
Ceria Res. Rep. 2005-12-13, December 2005

SD-SQL Server: Scalable Distributed Database System

Witold Litwin, Soror Sahri, Thomas Schwarz

Witold.Litwin@Dauphine.fr, Soror.Sahri@Dauphine.fr, tjschwarz@scu.edu

CERIA, Paris-Dauphine University
75016 Paris, France

Abstract. We present a scalable distributed database system called SD-SQL Server. Its
original feature is the dynamic and transparent repartitioning of growing tables, avoiding
the cumbersome manual repartitioning characterizing the current technology. SD-SQL
Server re-partionns a table when an insert overflows its existing segments. This triggers the
split resorbing the overflow by migrating tuples to new segments. With the comfort of a
single node SQL Server user, the SD-SQL Server user disposes of larger tables or gets a
faster response time through the dynamic query parallelism. We present the architecture of
our system, its user/application interface, our implementation and its performance analysis.
We show that the overhead of our scalable table management should be typically
negligible.

1. Introduction
Databases are now often huge and growing at a high rate. Large tables are then typically hash or range
partitioned into segments stored at different storage sites. Current Data Base Management Systems
(DBSs), e.g., SQL Server, Oracle or DB2, provide static partitioning only [1],[5],[10]. The database
administrator (DBA) in need to spread these tables over new nodes has to manually rede redistribute the
database (DB). A better solution has become urgent, [1].

This situation is similar to that of file users forty years ago in the centralized environment. The Indexed
Sequential Access Method (ISAM) was in use for ordered (range partitioned) files. Likewise, only static
hash access methods were known. Both approaches required file reorganization whenever the file grew
too large. B-trees and extensible (linear, dynamic) hash methods were invented to avoid this need for file
reorganization. Instead of reorganizing a complete file, these methods deal with file growth by
incremental splitting one or a few buckets (pages, leaves, segments …) at certain inserts. These dynamic
methods were successful enough to make ISAM and centralized static hashing obsolete.

Efficient management of distributed data adds specific needs. Scalable Distributed Data Structures
(SDDSs) address these needs for files, [5][6]. SDDS can use hashing, range-partitioning or k-d trees to
distribute its data in buckets spread over the nodes of a multicomputer. These nodes can form a peer-to-
peer (P2P) or grid network. An SDDS grows to more buckets by splitting the overflowing ones. The splits
are triggered by the (overflowing) inserts.

In [7], the analogous concept of a Scalable Distributed DBS (SD-DBS) appeared for databases. The SD-
DBS architecture supports scalable (distributed relational) tables. As an SDDS, a scalable table
accommodates its growth by splitting overflowing segments, stored each at some SD-DBS storage node
DB. Like records in an SDDS, the tuples of a scalable table are assigned to segments through (scalable
distributed) hashing, range-partitioning, a k-d tree.... The applications access a scalable table only through
the specific views, called images. The images hide the partitioning. They are basically the updatable
distributed union-all views. The applications manipulate the scalable tables by querying the images or
(scalable) views of the images.

For various practical reasons, like in general in an SDDS, the splits in an SD-DBS do not modify the
images. The image adjustment to the evolving partitioning is supposed lazy. It occurs only when a query

- 1 -

mailto:Witold.Litwin@Dauphine.fr
mailto:Soror.Sahri@Dauphine.fr
mailto:tjschwarz@scu.edu

- 2 -

refers to an outdated image. Through all these properties, scalable tables avoid the global database
reorganization, similarly to B-trees or extensible hash files with respect to the earlier ISAM and static
hash file technology.

To prove the feasibility of an SD-DBS, we have built a prototype called SD-SQL Server. The system
generalizes the basic SQL Server capabilities to scalable tables. We have chosen SQL Server since, to the
best of our knowledge, it was the only DBMS proposing the updatable distributed union-all partitioned
views. SD-SQL Server runs on a collection of SQL Server linked nodes. For every standard SQL
command under SQL Server, there is an SD-SQL Server command for a similar action on scalable tables
or views. There are also commands specific to the management of the SD-SQL Server client image or
SD-SQL Server client node.

Below we present the architecture of our prototype and its application command interface in its 2005
version. This architecture contains more features than the reference architecture in [7]. We discuss the
syntax and semantics of the commands. Numerous examples illustrate their actual use. We hope to
convince the reader that the use of the scalable tables is in practice as simple as that of static tables,
despite some limitation of our current interface. We view our current prototype as a proof-of-concept
system.

The scalable table processing must create some overhead with respect to the processing of the static
tables. We discuss our internal design of the prototype, aiming at the minimization of this overhead. This
design expands that in [13] and [8]. We aim now especially also on the efficiency and the serializability
of the concurrent processing, in presence of splits and of image adjustment operations. . We present the
performance analysis proving that we can neglect the SD-SQL Server overhead in practice. We
benchmark our processing using scalable tables loaded with experimental data from the well-known
SkyServer database, [2].

The present capabilities of SQL Server apparently let it link up to 250 nodes. A scalable table may reach
that many segments accordingly. This size should suffice for Petabytes. To the best of our knowledge,
SD-SQL Server is the first system with the proposed capabilities. It should pave the way towards the use
of the scalable tables as the standard technology.

Section 2 presents the SD-SQL Server architecture. Section 3 discusses the command interface. Section 4
discusses the processing. Section 5 follows with the related work. Section 6 presents the performance
analysis. Section 7 concludes and discusses the future work. The glossary of our teminology follows.

2. SD-SQL Server Architecture
Fig 1 shows the current SD-SQL Server architecture, adapted from the reference architecture for an SD-
DBS in [7]. The system is a collection of SD-SQL Server nodes. An SD-SQL Server node is a linked SQL
Server node that in addition is declared as an SD-SQL Server node. This declaration is made as an SD-
SQL Server command or is part of a dedicated SQL Server script run on the first node of the collection.
We call the first node the primary node. The primary node registers all other current SD-SQL nodes. We
can add or remove these dynamically, using specific SD-SQL Server commands. The primary node
registers the nodes on itself, in a specific SD-SQL Server database called the meta-database (MDB). An
SD-SQL Server database is an SQL Server database that contains an instance of SD-SQL Server specific
manager component. A node may carry several SD-SQL Server databases.

We call an SD-SQL Server database in short a node database (NDB). NDBs at different nodes may share
a (proper) database name. Such nodes form an SD-SQL Server scalable (distributed) database (SDB).
The common name is the SDB name. One of NDBs in an SDB is primary. It carries the meta-data
registering the current NDBs, their nodes at least. SD-SQL Server provides the commands for scaling up
or down an SDB, by adding or dropping NDBs. For an SDB, a node without its NDB is (an SD-SQL
Server) spare (node). A spare for an SDB may already carry an NDB of another SDB. Fig 1 shows an
SDB, but does not show spares.

Each manager takes care of the SD-SQL Server specific operations, the user/application command
interface especially. The procedures constituting the manager of an NDB are themselves kept in the NDB.
They apply internally various SQL Server commands. The SQL Servers at each node entirely handle the

- 3 -

inter-node communication and the distributed execution of SQL queries. In this sense, each SD-SQL
Server runs at the top of its linked SQL Server, without any specific internal changes of the latter.

An SD-SQL Server NDB is a client, a server, or a peer. The client manages the SD-SQL Server node
user/application interface only. This consists of the SD-SQL Server specific commands and from the SQL
Server commands. As for the SQL Server, the SD-SQL specific commands address the schema
management or let to issue the queries to scalable tables. Such a scalable query may invoke a scalable
table through its image name, or indirectly through a scalable view of its image, involving also, perhaps,
some static tables, i.e., SQL Server only. An SD-SQL Server command is typically an SQL Server stored
procedure involving clauses of an SQL command as the actual parameter and perhaps other parameters.
These are specific to a scalable table management, e.g., the segment size that is the maximal number of
tuples the segment should contain, beyond which the split should occur. An SD-SQL Server commands
for queries are typically named upon their SQL “originals”, e.g., SD_SELECT upon SELECT.

Internally, each client stores the images, the local views and perhaps static tables. These are tables created
using the SQL Server CREATE TABLE command (only). It also contains some SD-SQL Server meta-
tables constituting the catalog C at the figure. The catalog registers the client images, i.e., the images
created at the client. Finally, the application may store at the client other SQL Server objects that it might
need such as its own stored procedures.

When a scalable query comes in, the client checks whether it actually involves a scalable table. If so, it
must address its image, directly or through a scalable view. The client searches therefore for the images
that the query invokes. For every image, it checks whether it conforms to the actual partitioning of its
table, i.e., unions all the existing segments. We recall that a client view may be outdated. The client uses
C, as well as some server meta-tables pointed to by C, defining the actual partitioning. The manager
dynamically adjusts any outdated image. In particular, it changes internally the scheme of the underlying
SQL Server partitioned and distributed view, representing the image to the SQL Server. The manager
executes the query, when all the images it uses prove up to date.

