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   0. Abstract- Standard Galois Lattices are very useful tools in data mining. They allow us to structure data sets, 
by extracting concepts and rules to deduce concepts from other concepts. They concern binary data arrays, 
called contexts. Several algorithms are well known and used to determine the Galois lattice GL(C) which is 
associated to a given context C, when the size of C is not too large. Today, we need to treat contexts which are 
large and not necessarily binary. Since it is difficult to determine GL(C) for large contexts C on one only 
computer, we propose to partition C depending on its rows or columns, to build on different computers Galois 
lattices associated to sub-contexts, and then to determine the global lattice from these lattices.  Moreover, since it 
is not much more difficult to deal with general contexts than with standard contexts, we shall work on general 
contexts and Galois lattices. 
Our paper is presented as follows: 
- Terminology of Galois lattices; 
- Algebraic tools to share the context C into contexts C1, C2, depending on rows or columns; 
- Algorithms to determine GL(C) from GL (C1), GL (C2). 
- Computer implementation. 
- Conclusion 
- References. 
- Appendixes: Examples. 
 
1. General Galois Lattices. 

1.1: By definition, a lattice is a mathematical structure F = < F, ≤, ∨, ∧, 0F , 1F >, where F is a partially 
ordered set by the relationship ≤ , with a largest element  1F , a smallest element 0F , and ∨, ∧ are internal 
composition laws of  sup (or supremum), and  inf (or infimum). 
In many situations F is the Cartesian product of several lattices Fj = < Fj , ≤j ,∨j, ∧j, 0Fj , 1Fj >,  

for  j∈ J={1,..., n}. We write this F = F1 x...x Fj x...x Fn =∏ .  
=

n

j
jF

1

The relationship ≤ on F is defined by  z= (z1 ,..., zj , ..., zn ) ≤ t= (t1, ..., tj , ..., tn )  iff  zj ≤j tj  for each j  of  J .  
And we put z ∨ t = (..., zj ∨j tj ,....),  z ∧ t= (..., zj ∧j tj , .... ),  OF  = (...., OFj , ... ), 1F = (..., 1Fj , ...) . 
(For standard Galois lattices, we have for each j :  Fj = {0, 1 }, 0 < 1,  0∨j 0 = 0, 0 ∨j 1 = 1∨j 0 = 1∨j 1 = 1,  
0 ∧j 0 = 0∧j 1 = 1 ∧j 0 = 0, 1 ∧j 1 = 1. So OF = (...., 0,...), and  1F = (..., 1,... ) . ) 

1.2  : Contexts and descriptions:  
Let m be a finite positive integer, I = {1,..., m } = [1.. m ], and  F any lattice.  Let d: I → F be any mapping from 
I to F. By definition, the array with rows d(i), i = 1, ..., m , is a context  C. It gives for each individual, or object i 
of I, its description   d(i) = (d1(i),..., dj(i),..., dn(i)) ∈ F = F1 x ..  x Fn  ,  according to the   attributes or properties  
j ∈  J.  (In standard case, dj(i)=1  means that  i  has property  j, and  dj(i) = 0  means that  i  has not the property  
j . ) So, in general case, C is an m x n array of elements dj(i) of  F,  and for each individual  i and each property  
j,  dj(i) is the value of this property for  i . 

1.3  : Galois connexion:  
Let C = <I, F, d > be a context. We define E = 2I = P (I) and f: E → F as follows: for each subset X of I, f(X) = 

∧ { d(i) :  i  ∈ X }  if  X≠∅   ,  and   f(∅ ) =  1F .  
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So, f (X) is the infimum of the descriptions d (i) of elements i of X, and in standard case f (X) is an element  

