trouver le tuple, qu’il veut utiliser, bloqué par un verrou exclusif d’une commande
sd_drop node database. De méme, cette derniére commande sera mise en attente si elle
trouve un verrou partagé d’un éclateur.

O Concurrence entre deux commandes

Deux commandes, sd drop node database et sd drop scalable database tout
particuliérement, peuvent s’exécuter simultanément mais sans finir dans un interblocage.
En effet, si une commande sd drop scalable database trouve verrou partagé (ou
exclusif) de la commande sd drop node database, elle sera mise en attente. De méme,
cette derniére commande sera mise en attente si elle trouve le verrou exclusif de 1’autre
commande.

6.5.2.7 Accés a la méta-table SDBNode

La méta-table SDBNode est une ressource du systeme SD-SQL Server qui peut étre
partagée par les transactions de suppression de NDBs, sd drop node database. En effet,
cette commande peut supprimer le tuple décrivant une NDB qu’elle va supprimer lors de
la suppression de sa SDB. Elle peut aussi modifier un tuple décrivant une NDB primaire a
supprimer. Dans le deuxiéme cas, il s’agit de modifier le champ Node qui hébergeait la
NDB a supprimer. Dans, les deux cas, la commande sd drop node database génére un
verrou exclusif sur le tuples utilisé. La commande sd_drop scalable _database peut aussi
utiliser la méta-table SDBNode lors de la suppression d’une SDB. Elle génére un verrou
exclusif sur les tuples a supprimer. Ainsi, nous pouvons avoir I’exécution simultanée
suivante :

O Concurrence entre deux commandes

Le conflit qu’il peut y avoir entre deux commandes s’exécutant simultanément sur
SDBNode est le suivant : Soit une commande, sd drop node database par exemple, qui

-128 -

Le Prototype SD-SQL Server

génere un verrou exclusif sur le tuple décrivant la NDB (a supprimer) afin de le modifier.
Si une autre commande sd drop node database veut utiliser le méme tuple pour le
supprimer, elle sera donc mise en attente pour générer son verrou exclusif sur ce tuple.

6.5.2.8 Gestion des Erreurs

Toute application qui utilise le systéeme SD-SQL Server doit explicitement intercepter et
gérer les erreurs. L'interception et la gestion des erreurs, a mesure qu'elles se produisent
dans l'application, permettent d'effectuer une récupération d'erreurs ¢élaborée et d'afficher
des messages d'erreur pertinents. SQL Server permet une prise en charge compléte des
erreurs d'exécution générées. Nous nous basons sur la gestion des erreurs du systéeme SQL
Server pour gérer les erreurs sur SD-SQL Server.

Un grand nombre des erreurs générées peuvent €tre capturées et résolues. Les capacités de
gestion des erreurs sont fournies par le langage Transact-SQL ainsi que les API
(interfaces de programmation d'application) que les applications utilisent pour accéder
aux données stockées dans une base de données. Les erreurs peuvent étre gérées a deux
niveaux [MO00] :

o Les erreurs peuvent, d'une part, étre gérées grace a l'ajout de code de gestion
d'erreurs aux lots Transact-SQL, aux procédures stockées, aux déclencheurs ou aux
fonctions définies par l'utilisateur. Les mécanismes de gestion d'erreurs Transact-
SQL contiennent la construction 7RY...CATCH, l'instruction RAISERROR et la
fonction @@ERROR

e Les erreurs dans le code Transact-SQL peuvent étre traitées a l'aide d'une
construction 7RY...CATCH similaire aux fonctionnalités de gestion des
exceptions des langages de programmation (C++, Java...). Une
construction 7RY...CATCH comprend deux parties : un bloc 7RY et un
bloc CATCH. Lorsqu'une condition d'erreur est détectée dans une
instruction Transact-SQL contenue dans un bloc TRY, le contrdle est
transmis a un bloc CATCH ou elle peut étre traitée. Cette construction a été
introduite dans la version 2005 de SQL Server.

e RAISERROR permet de retourner des messages aux applications dans le
méme format qu'une erreur systéme ou qu'un message d'avertissement
genéré par SQL Server.

= Jla fonction @@ERROR permet de détecter des erreurs dans les instructions
Transact-SQL. Elle renvoie 0 si la derniére instruction Transact-SQL a été
exécutée avec succes; dans le cas contraire, @@ERROR renvoie le
numéro de 1'erreur. La valeur de @@ERROR change a la fin de 1'exécution
de chaque instruction Transact-SQL.

-129 -

Le Prototype SD-SQL Server

o Les erreurs peuvent, d'autre part, étre retournées a l'application appelante pour étre
gérées dans le code de l'application. Chacune des API qu'utilisent les applications
pour accéder a une base de données offre des mécanismes de transfert des
informations relatives aux erreurs vers l'application.

Nous proposons de gérer les erreurs sur SD-SQL Server en utilisant I’instruction de SQL
Server, RAISERROR. Au niveau de chaque procédure stockée, qui implémente une
commande SD-SQL Server, nous introduisons I’instruction RAISERROR. Par contre
I’implémentation de cette partie du prototype reste dans les perspectives puisque ¢a ne
constitue pas 1’objectif de notre travail. Nous comptons utiliser par la suite la construction
TRY...CATCH puisqu’elle est plus améliorée dans la gestion d’erreurs. Mais nous ferons
ca une fois que notre prototype sera exécuté sur la version 2005 de SQL Server. Nous
rappelons que la version SQL Server 2000 ne permet pas de gérer les constructions
TRY...CATCH.

6.6 Conclusion

Dans ce chapitre, nous avons présenté notre prototype SD-SQL Server. Nous avons tout
d’abord présenté nos choix techniques pour son implantation tout en les justifiant.
Ensuite, nous avons présenté les éventuelles étapes suivies dans 1’utilisation du systéme
SD-SQL Server. Nous avons aussi détaillé le traitement interne de chaque commande.
Enfin, nous avons présenté et résolu les différents conflits entre les commandes
concurrentes. Le chapitre suivant sera consacré a 1’évaluation des performances de ces
commandes.

-130 -

[MESURES DE
PERFORMANCES

7.1 Introduction

Les performances en termes de débit (nombre de transactions exécutées par seconde) et
de temps de réponse (temps d’attente moyen pour une requéte type) sont un probléme clé
d’un SGBD. L’objectif de débit élevé nécessite un overhead minimal dans la gestion des
taches accomplies par le systéme. L’objectif de bons temps de réponse implique qu’une
requéte courte d’un utilisateur n’attende pas une requéte longue d’un autre utilisateur.

Nous montrons tout au long de ce chapitre que le systtme SD-SQL Server atteint les
objectifs d’un SGBD classique. Nous décrivons les expérimentations que nous avons
effectuées afin d’évaluer ses performances et étudier sa scalabilité. Nous comparons aussi
ces performances avec celles du SGBD SQL Server afin montrer I’efficacité de notre
systeme par rapport a SQL Server.

7.2 Environnement Expérimental

Notre prototype est réalis¢ dans un environnement Windows 2000 Server. Ce prototype
est déployé sur un réseau local Ethernet de 1 G bits/s reliant six machines Pentium IV
ayant entre 785 MO a / Gb de RAM. La Table 7-1 suivante décrit les caractéristiques de
chacune de ces machines.

nom de la machine RAM (GB) horloge (GHtz)
Ceria 1 1,7
Delll 0,780 1,7
Dell7 0,780 1,7
Dell8 1 1,7
Dell10 0,700 1,7
Dellll 0,780 2,3

Table 7-1: Configuration expérimentale

- 131 -

Mesures de Performances

Sur chacune de ces machines, nous avons installé le SGBD Microsoft SQL Server 2000.
Les noms de chaque instance SQL Server sont ceux de leurs machines. Nous avons
mesuré le temps de nos différentes expériences a 1’aide de 1’outil SQL Profiler qui est
intégré dans SQL Server. C’est un outil graphique installé avec le SGBD SQL Server. Il
permet de tracer les performances des requétes exécutées sur une instance SQL Server.
Nous exécutons nos requétes sur 1’éditeur de requétes (ou commandes) SOL Analyzer,
installé aussi avec SQL Server.

Notons que les résultats des expérimentations dépendent fortement de la puissance des
machines utilisées (vitesse du processeur, mémoire disponible, etc.) et de la nature du
réseau. Le temps de réponse d’une requéte comprend trois composantes : (/) le temps
d’envoi des parametres de la requéte, (2) le temps de traitement de la requéte et (3) le
temps d’envoi de la réponse. (/) et (3) dépendent de la vitesse du réseau et de son niveau
d’encombrement, (2) dépend de la vitesse de traitement du serveur, variable en fonction
de sa charge.

7.2.1 Description des Expérimentations

Afin de valider I’architecture du systéme SD-SQL Server, nous avons effectu¢ plusieurs
mesures qui prouvent sa scalabilité et son efficacité. Ces mesures ciblent la détermination
d’un overhead au niveau des nceuds SD-SQL Server :

o Au niveau des nceuds de type serveur, nous effectuons les mesures de temps sur
I’éclatement des segments des tables scalables.

o Au niveau des clients SD-SQL Server, nous mesurons I’overhead du traitement des
commandes SD-SQL Server sur les tables scalables.

Nous avons effectué nos expérimentations sur le fragment du benchmark SkyServer
[G02]. Nous avons tout particulierement concentré nos expériences sur la table PhotoObj
¢tant donné que c’est la table la plus volumineuse du benchmark SkyServer. Cette table
contient environ 160.000 tuples et 400 colonnes, ce qui lui fait une taille d’environ 260
MB.

La liste des expériences que nous avons effectuées et que nous détaillerons par la suite se
résume en :

o Eclatement d’une table scalable PhotoObj en fonction de sa capacité et du nombre
de segments qui résultent de 1’éclatement.

o Exécution d’une commande SD-SQL Server. Nous prenons en compte, dans le
temps de I’exécution, le temps effectué¢ pour I’image binding et 1’ajustement des
images.

-132 -

Mesures de Performances

Pour chaque série d’expérimentation sur SD-SQL Server, nous effectuons
I’expérimentation équivalente sur SQL Server. Ensuite, nous comparons les temps
obtenus entre une exécution sur SD-SQL Server et sur SQL Server.

7.3 Eclatement

L’étude de 1’éclatement d’une table scalable nous a amené a étudier deux cas de la
migration des données :

o Eclatement d’une table scalable ayant un segment primaire en deux, trois, quatre
puis cinq segments respectivement. Nous effectuons ces éclatements a plusieurs
reprises selon différentes capacités de la table scalable [LS04].

o Eclatement d’une table scalable contenant des index. Dans cette expérience, nous
prenons en compte, dans le temps d’éclatement, le temps de transfert des index
d’une table scalable vers ses nouveaux segments résultant [SLS05].

Afin d’effectuer ces traitements, nous utilisons la table PhotoObj du benchmark
SkyServer comme une table scalable sur notre systtme SD-SQL Server. Nous lui avons
attribuée une capacité b. Nous avons varié sa capacité pour chaque expérience. Les
différentes capacités que nous avons utilis€¢ pour PhotoObj sont : b=1000, 2000...160000
tuples. PhotoObj contient initialement un seul segment (son segment primaire). Ensuite,
nous effectuons des insertions dans cette table afin de la faire éclaté en deux, trois, quatre
puis cinq segments pour chacune des capacités citées.