A server NDB stores the segments of scalable tables. Every segment at a server belongs to a different
table. At each server, a segment is internally an SQL Server table with specific properties. First, SD-SQL
Server refers to in the specific catalog in each server NDB, named S in the figure. The meta-data in S
identify the scalable table each segment belongs to. They indicate also the segment size. Next, they
indicate the servers in the SDB that remain available for the segments created by the splits at the server
NDB. Finally, for a primary segment that is the 1st one created for a scalable table, the meta-data at its
server provide the actual partitioning of the table.

Next, each segment has an AFTER trigger attached, not shown at the figure. It verifies after each insert
whether the segment overflows. If so, the server splits the segment, by range partitioning it with respect to
the table (partition) key. It moves out enough upper tuples so make the remaining (lower) tuples fitting
the splitting segment size. For the migrating tuples, the server creates remotely one or more new segments
that are each half-full (notice the difference to a B-tree split creating a single new segment). The new
segments are each at a different server. The splitting server chooses those randomly among available
server nodes, using its S catalog. The new segments become a part of the scalable table. Internally, the
segment creation operations are the SQL commands, taken care of by the SQL Servers at the server nodes
handling the split. These commands are organized so that the concurrent processing of a split and of a
scalable query to the scalable table being split always remains correct (serializable).

Furthermore, every segment in a multi-segment scalable table carries an SQL Server check constraint.
Each constraint defines the partition (primary) key range of the segment. The ranges partition the key
space of the table. These conditions let the SQL Server distributed partitioned view to be updateable, by
the inserts and deletions in particular. This is a necessary and sufficient condition for a scalable table
under SD-SQL Server to be updateable as well.

Finally a peer NDB is both a client and a server NDB. Its node DB carries all the SD-SQL Server meta-
tables. It may carry both the client images and the segments. The meta-tables at a peer node form
logically the catalog termed P at the figure. This one is operationally, the union of C and S catalogs.

A client (or a peer) creates a scalable table upon the application command. The client creating table T,
starts with the remote creation of the primary segment of T. The primary segment is the only to receive
the tuples of T, until it overflows. The client is aware of the servers it may use through meta-tables in C.

- 4 -

The client basically has only one (primary) server, otherwise it chooses randomly in its list. A peer
usually creates the primary segment in its NDB. Next, the client (or the peer) creates the primary client
image of T, named T itself, in its NDB. The creation involves the input into SQL Server meta-tables and
into C (or P) catalogs. The client itself becomes the primary client of table T.

A secondary client node i.e., other than the primary one, can create its own secondary image. An
application invokes only T image, we recall. The segments themselves are invisible to the applications.
The splits do not adjust the images. A contrary approach would be often inefficient at best, or simply
impossible in practice. As the result every split of a scalable table makes all its images outdated. This is
why the client dynamically checks every query for the possibly outdated images, as we described.

A scalable table can finally have scalable indexes. These may accelerate searches in scalable tables like
SQL Server indexes do for the static tables. The splits propagate the scalable indexes to new segments.
Under SD-SQL Server a scalable index consists itself from the index segments, symbolized as I at the
figure. There is one index segment per index and segment of the table. Each index segment is an SQL
Server index on the table that a segment constitutes for the local SQL Server.

The interface that an SD-SQL Server client provides to the application for the scalable tables and their
views, offers basically the usual SQL manipulation capabilities, up to now available for the static tables
only. The client parses every SD-SQL Server (specific) command and defines an execution plan. The plan
consists of SQL Server commands and of additional procedural logic. The client passes every SQL Server
command produced to its SQL Server for the execution. The SQL Server parses the command in turn,
produces sub-queries and forwards them for the distributed execution to the selected linked servers. If the
application requests a search, then the remote servers send the retrieved tuples to the local SQL Server
internally as well, i.e., among the SQL Server managers at the nodes. That one returns the overall result to
the application, including perhaps also tuples found in its local segments.

To let the client to offer these operations, an SD-SQL Server server handles locally for its segments the
basic SQL manipulations, embedded typically into more complex stored procedures. The basic
manipulations are the tuple updates, inserts, deletes, and searches as well as the segment indexing, and
alteration. The procedures involve multiple SQL commands on the segments and meta-tables, within
some procedural logic. They correspond to the segment creation, splitting and dropping. As we just
mentioned, the split operation in particular, makes the server to remotely create the segment(s) on other
sites.

Finally, SD-SQL Server allows for the node management commands. These let to create/drop SD-SQL
Server nodes, SDBs and NDBs. A node creation command installs one or more SD-SQL Server nodes. A
node can be of type peer, client or server. The peer node (default) accepts any type of NDB: client, server
or peer. The client node only accepts a client NDB, while the server node only accept server NDBs. The
creation of an SDB creates its primary NDB and registers SDB at the primary node. The creation of an
NDB requires the existence of its SDB from which the NDB inherits the name. Internally, it registers the
NDB at the primary one of the SDB. Any drop operation undoes all the above. It preserves however the
every secondary segment by migrating them elsewhere. This may require a dynamic creation of an NDB
elsewhere. A server NDB manager can also dynamically create an NDB during a split in progress. It may
do it when the scalable table it manipulates already has a segment at every NDB within the SDB, hence it
cannot find the normal location for the new one(s).

To illustrate the architecture, Fig 1 shows the NDBs of some SDB, on nodes D1…Di+1. The NDB at D1
is a client NDB that thus carries only the images and views, especially the scalable ones. This node could
be the primary one, being only of type peer or client. It interfaces the applications. The NDBs on all the
other nodes till Di are servers. They carry only the segments and do not interface any applications. The
nodes could be peer or server, only. Finally, the NDB at Di+1 is a peer, providing all the capabilities. Its
node has to be a peer node. The NDBs carry a scalable table termed T. The table has a scalable index I.
We suppose that D1 carries the primary image of T, locally named T. The image unions the segments of
T, at servers D2…Di, with the primary segment at D2. Peer Di+1 carry a secondary image of T. That one
is supposed different, including the primary segment only. Both images are outdated. Server Di just split
indeed its segment and created a new segment of T on Di+1. It updated the meta-data on the actual
partitioning of T at D2. None of the two images refers to this segment as yet. Each will be actualized only
once it gets a scalable query to T. The split has also created the new segment of I.

Notice finally in the figure that segments of T are all named _D1_T. This represents the couple (creator
node, table name). We discuss details of SD-SQL Server naming rules later on. Notice here only that the
name provides the uniqueness with respect to different client (peer) NDBs in an SDB. These can have
each a different scalable table named T for the local applications. Their segments named as discussed may
share a server (peer) node without the name conflict.

Fig 1 SD-SQL Server Architecture

Split

User/Application User/Application

Linked
SQL

Servers

D1 Node DBs D2 Di

SD-SQL
peer

Di+1

_D1_T

SD-SQL
server

SD-SQL
server

SD-SQL
client

S S P C
 I I

T(2..i)

T(1,2)

SD-SQL
Server

Managers

_D1_T
 I

_D1_T

3. Application Interface

3.1 Overview
The application manipulates SD-SQL Server objects essentially through new SD-SQL Server

dedicated commands. The commands for the tables and views perform the usual SQL schema
manipulations and queries implying however now the scalable tables (through the images) or the
(scalable) views of the scalable tables. We qualify these commands of scalable. They address all the
existing segments, regardless of their actual number, and their effects may propagate to the future ones. A
scalable command may include additional parameters specific to the scalable environment, with respect to
its original static counterpart.

Most SD-SQL Server commands apply also to the static tables and views. The application using SD-SQL
Server may also directly invoke the (static) SQL Server commands. These calls are transparent to SD-
SQL Server managers. Their use should remain limited to the static tables. However, the SQL Server
CREATE VIEW command applies to both scalable and static tables. It produces a scalable view whenever
a scalable table is among the base tables invoked. The SQL Server DROP VIEW command acts similarly.

We now present the syntax and semantics of the SD-SQL Server commands. The commands for node,
SDB, NDB and image management are SD-SQL Server specific. The rule for an SD-SQL Server
command performing an SQL operation is to use the SQL command name (verb) prefixed with ‘sd_’ and
with all the blanks replaced with ‘_’. Thus, e.g., SQL SELECT became SD-SQL sd_select, while SQL
CREATE TABLE became sd_create_table. The standard SQL clauses, with perhaps the additional
parameters, follow the verb, specified as usual for SQL. The whole specification is however within
additional quotes ‘ ’. The rationale is that SD-SQL Server commands are implemented as SQL Server
stored procedures. The clauses pass to SQL Server as the parameters of a stored procedure and the quotes
around the parameter list are mandatory.

