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Abstract 
     Known parallel DBMS offer at present only static partitioning 
schemes. Adding a storage node is a cumbersome operation that 
typically requires the manual data redistribution. We present an 
architecture termed AMOS-SDDS for a share-nothing 
multicomputer. We have coupled a high-performance main-memory 
DBMS AMOS-II and a manager of Scalable Distributed Data 
Structures (SDDS) into a scalable distributed system. SDDS provides 
the scalable data partitioning in distributed RAM, supporting parallel 
scans with function shipping. AMOS-SDDS couples both systems 
using the AMOS-II foreign function interface. Its scalability abolishes 
the cumbersome storage limits of a single site RAM DBMS 
technology. Its distributed RAM query processing and scalable data 
partitioning is an improvement over the current parallel DBMSs 
technology. We validate AMOS-SDDS architecture by experiments 
with distributed nested loop join queries over a file scaling up to 
300.000 tuples. It includes performance study of speed-up and scale-up 
characteristics. The results encourage the use of SDDS for high-
performance database systems. 
Key words: Multicomputer, scalability, distributed data 
structures, RAM database systems. 
1 Introduction 
     Collections of popular PCs and WSs connected through 
typical 10/100 Mb/s networks became a standard. The 
concept of (network) multicomputer emerged to designate such 
configurations. A multicomputer offers potentially storage 
and processing capabilities rivaling a supercomputer at a 
fraction of the cost. Research on multicomputers is popular.   
     Scalable Distributed Data Structures (SDDSs) are data 
structures specifically for multicomputers [10]. They aim at 
new storage and processing capabilities. An SDDS is 
partitioned over some server nodes. Applications 
manipulate data from client nodes. The SDDS scales to new 
site through splits of those that fill up. Splits are transparent 
for the applications. The address computations do not 
involve any centralized directory. Data are typically stored in 
the distributed main memory (DRAM). An SDDS may 
easily handle many GByte files, accessible in a fraction of 
the disk access time. All SDDSs support the key search; 
some offer the range search or multikey search. All provide 
also non-key parallel scans. For the latter capability, the 
client may ship a function with the selection predicate. The 
servers return the selected records in parallel.  
     Several SDDSs are known [10]. In particular, the LH* 
schemes provide the scalable distributed linear hash 
partitioning, [8], [10]. Likewise, the RP* schemes provide 
the scalable distributed range partitioning, [4], [11], [19].  
Several prototypes have implemented selected SDDSs. The 

SDDS prototype that we design at CERIA is the most 
extensive such system, to the best of our knowledge. It runs 
on Wintel multicomputers and is intended for any SDDS. 
At present, it offers several variants of LH* and RP* 
schemes. Some are the high-availability schemes that 
tolerate multiple server failures [9]. 
     High-performance database management uses basically 
two technologies. One is the RAM database, e.g., of the 
well-known Object-Relational DBMS AMOS-II [18]. A 
RAM database offers best access performance. It however 
of limited size and scalability, bound by a single node RAM 
capacity, usually at best two GBytes at present. AMOS II 
therefore is configurable as a distributed multi-database 
system where each node also may wrap external data 
sources [17].  In the experiments reported here we use only 
the single database AMOS-II configuration, coupled with an 
SDDS as an external data repository. 
     Another technology is the parallel database, typically on a 
share-nothing multicomputer or supercomputer (also often 
called now switched multicomputer). This technology allows 
for large sizes. It is however at present disk based; hence the 
database access is typically much slower than to a RAM 
database. The scalability is also limited. Known DBMS offer 
at present only static partitioning schemes at a few dozens 
of sites at most. Adding a storage node is then a 
cumbersome operation that typically requires manual data 
redistribution. See the manuals of DB2 DBMS offering the 
hash partitioning or, e.g., of Compaq Non-Stop SQL for the 
range partitioning.  
     Scalability and high-performance, including the access to 
an external data repository, are major goals for a database, 
[2], [3], [5], [6], [7], [12]. To experiment with the merge of all 
these technologies, we have coupled single-site AMOS-II 
and the RP* SDDS into a scalable distributed system. 
AMOS-II is for the SDDS an application among others at 
the client site. It provides its object-relational declarative 
language AMOSQL to the applications. The SDDS serves 
to AMOS-II as an external scalable RAM data storage and 
access manager. Data partitioning and its dynamic evolution 
are hidden from the users of AMOS-II. The database may 
reach sizes much larger than for a single site AMOS-II.   
     We have termed the prototype AMOS-SDDS. The 
coupling architecture on the client site should make AMOS-
II and the SDDS manager interoperating efficiently. This 
requires the efficient function shipping by the SDDS client. 
The SDDS server should in turn be made capable to 
evaluate the received functions. No SDDS prototype 
experimented with such capabilities yet.    