Dans chaque traitement, nous effectuons une insertion pour déclencher un éclatement.

Pour I’éclatement en deux segments, nous exécutons la commande sd_insert pour insérer
.5

un tuple, comme suit ~:

sd_insert ‘PhotoObj (objid) values (9999999)’

Pour les autres éclatements (en trois, quatre et cinq segments), nous exécutons la
commande sd_insert pour insérer un bloc de tuples. Nous récupérons ces tuples a partir
d’une table statique PhotoObj d’une base statique SkyServer (localisé sur I’instance SQL
Server local de I’exécution de la commande, Ceria par exemple) que nous avons importé
a partir du benhmark SkyServer [G02]. Nous changeons le nombre de tuples insérés selon
le nombre de segments que nous voulions avoir en résultat. Nous exécutons la commande
sd_insert comme suit :

sd_insert ‘PhotoObj SELECT TOP * FROM Ceria.SkyServer.dbo.PhotoObj’

5 Nous avons mis affecté a tous les autres attributs,de PhotoObyj, la valeur NULL avant I’exécution de cette

commande.

-133 -

Mesures de Performances

7.3.1 Cas-1: Table Scalable sans Index

Notre expérience sur I’éclatement étudie le temps des différents traitements effectués lors
de D’éclatement. Nous avons réalis¢ quatre expériences d’éclatement. La premiere
expérience déclenche un éclatement lors d’une insertion de tuples qui font éclater le
segment primaire de la table scalable PhotoObj en deux segments. Nous avons refait cette
expérience pour les différentes capacités b=1000, 2000...160000. A chaque nouvelle
capacité b, nous recréons bien sir la table scalable PhotoObj avec un segment primaire.
Les trois autres expériences font la méme étude mais avec des éclatements en 3, 4 et puis
5 segments respectivement selon les différentes capacités b.

La Table 7-2 donne les résultats numériques obtenus de ces expériences. La Figure 7-1
présente les courbes correspondantes. Le temps d’éclatement, calculé en secondes, est
d’une maniere prévisible meilleur pour I’éclatement en deux segments ou pour les
segments ont des tailles plus petites.En outre, le temps reste relativement rapide (quelques
minutes) tout en respectant la réorganisation globale pour chaque capacité de PhotoObj.

capacité d’un segment temps d’eclatement (sec) en :
(en tuples) 2 seg 3 seg 4 seg 5 seg
1000 2.45 4.83 7.84 11.62
10000 7.11 12.15 21.40 26.42
20000 10.55 18.94 32.08 37.12
40000 22.42 38.88 59.59 60.73
80000 46.17 56.79 104.02 104.15
160000 54.65 77.86 130.89 165.11

Table 7-2 : Résultats Numériques du temps d’éclatement de PhotoObj

en fonction du nombre de segments résultant

-134 -

Mesures de Performances

—e— 1000 tuples —=— 10000 tuples 20000 tuples
40000 tuples —x—80000 tuples —e— 160000 tuples

= N

a1 o

o o
I]

*

100 - x/{/}‘(

Nombre de segments

6]
o
I

Temps d'éclatement (sec)

o

Figure 7-1: Evolution du temps d’éclatement en fonction

du nombre de segments résultant

7.3.2 Cas-2: Table Scalable avec des Index

Dans cette section, nous évaluons le temps d’éclatement d’une table scalable contenant
des index. Ainsi, le temps d’éclatement inclut aussi le temps du transfert des index vers
les nouveaux segments qui résultent de 1’éclatement. Nous refons les mémes expériences
de la section précédente mais sur une table PhotoObj contenant zéro, un, deux et trois
index. La Figure 7-2 et la Table 7-3 montrent les résultats.

La conclusion de cette expérience est que le temps d’éclatement augmente naturellement
avec 1’augmentation du nombre d’index existants sur le segment qui éclate ainsi que le
nombre de segments résultant de 1’éclatement. Ceci crée un overhead additionnel pour la
gestion d’index. Cet overhead reste néanmoins négligeable. Il est a moins de 10% pour un
segment qui €clate en quatre nouveaux segments. L’augmentation du temps pour un
éclatement qui donne cinq segments est un peu plus importante mais reste modérée a
environ 22%.

Nombre Temps d’Eclatement (sec) en :
d’index

atransférer | 2 Seg 3 seg 4 seg 5 seg
0 index 54,656 77,86 130,89 165,11
1 index 52,33 77 133,86 187,813
2 index 54,816 82,596 137,626 196,783
3 index 56,486 83,61 139 202,65

Table 7-3 : Résultats Numériques des Temps d’Eclatement de PhotoObj avec index

-135 -

Mesures de Performances

—e—0index —=—1 index 2 index 3 index ‘
o 250 -
()
L2
£ 200 1 :
(3}
GE) 150 i "/.
©
g 100 4 .
Lo} /
o 50 - E
o
5 o

2 seg 3 seg 4 seg 5 seg
Nombre de segments

Figure 7-2 Temps d’Eclatement des segments avec index

7.3.3 Comparaison entre un Eclatement sur SD-SQL Server et
un Eclatement sur SQL Server

Dans cette section, nous déterminons 1’overhead de 1’éclatement tout en respectant les
mémes traitements effectués pour 1’éclatement d’une table scalable. Nous avons comparé
le temps d’éclatement sur SD-SQL Server avec le temps d’éclatement effectué
directement sur SQL Server. L’éclatement sur SQL Server n’est pas dynamique, il
consiste a transférer manuellement les tuples qui surchargent une table. Le temps
d’éclatement sur SQL Server inclut alors :

o le temps du transfert de la moiti¢é de la capacité d’un segment vers un nouveau
segment ;

o le temps de suppression des tuples transférés du segment qui éclate ;
o et le temps des autres opérations comme la mise a jour des méta-tables...

Nous avons exécuté des requétes SQL (SELECT INTO, DELETE...) qui permettent
d’effectuer les traitements ci-dessus. Ensuite, nous avons mesur¢ le temps d’exécution de
ces requétes. Le temps du transfert des tuples vers un nouveau segment et la suppression
de ces tuples du segment éclatant est d’environs 40 secondes sur SQL Server pour un
segment de capacité 80.000 tuples. Le temps total d’éclatement de ce segment en deux
segments sur SD-SQL Server est d’environ 46 secondes. Ainsi, la différence entre le
temps d’éclatement sur SQL Server et celui sur SD-SQL Server est 6 secondes seulement.
Autrement dit, la différence est d’environ 15% du temps qui inclut les autres requétes
auxiliaires déja citées.

- 136 -

Mesures de Performances

7.4 Exécution des Commandes SD-SQL Server

Afin d’étudier /’overhead dans 1’exécution des commandes SD-SQL Server, nous avons
exécuté des commandes selon différents critéres. Nous avons pris en compte :

o Les commandes qui retournent des résultats coliteux dans 1’évaluation des requétes.
Ceci correspond aussi aux commandes ayant des requétes scalables complexes.

o Les commandes qui permettent un traitement distribué¢ développé.

o Les commandes qui interrogent des images a plusieurs niveaux, ce que nous avons
appelé les vues scalables.

Nous avons utilisé, en particulier, des commandes de recherche (sd_select) tout en les
adaptons pour chaque cas cité ci-dessus. Le temps d’exécution d’une commande sd_select
inclut le temps des traitements suivant :

o Le temps de la phase image binding. Nous rappelons que dans cette phase, SD-SQL
Server analyse la requéte scalable entrée dans la commande sd_select. Cette phase
analyse principalement la clause FROM et récupere les images (ou les vues
scalables) utilisées si elles existent. Ainsi le temps de I’image binding inclut le
temps du traitement sur la chaine de caractére qui représente la clause FROM, le
temps d’acces a la méta-table Image (pour vérifier si un objet correspond a une
image) et le temps d’acces aux tables systémes sysobjects et sysdepends dans le cas
de vues scalable (cf. Section 6.4.6.1).

o Le temps de I’ajustement des images. S’il résulte des images dans la phase image
binding, SD-SQL Server vérifie alors si ces images sont correctes. Pour cela, il
accede a la méta-table Image pour récupérer le nombre de segments définis dans
une image. Il effectue aussi un acces a la méta-table RP pour récupérer le nombre
réel de segments dans la table scalable présentée par cette image. Ensuite, il
compare les deux nombres obtenus et, si nécessaire, il modifie le nombre trouvé
dans la table Image. Ainsi le temps de vérification de 1’ajustement d’une image
correspond au temps d’un acces a la table Image. Quant au temps de 1’ajustement, il
inclut en plus le temps d’un acceés a RP ainsi que le temps des autres traitements
(comparaison des nombres...).

o Le temps de I’exécution de la requéte scalable. Ce temps correspond au temps
habituel de I’exécution d’une requéte SQL correspondant a la requéte scalable
utilisée dans la commande sd_select.

Ainsi, le temps d’exécution de toute commande sd_select inclut les temps des traitements
cités ci-dessus. Nous prenons en compte tous les cas possibles dans ’exécution d’une
commande sd_select, dans les expérimentations que nous présentons dans ce qui suit.

-137 -

Mesures de Performances

7.4.1 Requéte Cofliteuse

Nous avons exécuté la commande suivante, obtenue a partir du benchmark SkyServer et
transformée pour représenter une commande SD-SQL Server :

(Q1) sd_select “* FROM PhotoObj
WHERE (status &0x00002000 > 0) AND (status &0x0010 > 0)

L’image PhotoObj interrogée dans cette commande représente la table scalable PhotoObj
partitionnée en deux segments et de taille 158.426 tuples. Nous supposons que I’image
PhotoObj n’est pas ajustée.

La requéte (Q1) montre le coté le plus colteux dans 1’évaluation des requétes. En effet,
elle donne en résultat plusieurs milliers de tuples (129.470 tuples). De plus, ces tuples a
partir sélectionnés a partir de segments (de la table scalable PhotoObj) se trouvant sur des
NDBs distribuées de la SDB SkyServer. L’exécution de la requéte (Q1) sur SD-SQL
Server prend 45 secondes en prenant en compte le temps de I’image binding et de
I’ajustement de 1’image PhotoObj.

Pour évaluer le temps d’exécution de (Q1) sur SQL Server, nous avons exécuté la méme
requéte SQL correspondante, il s’agit de :

SELECT * FROM PhotoObj
WHERE (status &0x00002000 > 0) AND (status &0x0010 > 0)

PhotoObj représente dans cette requéte, une vue partitionnée avec les deux segments de
PhotoObj. Le temps d’exécution de cette requéte prend 44 secondes sur SQL Server.
Nous rappelons que I’exécution directe sur SQL Server n’inclut pas les traitements liés a
I’image binding et 1’ajustement de PhotoObj. Ainsi, I’ajustement de 1’image prend
seulement une seconde dans I’exécution de (Q1) sur SD-SQL Server. Il présente
uniquement 2 % du temps de ’exécution de la requéte. Nous pouvons conclure que
L’analyse théorique indique que ’overhead de 1’image binding et 1’ajustement est
négligeable qdans le cas de requétes cotliteuses.