z=(...zj ,...) of F, and  zj =∧ j {dj(i) : i  ∈ X   } = 1, iff   dj(i) = 1, for each  i of  X. This means that zj= 1 iff j is a 
property which belongs to all i in X. And for this reason, we call f (X) the intention of X. 
Remark: for each i of I, we have f({i}) = d(i), and  f  is decreasing  ( if X ⊂ X’ ⊂ I  then  f(X’)  ≤ f(X) ) . 
Now, we define   g: F → E by   g(z) = {i ∈ I : z ≤ d(i) } , for each  z  of  F . 
We say that g (z) is the extension of z. (In standard case, g (z) is the set of all individuals who have all properties 
of z , zj = 1, . ). 
We can see that g is also a decreasing mapping. 
The ordered pair ( f, g ) is called a Galois connexion . From it we define two other mappings: 
h : P(I) → P(I),  by  h = g °  f , and   k =  F → F  by   k = f ° g . 
So, for each subset X of I, we have   h(X) = g( f(X)) = {i ∈ I :  f(X) ≤ d(i) }, and for each z  of F , we have   k(z) 

= f( g( z)) =  ∧ { d(i) :  i  ∈g(z) }. 

We can see that h and k are closure operators. This means that each of them is an increasing, extensive, and 
idempotent operator. More explicitly, for each X, X’ of E, and z , z’ of F : 
X ⊂  X’  implies  that  h(X) ⊂  h( X’ ),   z ≤ z’  implies that   k(z ) ≤ k(z’) ; 
X ⊂ h(X) ,  z ≤ k(z) ; 
h( h( X)) = h(X), k( k( z)) = k(z) . 
Any subset X of I such that X = h (X) is called a I - closed set, and each z of  F  such that  z = k(z)  is called a  F- 
closed element . 
Let us define   H = {X ⊂ I: h(X) = X} the set of  all closed  subsets of  I , and  K = {z ∈ F :  z = k(z) }, the set of 
all closed elements of  F . 
One can proof that there is a bijection between H and K. The ordered pairs  (X, z) ∈ H x K buch that  
 f(X)= z, and therefore such that  g(z) = X, are called the concepts associated  with the context C. 
The set of all such concepts constitutes the Galois lattice GL(C) associated with this context C. (The order 
relationship on GL(C) is defined by  (X, z) ≤  (X , z’)  iff  X ⊂ X’ and  z’ ≤ z . ) 
 

2.  Row-sharing of the array C.  
We suppose that we have an algorithm to determine the Galois lattice GL(C) associated with a general context 
C, when the array C is not to large. Now we suppose that C is too large to be solved with one only computer. We 
partition the array associated with C = < I, F, d > into two sub-arrays. 
                              1          2          3 
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Let us write I = [1...m ] = [1... m1 ]  ∪  [m1+1... m ] = I1 ∪ I2 . And let us define the two contexts  
 C1= <I1 , F, d >, and  C2 = < I2 , F, d > . (We have shared the array associated with C into two arrays of m1 x n 
and m2 x n cells respectively, m = m1 + m2.) 
Let us call   T1 = GL(C1 ) and  T2 = GL(C2 )  the Galois lattices associated with those contexts.  
We want to build T = GL(C) from T1 and T2. We use the following propositions: 
 
Proposition 2.1 : For  each  ordered pair  (X, z)  of  GL(C) , let us define  X1 = X ∩ I1 and   X2 = X ∩ I2   . 
Then we have   X = X1 ∪ X2 , and  ( X1 , f1(X1 ))  belongs to T1 and  (X2 , f2 (X2 ))  belongs to T2.  
Therefore to determine the (X, z) that belong to T, we have necessarily X = X1 ∪ X2, and  (X1, f1 (X1)) ∈T1 and 
(X2, f2 (X2)) ∈ T2. 
 
Proposition 2.2 :  If (X1, z1) ∈T1  and  (X2, z2) ∈T2 ,   let  X = X1 ∪ X2  and  z = z1∧ z2 .  
Thus we have  (X, z) ∈ T if and only if   g1(z) = g1 (z1) = X1 , and  g2(z) = g2(z2) = X2 . 
(by definition,  gj(z) = {i ∈ Ij : z ≤ d(i) }, and  fj(X)= f(X),  for  j =1, 2 .) 
 