- 5 -

possible at present. The reasons are the limitation of the SQL Server meta-tables that SD-SQL Server uses

The operational capabilities of SD-SQL Server scalable commands are sufficient for most applications.
The SELECT statement in a scalable query supports the SQL Server allowed selections, restrictions, joins,
sub-queries, aggregations, aliases…etc. However, the queries to the scalable multi-database views are not

- 6 -

erver scalable commands case by case, but in the

ommands by numerous examples. They have the common

drop SD-SQL Server nodes, SDBs

3.2 Node Management
 ever (primary) SD-SQL Server (scalable) node at a collection of linked SQL

 executed at an existing SD-SQL Server node appends a new to the existing

ate_node ‘new_node[, node_type]

The ‘n pare on which the new node should be created. The node

QL Server linked node at our Dell1machine contains the primary node of the SD-SQL

lient’

The rver node ‘Dell2’ is a server node, ready to store segments.

 f nd removes an SD-SQL Server (scalable) node from the current collection of its
(sc

de ‘node_name’

The rem SD-SQL Server node, but remains an SQL Server linked node. The
removal of a client or a peer node removes all the NDBs on it. As we discuss later, the removal of those
may move some meta-data as well as some data in these NDBs to other nodes,

for the parsing. Moreover, the scalable INSERT command over a scalable table lets for any insert
accepted by SQL Server for a distributed partitioned view. This can be a new tuple insert, as well as a
multi-tuple insert through a SELECT expression. The UPDATE and DELETE statement offer similar
capabilities. In contrast, some of SQL Server specific SQL clauses are not supported at present by the
scalable commands; for instance, the CASE OF clause.

We discuss the syntax and semantics of the SD-SQL S
normal execution conditions only. Thus if a command addresses a node, we only discuss the case of its
normal behaviour. We discuss the internal processing of each command that might address some unusual
execution conditions later in Section 4.

We illustrate the discussion of the c
denominator of our benchmark application that is the SDB named SkyServer. The choice follows the
actual SkyServer DB, [14]. Our experimental performance analysis in Section 5 uses the data from the
latter. We particularly use the data from the original PhotoObj table to experiment with a scalable
PhotoObj table. In the examples, we also use our actual node names.

We start with the node management commands that create, alter or
and NDBs. We continue with the commands for the scalable table management, including the
management of the scalable indexes and of images. We end up discussing the commands for the scalable
search and update queries.

A script file creates the first
Server nodes. The primary node can be created as peer or server, but not a client. After that, the node, and
then any other SD-SQL Server node created subsequently, offers the following (scalable) node
management commands to the administrator, user or application.

3.2.1 Node Creation

The following command
collection:

sd_cre

ew_node’ parameter is the name of the s
executing the command initiates in particular the meta-data of the new one according to its type. This
latter is shown in the ‘node_type’ parameter. It can be server, client or peer. The default type is server. A
script file creates the first ever (primary) SD-SQL Server node at a collection of linked SQL Servers.

Example 3-1

Consider that S
Server configuration to create. The administrator has created the primary node by the script. The
commands below executed at Dell1 next create further nodes:

sd_create_node ‘Dell2’

sd_create_node ‘Dell3, ‘c

sd_create_node ‘Ceria1’,’peer’

SD-SQL Server node at SQL Se

3.2.2 Node Removal

The ollowing comma
alable) nodes:

sd_drop_ no

oved node is no more an

- 7 -

 node, to the state of an

T e a client or server node into a peer. It may also downgrade the peer. The
command for is:

d_ _name’, ‘ADD/DROP client/server’

The e Dell3 created in ExampleExample 3-1
to th

e ‘Dell3’, ‘ADD server’

rver node.

3.3

ministrator (SDBA) creates an SDB using the command:

_name’, [‘node_name’], [‘type’] [‘extent’]

Th il in
Se med
‘db_ n > 1. It allows creating

_scalable_database ‘SkyServer, ‘Dell1’

ver1 is declared as client, then
SkyS e. SkyServer1 will be a peer NDB.

 conflict of the
notio pect the hierarchy of clients, servers and

The need for the node removal seems rare. A (more complex) command removing simultaneously several
nodes does not appear useful.

Example 3-2. The command below returns the previously created scalable Ceria1
SQL Server linked node only.

sd_drop_ node ‘Ceria1’

3.2.3 Node Alteration

he application can upgrad
these operations

 s alter_ node ‘node

Example 3-3

command below upgrades the capabilities of the client nod
ose of a peer:

sd_alter_ nod

From now on, the node accepts the segments. Next after the command:

sd_alter_ node ‘Ceria1, ‘DROP client’

Ceria1 node that was a peer, Example Example 3-1, becomes (only) a se

Scalable Database Management
3.3.1 Scalable Database Creation

An SD-SQL Server scalable database ad

sd_create_scalable_database ‘db

e SDB ‘db_name’ has its initial location at the node ‘node_name’. Operationally, as we deta
ction 3.2.1, it creates in particular at ‘node_name’ node the primary NDB of the SDB, na

name’ as well. The optional ‘extent’ parameter should have the value
simultaneously n > 1 NDBs, including the primary one. All bear the name ‘db_name’. The manager
chooses the location of these (secondary) NDBs on SD-SQL Server nodes randomly. The optional ‘type’
parameter indicates whether the primary NDB of the scalable database is a server or peer. By default, the
primary NDB inherits the type of the node ‘node_name’ (that thus has to be peer or server as well). We
recall that one cannot create a peer NDB at a server or a client node, or a client NDB at a server node, or
vice versa. SD-SQL Server creates any secondary NDB requested in the command as a server NDB.

Example 3-4

The command below creates our SkyServer SDB, with its primary SkyServer NDB at the Dell1 server
node. As we do not mention the type, SkyServer NDB is a server NDB.

sd_create

The next command alternatively attempts to rather create SkyServer1 as a client at Dell1 node with two
secondary NDBs on some nodes. As Dell1 is a server and SkySer

erver1 will have the role of a server and a client, i.

sd_create_scalable_database ‘SkyServer1’, ‘Dell1’, ‘Client’

As for the command below, the creation of the scalable database SkyServer2 will be cancelled because the
the node Dell5 is server and the node where it will be created is client. This generates a

n of the management of a scalable database and don’t res
peers.

sd_create_scalable_database ‘SkyServer2, ‘Dell5’, ‘Client’

- 8 -

3.3.2

 a creating an NDB or dropping an NDB.

3.3

is operation:

e_name’,] [‘type’,]

The L Server node, as well as an SQL

w NDB for SkyServer SDB at Dell2. Dell2.SkyServer NDB is a server NDB.

The ll7 node creates a peer SkyServer NDB at that node:

3.3.2

i an SDB using the command:

Som les created by applications at peers or clients at other

3.3.3

s o

name’

As th with all their content.

ar it removes all its previously

3.4

 be on a node D, creates a scalable table, let it be T, by executing the

The E TABLE command
following the com e and its

 Scalable Database Alteration

The lteration of an SDB consists of

.2.1 Node Database Creation

The following command realizes th

sd_create_node_database ‘sdb_name’, [‘nod

NDB enters the SDB ‘sdb_name’. Its own name at its SD-SQ
Server database is ‘sdb_name’ as well. It is created at the ‘node_name’ node. The ‘node_name’ parameter
is optional. By default, SD-SQL Server creates the new node database on the node of the command. SD-
SQL Server can also select a node from the metabase database (MDB) to create the new node database, as
we will describe later. The ‘type’ parameter, may limit the capabilities of the NDB, if created at a peer
node. Otherwise, the NDB inherits the node type.

Example 3-5

We create a ne

sd_create_node_database ‘SkyServer’, ‘Dell2’

next command, supposed executed at a peer De

sd_create_node_database ‘SkyServer’

.2 Node Database Removal

An appl cation drops an NDB from

sd_drop_node_database ‘db_name’, ‘node’

e meta-data, as well as the segments of tab
nodes move to another NDB as we discuss in Section 4.6.2. They obviously should be preserved.

Example 3-6. The command below drops SkyServer NDB at Dell2 node.

sd_drop_node_database ‘SkyServer’, ‘Dell2’

 Scalable Database Removal

Thi peration uses the command:

sd_drop_scalable_database ‘db_

e result, it removes all the NDBs of the SDB

Example 3-7. The command below drops the SkyServer SDB. In particul
created NDBs, e.g., at Dell1, Dell2 and Dell7 nodes.

sd_drop_scalable_database ‘SkyServer’

Scalable table management
3.4.1 Table Creation

The application let it
sd_create_table command at its client (peer) with the following syntax:

sd_create_table ‘SQL: Create Table T clauses’, ‘Segment_size’ [, ‘Partition_Key’]

parameter ‘SQL: Create Table T clauses’ is the text of the SQL Server CREAT
e may be global, i.e., prefimand name itself. The table nam xed by a node nam

node database, in principle, but only the local creation is supported at present. The SQL command
invoked has to respect all the constraints that SQL Server imposes at a distributed partitioned view [9]. In
particular, the scalable table has to have the partition key, among the key attributes, that supports the
check constraints partitioning the partition key space. The partition key may be not (entire) primary key
hence SD-SQL Server, like SQL Server, allows for tuples with the duplicate values of partition key.