     We based our solution on the new capability of an 
object-relational DBMS, with respect to a relational DBMS, 
usually termed foreign (external) functions (routines). A foreign 
function extends the basic capabilities of the DBMS and is 
accessible to the queries. AMOS-II was among first systems 
providing a foreign functions interface.  It remains the only 
RAM DBMS with this capability, to the best of our 
knowledge. 
     In AMOS-SDDS, the client AMOS-II interfaces the 
SDDS services, i.e., of the SDDS client, through foreign 
functions. The SDDS client ships out the functions 
produced for the servers. To evaluate those, each SDDS 
server uses at its site also an AMOS-II, termed server 
AMOS-II. That one also uses the foreign function interface. 
It requests in this way the services of the SDDS server (i) to 
get the local data and (ii) to ship back the filtered results to 
the client.     
     Below, we present the architecture of AMOS-SDDS. We 
describe the processing of the queries and the coupling 
technology between the SDDS clients and servers and the 
AMOSes. We show experimental performance measures, 
using as the benchmark queries with selections, projections, 
joins and aggregate functions. It is well known that the 
efficient processing of join queries over distributed data is 
especially hard, [1], [15]. The experiments refine design 
issues that do not seem decidable through the theoretical 
analysis alone.  They complete earlier results in [13]. Details 
not included in the limited space below are in [14]. 
     The results prove the validity of our design. AMOS-
SDDS appears highly efficient. It can handle volumes of 
data beyond a single AMOS-II capability and it may process 
the data that AMOS-II could still handle faster. These 
results should help the future technology of the scalable 
high-performance DBMSs. 
     Section 2 recalls principles of an SDDS. Section 3 
presents AMOS-II. Section 4 introduces the AMOS-SDDS 
architecture. Section 5 discusses the performance study. 
Section 6 concludes the paper.  
2 Scalable Distributed Data Structures  
     An SDDS is a file of records constituted each from a key 
and some non-key data.  Records are stored at SDDS 
servers. The server’s storage space is called bucket. Buckets 
and servers are numbered 0,1… The SDDS is initiated as 
bucket 0. Inserts that overflow the file trigger bucket splits. 
Each splits appends a new bucket that receives about half of 
records from the split bucket.   
     An application searches, inserts and updates SDDS 
records from the SDDS client site. To address the servers, 
each client has the image of the actual file.  The image maps 
each key to a bucket address, typically through a linear hash 
function or an index. The image may also contain a 
multicast address shared by all the buckets. This address is 
especially for the queries to non-key data. Such queries 
translate typically to parallel scans.  
     Initially, the image contains bucket 0 only. A current 
image may be inaccurate, as SDDS splits are not posted 
synchronously to the clients. A client may send a key search 