Afin d’évaluer l'overhead dans I’ajustement des images dans le cas de requétes
complexes, nous avons exécuté la requéte suivante :

(Q1-a) sd_select 'top 10000 x.objid from photoobj x, photoobj y
where x.0bj=y.obj and x.objid>y.objid

La requéte (Q1-a) représente une requéte complexe avec des jointures. Elle est exécutée
sur I’image PhotoObj ayant 158.426 tuples. Nous avons partitionné sa table scalable
PhotoObj en deux, trois puis quatre segments avec la méme taille de la table (environ
160k tuple) pour chaque partitionnement. Le temps d’exécution de (Q1-a) avec 1’image
binding seulement (sans 1’ajustement de 1’image PhotoObyj), est entre 10 et 12 secondes.

- 138 -

Mesures de Performances

L’overhead est d’environ une seconde. Il augmente un peu tant que la requéte SQL
ALTER VIEW (pour modifier la définition de I’image) traite plus de segments distribués.

L’overhead de 1’ajustement d’image devient relativement négligeable. Il est d’environ
10% du colt de la requéte. Nous rappelons que l’ajustement est généralement une

opération tres rare.

_— PhotoObj partitionnée en :
exécution de (Q1) 2 seq 1 P 3 seq 4 seq
avec ajustement de
PhotoObj 10.898 13.036 14.071
sans ajustement de
PhotoObj 9.862 11.578 11.712

Table 7-4 : Mesures Numériques de Pexécution de (Q1-a)

—e— avec ajustement de PhotoObj
—=— sans ajustement de PhotoObj

Temps d'exécution (sec)
[
w O
L L

12 - :/;/:—7/:.

2 3

Nombre de segments

Figure 7-3 : Résultats graphique des temps d’exécution de (Q1-a)

7.4.2 Requéte Rapide

Soit la commande suivante :

(Q2) sd_select “TOP 10 objid FROM PhotoObj WHERE objid not in
(SELECT objid FROM PhotoObj WHERE objid <= @objidMax)’

Nous avons exécuté (Q2) sur la NDB client Ceria.SkyServer ou 1’image primaire est
localisée. La NDB Delll1.SkyServer détient le segment primaire de la table PhotoObj.
Cette derniere a deux segments. Nous varions sa capacité b pour chaque expérience,

b=39500, 79000, 158000 tuples, comme le montre la Figure 7-4.

-139 -

Mesures de Performances

La requéte (Q2) montre le coté rapide dans I’évaluation des requétes. Elle évalue le
traitement distribué avec un temps de réponse qui fait monter en échelle la table PhotoObj
comme nous le montrerons par la suite. Cependant, elle donne en résultat dix tuples
seulement, ce qui n’est pas trés coliteux comme résultat. Ces tuples sont sélectionnés a
partir des segments se trouvant sur des NDBs distribuées de la SDB SkyServer.
L’overhead de I’image binding devrait affecter plus de telles requétes puisqu’il y a deux
clauses FROM a analyser. L’analyse expérimentale semble le moyen le plus facile pour
trouver ce colit, elle montre, tout particulierement, si ’overhead de 1’image binding
s’avere négligeable.

Le temps d’exécution de (Q2) dépend de la taille de PhotoObj et ceci a cause de sa sous-
requéte :

SELECT objid FROM PhotoObj WHERE objid <= @objidMax’

Le paramétre @objidMax, qui apparait dans la sous-requéte de la commande (Q2),
représente la clé maximale du premier segment. Nous ’avons choisi ainsi afin que la
sous-requéte ci-dessus interroge uniquement le premier segment de la table PhotoObj.
SQL Server évalue (Q2) trés probablement en utilisant les index (automatique) sur la clé
objid de PhoroObj.

Les mesures apportées sur la requéte (Q2) montrent le temps de réponse en prenant en
compte : (1) la vérification de 1’image PhotoObj (I’'image binding) et (2) 1’ajustement de
I’image. Nous avons ensuite comparé le temps de réponse de (Q2) présenté dans la Figure
7-4 a celui de la requéte (Q2) en prenant en compte (3) I’exécution directe sur SQL
Server. Cette exécution est générée par la requéte SQL SELECT qui correspond a la
commande sd_select.

La différence entre le temps d’exécution des traitements (1) et (3) apparait négligeable.
Dans les deux cas, le temps d’exécution est d’environ 300 ms. Ceci explique que le temps
de I’image binding est presque négligeable. Nous constatons que 1’overhead est constant
puisqu’il correspond aux mémes opérations qui sont indépendantes de la sémantique de la
requéte. Les courbes montrent ainsi que 1’overhead des traitements de requétes par SD-
SQL Server est négligeable.

L’overhead de 1’ajustement de 1’image PhotoObj dans le cas (2) domine le temps de
réponse de la requéte (Q2) qui devient constant. Le temps total est d’environ 700 ms. Le
temps de réponse de la requéte devient considérablement plus long. Il reste cependant
encore largement négligeable en pratique sachant que 1’ajustement de I’image est une
opération rare. Le temps d’overhead dans 1’ajustement de 1’image est d’environ 500 ms. Il
est presque constant pour les différentes capacités de la table scalable PhotoObj. Nous
rappelons que ce temps est dii au traitement distribué¢ sur la méta-table RP afin de
récupérer les nceuds qui détiennent les segments de PhotoObj. De plus, il y a le traitement

- 140 -

Mesures de Performances

qui redéfinit I’'image PhotoObj en modifiant I’ancienne vue partitionnée distribuée qui la
représente.

capacité de PhotoObj |avec ajusteme_nt de exécution de (Q1) exécution directe sur
(en tuples) PhotoQObj SQL Server
39500 0.7796 0.11 0.096
79000 0.812 0.148 0.176
158000 0.8515 0.32 0.281

Table 7-5 : Résultats Numériques du temps d’exécution de (Q2)

—e— Exécution de (Q2) avec ajustement de PhotoObj
—=— Exécution de (Q2)
Exécution directe sur SQL Sener

0.8 .

<

0.6
0.4

(sec)

0.2 4 f—

n— I—

Temps d'exécution

39500 79000 158000
Capacité de PhotoObj

Figure 7-4 : Temps d’exécution de (Q2)

La figure suivante compare les temps d’exécution de (Q2) sur une NDB de type client et
ensuite sur une NDB de type pair. Nous rappelons que si une NDB est de type client, elle
ne contient donc que la méta-table /mage et les images des tables scalables notamment
I’image PhotoObj. Ainsi, ’acces a la méta-table RP, pour I’image binding et I’ajustement
d’image, nécessite d’accéder deux fois a un serveur li¢ (la NDB serveur qui héberge la
méta-table RP). Cependant, si la NDB de I’exécution d’une commande est de type pair,
donc les méta-tables Image et RP se trouvent sur la méme NDB. Ainsi, ’acceés a RP est
fait localement sur la méme NDB sur laquelle s’exécute la commande. Nous avons pris le
cas ou la NDB pair détient le segment primaire de la table scalable PhotoObj, ainsi la
méta-table RP est sur la méme NDB pair. PhotoObj est partitionnée en deux segments.
Nous mesurons 1’exécution de (Q2) sur PhotoObj avec les capacité respectives b= 39500,
79000 et 158000 tuples.

La Figure 7-5 rajoute a la figure précédente trois courbes :

- 141 -

Mesures de Performances

o La premiére courbe, Pair avec ajustement, représente le temps d’exécution de la
requéte (Q2) sur une NDB de type pair. Le temps d’exécution est clairement
inférieur a celui sur une NDB de type client uniquement. Il est d’environ 0.8
secondes sur une NDB pair et 1.5 secondes sur une NDB client. Cette différence est
visiblement due a 1’accés a la méta-table RP qui est soit local (dans le cas d’une
NDB pair) ou distant (dans le cas d’une NDB client).

o La deuxiéme courbe, Pair sans ajustement, représente le temps d’exécution de (Q2)
en prenant en compte uniquement la vérification de I’ajustement de I’image sans
I’ajuster. Le temps d’exécution est proche de celui de (Q2) exécutée sur une NDB
client. En effet, la différence est uniquement dans le temps d’accés a RP pour
vérifier le nombre de segments dans 1’image PhotoObj.

o La troisiéme courbe, Exécution directe sur un SQL Server pair, représente le temps
d’exécution de la requéte SQL SELECT (correspondant a (Q2)) sur SQL Server.
Nous voulons dire par SQL Server pair, le fait que cette instance contient 1’image
interrogée PhotoObj ainsi que le segment primaire de sa table scalable.

—e— Exécution sur un Pair avec ajustement de PhotoObj
—&— Exécution sur un Pair sans ajustement de PhotoObj
Exécution directe sur SQL Server (Pair)
Exécution sur un Client avec ajustement de PhotoObj
—¥— Exécution sur un Client sans ajustement de PhotoODbj
—e— exécution directe sur SQL Server (client)

C

o 2

3 g 15

sa N

T o *>— + *

g T 05 .

g 0 — > = —&

q) T T

E 39500 79000 158000

Capacité de PhotoObj

Figure 7-5 : Comparaison des temps d’exécution de (Q2)

sur une NDB client et une NDB pair

7.4.3 Requéte adressant des images a Plusieurs Niveaux

Nous avons étudié aussi le temps de I’image binding pour des commandes qui interrogent
des images a différents niveaux, ce que nous avons appelé des vues scalables. Nous nous
sommes intéressés en particulier a déterminer I’overhead d’une requéte qui adresse une
vue scalable qui fait appel a une image, ensuite une vue d’une vue d’une image, etc. Nous
rappelons que ces vues sont appelées vues de niveau i = /, 2... L’image binding, dans

-142 -

Mesures de Performances

cette expérience, boucle d’une facon récursive sur les méta-tables SD-SQL Server quand i
s’incrémente. Pour cela, des jointures cofiteuses sont utilisées comme nous 1’avons déja
mentionné précédemment.

Pour effectuer cette expérience, nous avons alors crée les vues scalables suivantes 71, 72
et 73:

CREATE VIEW T1 AS SELECT * FROM PhotoOb;j
CREATE VIEW T2 AS SELECT * FROM T1
CREATE VIEW T3 AS SELECT * FROM T2
Ensuite, nous avons exécuté les requétes suivantes qui adressent ces vues scalables :
(Q3) sd_select ‘COUNT (*¥) FROM PhotoObj’
(Q4) ‘sd_select COUNT (*) FROM T1’
Etc.

Un segment de la table scalable PhotoObj, dans cette expérience, contient 39.500 tuples.
La Figure 7-6 montre le résultat d’exécution des requétes (Q3) et (Q4) avec et sans
ajustement de I’image PhotoObj qu’elles adressent directement ou indirectement (a
plusieurs niveaux). Les courbes dans la figure montent légérement, mais restent
pratiquement plates. L’incidence du niveau de I’image sur le temps de I’image binding est
donc négligeable.