- 9 -

s,

ance analysis that is a fragment of SkyServer DB [2]. The user wishes that a

ave show only the beginnings of the actual SQL CREATE TABLE command clauses. The
resul ment size of 10000 tuples. It

LTER TABLE T clauses], [new segment_size]

Th s’ parameter contains
the rdingly, the SD-SQL Server

 column to it and
imal size. The user may alter the table using the command:

the t column added to all its
segm If the alteration is requested at the original node

ver does not allow for indexed distributed partitioned views at present. It does use however
ables under the view to accelerate the query processing, whenever they exist.

SD

sd_ create_index [‘SQL: Create Index I ON T clauses’

The Segment_size parameter fixes the maximal size of a segment of T. The command creates a scalable
table only. To create a static table, e.g., to avoid the above-mentioned restrictions on the scalable one
one should use the SQL Server CREATE TABLE command. Finally, the ‘Partition_Key’ parameter
indicates the partitioning attribute of T. It has to be among the key attributes, following SQL Server
constraints. The parameter is optional and makes sense only for tables with composite keys . By default,
SD-SQL Server the 1st key attribute appearing in the attribute declaration clause of T. Clever choice of
the partitioning key may speed up some queries, e.g., with joins on the primary and foreign key attribute.

Example 3-8

The user at peer Dell1 creates the scalable table PhotoObj. The name comes from our benchmark for
experimental perform
segment contains at most 10000 tuples for the efficient distributed query processing. It applies the
command:

sd_create_table ‘PhotoObj (objid BIGINT PRIMARY KEY…)’, 10000

Here, we h
t is the PhotoObj scalable table with the Objid primary key, and the seg

appears to the applications as being at Dell1 node, i.e., its multi-database (global) SD-SQL Server name is
Dell1.PhotoObj1. An application at another node, e.g., Ceria2, could also create a table named PhotoObj.
This one would appear as at Ceria2, with the multi-database name of Ceria2.PhotoObj.

3.4.2 Table Alteration

To alter a scalable table, let it be table T, the application executes the command:

sd_ alter_table [‘SQL:’A

e command carries at least one of the clauses. The ‘SQL: ALTER TABLE clause
SQL Server ALTER TABLE clauses with their usual syntax. Acco

command provides the same capabilities for a scalable table. SD-SQL Server propagates the alteration to
every segment. However, the effects of the decrease to the segment size are lazy. The commands actually
affect a newly overflowing segment only when an insert to it occurs, triggering a split.

Example 3-9

The user alters the scalable table PhotoObj initially created at Dell1 by adding new
updates its max

sd_alter_table ‘Dell1.PhotoObj ADD t INT, 10000

The result of the scalable command is the scalable PhotoObj table with
ents, and its segment size updated to 10000 tuples.

of the PhotoObj scalable table, i.e. Dell1, then the prefix indicating the multi-database name is not
necessary.

3.4.3 Index Creation

SQL Ser
the local indexes on the t

-SQL Server lets therefore the scalable tables to have the scalable distributed indexes. The segments of
such an index are the local indexes on the segments of the table. An application creates a scalable
distributed index, let it be I, on a column of a scalable table, let it be T, by executing the sd_create_ index
command with the following syntax:

1 For simplicity, we make abstraction here of the owner name part of the SQL Server global naming, as well as about

the node DB name component for all examples of the Application Interface section.

- 10 -

of the SQL Server CREATE INDEX command. The application may
use t one invokes the command at a node another
than

un_index ON Photoobj (run)'

The app le T, by executing the command:

pu er DROP INDEX command.

 T clauses’]

m l T segments with their tuples and its primary image. The syntax and semantics
E clauses.

Exam d at peer Dell1:

The a image at its client (peer) through the following command:

 n of a given table can exist. The application wishing to use another name for
an ollows.
If the s T, then the local image name is D_T. The convention
elim ment names that could exist at the peer where the new

Obj as well, one could use the SQL Server command:

3.4.7

peer):

mmand cannot remove the primary image. The ‘image_name’ parameter may be the global table
na

Exam delete a secondary image of our PhotoObj scalable table.

sd_drop_image ' Peer1.Photoobj' or sd_drop_image 'Peer1_Photoobj'

The command creates the index I on a column of the scalable table T. The input parameter ‘SQL: Create
Index I ON T clauses’ are the clauses

he local or global name of T. The latter is necessary if
 the primary one T.

Example 3-10. The command below, executed at the Dell1 node, creates the run_index scalable index on
the run column of the PhotoObj scalable table.

sd_create_ index ‘r

If this index creation is requested elsewhere, then one should use the name Dell1.Photoobj.

3.4.4 Index Removal

lication drops an existing scalable index I on tab

sd_drop_ index ‘SQL: Drop Index T.I clauses’

The in t parameter is the SQL Serv

Example 3-11. The command below, executed at the Dell1, removes run_index.

sd_drop_ index ‘Photoobj.run_index’

3.4.5 Table Removal

To remove scalable table T the application uses the command:

sd_drop_ table [‘SQL: DROP TABLE

The co mand removes al
of the input parameter are those of the SQL Server DROP TABL

ple 3-12. Drop the scalable table PhotoObj create

sd_drop_ table ‘Dell1.PhotoObj’

The prefix is not necessary for the command invoked at Dell1.

3.4.6 Image Creation

pplication creates a secondary

sd_create_image ‘[Primary_node]’, ‘Table’

At any ode, only one image
 image may do it through CREATE VIEW. It should then use the local image name, formed as f

primary node is D and the table name i
inates the name conflict with table and seg

image is being created.

Example 3-13. We create the (secondary) image of PhotoObj through the statement:

sd_create_image ‘Peer1’, ‘PhotoObj’

To name it locally Photo

 CREATE VIEW PhotoObj as Select * from Peer1_PhotoObj

 Image Removal

The application removes a secondary image, using the command at its client (

sd_drop_image ‘image_name’

The co
me. It can also be the local image name.

ple 3-14. The commands below

- 11 -

nd at its
clien

ct clauses‘[, Segment Size’][, ‘Primary Key’]

Q clauses’ parameter is the SQL SELECT command clauses with their usual syntax. The
nvoke in the scalable query the aggregations, joins, aliases, sub-queries…etc. The

‘Se
es to make the result a scalable table. One use of this capability

may be to rec ize’ indicates the size of the table to
chan ioning and primary) key column(s) in

 scalable table:

reates the scalable table PhotoObj, with the segment size of 500 tuples
n as the primary key, from the original static PhotoObj table:

3.5.2

‘S clauses’ input are the standard SQL Server INSERT command clauses. They may
e t CT clause on scalable or static tables.

The , inserts a tuple into PhotoObj assigning the value ‘225’ to its
Obji

and, issued at the same node, inserts perhaps many tuples into PhotoObj scalable table. It
Obj with the tuples in some source PhotoObj-S table in Skyserver-S DB at Ceria5 node

M Ceria5.Skyserver-S.PhotoObj WHERE objid not exists

The Server UPDATE command clauses allowed for a distributed
n

3.5 Scalable Queries
3.5.1 Search

An application can submit a select query to scalable tables by executing sd_select comma
t (peer) with the following syntax:

sd_select ‘SQL: Sele

The ‘S L: Select
application may i

gment Size’ and ‘Primary Key’ input parameters are optional. The application may use them when it
issues a SELECT INTO query and wish

reate a static table as a scalable one. The ‘Segment S
ge into a scalable one. The ‘Primary Key’ indicates the (partit

the new table. These columns can be the original ones, or the ones dynamically named in the SELECT
clause, e.g., produced by the aggregate functions.

The application may use in the query any SQL Server table or view name, i.e., local or prefixed. Only the
local names may however designate a scalable table or view at present. Any prefixed name is dealt with
as a static table or view name.