or an insert etc. to an incorrect server. Each server checks 
through its checking algorithm whether it is the correct one 
for the received query. If not, it forwards the query to 
another server determined though the forwarding algorithm.  
The correct server that finally receives the query sends back 
to the client the Image Adjustment Message (IAM). The IAM 
allows the client to adjust its image so that at least the 
addressing error that triggered the IAM does not get 
repeated. The IAMs make images to follow the evolution of 
the file state, less or more adequately. 
     The SDDS client that sent out a parallel scan uses some 
termination protocol to ensure that it has collected all the 
replies. Notice that the client may not know in advance all 
the servers that get the query. A probabilistic termination 
assumes no reply message after a time-out. A reasonable 
time-out depends on the SDDS size, server and network 
speeds etc. No choice can nevertheless guarantee the 
reception of all the replies. A deterministic termination 
protocol is necessary for this purpose. Such a protocol is 
specific to each SDDS.   
     For AMOS-SDDS prototyping, we use the RP* scheme 
for scalable distributed range partitioning. Like in a B-tree, 
records in an RP* file are lexicographically ordered 
according to their keys. RP* supports efficiently the range 
queries. Each bucket has its range defined in its header by 
two values λ and Λ called the minimal key and the maximum 
key. A bucket may contain key c iff λ < c ≤ Λ. Bucket 0 has 
the initial range of (-∞, + ∞). It splits into two buckets 
when the number of records to store exceeds the bucket 
capacity of b >> 1 records. Bucket 1 is then appended and 
receives the higher half of the bucket 0. This process 
iterates for every bucket that overflows when the file scales. 
At any split, if c denotes the corresponding median key, 
after the split the range (λ,Λ] of split bucket decreases to (λ, 
c ], while new bucket gets range (c, Λ]. This process creates 
and maintains the range partitioning.  
3 AMOS-II DBMS  
      AMOS-II is a distributed RAM multi-database system 
where one can choose between setting up wrappers for 
external data sources or storing data locally in the RAM 
databases. For this experiment, we only use the RAM 
storage manager and OO query processor of AMOS-II, i.e., 
the single site AMOS-II configuration [16], [18]. AMOS-II 
offers a declarative query language AMOSQL that can be 
embedded into C, Java, and Lisp.  AMOSQL uses the 
object-relational paradigm where data are objects whose 
values are functions. A relational table typically correspond 
to an object whose OID is the key and attributes are 
function values. An external program interfaces AMOS-II 
using the call-level functions in two ways:  
• The callin interface. Especially, the a_execute function 
dynamically executes an AMOSQL query.  
• The callout interface. AMOS-II calls in this way the 
foreign functions  (routines). The a_emit function allows the 
external program to pass the results (tuples) back to AMOS-
II for further query processing or storage. 



     Foreign functions through the callout interface extend the 
manipulation capabilities of AMOSQL for specific user 
needs. One can develop these functions in C, Java, or Lisp.     
4 AMOS-SDDS Coupling Architecture 
     We refer to the coupled AMOS-II and SDDS client as 
AMOS-SDDS client. Likewise, an SDDS server coupled with 
server AMOS-II becomes the AMOS-SDDS server.  Figure 1 
presents the overall AMOS-SDDS coupling architecture.    
Figure 2 shows the query processing steps. 
     SDDS clients and servers constitute for AMOS-SDDS 
clients and servers a scalable distributed communication 
platform. These handle all the messaging and data 
exchanges between the sites. The SDDS servers constitute 
the scalable distributed data storage. The user or application 
calls AMOS-SDDS at the client site. An AMOS-SDDS 
query can be an SDDS query requesting some records, e.g. 
an RP* range search. SDDS client processes such queries 
directly. Alternatively, the AMOS-SDDS query can be an 
AMOSQL query. The user specifies a query interactively. 
The application uses the callin interface through the a_execute 
function. These queries go to the client AMOS-II. A query 
may address local data cached on client AMOS-II or 
external data in an SDDS file seen then as some AMOS-II 
data.  A record basically corresponds to one tuple whose 
OID is the RP* record key. The function values constitute 
the other attributes stored as non-key fields in some internal 
format.   
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 Figure 1. AMOS-SDDS Overall Architecture 
     The SDDS file is addressed through foreign functions 
and the callout interface. The user is aware that some data to 
address are external to local AMOS-II. The query 
formulation does not depend, however, on their actual 
distribution and scalability. Those are transparent to 
AMOS-SDDS user. 
     A ship function is a foreign function to external data, an 
SDDS file specifically. It ships some function (query and/or 
parameters) to servers.  This is an SDDS query with, 
perhaps, an AMOSQL query within. The SDDS client 
expedites any such query. The server uses the AMOSQL 
query, if present, to locally filter the data. One invocation of 
a ship function at the client may loop over several function 
shipping’s to the servers and returns of partial results to the 
client. 
     The client sends out an AMOS-SDDS function with an 
AMOS-II query through a procedure termed Send-Amos and 