3.Column-sharing of C. 
Here we examine the situation of splitting the array C  (m x n) into two subsets C1 (m x n1) and   C2 (m x n2) , 
with n= n1+ n2 . Let us write J = [1..n]= [1..n1] ∪ [n1+1..n ] = J1 ∪ J2 .  
From   F = (F1 x...x Fn1 ) x (Fn1+1 x ... x Fn ), we define  F1 = F1 x... x Fn1 ,  F2 = Fn1+1 x...x Fn , and for each   
z = (z1,..., zn1, zn1+1,..., zn ) of  F, we write z1= (z1,...,zn1 ) ∈ F1 , and  z2 = (zn1+1,..., zn ) ∈ F2 . 
In such a way that we have F = F1 x F2 , z = (z1 , z2 ) , and  that   z ≤ t  iff  (z1 ≤ t1  and  z2 ≤ t2 ) . 
For each i of I , we define  d1(i) = (d1(i),..., dn1(i)) ∈ F1 ,  and  d2(i) = (dn1+1(i),..., dn(i)) ∈ F2 .   
So, we can therefore define the two contexts   C1 = < I, F1 , d1 >  and  C2 = < I, F2 , d2 > from context C. 
Now, we can establish the two following properties: 
Proposition 3.1 : 
For each  (X, z) of T = GL (C), let us write  z = (z1, z2 ) , and let us define   
X1 = g1(z1) =  {i ∈ I :  z1 ≤ d1(i) }, X2 = g2(z2) =  {i ∈ I :  z2 ≤ d2(i) }. Then we have X = X1 ∩ X2 , and (X1, z1 ) ∈ 
T1 = GL(C1), and  (X2, z2) ∈ T2 = GL(C2) . 
 
This proposition shows that in order to obtain the elements z witch are F- closed, we need to find those z  = (z1 , 
z2) with  z1  F1 - closed  and  z2  F2 - closed .  
Conversely, we have: 
Proposition 3.2 :  
Let  ( X1, z1) ∈ T1 and  (X2 , z2 ) ∈ T2. Let us define z = (z1 , z2 ), and  X = X1 ∩ X2 . 
Then we have  (X, z) ∈ T = GL(C), iff  f1(X) = z1  and   f2(X) = z2 . 

(By definition   f1(X)  = ∧ {d1(i) :  i  ∈ X }, and   f2(X) = ∧ { d2(i) :  i  ∈ X }.) 

 
4. Parallel implementation of row-sharing of context C. 
We suppose that we have three workstations S, S1 and S2.  
Each Sj ,  j=1, 2, can communicate with  S ; 
For j =1, 2, Sj contains context Cj and has determined Galois lattice Tj = GL (Cj). 
 We suppose that   Tj = {(tXj(ij ), tzj(ij )) }, with  ij = 1,..., nfj  (nf : number of closed pairs). 
Now station S is able to determine T= GL(C) ={(tX(k), tz(k))}, k=1,..., nf , as follows. 
k :=0 ; 
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For i1:= 1 to nf1 do 
begin 
 S1 sends X1= tX1(i1), and z1 = tz1(i1) to  S ; 
 For i2 := 1 to nf2 do 

begin 
 S2 sends   X2 = tX2(i2), and  z2 = tz2(i2) to  S ; 
 S calculates   X = X1 ∪ X2 and z = z1 ∧ z2 ; 
 S sends z to S1, and asks it to calculate U1= g1(z)= {i ∈ I1 : z ≤ d(i) }; 
 S sends z to S2, and asks it to calculate U2 = g2(z)= {i ∈ I2 : z ≤ d(i) } ; 
 S1 returns U1 to S; 
 S2 returns U2 to S; 
 On station S: If  (X1= U1) and (X2= U2) then S does: 
 k :=k+1 ; tX(k) :=X ; tz(k) :=z ; 
end ;  
nf :=k ; 

end ; 
At the end of the session, lattice T = GL(C) is located on station S. 
 