Example 3-15

The following query brings all the data in PhotoObj

sd_select ‘* FROM PhotoObj’

Next, the following command c
and Objid colum

sd_select ‘* INTO PhotoObj FROM PhotoObj’, 500, ‘Objid’

 Insert

An application can insert tuples into a scalable table by executing scalable sd_insert command at its
client (peer) with the following syntax:

sd_ insert ‘SQL Insert clauses’

Here, QL: Insert
includ he SELE

Example 3-16

command below requested at Dell1
d attribute:

sd_insert ‘INTO PhotoObj (objid) values (225)’

The next comm
refreshes Photo
which are not yet in PhotoObj. The source table could be scalable or static only.

sd_insert ‘INTO PhotoObj SELECT * FRO
in (SELECT objid FROM PhotoObj)’

3.5.3 Update

An application updates a scalable table by executing the command:

sd_update ‘SQL: Update clauses’

 ‘SQL UPDATE clauses’ are the SQL
partitio ed view.

- 12 -

Exam

 ‘PhotoObj SET run= 752 WHERE objid=2255031257923860’

tuples of PhotoObj.

A mand:

pu Server DELETE command clauses. The command leaves unchanged the table
pa

Exam requested at Dell1deletes the tuple identified by objid = 225 from

W e start with the description of the SD-SQL Server
naming rules. olution. We follow up with the image and query

processing of the node management commands.

4.1

ages. All the system
ed as SQL Server objects. To avoid the name conflicts, especially between the SQL
 by an SD-SQL Server application, there are the following naming rules, partly

illu

ublic (dbo) objects, should not be the name of an SD-SQL Server command. These
e rule already enforced

 SD-SQL Server commands

sides, two SD-SQL Server users at different nodes may each create a scalable table with the

We recall that SD-SQL Server locates every segment of a scalable table at a different node.

ple 3-17

The command below executed at Dell1 updates the run column of PhotoObj, for the tuple with
Objid = 225:

sd_update

The following command executed at some SD-SQL Server node changes the run column values to 752
for the first 10

sd_update ‘dell1.SkyServer.PhotoObj SET run= 752 WHERE objid IN
 (SELECT TOP 10 objid FROM PhotoObj’)

3.5.4 Delete

n application deletes tuples from a scalable (or static) table using the com

sd_delete ‘SQL: Delete clauses’

The in t is the SQL
rtitioning, even if it deletes all the tuples (no segment merge).

ple 3-18. The command below
PhotoObj:

sd_delete ‘FROM PhotoObj WHERE objid=225’

4. Command Processing
e now present the processing of the commands. W

Next, we discuss the scalable table ev
processing. Finally we address the

 Naming rules
SD-SQL Server has its own system objects for the scalable table management. These are the node

DBs, the meta-tables, the stored procedures, the table and index segments and the im
objects are implement
Server names created

strated at Fig 1 .

o Each NDB has a dedicated user account ‘SD’ for SD-SQL Server itself.

o The application name of a table, of a database, of a view or of a stored procedure, created at an SD-
SQL Server node as p
are SD-SQL server keywords, reserved for its commands (in addition to the sam
by SQL Server for its own SQL commands). The technical rationale is that
are the public stored procedures under the same names. An SQL Server may call them from any user
account.

o A scalable table T at a NDB is a public object, i.e., its SQL Server name is dbo.T. It is thus unique
regardless of the user that has created it2. In other words, two different SQL Server users of a NDB
cannot create each a scalable table with the proper name T. They can still do it for the static tables of
course. Be
proper name T.

o A segment of scalable table created with proper name T, at SQL Server node N, bears for any SQL
Server the table name SD._N_T within its SD-SQL Server node (its NDB more specifically, we recall).

2 In the current version of the prototype.

- 13 -

lso the proper name of the SQL Server distributed partitioned view implementing the

proper name
t

efixes all the proper names of SD-SQL public objects with dbo. in every NDB, to prevent

 primary image name

Obj has split, creating a segment at dell3. Similarly, dell3.
toObj split creating a segment at dell2. Finally, dell3 contains a secondary image of

r.Photoobj. We have the following situation.

ains the distributed partitioned view actually

 at each server and contains the following tables.

o

ple, tuple (Dell5, Dell1, PhotoObj) in Dell2.D.SD.RP means that
ent at Dell2.D, and later got a new

r name starts with ‘_’, being formed

o A primary image of a scalable table T bears the proper name T. Its global name within the node is
dbo.T. This is a
primary view.

o Any secondary image of scalable table created by the application with proper name T, within the table
names at client or peer node N, bears the global name at its node ‘SD.N_T’. This is also the
of he SQL Server distributed partitioned view implementing the secondary view.

We recall that since SD-SQL Server commands are the public stored procedures, SQL Server
automatically pr
the name conflict with any other owner within NDB. The rules avoid the name conflicts between the SD-
SQL Server private application objects and SD-SQL system objects, as well as between the SD-SQL
Server system objects themselves. Obviously, a private name created by an application cannot enter in
conflict with an image or segment name at any SD-SQL Server node. Next, a
created for the scalable table T, cannot conflict with the segment name at a peer (we recall that SQL
Server does not allow a view and a table to share a proper name). Next, at any NDB, any two segments
belonging to two different scalable tables sharing a proper name must have different segment names as
well. These segments may thus share a server or peer node without creating a conflict for the underlying
SQL Server table names. Next, a peer stores any segment and any image, primary or secondary, without
the name conflict as well. Finally, the client cannot have the conflict between a primary image name and
a secondary image name.

Example 4-1

Let dell1, dell2 and dell3 be respectively a client, server and peer nodes. Let PhotoObj be the proper
name of a scalable table created at dell1 in some NDB, let it be SkyServer, and of another one created by
an application on dell3. SkyServer. Consider that dell2 became the server of dell1 for PhotoObj. Next that
dell1.SkyServer.dbo.Photo
SkyServer.dbo.Pho
dell1.SkyServe
o Database Dell1.SkyServer contains primary image dbo.Photobj, constituting also as the distributed
partitioned view SkyServer.dbo.PhotoObj for SQL Server at dell1.

o Database dell2.SkyServer contains the segment tables SD._dell1_PhotoObj and SD._dell3_PhotoObj,

o Database dell3.SkyServer contains the segment tables with the proper names (actually prefixed each
with SD.): _dell1_PhotoObj, _dell1_PhotoObj. It also cont
named in SkyServer SD.dell1_PhotoObj.

4.2 Meta-tables
SD-SQL Server uses dedicated meta-tables constituting logically the catalogs named S, C and P at

Fig 1 . These tables constitute internally SQL Server tables searched and updated using the stored
procedures with SQL queries detailed in [8]. All the meta-tables are under the user name SD, i.e., are
prefixed within their NDB with ‘SD.’.

The S-catalog exists

SD.RP (SgmNd, CreatNd, Table). This table at node N defines the scalable distributed partitioning of
every table Table originating within its NDB, let it be D, at some server CreatNd, and having its primary
segment located at N. Tuple (SgmNd, CreatNd, Table) enters N.D.SD.RP each time Table gets a new
segment at some node SgmNd. For exam
scalable table PhotoObj was created in Dell1.D, had its primary segm
segment _Dell1_PhotoObj in Dell5.D. We recall that a segment prope
as in Fig 1 .

o SD.Size (CreatNd, Table, Size). This table fixes for each segment in some NDB at SQL Server node
N, the maximal size (in tuples) allowed for the segment. For instance, tuple (Dell1, PhotoObj, 1000) in
Dell5.DB1.SD.Size means that the maximal size of the Dell5 segment of PhotoObj scalable table initially
created in Dell1.DB1 is 1000. We recall that at present, all the segment of a scalable table have the same
size.

- 14 -

at there is a segment _Dell1_PhotoObj resulting from the split of PhotoObj table, created at

imary image dbo.PhotoObj at Dell1 whose table seems to
 Server explores this table during the scalable query processing.

owards the primary node. It could indicate more nodes,

ript or the sd_create_node command. The

 (SDB_Name, Node, NDBType). This table is also in the MDB. Each tuple registers an SDB.

ndicates whether the NDB is a peer, server or client.

of scalable table T, using sd_create_table
b), erver creates the primary image of T at N.D. For all the application T is virtually
.d the case of a public static table created by a local SQL Server user. If N.D is an

SD
ve the check constraint. Also in both

CREATE VIEW T AS SELECT * FROM N’._Di_T

o SD.Primary (PrimNd, CreatNd, Table). A tuple means here that the primary segment of table T
created at client or peer CreatNd is at node PrimNd. The tuple points consequently to SD.RP with the
actual partitioning of T. A tuple enters N.SD.Primary when a node performs a table creation or split and
the new segment lands at N. For example, tuple (Dell2, Dell1, PhotoObj) in SD.Primary at node Dell5
means th
Dell1 and with the primary segment at Dell2.