that with an SDDS query through Send-SDDS,  Figure 2. 
They communicate with the server through different 
communication ports. The messages basically use unicast or 
multicast UDP messaging. An AMOS-SDDS server that 
receives an SDDS query processes it by the SDDS server as 
usual. Upon receiving an AMOSQL function in contrast, 
the server locally calls-in the server AMOS-II. The server 
AMOS-II internally calls-out the SDDS server again, 
perhaps multiple times, for the local bucket scan and record 
delivery. It uses for this purpose again specifically designed 
server foreign functions. The server AMOS-II filters the 
records. It returns those that satisfy the query to the SDDS 
server for the return to the client. The result is assembled in 
an AMOS-II scan, which can contain several tuples. The 
SDDS server copies with some reformatting the results in 
scan into its communication buffers. It then sends the 
buffers to the SDDS client using a TCP connection.   
     The SDDS client assembles the records received from 
the servers. It performs the deterministic termination 
protocols to detect the end of the data shipping. It also 
extracts the values in the records. These are pipelined back 
to client AMOS-II using the a_emit function. The pipelining 
occurs simultaneously to the reception processing. Client 
AMOS-II performs eventually post processing and makes the 
selected data available to the application.   
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 Figure 2. AMOS-SDDS Query Processing 

     As it appears, the AMOS-SDDS clients and servers use 
SDDS clients and servers as scalable distributed 
communication platform.  The SDDS servers constitute 
also the scalable distributed data storage. Both roles require 
AMOS-SDDS client to decompose the AMOSQL query 
into subqueries suitable for the scalable distributed 
processing. This includes especially the efficient data 
communication and parallel use of the servers. At the client, 
the subqueries are basically managed by the ship functions. 
There are typically many ways to decompose a query in this 
way.  Likewise, there are many ways to set up the execution 
of a subquery at the AMOS-SDDS servers. Finally, there are 
numerous choices for the communication. All these choices 
constitute the core issues for the AMOS-SDDS design. 
They especially concern the ship functions, the server 
foreign functions, and its overall call-in algorithmic. These 
are complex issues. We discuss below those we have faced 
for the foreign functions implementing the benchmark 
query. 



5 Performance analysis  
5.1 Rationale 
     To review some design choices, first, at the 
communication level, one should decide whether to pipeline 
records between the sites as soon as produced, or to buffer 
them to send several in a single message. The latter issue 
opens that of best buffer sizes. Both issues, but especially 
the former, often open also that of choice between UDP 
and TCP/IP messaging. Next, the record format for the 
tuples communication should be chosen. Especially, one 
should decide whether to use variable length fields.  
     Furthermore, if the servers differ by their CPU speeds, 
the bucket sizes should also differ for the load balancing. If 
the query contains a distributed join, one has to choose a 
strategy for its evaluation.  A distributed nested loop join 
subquery may ship at once several (how many?) values of 
the join attribute for the bucket scan. It may, or may not, be 
effective to sort the values to send out at the client. One 
trades here the halving of the server scan time against the 
additional sort time at the client.  Also, one may use either 
the deterministic or the probabilistic termination for the 
scans. For the latter, one should optimize the timeout.   
     At the server side, one should architect the AMOS-II 
subquery processing. It generally divides between the server 
AMOS-II and the AMOS-SDDS server, especially within 
the foreign functions. Many choices exist in particular for 
distributed joins. The comparison between the tuples gotten 
from the client and those local to the server for a distributed 
nested loop evaluation, may be done on the one hand 
entirely by the foreign function. Another strategy is to 
import all the tuples received and stored locally into server 
AMOS-II and then perform the join by this system.  This 
strategy implies additional importation cost, but may be 
more efficient anyhow, since AMOS-II is optimized for join 
processing. The importation allows also to dynamically 
creating an index on the join attribute. The index look-up 
has the potential speed up the computation with respect to 
the nested loop 
     It did not appear generally that the discussed and other 
related design choices could be made on the theoretical 
basis only. Furthermore, it did not seem possible to 
determine in that way the overall efficiency of AMOS-
SDDS system. This concerns especially the scalability 
analysis. Both AMOS-II and SDDS are highly complex 
software systems. The coupling into AMOS-SDDS 
obviously adds-on on that. In particular, there does not 
seem to be any easy theoretical way to measure the 
efficiency of the call-in and call-out processing. The 
experimental performance analysis appears a must.  
     Probably best approach to the experimental performance 
analysis is to use some complex benchmark data sets and 
queries. While many are well known, it does not seem any 
benchmark exist yet for our purpose. We have designed 
therefore a suitable benchmark on our own. The goal was to 
realize reasonably complex typical database operations. We 
have designed the queries with a quite selective join 
described below.  We have measured the system 