Niveau 0 | Niveau 1 Niveau 2 | Niveau 3
ajustement de I’image
PhotoObj (temps en sec) 0.811 0.826 0.846 0.853
exécution de (Q3) 0.11 0.126 0.14 0.153
(temps en sec)))))

Table 7-6 : Résultats Numériques du temps d’exécution de (Q3)

‘ —e— Exécution de (Qi) avec ajustement de PhotoObj Exécution de (Qi) ‘

® °

0.9 -
0.8 - -~ * v M
0.7 -
0.6
0.5
0.4
0.3 -
0.2 -
0.1 -
o

Temps d'exécution (sec)

(o] 1 2 3
Niveau de la vue scalable

Figure 7-6 : Temps d’exécution de (Q3) pour une image a plusieurs niveaux

-143 -

Mesures de Performances

7.4.4 Comparaison entre SD-SQL Server et SQL Server

Dans cette section, nous visons la comparaison du temps de réponse de 1’exécution d’une
requéte sur SD-SQL Server et ensuite sur SQL Server. Nous avons utilis¢ la requéte (Q3),
de la section précédente. Pour I’exécution de (Q3) sur SD-SQL Server, nous procédons
comme dans les sections précédentes, c’est-a-dire il suffit d’exécuter la commande
sd_select comme elle se présente. Quant a I’exécution sur SQL Server, nous utilisons la
requéte SQL suivante qui correspond a (Q3) :

SELECT COUNT(*) FROM PhotoOb;

Pour aboutir a une bonne comparaison entre I’exécution sur SD-SQL et sur SQL Server,
nous évitons d’ajustement de I’image PhotoObyj, lors de ’exécution de (Q3) sur SD-SQL
Server. En effet, I’exécution sur SQL Server retourne le résultat de la requéte SELECT
uniquement. Par contre, sur SD-SQL Server, en plus de ’exécution, il y a aussi les
traitements liés a I’image binding et 1’ajustement de 1’image (si nécessaire). Pour éviter
I’ajustement de I’image qui peut alourdir le temps d’exécution de (Q3), nous affectons le
nombre exact de segments qui composent la table PhotoObj dans la table Image (qui
définit le nombre de segment dans I’image PhotoObj). Ainsi, lors de la vérification du
nombre de segments définis dans I’image PhotoObj, ce nombre (présenté dans le champ
Size de la méta-table Image) sera égal au nombre de segments actuels dans la table
PhotoObj. L image PhotoObj ne sera pas alors ajustée méme si réellement elle définit un
nombre de segments inférieur au nombre actuel.

Les sections suivantes montrent les mesures de performances qui comparent SD-SQL
Server a SQL Server selon la variation du nombre de segments, ensuite selon la taille d’un
segment dans une table scalable

7.4.4.1 Variation du Nombre de Segments

Nous avons expérimenté sur la table scalable PhotoObj partitionnée en deux, trois, quatre
et cinq segments respectivement. La requéte (Q3) effectue le compte de tuples (COUNT)
sur I’image PhotoObj contenant un, deux, trois, quatre puis cinq segments. Chaque
segment a une capacité de 30k tuples. La Figure 7-8 montre la représentation graphique
de cette expérience. La courbe nommée « SQL Server Centr. » montre (1) le cas d’une
table PhotoObj centralisée. La courbe nommée « SQL Server Distr. » refléte (2) la
réorganisation manuelle de PhotoObj. Quand aux deux autres courbes, elles
correspondent a I’exécution de (Q3) sur SD-SQL Server.

Nous pouvons voir que le traitement sur SD-SQL Server est toujours proche a celui sur
SQL Server. Notre overhead de traitement de requétes est d’environ 5%. Nous pouvons
voir aussi qu’avec les mémes conditions d’utilisation, SD-SQL Server accélére
I’exécution de la requéte (Q3) d’environ 30%. Pour la table la plus volumineuse, le temps

- 144 -

Mesures de Performances

est d’environ 100 msec. Cette accélération est réalisée en désactivant 1I’option lazy schema
validation. Si cette option est activée, le temps baisse a 220 msec. Il est ainsi amélioré
d’environ 50%. Ce facteur caractérise toutes les autres capacités utilisées. Tous ces
résultats prouvent 1’utilit¢ immédiate de notre systéme.

Notons plus loin qu’en théorie, le temps d’exécution sur SD-SQL Server reste constant et
proche de celui d’une requéte a un segment de 30 k tuples. Il est de 93 msec dans notre
cas. Le résultat semble indiquer que le traitement paralléle d’une fonction d’agrégation
par SQL Server. Ceci augmente la supériorit¢ de SD-SQL Server pour le méme
utilisateur.

1 seg 2 seg 3seg 4 seg 5 seg
0.093 0.156 0.220 0.250 0.326
0.106 0.164 0.226 0.256 0.343
0.093 0.203 0.283 0.356 0.436
0.016 0.076 0.123 0.203 0.220

Table 7-7 : Résultats numériques de Pexécution de la requéte (Q3)

—e— SQL Server distribué —=s— SD-SQL Server
SQL Server centralisé SD-SQL Server LSV

0.5 ~
0.45
0.4
0.35 4
0.3
0.25 4
0.2
0.15 4

Temps d'exécution (sec)

0.05 +

1 2 3 4 5
Nombre de segments

Figure 7-7 : Comparaison des temps d’exécution de (Q3)
sur SQL Server et SD-SQL Server

7.4.4.2 Variation de la Taille d’un Segment

Afin de mieux confirmer nos résultats dans la comparaison entre SD-SQL Server et SQL
Server, nous avons réalisé 1’expérience suivante. Nous avons exécuté la requéte (Q3) sur
une image PhotoObj contenant un seul segment. Nous avons ensuite réalisé une série
d’expérimentations en variant la taille b du segment de la table scalable PhotoObj. Les

-145 -

Mesures de Performances

différentes tailles que nous avons utilis¢ sont 5= 1000, 4000, 8000, 16000, 32000, 64000,
96000, 128000 et 164000 tuples.

La Table 6-1 et la Figure 7-8 montrent respectivement les résultats numériques et la
représentation graphique de cette expérience. Notons que le temps d’exécution sur SD-
SQL Server et presque le méme que celui sur SQL Server. Ceci montre aussi un overhead
négligeable sur SD-SQL Server.

A partir de cette expérience, nous pouvons conclure que si nous avons un segment de
1000 tuples et 164 serveurs, SD-SQL Server pourra atteindre 1’accélération de 453/20
pour la table PhotoObj avec une taille de 164k tuples. Le premier temps dans le quotient
(453ms) représente le temps du traitement centralis¢ effectué sur SQL Server comme le
montre nos expériences. Le deuxieme temps dans le quotient (20ms) représente le temps
d’exécution de (Q3) sur PhotoObj a 1000 tuples, qui est 16 ms, en lui rajoutant le temps
déchange des messages [G89]. Nous pouvons assumer que le temps total est celui d’une
exécution parallele et idéale de la requéte (Q3).

Capacité d’un Segment PhotoObj (tuples)
temps
d’exécution | 1000 | 4000 | 8000 |16000 (32000 {64000 |96000| 128000 |164000
sur :
SQL Server | 13 16 33 46 80 173 | 266 343 436
Sb-SQL 16 23 38 63 93 180 | 280 376 453
Server

Table 7-8 : Résultats Numériques de 'exécution de la requéte (Q3)

‘—0— SQL Server —— SD-SQL Server

2
£ 1000 5
b 800~
E 100 A 5 3
= 6 g5 v46
g 10 - 6
E
3 1 ‘ ‘ ‘ ‘
&

Q \ Q Q Q \ \

\ \ \ \ \ \ \ \ \

A I S S SRS

Number of tuples

Figure 7-8 : Comparaison des temps d’exécution de (Q3)
sur SQL Server et SD-SQL Server

- 146 -

Mesures de Performances

7.5 Conclusion

Tout au long du présent chapitre, nous avons présenté¢ et discuté les mesures de
performances que nous avons mené pour valider I’architecture du systeme SD-SQL
Server que nous avons proposé ainsi que les choix techniques que nous avons effectué
pour son implantation. Les résultats obtenus sont prometteurs dans le domaine, et
prouvent I’efficacité du systtme SD-SQL Server. Néanmoins, dans le but d’avoir de
meilleures performances, des améliorations peuvent &tre apportées, et c’est ce que le
chapitre suivant évoque.

-147 -

8 CONCLUSION &
PERSPECTIVES

Ce chapitre résume les principaux apports de nos travaux, et s’achéve sur diverses
perspectives ouvertes.

8.1 Conclusion

L’objectif de cette thése est la conception d’un systéme de gestion de bases de données
distribuées et scalables. Ce besoin a été ressenti ces derniéres années a la suite de
I’évolution considérable des données et ainsi de 1’apparition des problémes liés a leur
réorganisation d’une facon dynamique. En effet, les problémes de la réorganisation des
données, ou partitionnement dynamique, sont parmi les problémes les plus traités en bases
de données. Plusieurs méthodes ont été proposées pour résoudre ces problémes. Mais
I’applicabilité¢ des méthodes proposées n’est réalisée par aucun SGBD actuel ni prototype
de recherche a notre connaissance. Dans cette thése, nous avons congu et réalisé¢ un SD-
DBS qui permet la gestion des bases de données, a extension automatique en tables
distribuées et scalables.

Dans un premier lieu, nous avons présenté une étude des systemes de gestion de bases de
données paralleles en précisant leur architecture et certains aspects de leurs qualités de
services. Nous avons principalement décrit les méthodes de partitionnement de données
utilisées. Etant donné que ces méthodes sont généralement statiques, elles demandent une
intervention manuelle dés que les données montent en échelle, nous avons alors cherché a
automatiser ces méthodes. Pour cela, nous avons étudié les SDDSs. Les SDDSs apportent
plusieurs améliorations au partitionnement statique des systemes de gestion de fichiers.
Nous nous sommes alors inspirés de leurs méthodes de partitionnement afin de remédier
aux limitations du partitionnement statique dans les SGBDs étant donné que ces derniers
se basent sur des systémes de gestion de fichiers :

Nous avons utilisé une architecture basée sur les principes des SDDSs pour concevoir un
SD-DBS que nous avons appelé SD-SQL Server. Cette architecture est basée sur
I’architecture de référence dans [LRS02]. Nous avons amélioré et développé cette
architecture en introduisant des nouvelles notions : les bases de données scalables, les
vues scalables...etc. De plus de cette nouvelle architecture, nous avons aussi proposé¢ des

- 148 -

Conclusion & Perspectives

commandes pour I’accés aux données scalables du systtme SD-SQL Server. Ces
commandes constituent son interface d’application.

Nous avons décrit la structure interne des différents composants de I’architecture SD-SQL
Server ainsi que des commandes qui permettent leur gestion. La structure interne repose
sur la celle des composants du SGBD SQL Server. Nous avons aussi pris en considération
la concurrence des différentes transactions sur SD-SQL Server. Nous avons proposé¢ des
schémas de concurrence, au niveau d’isolation Read Repeatable, entre toutes les
transactions qui peuvent créer des conflits en s’exécutant simultanément.

Nous avons réalisé¢ des mesures de performance pour valider notre prototype ainsi que les
choix techniques qui ont été effectués pour son implantation. Les temps d’accés obtenus
sont stables, presque indépendants de la taille d’une table scalable, et proches de la
scalabilité¢ idéale. Les temps d’exécution des commandes SD-SQL Server qui sont
obtenus sont proches de ceux des requétes SQL correspondantes exécutées directement
sur SQL Server. Ces résultats montrent 1’efficacité de notre SD-DBS et confirment les
prévisions théoriques.

Notre travail a fait 1’objet de quatre publications : [LS04, SLS06, LSS06, LSS06b]. 11
constitue une contribution a la création des SGBDs distribuées et scalables. L’usage des
principes des SDDSs a permis de surmonter 1’obstacle de partitionnement statique des

données. L’extension automatique des données et ses performances obtenues favorisent
I’avénement des SD-DBS.