The C-catalog has two tables:

o Table SD.Image (Name, Type, PrimNd,Size) registers all the local images. Tuple (I, T, P, S) means
that, at the node, there is some image with the (proper) name I, primary if T = .true, of a table using P as
the primary node that the client sees as having S segments. For example, tuple (PhotoObj, true, Dell2, 2)
in Dell1.SD.C-Image means that there is a pr
contain two segments. SD-SQL

o Table SD.Server (Node) provides the server (peer) node(s) at the client disposal for the location of the
primary segment of a table to create. The table contains basically only one tuple. It may contain more,
e.g., for the fault tolerance or load balancing.

Finally, the P-catalog, at a peer, is simply the union of C and S catalogs. Besides, each NDB has the table:

o SD.SDBNode (Node). This table points towards the primary NDB of the SDB. It could indicate more
nodes, replicating the SDB metadata for the fault-tolerance or load balancing.

o SD.MDBNode (Node). This table points t
replicating the MDB for the fault-tolerance or load balancing.

There are also meta-tables for the SD-SQL Server node management and SDB management. These are
the tables:

o SD.Nodes (Node, Type). This table is in the MDB. Each tuple registers an SD-SQL Server node
currently forming the SD-SQL configuration. We recall that every SD-SQL Server node is an SQL Server
linked server declared SD-SQL Server node by the initial sc
values of Type are ‘peer’, ‘server’ or ‘client’.

o SD.SDB
For instance, tuple (DB1, Dell5, Peer) means that there is an SDB named DB1, with the primary NDB at
Dell5, created by the command sd_create_scalable_database ‘DB1’, ‘Dell5’, ‘peer’.

o SD.NDB (Node, NDBType). This meta-table is at each primary NDB. It registers all the NDBs
currently composing the SDB. The NDBType i

4.3 Scalable Table Management
4.3.1 Table Creation

We recall that a scalable table T is formally a tuple (T, S), where T is the primary image of T and S are
its segments. SD-SQL Server creates a scalable table as follows.

When the application of NDB N.D requests the creation
(‘T…, then SD-SQL S
in N.D bo as it would be

-SQL client, then its manager chooses a server node, let it be at SQL Server node N’, among those in
its PrimServ table. In both cases, the created segment does not ha
cases, there is the creation of the AFTER trigger, as for any segment creation. Next, the creator registers
the segment with the meta-tables of node N’. It inserts tuple (N,T,b) to N’.SD.Size meta-table. It also
insert tuple (N’,N,T), describing T as having a single segment, into N’.D.SD.RP table. Furthermore, it
inserts tuple (N’,N,T) into N’.D.Primary meta-table, self-pointing thus N’.D as the primary node.

Next, the client creates the primary image. It first inserts tuple (T,.true,N’,1) to its own Image meta-table.
The tuple defines the single segment image with the primary segment at node N’. Finally, the client
requests from its SQL Server the creation of the distributed partitioned view as follows:

Example 4-2. Consider the command to SkyServer SDB at its Dell1 client node:

sd_create_table ‘PhotoObj (objid BIGINT PRIMARY KEY…)’, 150000

The manager at Dell1 chooses the SkyServer server NDB at node Dell2, i.e., Dell2.SkyServer NDB, for
the primary segment of PhotoObj. It performs the following actions (Fig 2):

- 15 -

o C Dell2 SkyServer by SQL Server.

bj, 150000) are respectively

artitioned view PhotoObj, addressing
Dell

o R iew of PhotoObj scalable table.

The merge of under-loaded segments may
r

 checking adjustment operations.
ntioned. The practical interest of merges
the current prototype (notice that the

e merges are very rare at best as well). We now describe the split and the image

reation of empty SQL Server table _Dell1_PhotoObj at

o Creation of the following AFTER trigger on this table:

CREATE TRIGGER split_trigger_photoobj ON _ Dell1_PhotoObj
 AFTER INSERT AS split_scalable_table ‘PhotoObj’, Dell2.SkyServer'

o Registration of _Dell1_PhotoObj by SD-SQL Server at Dell2, as the primary segment of PhotoObj.
Tuples (Dell2, Dell1, PhotoObj), (Dell2, Dell1, PhotoObj), (Dell1, PhotoO
inserted at Dell2.SkyServer NDB into the meta-tables SD.Primary, SD.RP and SD.Size.

o Creation by SQL Server at Dell1 of the distributed p
2.SkyServer.dbo._ Dell1_PhotoObj as its single table.

egistration of hotoObj distributed partitioned view as the primary v
Tuple (PhotoObj, .true, Dell2, 1) is inserted into SD.Image meta-table.

Fig 2 shows the result of the scalable table PhotoObj creation.

4.3.2 Table Evolution

A scalable table T scales up by getting new segments, and scales down by dropping some. The dynamic
splitting of overflowing segments performs the former.
pe form the latter. Both operations do not update the images. The existing ones become automatically
outdated. They are eventually corrected later by the dedicated image
These occur during the query processing, as we already me
appears seldom at best. We did not consider them for
implem ntations of B-tree
adjustment.

 Dell2 Dell1 PhotoObj

SD.Primary

Dell1 PhotoObj 160000
SD.Size

SD.RP

Server node Dell2
Client node Dell1

 Dell2 Dell1 PhotoObj

PhotoObj true Dell2 1
SD.Image

 Dell2
SD.Server

PhotoObj
Distr. Part. View

_Dell1_PhotoObj
Table

Fig 2 Creation of PhotoObj scalable table

4.3.2.1 Splitting

The splitting algorithm aims at several goals. We first enumerate these goals. Next we discuss the
algorithm itself and show how it reaches the goals. The goals are as follows:

o The split removes the overflow from the splitting segment, leaving it at least half full. To remove the
overflow, the split migrates some tuples into at least one new segment. Every new segment ends up half
full. The overall result is clearly 70 %.

sing aims at not delaying the commit of the insert triggering it. The split time may be

o The allocation of nodes to new segments of a scalable table aims at randomly balancing the node load
among the clients (peers). On the other hand, the splitting algorithm allocates the same nodes to the

 at least the typical good load factor of almost

o The split proces
typically expected much longer than that of the insert. The delay could lead to the timeout at the
application level.

- 16 -

able. It means here

e

gle INSERT command

ecution time unexpectedly much longer than

The s the input parameter. To create the new segment(s), with their
respe s follows. It starts as a distributed transaction at the serializable

ter first

ely cases a deadlock

M > N, then it randomly selects the nodes for the new segments. The selection is random, but driven, at

successive segments of different scalable tables of the same client. This policy aims at reducing the query
execution time, as usually the queries tend to address the tables of the same client.

o The concurrent execution of the split and of the scalable queries is serializ
specifically that a concurrent scalable query that addresses the tuples in an overflowing segment either
manipulates them before the split migrates out any of them, or manipulates them only when the split is
over.

W now show the algorithm, and how it achieves goals. The creation of a new segment for a scalable
table T occurs when an insert overflows the capacity of one of its segments, declared in local SD.Size for
T. At present, all the segments of a scalable table have the same capacity, defined in the sd_create_table
command. The overflow may consist of arbitrarily many tuples, brought by a sin
with the SELECT expression (unlike in a record-at-the-time operations, e.g., as in a B-tree). A single
INSERT may further overflow several segments. More precisely, we may distinguish the cases of a (single
segment) tuple insert split, of a single segment bulk insert split and, in the latter case, of a multi-segment
(insert) split. The two latter cases correspond to the INSERT with the SELECT expression.

In every case, the INSERT AFTER triggers at every segment getting tuples tests for the overflow, [8]. The
positive result leads to the split of the segment, according to the following segment partitioning scheme.
The scheme adds N ≥ 1 segments to the table, where it determines N as follows. Let T be the splitting
scalable table with the segment capacity b. Let P be the (overflowing) set of all the tuples in one of, or the
only, overflowing segment of T, ordered in ascending order by the key. Each server cuts its P, starting
from the high-end, into successive portions P1…PN consisting each of INT (b/2) tuples. It later sends each
portion as a new half-full segment of T to a different server. The number N is the minimal leaving at most
b remaining tuples in the splitting segment. We always have N = 1 for a tuple insert, and the usual even
partitioning, as Fig 3 shows. A single segment bulk insert,

Fig 4,leads to N ≥ 1 half-full new segments, while the splitting one ends up between half-full and full,.
We have in both cases:

N = ⎡(Card(P) – b) / INT (b/2)⎤

The same scheme applies to each splitting segments in the case of a multiple bucket insert, Fig 5.