performance using our benchmark under various 
conditions. 
5.2 Benchmark data set and queries 
     The benchmark data were tuples in table Person (ssn, 
name, city). The ssn values are consecutive integers from 1 
to 300,000. The name and city are random character strings 
of variable length. We have populated the table with 20,000 
to 300,000 tuples, depending on the experiment. For the 
performance measures of AMOS-II alone, we have created 
the table entirely within this system. For the experiments 
with AMOS-SDDS, it was set up as an RP* file at one or 
more servers. The ssn value was used as the partitioning 
key. The record size was then 25 bytes on the average.  
     The benchmark queries basically requested couples of 
persons in the same city. For the partitioned RP* file, 
records of such persons were likely to be at different 
buckets, as the distribution of the records according to the 
city or name was random. There were fifty different cities 
generated so that the join selectivity, i.e., the ratio of the 
number of selected tuples to the size of the Cartesian 
product, was about 1.6 %.   
     On one hand, we have formulated and run our query, 
termed for this purpose Query 1, using AMOS-II alone with 
all the data. Its AMOSQL formulation was:  
select ssn, ssn1 
from integer ssn, integer ssn1 character name, character 
name1 where person(ssn)=<name, city> and 
person(ssn1)=<name1, city> and ssn<ssn1; 
     The join was evaluated using the nested loop or an index 
on city. For AMOS-SDDS, the benchmark query with 
foreign functions, termed Query 2, was formulated as follow:  
select ssn, ssn1 
from integer ssn, integer ssn1, character buffer 
where sdds_fullextent()=buffer and   
f_ship(buffer)=<ssn, ssn1>; 
     Experiments with the execution strategies of Query 2 
evaluated various design issues outlined above. The join 
calculus generally used the distributed nested loop. Details 
of the algorithmic and conditions of the execution, varied 
with the experiments.  
     First experiments used a query processing strategy called 
E-Strategy. The name recalls that we constructed the join 
tuples on the servers externally to AMOS-II, entirely within 
the foreign functions. It appeared that E-Strategy required a 
quite skillful programming. We have therefore experimented 
also with an alternative implementation design of the 
benchmark query, we call below I-Strategy. This one imports 
the bucket content and each buffer when it comes into the 
server AMOS-II. The latter performs its own query 
evaluation. 
     I-Strategy is potentially simpler to implement and more 
extensible than E-Strategy. It allows reusing join capabilities 
of AMOS-II, instead of reprogramming them in the foreign 
functions. Especially, it easily allows for index lookup joins. 
The local indexes can be built at each server during the 
importation process using standard AMOS-II capabilities. 



The basic drawback of I-Strategy with respect to E-Strategy 
is of course the additional importation cost.   

We have reported in [13], the basic comparative 
experimental analysis of both strategies. The results for join 
queries showed that I-Strategy on 5 servers is 6 times faster 
than E-strategy for the nested loop, and 9 times faster when 
the index is built. Such ratios clearly pointed to the I-
strategy as the basic one for the benchmark queries.   