5.  Implementation of column- sharing of context C. 
In order to implement a column-sharing of context C, a quite similar algorithm to the precedent one is obtained, 
using the same configuration of three stations S, S1, S2.  
 Each Sj ,  j=1, 2, can communicate with  S ; 
For j=1, 2, Sj contains context Cj and has determined Galois lattice Tj = GL (Cj). 
 We suppose that   Tj = {(tXj(ij ), tzj(ij )) }, with ij = 1,..., nfj . 
Now, station S is able to determine T= GL(C) ={(tX(k), tz(k))}, k=1,..., nf , as follows. 
k :=0 ; 
For i1: =1 to nf1 do 
begin 
 S1 sends X1= tX1(i1), and z1 = tz1(i1) to  S ; 
 For i2: =1 to nf2 do 

begin 
 S2 sends X2 = tX2(i2), and z2 = tz2(i2) to  S ; 
 S calculates   X = X1 ∩ X2 and z = (z1 , z2) ; 

 S sends X to S1, and asks it to calculate t1= f1(X)= ∧ { d1(i) :  i  ∈ X }; 

 S sends X to S2, and asks it to calculate t2 = f2(X)=  ∧ { d2(i) :  i  ∈ X }; 

 S1 returns t1 to S; 
 S2 returns t2 to S; 
 On station S: If  (z1= t1) and (z2= t2) then S does: 
 k :=k+1 ; tX(k) :=X ; tz(k) :=z ; 
end ;  
nf :=k ; 

end ; 
At the end of the session, lattice T= GL(C) is located on station S. 
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6.  Conclusion 

The aim of this paper was to propose a way to parallelise large contexts of general lattices.   
Supposing the existence of an algorithm to compute lattices in the case of general contexts, we have 
implemented more general algorithms. 
The idea of sharing contexts into two subsets could be easily extended to multipartitions and to many 
workstations; one could imagine building different architectures for networks of stations to manage very 
complex situations. 
This feature is now experimented on SDDS systems which have been developed at CERIA Center, University 
Paris IX- Dauphine. 
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8. Appendice 1:  An example of horizontal product of lattices 
 
Let us consider the context C which is given by the following array, where   
m = 7 , n = 3,  I = [1...7 ],  b1 = 2 , b2 = 3, b3 = 3 . (b = 1F ) 
 

  j →
i ↓      

1 2 3 

1    1    0    2 
2    2    1    0 
3    0    3    1 
4    1    1    1 
5    0    1    3 
6    0    0    2 
7    2    0    0 

 
The first 4 rows constitute context C1, and the 3 last ones constitute context C2. 
We shall determine T1 = GL (C1), T2 = GL (C2), T = GL(C), and then show that T is egal to the horizontal 
product of T1 and T2. 

Graph of lattice T1 = GL (C1) 
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We apply an algorithm (here Bordat’s algorithm) to context C1 to build lattice T1 = GL (C1). We obtain: 
Total number of closed pairs  (X, z) of lattice T1 =GL (C1) =12. 
 
pair(1)= X={}, z=(2,3,3)/ pair(2)= X={1}, z=(1,0,2)/ pair(3)= X={2}, z=(2,1,0),  
pair(4)= X={3}, z=(0,3,1)/ pair(5)= X={4}, z=(1,1,1)/pair(6)= X={1,4}, z=(1,0,1),  
pair(7)= X={2,4}, z=(1,1,0)/ pair(8)= X={3,4}, z=(0,1,1)/ pair(9)= X={1,2,4}, z=(1,0,0),  
pair(10)= X={1,3,4}, z=(0,0,1)/ pair(11)= X={2,3,4}, z=(0,1,0)/ pair(12)= X={1,2,3,4}, z=(0,0,0). 
 

Graph of lattice T2 = GL (C2) 
 
 
Now we apply the same algorithm to context C2 to build lattice T2 = GL (C2). We obtain: 
Total number of closed pairs of T2 =5 
 
pair (1)= X={}, z=(2,3,3) /pair(2)= X={5}, z=(0,1,3) /pair(3)= X={6}, z=(2,0,0),  
pair (4)= X={5,6}, z=(0,0,2) / pair(5)= X={5, 6, 7}, z=(0,0,0). 
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Graph of lattice T = GL(C) 
 