8.2 Perspectives

Pour I’ensemble des travaux présentés pour cette thése, nous proposons les améliorations
et les extensions suivantes :

La premiére amélioration concerne 1I’implémentation de la gestion des erreurs sur SD-
SQL Server. Il serait intéressant d’avoir des instructions de gestions d’erreurs dédiées a
SD-SQL Server. Ceci évitera I’utilisation des instructions habituelles RAISERROR...pour
chaque instruction dans le code d’une procédure stockée implémentant une commande
SD-SQL Server.

Nous souhaiterions aussi prendre en considération la gestion de pannes et de la haute
disponibilité sur SD-SQL Server. En effet, ceci représente une des limitations les plus
importantes de notre systeme. Nous avons seulement défini des méta-tables pour garder
trace des localisations les plus importantes (nceuds primaires, NDB primaires). Mais nous
n’avons pas exploité ces données lors d’une éventuelle panne ou une indisponibilité d’un
composant SD-SQL Server. Nous avons pensé¢ a utiliser la technique de haute
disponibilité¢ développée pour la SDDS LH * gg, [LS00, S02].

-149 -

Conclusion & Perspectives

Nos expériences ont été réalisées sur un réseau / Gbit/s avec un nombre de noeuds tres
limité. La disponibilité des réseaux tres rapides permet d’envisager des temps de réponses
de plus en plus courts. Nous souhaiterions montrer la validit¢ de notre prototype en
menant une expérimentation a grande échelle, avec la mise en place de plus qu’une
dizaine de nceuds puisque c¢’est possible d’avoir jusqu’a 250 serveurs SQL liés dans notre
systeme.

Les principes de base que nous avons introduits et utilisés pour I’implantation de SD-SQL
Server peuvent étre utilisées pour réaliser d’autres SD-DBS a partir des autres SGBDs
(Oracle, MySQL...). Nous comptons d’ailleurs basculer vers la version SQL Server 2005
pour la version actuelle de notre prototype.

Notre travail ouvre de nouvelles possibilités pour de nombreuses applications. Plusieurs
problémes au niveau de la recherche sur les systémes distribués méritent une étude
approfondie. Il s’agit notamment de ’utilisation du systéme SD-SQL Server a partir
d’interface web.

- 150 -

BIBLIOGRAPHIE

[A01]

[AVFG+92]

[ACP+99]

[ADO1]

[ASGA+02]

[BACC+90]

[BMOO0]

[BCVI1]

[BY5]
[BM72]

[CACMO7]
[C79]
[DO1]

Aberer, K. P-Grid: A Self-organizing Access Structure for P2P Information
Systems. COOPIS, Trento, Italy, 2001.

Apers, P. M. G., Van Den Berg, C. A., Flokstra, J. P., Grefen, W. P. J., Kersten,
M. L. Wilschut, A. N. “PRISMA/DB: A Parallel Main Memory Relational
DBMS”. IEEE Transaction on Knowledge and Data Engineering, 4(6), 1992.

Atzeni, P., Ceri, Stefano, Paraboschi, S. & Torlone, R. Database Systems:
Concepts, Language and Architectures. McGraw-Hill, 1999.

Aberer, K., Despotovic, Z. Managing Trust in a Peer-2-Peer Information System.
To appear in the Proceedings of the Ninth International Conference on
Information and Knowledge Management (CIKM 2001) 2001.

Alexander, S., Szalay, Gray, J., Ani, R., Thakar, Peter, Z., Kunszt, Tanu, M.,
Raddick, J., Stoughton, C. & VandenBerg, J. The SDSS SkyServer — Public
Access to the Sloan Digital Sky Server Data, Technical Report, MSR-TR-2001-
104, February 2002.

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M.,
Hart, B., Smith, M. & Valduriez, P. Prototyping bubba, a highly parallel
database system. IEEE Knowledge and Data Engineering, March 1990.

Ben-Gan, I. & Moreau, T. Advanced Transact SQL for SQL Server 2000. Apress
Editors, 2000.

Bergsten, B., Couprie, M. & Valduriez P. Prototyping dbs3 A Shared Memory
Parallel Database System. In Fist International Conference on Parallel and
Distributed Information Systems. Décembre 1991.

C. Baru, & al. DB2 Parallel Edition. IBM Syst. Journal, 34(2), 1995, 292-322.

Bayer, R. & McCreight, E. Organization and Maintenance of large ordered
indexs. Acta Informatica, 1:173-189, 1972.

Comm. of ACM. Special Issue on high-performance Computing. October, 1997.
Comer, D. The Ubiquitous B-tree. Computing Surveys, 11(2):121-137, 1979.

Diéne, A.W. Contribution a la Gestion de Structures de Données Distribuées et

- 151 -

Bibliographie

[D01-p]

[DLO1]

[DLO0]

[D92]
[Da92]

[DG92]

[DG86]

[DGG+86]

[G02]

[FO1]

[FNPS79]

[G99]

[Gar99]

[GW97]

Scalables, Thése de doctorat, Nov. 2001, Université Paris Dauphine.
http://ceria.dauphine.fr/aly/aly.html.

Diéne, A.W. Prototype de la SDDS RP*, CERIA Lab., Université Paris
Dauphine. http://ceria.dauphine.fr/aly/aly.html.

Diéne, A.W, Litwin, W. Performance Measurements of RP*: Scalable and
Distributed Data Structure for Range Partitioning, Intl. Conf. on Information
Society in the 21st Century: Emerging Tech. And New Challenges, Japan 2000.

Diéne, A.W, Litwin, W. Implementation and Performance Measurements of the
RP* Scalable and Distributed Data Structure for Windows Multicomputers, Intl.
Workshop on Performance-Oriented Program Devpt for Distributed
Architectures, PADDA 2001.

Davis, D. Oracle’s Parallel Punch for OLTP. Datamation, 1992.
Davison, W. Parallel Index Building in Informix OnLine 6.0. ACM-SIGMOD

International Conference, 1992.

DeWitt, D. & Gray, J. Parallel Database Systems: The Future of High
Performance Database Systems, Communications of The ACM, June 1992,
Vol.35 No.6, pp.85-97.

DeWitt, D. & Gerber, R.H. Gamma, a high performance dataflow machine. In
12th International Conference on Very Large Databases, Kyoto, August 1986.

DeWitt, D., Gerber, R.H., Graefe, G., Heytens, M. L., Kumar, K. B.,
Muralikrishna, M. GAMMA - A High Performance Dataflow Database Machine.
International Conference on Very Large Data Bases, 1986.

Gray, J. & al. Data Mining of SDDS SkyServer Database. WDAS 2002, Paris,
Carleton Scientific.

Foster, 1. The Anatomy of the Grid: Enabling Scalable Virtual Organizations,
1JSA, 2001.

Fagin, R., Nivergelt, J., Pippengar, N. & Strong, H.R. Extendible Hashing — A
Fast Access Method for Dynamic Files, ACM TODS, vol.4, n° 3, septembre
1779, p. 315-344.

Gray, J. Turing Award Lecture: What Next? ACMComputer Conference, Atlanta,
Georgia, 4 May 1999.

Gardarin, G. Bases de Données. Eyrolles, ISBN 2-212-11281-5. 1 édition.
1999.

Grimshaw, A. & Wulf, W. The Legion Vision of a WorldWide Virtual Computer.

-152 -

Bibliographie

[G96]

[G94]

[Gar93]
[G93]

[G90]

[G89]

[GGO5]

[GG96]
[GV91]
[IBM87]

[ko5]

[KLR94]

[KW94]

[KTM88]

[KS86]

[K73]

[L8O]

Comm. Of ACM, January, 1997.

Gray, J. Super-Servers: Commodity Computer Clusters Pose a Software
Challenge. Microsoft, 1996.

Ghernaouti-Hélie, S. Client/Serveur les outils du Traitement Réparti Coopératif,
Editions Masson 1994.

Gardarin, G. Maitriser les Bases de Données. Eyrolles Edition 1993.

Gray, J. Super-Servers: Commodity Computer Clusters Pose a Software
Challenge. http://131.107.1.182:80/research/barc/gray/default.htm.

Graefe, G. Encapsulation of parallelism in the volcano query processing system.
In ACM SIGMOD International Conference. Atlantic City, 1990.

Gray, J. The Cost of Messages. Proceeding of Principles Of Distributed Systems,
Toronto, Canada, 1989.

Guinepain, S. & Gruenwald, L. Research Issues in Automatic Database
Clustering. ACM-SIGMOD, Mars 2005.

Gardarin, G. & Gardarin, O. Le Client-Serveur, Editions Eyrolles 1996.
Gardarin, G. & Valduriez, P. SGBD avancées. Eyrolles edition. 1991.

IBM Corporation, Introduction to IBM Direct Access Storage Devices and
Organization Methods, Student text, Manual form GC20-1649-10.

Kim, W. Modern Database Systems: the Object Model, Interoperability and
Beyond, ACM Press and Addison-Wesley, New York, 1995.

Karlson, J. S., Litwin, W. & Risch, T. LH*LH: A Scalable High Performance
Data Structure for Switched Multicomputers. In Advances in Database
Technology - EDBT'96, pages 573-591, Avignon, France, March 1996. Springer.

Kroll, B., Vidmayer, P. Distributing a Search Tree among a Growing Number of
Processors, ACM Intl. Conf. on Management of Data -SIGMOD 1994,

Kitsuregawa, M., Tanaka, H. & Moto-Oka, T. Architecture and performance of
relational algebra machine GRACE. In Proc. of the Intl. On Prallel Processing,
Chicago, 1984.

Korth, H. F. & Silberchatz, A. Database System Concepts. Mc Graw Hill Inc.,
New York, 1986.

Knuth, D. E. The Art of Computer Programming: Sorting and Searching, volume
3. Addison-Wesley Publishing Company, Reading, Massachussetts, 1973.

Litwin, W. Linear Hashing: a new tool for file and tables addressing. Reprint

-153 -

Bibliographie

[LBO5]

[LO3]

[LMS06]

[LMRS99]

[LNS96]

[LNS94]

[LNS93a]

[LNSO3b]

[LRSO02]

[LSS06a]

[LSS06b]

[LS00]

[LS04]

from VLDB-&0.

Loney. K & Bryla. B. Oracle Database 10g, DBA Handbook: Manage a Robust,
Scalable and Highly Available Oracle Database. Oracle Press. ISBN 0-07-
223145-9. 2005.

Lejeune, H. Technical Comparison of Oracle vs. SOL Server 2000: Focus on
Performance, December 2003.

Litwin, W., Mokadem, R. & Sabhri, S. Virtual Repository for eGov Life Event
Documents. 2006.

Litwin, W., Menon, J., Risch, T. & Schwarz, Th. Design Issues For Scalable
Availability LH* Schemes with Record Grouping. DIMACS Workshop on
Distributed Data and Structures, Princeton U. Carleton Scientific, (publ.), 1999.

Litwin, W., Neimat, M.-A. & Schneider, D. LH*: A Scalable Distributed Data
Structure. ACM-TODS, Dec. 1996.

Litwin, W., Neimat, M.-A. & Schneider, D. RP*: A Family of Order-preserving
Scalable Distributed Data Structures, Proceedings of the 20th VLDB Conference,
Satiago, Chili, 1994.

Litwin, W., Neimat, M.-A. & Schneider, D. Linear Hashing for Distributed Files.
ACM-SIGMOD International Conference on Management of Data, 1993.

Litwin, W., Neimat, M-A. & Schneider, D. LH*: A Scalable Distributed Data
Structure. Submitted for journal publ. Nov. 1993.