The AFTER trigger only tests the overflow. It launches the actual splitting as an asynchronous job that we
call splitter. If the trigger had to handle the split as well, the insert that lead to the overflow would not
commit before the split ends. This could make the insert ex
otherwise. If the split job is dealt with asynchronously, the insert terminates in about the usual time. With
some luck, the split does not then affect any concurrent update as it appears below.

splitter gets the segment name a
ctive portions, the splitter acts a

isolation level. SQL Server uses then the 2PL protocol for the concurrency management. The split
searches for PrimNd of the segment to split in Primary meta-table. If it finds the searched tuple, SQL
Server puts it under a shared lock. The splitter requests then an exclusive lock on the tuple registering the
splitting segment in RP of the splitting table that is in the NDB at PrimNd node. As we show later, it gets
the lock if there is no (more) scalable queries or other commands in progress involving the segment.
Otherwise it would encounter at least shared lock at the tuple, as we show later as well. SQL Server
would then make the split waiting till the end of the concurrent operation. Very unlik
may also result. As we show, the overall interaction suffices to provide the serializability of every
command and of a split. If the splitter does not find the tuple in Primary, it ends up. As it will appear, it
means that a delete of the table occurred in the meantime.

From now on, there cannot be a query in progress on the splitting segment; neither another splitter could
lock it, as it should lock first the tuple in RP. The splitter safely verifies the segment size. An insert or
deletion could change it in the meantime. If the segment does not overflow anymore, the splitter
terminates. Next, it determines N as above. It finds b in the local SD.Size meta-table. Next, it attempts to
find N an empty nodes where there is not yet any segment of T. It searches for such nodes through the
query to NDB meta-table, requesting every node which is a server or peer and not yet in RP for T. Let
M ≥ 0 is the number of nodes found. If M = N, then the splitter allocates each new segment to a node. If

- 17 -

 1 secondary segments at the same (another)

 (b/2), let c be the key, and let Si denote the new segment at node Ni, destined for portion Pi. The

information_schema.TABLE_CONSTRAINTS. The

 below.

o It es. It inserts the tuples describing Si
into mary node of T. It also inserts the one

hat, if defined for segment S, this

 key values in portion Pi> 1, perhaps,
d in the splitting segment. Then the low and

mits which makes SQL Server to release all the locks.

ne of the splits, after some delay. Let us say, it would restart the split of S’. Depending on
time till the

t for any

the base of the randomness generation, by the table creation NDB name. Any two tables created by the
same client node share the same primary NDB, have their st

server as well etc… One may expect this policy to be usually beneficial for the query processing speed.
At the expense however, perhaps of the uniformity of the processing and storage load among the server
NDBs.

If M < N, it means there is no enough of NDBs in the SDB of the segment to carry out the split. The
splitter attempts then to extend the SDB with new server or peer NDBs. It selects (exclusively) possibly
enough nodes in the meta-database which are not yet in the SDB. We recall that the latter data are at the
meta-table Nodes and SDB at primary SDB node. If it does not succeeds the splitting halts with a message
to the administrator. Otherwise, it updates the NDB meta-table, asks SQL Server to create the new NDBs
and allocates these to the remaining new segment(s).

Once done with the allocation phase, the splitter creates the new segments. Each new segment should
have the schema of the splitting one, including the proper name, the key and the indexes, except for the
values of the check constraint as we discuss below. Let S be here the splitting segment, let p be
p = INT
creation of the new segments loops for i = 1…N as follows:

o It performs the SQL Server query in the form of

SELECT TOP p (*) INTO Ni.Si FROM S ORDER BY c ASC

o It finds the key of S using the SQL Server system tables and alters Si scheme accordingly. It uses SQL
Server system tables information_schema.Tables and
splitter will join these tables on the TABLE_SCHEMA, CONSTRAINT_SCHEMA and
CONSTRAINT_NAME columns and then returns the primary key of S.

o It determines the indexes on S using the SQL Server stored procedure sp_helpindex. It then creates the
same indexes on Si using the SQL Server create index statements.

o It creates the check constraint on Si as we describe

 registers of the new segment in the SD-SQL Server meta-tabl
(i) Primary table at the new node, and (ii) RP table at the pri

with the Si size into Size at the new node.

o It deletes from S the copied tuples.

o The splitter computes each check constraint as follows. We recall t
constraint C(S) defines the low l and/or the high h bounds on any partition key value c that segment may
contain. We have: C(S) = { c : l < c ≤ h }. The creation of a primary segment does not set the constraint,
unless the command defines the bounds. Let thus h be the highesti
un efined for P1. Let also hN + 1 be the highest key remaining
high bounds for new segment Si getting Pi is l = hi+1 and h = hi .The splitting segment keeps its l, if it had
any, while it gets as new h the value h’ = hN+1, where h’ < h. The result makes T always range
partitioned.

Once the loop finishes, the splitter com

Notice that the scheme may lead to a distributed deadlock, in the following case. One may reasonably
expect it fortunately very rare, and it would still preserve the serializability in practice. Consider that we
have a multiple segment split, let us say of two segments, S and S’. This would launch two splitters. They
may start concurrently. The splitter of S may get the lock on tuple of S in RP. In about the same time, the
splitter of S’ may get the lock on the S’ tuple. Next, both splitters may concurrently issue the queries
searching for the available NDBs. The query of S splitter would block on the S’ lock, and vice versa.

The executions would then wait during the timeout till SQL Server at the node of RP automatically aborts
and restarts o
this delay, this one would either (i) wait on the shared lock on S’ tuple obtained in the mean
split of S commits, or would (ii) restart once the split of S already committed, or (iii) would go
reason the exclusive lock on the S’ tuple again before the S splitter’s query comes into, being re-aborted
and restarted with a delay. In any case, at some point S’ would get its lock. It then would normally find

that either S’ does not need the split anymore, or would eventually execute its split. This, although, in
theory, it could deadlock again with a new split of S etc.

- 18 -

p

S S S1

 p=INT(b/2)
 C(S)= ∅ ⇒{ c: c ≤ h = c (b+1-p)}
 C(S1)={c: c > l = c (b+1-p)}

b+1

b+1-p

Fig 3 Tuple insert split of the primary segment (thus without the check constraint)

b

b + t

S

b+t-np

S1 S SN

p

Pn

P1

P1 Pn

b

S

(b) (a) (c)

b b b

p
b+t-np

 p=INT(b/2)
 C(S) ={ c: l < c ≤ h }
 ⇒ { c: l < c ≤ h’ = c (b+t-Np)}
 C (S1) = {c: c (b+t- p) < c ≤ h }
 …
 C (SN) = {c: c (b+t-Np) < c ≤ c (b+t-(N-1)p)}

Fig 4 Single segment bulk insert split creating N ≥1 new segment. The splitting segment already

has a check constraint. (a) Segment before the insert, (b) after the insert, (c) after the split

Example 4-3. Consider an insert of 160000 tuples into empty _Dell1_PhotoObj primary segment of
PhotoObj. Suppose the segment capacity of PhotoObj to be b = 150000 tuples. The insert will trigger the
split. Let the query to Nodes and RP find that there is no _Dell2_PhotoObj segment in SkyServer NDB at
node Ceria2. Let suppose that the splitter chooses this node. It then proceeds as follows:

o It creates _Dell1_PhotoObj segment at Ceria2.SkyServer with the PhotoObj table scheme.

o It transfers the portion of p = 75000 tuples to the new segment. These are the upper tuples in the
seg

o It sets
the high value h to the highest remaining value of Objid. This is Objid of the tuple with rank 85000 that

bj, and (ii) the
finition of

the current PhotoObj partition.

ment with respect to the order on Objid.

 defines the new Check Constraints on the splitting and the new segment. On the splitting one, it

we note Objid (85000). The low value l remains undefined, as it was before. On the new segment, Objid
(85000) becomes in turn the low value l, while h remains undefined there.

o It registers the new segment, i.e., it inserts (i) the tuple (Dell2, Dell1, PhotoObj) into
Ceria2.SkyServer.SD.Primary meta-table, pointing thus to the primary node of PhotoO
tuple (Ceria2,Dell1,PhotoObj) into Dell2. SkyServer.SD.RP meta-table, updating thus the de

p p

Sk,n
 k

…. …. ….

S1 Sk S1 S1,n
 1

 Sk

b b b b b b

….

 Fig 5 Multi-segment split

o It deletes the transferred tuples from the splitting _Dell1_PhotoObj segment at Dell2 node.

Consider now the same insert, but suppose b = 100 000. Now the portion size is p = 50000 and the split
creates 2 new segments with the capacity of b = 100 000 each. Let Ceria2 and Dell3nodes be chosen for
these segments. Let the first portion go again to Ceria2. These are the uppest tuples in the segment, with
respect to the order on Objid. The portion fills again half of the new segment. The splitting segment
would remain now with 110 000 tuples. It is more than b hence the splitting continues. Next portion of
50000 tuples is cut off and sent to Dell3. It also fills there half of the new segment. The splitting segment
contains now 60000 tuples. This is under b, hence the splitting ends up.

4.3.2.2 Image Adjustment

QL Server

umber of segments, let it be SI. It
z in Image with Name = ‘T’. The client also retrieves the PrimNd of the tuple.