 
Applying BORDAT’s algorithm to the full context   C, we obtain   
Total number of closed pairs  (X, z) of T = GL(C) =15 
 
pair(1)= X={}, z=(2,3,3) /pair(2)= X={1}, z=(1,0,2) /pair(3)= X={2}, z=(2,1,0),  
pair (4)= X={3}, z=(0,3,1) /pair(5)= X={4}, z=(1,1,1)/ pair(6)= X={5,}, z=(0,1,3),  
pair(7)= X={1,4}, z=(1,0,1) /pair(8)= X={1,5,6}, z=(0,0,2)/pair(9)= X={2,4}, z=(1,1,0),  
pair(10)= X={2,7}, z=(2,0,0)/pair(11)= X={3,4,5}, z=(0,1,1)/pair(12)= X={1,2,4,7}, z=(1,0,0),  
pair(13)= X={1,3,4,5,6}, z=(0,0,1)/pair(14)= X={2,3,4,5}, z=(0,1,0)/pair(15)= X={1,2,3,4,5,6,7}, z=(0,0,0). 
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X1↓    |   X2→           {}        {5}      {5,6}      {5,6,7}        {7} 

z1  ↓   |   z2→        (2,3,3)      (0,1,3)     (0,0,2)      (0,0,0)     (2,0,0) 

      

       {}         {}        {5}       {5,6}      {5,6,7}        {7} 
    (2,3,3)      (2,3,3)      (0,1,3)      (0,0,2)      (0,0,0)      (2,0,0) 

      

      {1}          {1}       {1,5}      {1,5,6}      {1,5,6,7}        {1,7} 
    (1,0,2)       (1,0,2)      (0,0,2)       (0,0,2)        (0,0,0)      (1,0,0) 

      

     {1,2,4}      {1,2,4}    {1,2,4,5}    {1,2,4,5,6}   {1,2,4,5,6,7}     {2,4,7} 
     (1,0,0)      (1,0,0)      (0,0,0)       (0,0,0)       (0 ,0,0)     (1,0,0) 

      

    {1,2,3,4}     {1,2,3,4}    {1,2,3,4,5}  {1,2,3,4,5,6}  {1,2,3,4,5,6,7}    {1,2,3,4,7} 
      (0,0,0)       (0,0,0)       (0,0,0)       (0,0,0)       (0,0,0)       (0,0,0) 

      

     {1,3,4}     {1,3,4}     {1,3,4,5}    {1,3,4,5,6}   {1,3,4,5,6,7}    {1,3,4,7} 
      (0,0,1)      (0,0,1)       (0,0,1)        (0,0,1)         (0,0,0)       (0,0,0) 

      

      {1,4}       {1,4}      {1,4,5}     {1,4,5,6}    {1,4,5,6,7}     {1,3,4,7} 
     (1,0,1)      (1,0,1)       (0,0,1)       (0,0,2)        (0,0,0)       (0,0,0) 

      

        {2}         {2}        {2,5}       {2,5,6}      {2,5,6,7}       {2,7} 
      (2,1,0)      (2,1,0)       (0,1,0)       (0,0,0)         (0,0,0)      (2,0,0) 

      

      {2,3,4}       {2,3,4}     {2,3,4,5}    {2,3,4,5,6}   {2,3,4,5,6,7}     {2,3,4,7} 
      (0,1,0)        (0,1,0)       (0,1,0)        (0,0,0)        (0,0,0)       (0,0,0) 

      

       {2,4}        {2,4}      {2,4,5}     {2,4,5,6}     {2,4,5,6,7}      {2,4,7} 
     (0,1,0)       (1,1,0)       (0,1 ,0)       (0,0,0)         (0,0,0)       (1,0,0) 

      

       {3}         {3}        {3,5}      {3,5,6}      {3,5,6,7}         {3,7} 
     (0,3,1)       (0,3,1)       (0,1,1)      (0,0,1)        (0,0,0)        (0,0,0) 

      

       {3,4}         {3,4}       {3,4,5}      {3,4,5,6}    {3,4,5,6,7}        {3,4,7} 
      (0,1,1)        (0,1,1)        (0,1,1)        (0,0,1)        (0,0,0)        (0,0,0) 

      