Litwin, W. & Sahri, S. Implementing SD-SQL Server: a Scalable Distributed
Database System. Intl. Workshop on Distributed Data and Structures, WDAS
2004, Lausanne, Carleton Scientific (publ.).

Litwin, W., Sahri, S. & Schwarz, Th. Scalable Command Processing in SD-SQL
Server: a Scalable Distributed Database System. 7Tth Intl. Workshop on
Distributed Data and Structures (WDAS-7) Santa Clara, CA, 2006.

Litwin, W., Sahri, S. & Schwarz, Th. S, Prototyping a Scalable Distributed
Database System SD-SQL Server. The British National Conference on
Databases, BNCOD, July 2006 (to appear).

Litwin, W., J.E. Schwarz, T. LH*RS: A High-Availability Scalable Distributed
Data Structure using Reed Solomon Codes. ACM-SIGMOD-2000 Intl. Conf. On

Management of Data.

Litwin, W. & Sahri, S. Implementing SD-SQL Server: a Scalable Distributed
Database System. Intl. Workshop on Distributed Data and Structures, WDAS
2004, Lausanne, Carleton Scientific (publ.), to app.

- 154 -

Bibliographie

[LS90]

[MOO]
[MC99]

[M93]

[NZT96]

[OV99]

[P04]
[PGK8S]

[RZLM02]

[SLS06]

[SLS05]

[S02]

[SL96]

[SMKBO1]

[TO5]

[T88]

Levy, E. & Silberschatz, A. Distributed file systems: Concepts examples. ACM
Computing Surveys, 22(4), December 1990.

Microsoft SQL Server 2000: SQL Server Books Online.

Musick, R. & Critchlow, T. Practical Lessons in supporting Large-Scale
Computational Science, ACM SIGMOD Record, December 1999.

Mohan, C. IBM’s Relational DBMS Products: Features and Technologies. ACM
SIGMOD, May 1993.

Norman, M.G., Zurek, T. & Thanisch, P. Much Ado About Shared-Nothing,
SIGMOD Record Vol 25 N°3, p.16-21.

Ozsu, T. & Valduriez, P. Principles of Distributed Database Systems, 2éme
édition, Prentice Hall, 1999.

Pillou, J.F. Le client Serveur, http://www.commentcamarche.net/cs/csintro.php3.

Patterson, D. A., Gibson, G. & Katz, R. H. A4 Case for Redundant Arrays of
Inexpensive Disks, Proc. of ACM SIGMOD Conf, pp.109-106, June 1988.

Rao, J., Zhang, C., Lohman, G. & Megiddo, N. Automating Physical Database
Design in a Parallel Database, ACM SIGMOD 2002 June 4-6, USA.

Sahri, S. Litwin, W. & T.Schwartz. Architecture and Interface of Scalable
Distributed Database System SD-SQL Server. The Intl. Ass. of Science and
Technology for Development Conf. on Databases and Applications, IASTED-
DBA 2006, to appear.

Sahri, S. Litwin, W. & T.Schwartz. SD-SQL Server: a Scalable Distributed
Database System, Rapport de Recherche, December 2005.

Schwarz, T. Generalized Reed Solomon code for erasure correction. To appear in
full in Proceedings of 4th Workshop on Distributed Data & Structures (WDAS-
2002), Carleton Scientific (Publ.), 2002.

Salzberg, B. & Lomet, D. Special Issue on Online Reorganization, Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 1996.

Stoica, 1., Morris, R., Karger, D., Kaashoek, F. & Balakrishnan, Hari. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. Proceedings of
the ACM SIGCOMM, 2001.

Tripp, K. Tables et index partitionnés dans SQL Server 2005. Janvier 2005.
SQLskills.com.

Teradata Corporation. DBC/ 1012 data base computer concepts and facilities.
Technical Report Teradata Document C02-001-05, Teradata corporation, 1988.

- 155 -

Bibliographie

[T85]

[VBWS98]

[V93]

[WBW94]

Teradata Corporation. DBC/ 1012 data base computer concepts and facilities.
Technical Report Teradata Document C10-0001-02, Release 2.0, November,
1985.

Vingralek, R., Breitbart, Y., Weikum, G. & Snowball. Scalable Storage on
Networks of Workstations with Balanced Load. Distributed and Parallel
Databases 6(2): 117-156 (1998).

Valduriez, P. Parallel Database Systems: Open Problems and New Issues. In
Distributed and Parallel Databases. Pages 137-165. Kluwer Academic Publishers,
1993.

Wingralek, R., Breitbart, Y. & Weikum, G. Distributed file organization with
scalable cost/performance. In Proc of ACM-SIGMOD, May 1994.

- 156 -

ANNEXE A :
TRAITEMENTS INTERNES
DES COMMANDES SD-SQL
SERVER

Dans cette annexe, nous présentons le code des procédures stockées qui implémentent les
commandes SD-SQL Server.

CREATE PROCEDURE sd_create_table @q varchar(5000), @size int, @key_partitioning varchar(50) AS
DECLARE@table varchar(50), @ql varchar(5000), @local varchar(50), @db varchar(50), @query
varchar(5000), @taille_table int, @view varchar (50), @trigger varchar(5000), @insert varchar(5000),
@exec_query varchar(5000),@ndb varchar (50),@type varchar(50),@db_t varchar(50), @server
varchar(50), @trigger_tab varchar(5000), @dbo varchar(50), @old_table varchar(50), @job varchar(50
—————————————— sélectionner la NDB courante -—--

select @local=@@servername, @db=db_name()

set @db_t=@Ilocal+'."+@db

set @server=@local+'."+@db

set @dbo=@Ilocal+'."+@db+'.sd"

------------ extraire le nom de la table de la requete ————

select @taille_table=len(SUBSTRING (@q , CHARINDEX(" ', @q) , 1000))

select @table=substring(@q, 1, len(@q)-@taille_table)

réecrire et exécuter le nouveau texte de la requéte -
set @ndb=(select top 1 node from sd.server)

set @gl= ‘create table SD.'+@q

set @old_table='sd.'+@table

set @view=@table

set @table="_'+@local+'_'+@table

set @exec_query='Execute ' +@ndb+'."+@db+'.dbo.sp_executesqgl N"* +@q1+

exec delll.db_1.dbo.sp_rename '"'+@old_table+'"", "'+@table+""

exec (@exec_query)

set @query='create view ' +@view+ ' as select * from ' +@local+ '." +@db+ '.sd." +@table+ "

execute (@query)

set @trigger='create trigger testing_view' +@table+ ' on '+@view+ '

instead of insert as insert into '+@view+ ' select * from inserted '

execute (@trigger)

set @type="true’

set @insert="

insert into ' +@ndb+'."+@db+'.sd.rp values ("'+@ndb+ "',"'+@local+ ", +@view+"")

insert into ' +@ndb+'."+@db+'.sd.prim values ("'+@ndb+ "',"'+@local+ ",""+@view+"")
insert into ' +@ndb+'.'"+@db+'.sd.size values (""+@Ilocal+ "',"'+@view+ ","" +cast(@size as
varchar(10))+"")

insert into ' +@ndb+'.'"+@db+'.sd.image values (""+@view+ """ +@type+ ", "'+@ndb+ ",1)"

execute (@insert)

set @trigger_tab='CREATE TRIGGER split_trigger' +@table+ * ON sd.'+@table+"
after INSERT AS EXEC msdb..sp_start_job "'+@job+"""*

exec (@trigger_tab)

Figure A-0-1: Structure interne du code de la commande sd_create_table

-157 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_alter_table @query varchar(5000),@size int AS
declare @db varchar(50), @db_rp varchar(5000), @q varchar(5000), @alter varchar(5000),@primnd
varchar(50), @sgmnd varchar(50),
@new_table varchar(50), @drop varchar (5000), @local varchar(50), @table varchar(50),
@taille_table int, @creatnd varchar(50), @queryl varchar(5000)
—————————————— sélectionner la NDB courante -—-
select @local=@@servername, @db=db_name()
——————————— extraire le nom de la table de la requete--- -
select @taille_table=len(SUBSTRING (@query , CHARINDEX(" ',@query) , 1000))
select @table=substring(@query, 1, len(@query)-@taille_table)
select @query=substring(@query, (len(@query)-@taille_table)+1, 5000)
select @primnd= (select primnd from sd.image where name=@table)
create table #creatnd (creatnd varchar(50))
set @queryl='insert into #creatnd select creatnd from '+@primnd+'."+@db+".sd.prim where tab=
"'+@table+ "
exec (@queryl)
set @creatnd=(select creatnd from #creatnd)
set @new_table="_'+@creatnd+'_'+@table
set @query="alter table sd.'+@new_table+ @query
create table #db_tab (sgmnd varchar(50))
set @db_rp="'insert into #db_tab select sgmnd from ' +@primnd+ '." +@db+ '.sd.rp where tab=
"'+@table+ """
exec(@db_rp)
if (exists (select * from #db_tab))
While (exists (select * from #db_tab))

BEGIN

set @sgmnd=(select top 1 sgmnd from #db_tab)

set @q = ' Execute ' +@sgmnd+"."+@db+'.dbo.sp_executesqgl N'"'+@query+""*

update ' +@sgmnd+'."+@db+ '.sd.size set size= "+cast(@size as varchar(10))+' where

tab= ""+@table+ "'’

exec (@q)

delete from #db_tab where sgmnd=@sgmnd
END
Else

begin

set @alter= "' Execute ' +@sgmnd+'.'+@db+'.dbo.sp_executesqgl N""+@query+""
update '+@sgmnd+'."+@db+ '.sd.size set size= '+cast(@size as varchar(10))+"
where tab= "'+@table+ "
exec (@alter)
end

Figure A-0-2 : Structure interne du code de la commande sd_alter_table

- 158 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_create_index @query varchar(5000)AS
declare @db varchar(50), @db_rp varchar(5000), @table varchar(50),@orginalsite varchar(50),@q
varchar(5000),@primnd varchar(50),
@new_table varchar(50),@local varchar(50), @taille_table int,@partl varchar(5000),@part2
varchar(5000)
—————————————— sélectionner la NDB courante -—-
select @local=@@servername, @db=db_name()
———————————— extraire le nom de la table de la requete -
select @taille_table=len(SUBSTRING (@query , CHARINDEX(" ',@query) , 1000))
select @partl=substring(@query, 1, len(@query)-@taille_table)
select @table=substring(SUBSTRING (@query, CHARINDEX('ON',@query)+3, 1000), 1,
CHARINDEX('(",SUBSTRING (@query, CHARINDEX('ON',@query)+3, 1000))-1)
select @part2=substring(SUBSTRING (@query, CHARINDEX('ON',@query)+3, 1000),
CHARINDEX('(",SUBSTRING (@query, CHARINDEX('ON',@query)+3, 1000)),1000)
select @primnd= (select primnd from sd.image where name=@table)
set @new_table="_'+@primnd+'_'+@table
set @query='create index '+@partl+' on sd.'+ @new_table+@part2
create table #db_tab (sgmnd varchar(50))
set @db_rp='insert into #db_tab select sgmnd from ' +@primnd+ '." +@db+ '.sd.rp where tab=
"'+@table+ """
exec(@db_rp)
while (exists (select * from #db_tab))
begin
set @primnd=(select top 1 sgmnd from #db_tab)
set @q = ' Execute ' +@primnd+'.'"+@db+'.dbo.sp_executesql N'""+@query+"""*
exec (@q)
delete from #db_tab where sgmnd=@primnd
end