In what follows, we report on further experiments with 
the I-strategy. Details avoided because of space limitations, 
including more on E-strategy, are in [14]. We recall only that 
E-strategy, although worse for joins, appeared in turn a 
winner for queries computing solely the aggregate functions. 
The ratio reached almost 19 times for Count. The reason is 
the time spent by I-strategy on the importation. The 
evaluation through external functions remain thus highly 
advantageous for some queries.  
5.3 Experiments platform 
     We used at the multicomputer platform consisting of six 
Pentium III 700MHz with 256 MB of RAM running 
Windows 2000 on a 100Mbit/s Ethernet network.  One site 
was used as client and the five other as servers.  
     Below we first present experiments with AMOS-II 
alone. I-Strategy follows, with its implementation details. 
We evaluate it first on a 20,000-tuple file, distributed over 1 
to 5 servers. The favorable result makes us to scale to a 
100,000-tuple file. Then, we scale the basic 20,000-tuple file 
over more AMOS-SDDS servers, up to 15. Last we study 
the scale-up characteristics of AMOS-SDDS on a file that 
scales up to 300,000 tuples. 
5.3.1 Experiments with AMOS-II 
     AMOS-II at first executed the join in Query 1, using the 
nested loop. Next the index on the join attribute was 
created. Query 1 was executed again. This made AMOS-II 
to lookup the index for the join. The result size of the join 
query is 3,990,070 tuples. The resulting performance was as 
follows:  

 Elapsed time(s) Time per tuple (ms) 
Nested-loop  263 13.15 
Index lookup 45 2.25 

Table 1. Elapsed time of Query 1 for the 20,000 record file 
     Next, we have scaled the file with 100,000 records. 
There were fifty different cities generated. The result of the 
join query was now 99,951,670 tuples. Execution times were 
now: 

 Elapsed time(s) Time per tuple (ms) 
Nested-loop  6,557 65.57 
Index lookup 1,181 11.81 
Table 2. Elapsed time of Query 1 for the 100,000 record file 

     The speed of the index join, almost seven times faster 
here than the nested loop join, matches the theory. 
5.3.2 I-Strategy 
5.3.2.1 Foreign Functions  
     The foreign functions on client and servers were 
redesigned for I-Strategy with respect to those for E-

strategy. Query 2 was formulated as before, except for new 
foreign function at the client Sdds_fullextent2(): 
select ssn, ssn1 
from integer ssn, integer ssn1, character buffer 
where sdds_fullextent2()=buffer and  f_ship 
(buffer)=<ssn, ssn1>; 
    Sdds_fullextent2() reads all the tuples of Person into an 
unsorted buffer and of 2,000 records. That buffer size 
appeared experimentally optimal for I-Strategy, and not 
exceeding the maximum length of an UDP message. Sorting 
did not appear useful neither for the bucket importation 
speed, although potentially it could requests all the tuples of 
Person. The records successively received, are repacked 
into buffers.    
     At each AMOS-SDDS server, when it receives the query 
and the first buffer, it invokes once a new function 
Load_bucket(). That one imports the local RP* bucket 
into the server AMOS-II internal table named also Person, 
(a stored function more precisely). The foreign function 
Import_tuples() is then invoked for each incoming buffer 
to import it into AMOS-II table Person_Temp. The 
importation may create the index on the join attribute on 
Person. These are local indexes at each server. The foreign 
function AllSameCity2() computes then the join between 
both tables, avoiding the duplicates:  

Function AllSameCity2 ()-> integer ssn, integer ssn2  as 
select ssn, ssn2 from character name, character name2, 
character city, integer ssn, integer ssn2                         
where person(ssn) = <name, city> and 
person_temp(ssn2)=<name2, city> and ssn<ssn2; 
     Once this join is computed, the AMOS-SDDS server 
sends the partial results to the client. It also calls the internal 
AMOS-II function Clear_function() to empty the content 
of Person_Temp in one call. This avoids costly erasure of 
the tuples one by one. AMOS-SDDS is then ready for next 
buffer from the client. After, the last, Clear_function() 
empties the internal table Person.  
     To evaluate the transmission time of the tuples produced 
by Query 2 from the servers to the client, we have created 
on the servers, the foreign function count_AllSameCity() 
that sends only the count of the result at each server instead 
of the whole tuples. Count_AllSameCity() is defined in 
AMOSQL as follow: 