        {4}         {4}        {4,5}      {4,5,6}     {4,5,6,7}         {4,7} 
      (1,1,1)       (1,1,1)       (0,1,1)       (0,0,1)       (0,0,0)        (1,0,0) 

 
T = GL(C) is the horizontal product of lattices T1 = GL (C1) and T2 = GL (C2) 
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The first column of the array contains the closed pairs  (X1, z1) of T1, and the first row contains the closed pairs 
of T2. 
The cell at the intersection of row i and column j corresponds to the pairs  (Xi , zi ) of  T1 and  (Xj , zj ) of  T2. 
When it gives a closed pair of T, this box is drawn with a thick line. 
Here we find 15 closed pairs for the horizontal product, and they are effectively all the pairs of T, as we can see 
it. 
                                           (X2 , z2 ) 
                   ↓ 
               (X1 , z1 ) →  X = X1 ∪ X2  , z = z1 ∧ z2 . 
 
9. Appendice 2:  An example of vertical product of lattices 
 

Graph of the Galois T3 lattice which is associated to the first 2 columns of C 
 
Total number of closed pairs=8 
 
Pair(1) : X={}, z =(2,3) / pair(2) : X={2}, z = (2,1) / pair(3) : X ={3}, z = (0,3), 
Pair(4) : X = {2,4}, z = (1,1) / pair(5) : X= {2,7}, z =(2,0) / pair(6) : X= {2,3,4,5}, z=(0,1), 
pair(7) : X = {1,2,4,7}, z=(1,0) / pair(8) : X ={1,2 ?3,4,5,6,7}, z=(0,0). 
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Graph of the Galois G4 lattice which is associated to the last column of  C 

 
 
Total number of closed pairs = 4. 
 
Pair(1) : X = {5}, z=(3) / pair(2) : X= {1,5,6}, z=(2)  
Pair(3) : X= {1,3,4,5,6}, z=(1) / pair(4) : X ={1,2 ,3,4,5,6,7}, z= (0). 
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X1↓     X2→ {5} {1,5,6} {1,3,4,5,6} [1..7] 

Z1↓      z2→ (3) (2) (1) (0) 

     

{} {} {} {} {} 
(2,3) (2,3,3) (2,3,2) (2,3,1) (2,3,0) 

     

{2} {} {} {} {2} 
(2,1) (2,1,3) (2,1,2) (2,1,1) (2,1,0) 

     

{3} {} {} {3} {3} 
(0,3) (0,3,3) (0,3,2) (0,3,1) (0,3,0) 

     

{2,4} {} {} {4} {2,4} 
(1,1) (1,1,3) (1,1,2) (1,1,1) (1,1,0) 

     

{2 ,7} {} {} {} {2,7} 
(2,0) (2,0,3) (2,0,2) (2,0,1) (2,0,0) 

     

{2,3,4,5} {5} {5} {3,4,5} {2,3,4,5} 
(0,1) (0,1,3) (0,1,2) (0,1,1) (0,1,0) 

     

{1,2,4,7} {} {1} {1,4} {1,2,4,7} 
(1,0) (1,0,3) (1,0,2) (1,0,1) (1,0,0) 

     

[1..7] {5} {1,5,6} {1,3,4,5,6} [1..7] 
(0,0) (0,0,3) (0,0,2) (0,0,1) (0,0,0) 

 
T = GL(C) is the vertical product of lattices T3 = GL (C3) and T4 = GL (C4) 

 
The first column of the array contains the closed pairs  ( X1 , z1 ) of  T3 , and the first row contains the closed 
pairs of  T4 . 
The cell at the intersection of row i and column j corresponds to the pairs  (Xi , zi ) of  T3 and  (Xj , zj ) of  T4. 
When it gives a closed pair of T, this box is drawn with a thick line. 
Here we find 15 closed pairs for the horizontal product, and they are effectively all the pairs of T, as we can see 
it. 
                                           (X2 , z2 ) 
                   ↓ 
               (X1 , z1 ) →  X = X1 ∩ X2  , z = (z1 , z2 ) . 
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	Graph of the Galois T3 lattice which is associated to the first 2 columns of C
	Graph of the Galois G4 lattice which is associated to the last column of  C