Figure A-0-3 : Structure interne du code de la commande sd_create index

CREATE PROCEDURE sd_drop_index @index varchar(50) AS

declare @table varchar(50), @primnd varchar(50), @db varchar(50), @creatnd varchar(50), @segment
varchar(50),@query_index varchar(5000),@sgmnd varchar(50),@q varchar(5000), @db_rp
varchar(5000), @query varchar(5000)

set @db=db_name()

select @table=substring(@index, 1, len(@index)-len(SUBSTRING (@index , CHARINDEX('.", @index) ,
1000)))

select @index= substring(@index, CHARINDEX('.", @index)+1 ,1000)

sselect @primnd =(select primnd from sd.image where name=@table)

create table #creatnd (creatnd varchar(50))

set @query='insert into #creatnd select creatnd from '+@primnd+"."+@db+".sd.prim where tab=
"'+@table+ "

exec (@query)

set @creatnd=(select creatnd from #creatnd)

set @segment="_"'+@creatnd+'_'+@table

set @query_index='drop index sd.'+@segment+'." +@index

create table #db_tab (sgmnd varchar(50))

set @db_rp='insert into #db_tab select sgmnd from ' +@primnd+ '." +@db+ '.sd.rp where tab=
"'+@table+ " "

exec(@db_rp)

if (exists (select * from #db_tab))

While (exists (select * from #db_tab))

BEGIN
set @sgmnd=(select top 1 sgmnd from #db_tab)
set @q ="' Execute ' +@sgmnd+'.'+@db+'.dbo.sp_executesqgl N"'+@query_index+"" '
exec (@q)
delete from #db_tab where sgmnd=@sgmnd
end

Figure A-0-4 : Structure interne du code de la commande sd_drop_index

- 159 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE procedure sd_drop_table @table varchar(50) as
declare @site varchar(50), @db varchar(50), @query varchar(5000), @q varchar(5000),@view varchal
(50), @trigger varchar(5000), @insert varchar(5000), @db_t varchar(50), @server varchar(50)
@trigger_tab varchar(5000), @dbo varchar(50),@primnd varchar(50), @sgmnd varchar(50),@db_rq
varchar(5000),@drop_view varchar(50),@drop_table varchar(50), @new_table varchar(50), @drog
varchar (5000), @local varchar(50)
—————————————— sélectionner la NDB courante -
select @local=@@servername, @db=db_name()
set @db_t=@local+'."+@db
set @server=@local+'."+@db
set @dbo=@local+'."+@db+'.dbo’
select @primnd= (select primnd from sd.image where name=@table)
set @new_table="_'+@primnd+'_'+@table
set @drop_view='drop view '+@table+"
set @drop_table='drop table sd.'+@new_table+"*
create table #db_tab (sgmnd varchar(50))
set @db_rp='insert into #db_tab select sgmnd from ' +@primnd+ '." +@db+ ‘.sd.rp where tabH
""+@table+ "'
exec(@db_rp)
if (exists (select * from #db_tab))
While (exists (select * from #db_tab))
BEGIN
set @sgmnd=(select top 1 sgmnd from #db_tab)
set @query =
‘delete from '+@sgmnd+ '." +@db+'.sd.rp where tab= ""'+@table+""
delete from '+@local+ "." +@db+'.sd.image where name= "'+@table+""
delete from '+@sgmnd+'." +@db+'.sd.prim where tab=""+@table+""
delete from '+@sgmnd+'." +@db+'.sd.size where tab=""+@table+""
Execute ' +@local+ '." +@db+'.dbo.sp_executesql N'""+@drop_view+""
Execute ' +@sgmnd+ '.' +@db+'.dbo.sp_executesqgl N"'+@drop_table+"*
exec (@query)
delete from #db_tab where sgmnd=@sgmnd
END
else begin
set @drop=" delete from '+@local+ '." +@db+'.sd.image where name= ""'+@table+""
delete from '+@sgmnd+'." +@db+'.sd.prim where tab=""'+@table+""
delete from '+@sgmnd+'." +@db+'.sd.size where tab=""+@table+""
Execute ' +@local+ '." +@db+'.dbo.sp_executesql N""'+@drop_view+""
Execute ' +@sgmnd+ '." +@db+'.dbo.sp_executesql N"'+@drop_table+""
exec (@drop)

end

Figure A-0-5 : Structure interne du code de la commande sd_drop_table

- 160 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_create_image @primary_node varchar(50), @table varchar(50) AS

declare @db varchar(50), @secondary varchar(50), @creatnd varchar(50), @query varchar(5000), @d
varchar(5000),@view varchar(5000), @txt varchar(5000),@primary varchar(5000), @exeq
varchar(5000),

@type varchar(50),@size int, @query_size varchar(5000)

set @db=db_name()

create table #creatnd (creatnd varchar(50))

create table #size (size int)

set @query='insert into #creatnd select creatnd from '+@primary_node+'."+@db+".sd.prim where tab=
"'+@table+ """

exec (@query)

set @creatnd=(select creatnd from #creatnd)

set @secondary="sd.'+@creatnd+'_'+@table

set @query_size ='insert into #size select size from '+@creatnd+'."+@db+'.sd.Image where tab—
""+@table+ "'

exec (@query_size)

set @size=(select size from #size)

create table #t (txt varchar(5000))

set @q = 'Execute ' +@primary_node+'."+@db+".dbo.help_text_image "'+@table+"" *

insert into #t exec (@Qq)

set @txt=(select top 1 txt from #t)

select @primary=substring(@txt, CHARINDEX(‘as',@txt)+3 , 5000)

set @view='create view ' +@secondary+" as '+@primary

set @type="'Secondary’

set @exec=
'Execute dbo.sp_executesgl N +@view+ '
insert into SD.Image values (""'+@table+ "',""+@type+ ', "'+@primary_node+ ' 1)

exec (@exec)

Figure A-0-6 : Structure interne du code de la commande sd_create_image

CREATE PROCEDURE sd_drop_image @image varchar(50) AS
declare @drop varchar(5000), @secondary varchar(50)
set @secondary=substring(@image, CHARINDEX('_', @image)+1, 100)
set @drop="' drop view sd.'+@image+ '

delete from from SD.Image where tab=""+@secondary+"" '
exec (@dron)

Figure A-0-7 : Structure interne du code de la commande sd_drop_image

- 161 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_select @query varchar(5000) AS

DECLARE @view varchar (20), @t numeric (10,5), @table varchar (50),@q varchar(5000),
@sd_db varchar(50), @db varchar(50), @local_serv varchar(50), @nb_image int,
@patindex int, @miquery varchar(5000), @intl int, @int2 int, @view_query varchar(1000),
@query_no_where varchar(5000)

SELECT @query_no_where=substring(@query, 1,len(@query)-len(substring(@query,
patindex('%where%',@query),100)))

SELECT @patindex=CHARINDEX('from’, @query)

select @intl=len(@query)

select @int2=len(SUBSTRING (@query , @patindex , 100))-4

select "clause from" =SUBSTRING (@query , @patindex , 100)
select @miquery=SUBSTRING(@query , 1 , @intl-@int2)+'%s%s"
EXEC master.dbo.xp_sscanf @query, @miquery,@view_query OUTPUT

while len(@view_query)=0
BEGIN
SELECT @patindex=CHARINDEX(',", @view_query)
if @patindex=0
begin
exec analyse_obj_from @view_query
break
end
ELSE
BEGIN
select @view=SUBSTRING(@view_query , 1 , @patindex-1)
select @view_query=substring(@view_query, @patindex+1,len(@view_query)-len(@view))
exec analyse_obj_from @view
END

fin traitement******xtkxix

END
set @query='select '+@query
exec (@query)

Figure A-0-8 : Structure interne du code de la commande sd_select

-162 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_update @query varchar(5000) AS

DECLARE @view varchar (20), @t numeric (10,5), @table varchar (50),@q varchar(5000),@Iocal
varchar(50),@sd_db varchar(50), @db varchar(50), @local_serv varchar(50), @nb_image
int,@patindex int, @miquery varchar(5000), @intl int, @int2 int,

@view_query varchar(1000),@query_no_update varchar(5000)

SELECT @query_no_update=substring(@query, patindex('%select%',@query),len(@query)-
len(substring(@query, patindex('%select%’,@query),100)))

————————————— sélectionner la NDB courante--
select @local=@@servername, @db=db_name()

———————————— extraire le nom de la table de la requete -

select @table=substring(@query, 1, len(@query)-len(SUBSTRING (@query , CHARINDEX(" *,@query)
, 1000)))

exec analyse_obj_from @table

if @query_no_update is not null

begin

SELECT @patindex=CHARINDEX(‘'from', @query_no_update)

select @intl=len(@query_no_update)

select @int2=len(SUBSTRING (@query_no_update , @patindex , 100))-4

select "clause from" =SUBSTRING (@query_no_update , @patindex , 100)
select @miquery=SUBSTRING(@query_no_update , 1 , @intl-@int2)+'%s%s’
EXEC master.dbo.xp_sscanf @query_no_update, @miquery,@view_query OUTPUT

while len(@view_query)=>0
BEGIN
SELECT @patindex=CHARINDEX(',", @view_query)
if @patindex=0
begin
exec analyse_obj_from @view_query
break
end
ELSE
BEGIN
select @view=SUBSTRING(@view_query , 1 , @patindex-1)
select @view_query=substring(@view_query, @patindex+1,len(@view_query)-len(@view))
exec analyse_obj_from @view
END
END
end
exec (@query)

Figure A-0-9 : Structure interne du code de la commande sd_update

-163 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_insert @query varchar(5000) AS

DECLARE @view varchar (20), @t numeric (10,5), @table varchar (50),@q varchar(5000),@sd_db
varchar(50), @db varchar(50), @local_serv varchar(50), @nb_image int,@patindex int, @miquery
varchar(5000), @intl int, @int2 int, @view_query varchar(1000),@query_no_insert varchar(5000)

SELECT @query_no_insert=substring(@query, patindex(‘%select%’',@query),len(@query)-len(substring
@query, patindex('%select%’',@query),100)))

if @query_no_insert is not null

begin

SELECT @patindex=CHARINDEX('from’, @query_no_insert)

select @intl=len(@query_no_insert)

select @int2=len(SUBSTRING (@query_no_insert , @patindex , 100))-4

select @miquery=SUBSTRING(@query_no_insert , 1 , @intl-@int2)+'%s%os’

EXEC master.dbo.xp_sscanf @query_no_insert, @miquery,@view_query OUTPUT

while len(@view_query)=0
BEGIN
SELECT @patindex=CHARINDEX(',", @view_query)
if @patindex=0
begin
exec analyse_obj_from @view_query
break
end
ELSE
BEGIN
select @view=SUBSTRING(@view_query , 1 , @patindex-1)
select @view_query=substring(@view_query, @patindex+1,len(@view_query)-len(@view))
exec analyse_obj_from @view
END

fin traitement******xkdkrix

END

end

set @query='insert '+@query
exec (@query)

Figure A-0-10 : Structure interne du code de la commande sd_insert

CREATE PROCEDURE sd_create_node @node varchar(50), @type varchar(50) AS

insert into delll.metabase.sd.nodes (node,type) values (@node,@type)