Function count_AllSameCity()-> integer size  
as select count( select ssn, ssn2 from character name, 
character name2, character city, integer ssn, integer ssn2 
where person(ssn) = <name, city> and 
person_temp(ssn2)=<name2, city> and ssn<ssn2) ; 
5.3.2.2 Experiments with I-Strategy  
     Table 3 and Table 4 present the performance of Query 2 
for I-Strategy. The file has 20,000 tuples distributed over 1 
to 5 servers.  The join is computed first through the nested 
loop, then through the index. 

Server nodes 1 2 3 4 5 
Nested-loop (s) 128 78 64 55 48 
Index lookup (s) 60 39 37 36 32 

Table 3. I-Strategy for Query 2: elapsed time 



 
Server nodes 1 2 3 4 5 
Nested-loop (ms) 6.4 3.9 3.2 2.7 2.4 
Index lookup (ms) 3 1.9 1.8 1.8 1.6 

Table 4. I-Strategy for Query 2: time per tuple 
     To build the index at each server during the importation 
costs some time. Nevertheless it appears a worthwhile 
effort. The elapsed time decreases by half for two servers, 
and by 1.5 for five servers. The resulting time per tuple 
appears under 2 ms for the file on more than one server, 
reaching 1.6 ms for the file on 5 servers. While the speed up 
is sub-linear, the figures show a quite impressive efficiency 
of the whole system. 
5.3.2.3 Scaling the file size 
     For this experience, we have created the file of 100,000 
records, as for AMOS-II in Section 5.3.1. The file was 
however an RP* file over 5 servers. Table 5 lists the results.   

 Elapsed time(s) Time per tuple (ms) 
Nested-loop  1,000 10 
Index lookup 691 6.91 

Table 5. Performance of Query 2 with I-Strategy  
The comparison to Table 4 and Table 5 for the 20,000 
record file, show a slightly better than linear scale-up for the 
nested loop. The time per tuple increases indeed from 2.4 to 
10 ms, i.e., 4.2 times. Likewise, for the index join, the ratio 
is 4.3 times. 
     The comparison to AMOS-II results for the 20,000-tuple 
file in Table 1 shows also, hardly unexpectedly, a much 
better scale-up for AMOS-SDDS. Thus for the nested loop 
the AMOS-II elapsed time per tuple increases by factor of 
5, from 13.15 to 65.57 ms. Likewise, for the index join, by 
factor of 4.8, from 2.25 to 11 ms. Notice that the index join 
time in Table 2 does not include the index creation time, 
unlike for Table 5. 
5.3.2.4 Scaling the file size and the number of 

servers 
     Table 7 and Figure 3 present elapsed times of Query 2 
on a file that scales from 20,000 to 300,000 records on 
several AMOS-SDDS servers. We run many AMOS-SDDS 
servers at the same machine when the file size exceeds 
100,000 records. Each one contains 20,000 tuples with up 
to 3 AMOS-SDDS servers on the same machine, i.e., 15 
servers in total. Table 6 shows the total number of servers 
and the number of servers per machine according to the file 
size.  
     The join calculus already uses the distributed nested loop 
with I-Strategy. This one imports the bucket content and 
each buffer when it comes into the server AMOS-II. It 
takes 3 seconds to import the bucket content and to create 
index on join attribute city for 20,000 records. AMOS-II 
performs its own query evaluation. To evaluate the 
transmission time of the tuples produced by Query 2 from 
the servers to the client, we use the foreign function 
count_AllSameCity() that sends only the count of the 
result at each server instead of the whole tuples. 
     The extrapolated time results from the elapsed times 
minus the transfer time, divided by the number of servers 

per machine. 
# tuples 20K 60K 100K 160K 200K 240K 300K
# SDDS servers 1 3 5 8 10 12 15 
# Machines 1 3 5 4 5 4 5 
Server / Machine 1 1 1 2 2 3 3 

Table 6. Number of servers according to the size of the file 
Q1 = AMOS-SDDS join; Q2 = AMOS-SDDS join with count. 
# tuples 20K 60K 100K 160K 200K 240K 300K 
# SDDS servers 1 3 5 8 10 12 15 
Result size 4M 36M 100M 256M 400M 576M 900M 
Q1 (s) 61 301 684 1817 2555 3901 5564 
Q2 (s) 51 185 335 986 1270 2022 2624 
Q1 w. extrap. (s) 61 301 684 1324 1920 2553 3815 
Q2 w. extrap. (s) 51 185 335 498 640 681 881 
AMOS-II  (s) 46 430 1201 3106 4824 6979 10 933

Table 7. Elapsed time of join queries (extrapolated for AMOS-SDDS) 
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 Figure 3 Actual measurements 
      Figure 3 compares the elapsed time of Query 1 to that 
of Query 2 in Table 7. The improvement ratio for the 
300,000 record file is 1.96 times, i.e. by 49 %. Table 7 
presents the extrapolation of the Query 2 execution times 
while running several AMOS-SDDS servers on distinct 
machines. The improvement ratio for the 300,000 record 
file is 2.86 times, i.e. by 65 %.   

# tuples 20K 60K 100K 160K 200K 240K 300K
# SDDS servers 1 3 5 8 10 12 15 
Q1 (ms) 3.05 5.02 6.84 11.36 12.77 16.25 18.55
Q2 (ms) 2.55 3.08 3.35 6.16 6.39 8.43 8.75 
Q1 w. extrap. (ms) 3.05 5.02 6.84 8.28 9.6 10.64 12.72
Q2 w. extrap. (ms) 2.55 3.08 3.35 3.11 3.2 2.84 2.94 
AMOS-II (ms) 2.30 7.17 12.01 19.41 24.12 29.08 36.44

Table 8.  Time per tuple 
    Figure 4 shows the expected time per tuple of join query 
to AMOS-SDDS in Table 8.  
     The elapsed time of a distributed query can be divided 
into two parts: effective processing time over the servers 
and transfer time of the results from the servers to the 
client. The query processing is carried out in parallel on the 
servers and its duration depends on the number of 
distributed servers. Thus, the increase in the number of 
servers reduces the processing time of the same factor. The 
transfer time is however limited by the network bandwidth. 
The extrapolation of the elapsed time of the query with 
count shows a perfect scalability: Time per tuple remains 
constant when one increases the size of the file and the 
number of servers of the same factor. 
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Figure 4 Expected time per tuple of join queries to AMOS-SDDS 
6 Conclusion  

     AMOS-SDDS couples an SDDS with a high-
performance DBMS, to improve the current technologies 
for high-performance databases. These are RAM databases, 
the parallel databases, and the databases coupled with 
external data repositories. The experiments we have 
reported prove the efficiency of the system. The 
optimizations of various design choices, the I-strategy 
especially, decreased the file processing time for a join query 
from dozens of ms per tuple to possibly 1 ms per tuple. The 
AMOS-SDDS scalability that appeared from our 
experiments abolishes the cumbersome storage limits of a 
single site RAM DBMS technology. Its RAM query 
processing and scalable data partitioning are an 
improvement over the current parallel DBMSs technology. 
The overall system performance also opens new perspective 
for the technology of coupling databases with external data 
repositories All these new capabilities should attract 
numerous applications, [2], [3], [5], [6], [7], [12].  
     The work on AMOS-SDDS continues. It includes 
deeper performance study of speed-up and scale-up 
characteristics.  The performance of I-strategy that appeared 
brought further studies of AMOS-II as the sole bucket 
manager. Like in a parallel DBMS thus, except for the 
AMOS-SDDS capability of scalable partitioning. A related 
goal is a scalable distributed query optimizer for the AMOS-
SDDS client. 
     Our coupling technique is not limited to AMOS-II. 
Other object-relational DBMSs supporting foreign 
functions can be potentially coupled to SDDS as well. We 
are currently studying the DB2 user defined table functions 
for this purpose. Likewise, we study the SQL Server for this 
purpose. The success may offer an attractive alternative to 
its static partitioning scheme.  
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