Figure A-0-11 : Structure interne du code de 1a commande sd_create_node

- 164 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_create_scalable_database @db varchar(50),@node varchar(50), @type
varchar(50), @extent int AS

declare @query varchar(5000),@data varchar(5000), @node_extent varchar(50)

set @query='exec '+@node+'.db_1.dbo.create_sdb ''+@db+"", "'+@type+"" "'

select @query

set @data='insert into delll.metabase.sd.sdb values ("'+@db+ "',"'+@node+ "',"'+@type+"") '
exec (@data)

while (@extent >1)

begin

set @extent=@extent-1

select @node_extent=node from sd.nodes where type=@type and node!=@node

exec sd_create_node_database @db,@node_extent, @type

end

Figure A-0-12 : Structure interne du code de la commande sd_create_scalable_database

CREATE PROCEDURE sd_drop_node_database @sdb varchar(50), @node varchar(50) AS
declare @query varchar(5000),@data varchar(50),@sdb_node varchar(50), @type varchar(50),
@query_type varchar(5000), @query_image varchar(5000), @image varchar(50),@q varchar(5000),
@query_node varchar(5000), @new_node varchar(50), @insert varchar(5000)
select @sdb_node = (select node from sd.sdb where sdb_name=@sdb)
create table #type (NDBtype varchar(50))
set @query_type ="' insert into #type select NDBtype from ‘+@sdb_node+'."+@sdb+'.sd.ndb where
node= ""+@node+ "'
exec (@query_type)
set @type=(select NDBtype from #type)
if (@type='client")
begin
create table #image (name varchar(50), type varchar(50), primnd varchar(50),size int)
set @query_image ="' insert into #image select * from '+@node+'."+@sdb+'.sd.image '
exec (@query_image)
if (exists (select * from #image))
While (exists (select * from #image))
BEGIN
set @image=(select top 1 name from #image)
set @q = ' Execute '+@node+'."+@sdb+ '.dbo.sd_drop_table "'+@image+"" !
exec (@Qq)
delete from #image where name=@image
end
end
else if (@type="server")
begin
create table #node (node varchar(50))
set @query_node =" insert into #node select node from delll.metabase.sd.nodes where node not in
(select node from '+@sdb_node+ '." +@sdb+ ‘.sd.ndb) *
exec (@query_node)
set @new_node=(select node from #node)
if (@new_node is not null)
begin
exec sd_create_node_database @sdb, @new_node, ‘server’
set @insert ='insert into '+@new_node+'." +@sdb+'.sd.prim select * from ' +@node+"."
+@sdb+'.sd.prim
insert into '+@new_node+'." +@sdb+'.sd.size select * from ' +@node+'." +@sdb+".sd.size’
end end
set @query="'exec '+@node+'.db_1.dbo.drop_ndb "'+@sdb+"" *
exec (@auery)

Figure A-0-13 : Structure interne du code de la commande sd_drop_node_database

- 165 -

Annexe A : Traitements Internes des Commandes SD-SQL Server

CREATE PROCEDURE sd_drop_scalable_database @sdb varchar(50) AS
declare @sdb_node varchar(50),@query varchar(5000),@ndb varchar(50),@q varchar(5000)
select @sdb_node=(select node from delll.metabase.sd.sdb where sdb_name=@sdb)

create table #ndb (node varchar(50))
set @query='insert into #ndb select node from '+@sdb_node+'." +@sdb+'.sd.ndb’
exec (@query)
if (exists (select * from #ndb))
While (exists (select * from #ndb))
BEGIN
set @ndb=(select top 1 node from #ndb)
set @q ="'
exec '+@ndb+'.db_1.dbo.drop_ndb "'+@sdb+""
delete from '+@sdb_node+'.'+@sdb+'.sd.ndb where node= ""+@ndb+ "
exec (@q)
delete from #ndb where node=@ndb
END
delete from delll.metabase.sd.sdb where sdb_name=@sdb

Figure A-0-14 : Structure interne du code de la commande sd_drop_scalable database

- 166 -

GLOSSAIRE

B

BD Client — Une NDB client gére seulement I’interface application/utilisateur.

BD Pair — Une NDB de type pair unifie les capacités d’une NDB de type serveur et une NDB de
type client.

BD Serveur — Une BD(NDB) de type serveur sauvegarde les segments des tables scalables sant
avoir leur interface application/utilisateur.

Base de Données Scalable — Une base de données scalable (SDB) est une collection dynamique
de bases de noeuds SD-SQL Server distribuées. SD-SQL Server peut ajouter ou supprimer des
bases de nceuds d’une SDB d’une fagon dynamique.

Base de Nceud — Une base de nceud (NDB) est une base de données enregistrée comme une base
de données d’'une SDB. Les NDBs partagent le méme nom que leur SDB. Une NDB peut étre
une base de données de type client, serveur ou pair. Chaque NDB du systéme SD-SQL Server
est présentée par une base de données du SGBD SQL Server. Chaque base de données détient
un gestionnaire spécifique & SD-SQL Server.

C

Capacité d’un Segment — La capacité d’un segment est le nombre maximum de ses tuples. Si
une insertion fait dépasser a un segment sa capacité, le segment deviendra surchargé et
éclatera. Tous les segmens d’une table scalable ontla méme capacité.

Commande SD-SQL Server — Une commande SD-SQL Server est une commande de ’interface
application/utilisateur SD-SQL Server. Les commandes SD-SQL Server permettent de gérer
les tables scalables, les NDBs, les SDBs et les nceuds. Les commandes sur les tables scalables
généralisent les commandes SQL usuelles. Elles son typiquement nommées sur leur initales
(exp. SD_SELECT au lieu de SELECT).

E

Eclatement — Un éclatement est déclenché lorsque un segment excede sa capacité. Il crée un ou
plusieurs nouveaux segments pour y transférer les tuples, excédant le segment qui éclate, tout
en laissant tous les segments a moitié pleins. L’éclatement est effectué selon un
partitionnement par intervalle. Il est lancé par un déclencheur AFTER disponible au niveau de
chaque segment. Ce déclencheur vérifie la surcharge d’un segment lors de toute insertion dans
celui-la. Chaque éclatement fait appel a 1’éclateur (splitter).

G

Gestionnaire SD-SQL Server — Un gestionnaire SD-SQL Server est une implémentation
prototype du concept d’un gestionnaire SD-DBS. Un gestionnaire SD-SQL Server est
opérationnellement une collection de procédures stockées sur chaque NDB.

- 167 -

Glossaire

I

Image Binding — L’image binding détermine dans une requéte SQL chaque image sur laquelle
dépend le nom d’une table ou d’une vue. Elle concerne la clause FROM des expressions
SELECT

Image Primaire — Une image primaire est la définition du partitionnement d’une table scalable.
Elle est crée sur la NDB client qui crée la table scalable. Elle est présentée comme un vue
partitionnée distribuée. Elle définit ['union de tous les segments scalables qui composent une
table scalable. Si un segment d’une table scalable n’est pas défini dans I’image primaire,
I’image sera alors ajustée.

Image Secondaire — Une image secondaire est une vue partitionnée distribuée qui définit le
partitionnement actuel d’une table scalable. Elle est crée sur un NDB client différent de celui
qui a crée la table scalable.

Interface d’Application — Une interface d’application manipule les tables scalables et leurs vues
par 'intermédiaire des commandes SD-SQL Server essentiellement.

M

Métabase — La méta-base (MDB) est une base de données spécifique a SD-SQL Server. Elle se
trouve sur le nceud primaire du SD-SQL Server. Elle enregistre les métadonnées sur tous les
nceuds et toutes les SDBs qui constituent la configuration courante de SD-SQL Server. Elle
contient aussi le code SD-SQL Server sous forme de procédures stockées.

N

Noeud Client — Un nceud client est un nceud qui détient des bases de données de type client.

Noeud libre — Pour une SDB, un nceud libre est un neeud qui ne détient aucune NDB de la SDB.
Un nceud libre peut utiliser une NDB d’une autre SDB.

Noeud Pair — Un nceud pair est un nceud qui joue le role d’un neeud serveur et d’un nceud client
en méme temps. Ainsi, le nceud pair peut contenir des bases de données de type client et de
type serveur.

Noeud Primaire — Un noeud primaire est le premier noeud crée dans la configuration d’un SD-
DBS. 1II est crée sur SD-SQL Server en exécutant le script install. 11 détient la métabase
(MDB) pour enregistrer les méta-données sur les autres nceuds (secondaire) du SD-DBS.

Nceud SD-SQL Server — Un nceud SD-SQL Server est un nceud SQL Server 1ié (SQL linked
server). Il représente I’implémentation d’un nceud SD-DBS spécifique au SGBD SQL Server.

Nceud Serveur — Un neeud serveur est un nceud qui détient des bases de données de type serveur.
R

Requéte Scalable — Une requéte scalable est une requéte qui peut invoquer une table scalable a
travers son image ou a travers une vue scalable de son image (indirectement). Elle s’exécute
correctement pour n’importe quelle modification dynamique du nombre de segments de la
table scalable invoquée. Une requéte scalable est formulée sur I’interface usager/application
SD-SQL Server. Elle utilise des commandes SQL dédi¢es au SGBD SQL Server. Une requéte
scalable peut adresser aussi des tables statiques (crée sur SQL Server).

- 168 -

Glossaire

S

Script Install — Un script d’installation est un script SQL Server qui permet, lors de son
exécution, I’installation du nceud primaire de SD-SQL Server.

SD-SQL Server — SD-SQL Server est un SD-DBS désignant les données dans des bases de
données SQL Server. Il gére les bases de données scalables et les tables scalables sur une
collection de nceuds SD-SQL Server.

Segment — Un segment est une table qui représente un fragment d’une table scalable. Les
segments partitionnent leur table scalable selon un partitionnement par intervalle. Un segment
peut étre primaire ou secondaire. Un segment primaire est crée sur une NDB client au moment
de la création de sa table scalable. Un segment secondaire résulte de I’éclatement d’un autre
segment d’une table scalable.

Splitter — Le splitter est un processus asynchorne qui est lancé par le déclencheur d’un
éclatement. Il réalise I’éclatement d’une fagcon asynchrone avec l’insertion qui cause la
surcharge.

Systéme de Gestion de Bases de Données Distribuées et Scalable — Un Systéme de gestion de
bases de données distribuées et scalables (SD-DBS) applique les principes des structures de
données distribuées et scalables (SDDSs) sur les systémes de bases de données. Il gére les
bases de données scalables avec des tables scalables qui montent en échelle a travers les
nceuds SD-DBS.

T

Table Scalable — Une table scalable T est formellement un tuple (T, S) ou T est I’image primaire
de la table scalable T et S est ’ensemble de ses segments distribués sur des NDBs. Une table
scalable monte en échelle suite a 1’éclatement de ses segments surchargés.

Table Statique — Une table statique est une table qui est unconnue par SD-SQL Server. Toute
table relationnelle, dans les SGBDs actuels, est une table statique pour SD-SQL Server, et
donc ce n’est pas une table scalable.

A\

Vue Scalable — Une vue scalable est une vue qui peut dépendre d’une table scalable directement
ou a travers une vue. Une vue scalable peut adresser une table scalable a travers le nom de son
image primaire ou a travers une de ses images secondaires.

Vue Statique — Une vue statique est une vue qui n’est pas scalable, donc ¢’est une vue inconnue
pour SD-SQL Server.

- 169 -