It i

alue to SA. It also

This operation occurs when a scalable query, i.e., a user query using any command of SD-S
with the selection expression, invokes an image of some scalable table, let it be T. The image can be
primary or secondary, invoked directly or through a (scalable) view. SD-SQL Server produces from the
scalable query, let it be Q, an SQL Server query Q’ that it passes for the actual execution. Q’ actually
addresses the distributed partitioned view defining the image that is dbo.T. It should not use an outdated
view. Q’ would not process the missing segments and Q could return an incorrect result.

Before passing Q’ to SQL Server, the client manager first checks therefore the image correctness with
respect to the actual partitioning of T. RP table at T primary server let to determine the latter. The
manager retrieves therefore from Image the presumed size of T, in the n
is the Si e of the (only) tuple

s the node of the primary NDB of T, unless the command sd_drop_node_database or sd_drop_node
had for the effect to displace it elsewhere. In the last case, the client retrieves the PrimNd in the SD.SDB
meta-table. We recall that this NDB always has locally the same name as the client NDB. They both share
the SDB name, let it be D. Next, the manager issues the multi-database SQL Server query that counts the
number of segments of T in PrimNd.D.SD.RP. Assuming that SQL Server finds the NDB, let SA be this
count. If SA = 0, then the table was deleted in the meantime. The client terminates the query. Otherwise, it
checks whether S = SA. If so, the image is correct. Otherwise, the client adjusts the Size vI
requests the node names of T segments in PrimNd.D.SD.RP. Using these names, it forms the segment
names as already discussed. Finally, the client replaces the existing dbo.T with the one involving all the
newly found segments.

The view dbo.T should remain the correct image until the scalable query finishes exploring T. It implies,
that no split modifies T partitioning since the client requested the segment node names in
PrimNd.D.SD.RP, till Q finishes manipulating T. Giving our splitting scheme, it means in practice that no
split starts in the meantime the deletion phase on any T segment. To ensure it, the manager requests from

- 19 -

- 20 -

uld not finish, or perhaps even start, the SA count and the T segment names

ocal primary segment, as

. The counting of the tuples
reports then SA = 3. Once
artitioning till Q ends. The

imag bj turns out thus not correct. The manager should update it. It thus

pass

.Size table of the NDB of the scalable table to alter and updates the tuple
city. It replaces its maximal size by the new entered one in the command.

DB and loops over all the existing segments of the T
izability with the other operations, in particular the split, the sd_alter

m

ble, the split gets its exclusive lock. If at this moment another alteration starts, it

and

SQL Server to processes every Q as a distributed transaction at the serializable isolation level. We recall
that SD-SQL Server uses the same level for the splits. The counting in PrimNd.D.SD.RP during Q
processing generates then a shared lock at each selected tuple. Any split of T in progress has to request an
exclusive lock on some such tuple, registering the segment where the split should start deletion.
According to its 2PL protocol, SQL Server would then make any T split waiting till Q ends up. Vice
versa, Q in progress wo
retrieval, till any split in progress ends. Q will take then to the account the newly added T segments as
well. In both cases, the query and split executions remain serializable.

Finally, we use the lazy schema validation option for our linked SQL Servers, as we mentioned in
Section 2. When starting Q’, SQL Server drops then the preventive checking of the schema of any remote
table referred to in a partitioned view. The run-time performance obviously must improve, especially for a
view referring to many tables [9]. The potential drawback is a run-time error generated by discrepancy
between the compiled query used towards the view, hence dbo.T in our case, and some alterations of T
schema by SD-SQL Server user since, requiring Q recompilation on the fly.

Example 4-4. Consider query Q to the SkyServer SDB at the peer node Peer1:

sd_select ‘* from PhotoObj’

Suppose that PhotoObj is here a scalable table created locally, and with the l
typically for a scalable table created at a peer. Hence, Q’ should address dbo.PhotoObj view and is here:

SELECT * FROM dbo.PhotoObj

Consider that Peer1 manager processing Q finds Size = 1 in the tuple with of Name = ‘PhotoObj’
retrieved from its Image table. The client finds also Peer1 in the PrimeNd of the tuple. Suppose further
that PhotoObj has in fact also two secondary segments at Peer2 and Peer3
with Table = ‘PhotoObj’ and CreatNd = ’Peer1’ in Peer1.SkyServer.SD.RP
SQL Server retrieves the count, it would put on hold any attempt to change T p

e of PhotoObj in dbo.PhotoO
retrieves from Peer1.SkyServer.SD.RP the SgmNd values in the previously counted tuples. It gets {Peer1,
Peer2, Peer3}. It generates the actual segment names as ‘_Peer1_PhotoObj’ etc. It recreates
dbo.PhotoObj view and updates Size to 3 in the manipulated tuple in its Image table. It may now safely

Q’ to SQL Server.

4.3.2.3 Table Alteration

The sd_alter_table command alters a scalable table, let it be T. The alteration of a scalable table offers
all the traditional functions of ALTER TABLE: add, drop or alter a column…. In addition, it allows
updating the maximal size of a scalable table. Its processing starts by determining if it modifies the
segment capacity of a scalable table or its schema.

In the former case, it acts as below:

o First, it gets the primary NDB of the scalable table to alter from the SD.Image table where the
command is executed.

o Next, it goes on the SD
describing its segment capa

o In the case of the alteration of the scalable table schema, SD-SQL Server acts as below:

o As for the first case, it gets the primary NDB, let it be D, of the T scalable table to alter.

o It goes on the SD.RP table of the D primary N
scalable table. To preserve the serial
co mand puts a shared lock at all the tuples that it uses in RP meta-table. This put on wait any split to get
its exclusive lock on the tuple, describing the splitter segment, in SD.RP table. Once the alteration
finishes with RP meta-ta
will be made on wait until the splitter finishes its process. Consequently, the segment added from the split
should also be altered. Thus, the concurrency schema allows the serializability of both alteration
splitting.

- 21 -

ble, it gets its value of SgmNd. Next, it requests SQL Server to create or remove index I at T

split in progress or of a command moving a segment of T into another node, or
commands below. If there is such lock, the

ck on the tuples describing the T scalable table segments to remove in the RP
mes to put its exclusive lock on a tuple describing one of these segments, it will

be

t

t is only done when the client doesn’t find that

original
d

le..

rimary and
Ceria2.SkyServer.SD.Primary respectively.

4.3.2.4 Index Creation and Removal

SD-SQL Server follows the same steps for the index creation and removal command processing. Let the
command concern the scalable index I at the scalable table T. The manager executing it basically iterates
the SQL Server index creation or removal command at each T segment. More in detail, it goes through
the following steps:

o It retrieves the PrimND in the SD.Image table at its node.

o It loops through SD.RP at the NDB at PrimND node. For each tuple describing a segment of the T
scalable ta
segment on the SgmNd node.

The processing respects the serializability. Here, it means, in the nutshell, that when the command
processing ends either all the existing segments of T get the index, or none of them. Indeed, the above
accesses to the meta-tables generate the shared locks. The SQL Server Create Index commands requests
exclusive locks at the segments. A shared lock request at a tuple of T segment in SD.RP may find an
exclusive lock of a
dropping the segment. For details, see the processing of those
command waits and later processes the new or moved segments. Otherwise, the loop cannot miss any
segment of T. With respect to the actual index creation at each segment, SQL Server manages the locks at
each segment internally as usual, providing the serializability accordingly.

4.3.2.5 Table Removal

The sd_drop_table command removes a scalable table, let it be T, as previously described. Internally,
it calls the standard SQL Server DROP TABLE command for every existing segment. It also removes all
the related scalable indexes and meta-data in the SD-SQL Server meta-tables. It acts in detail as follows.

o It searches Image for PrimNd of the table. Let N denote the node found and let D be the SDB of T,
The client issues then the query to N.D.SD.RP. If it does not find this NDB (rare case), it searches for the
NDB with RP with T through the meta-table SD.SDB, defining the current SDB. Once the RP is located,
the query will act as follows:

o It gets an exclusive lo
table. Thus, if a splitter co

 made on wait. Otherwise, if the sd_drop_table finds the exclusive lock put by a splitter on one of these
tuples, then it will be put on wait until the splitter finishes.

o It goes on each node where the segments of the scalable table to remove are located. At each node, i
drops the T segment and also removes the tuple describing its primary node in the Primary table.

o After removing each segment of the T scalable table, it removes the tuple describing it in the RP table
of the primary NDB.

o It removes the tuple that describe the segment capacity of T in the SD.Size meta-table.

Notice that sd_drop_table doesn’t remove the scalable table images. This is due to the state of the client
that detains the image. If a client is not connected for example the image removal will fail. Thus, the
image removal is not done with its scalable table removal. I
the related scalable table, thus it will need to remove itself later, as we will describe latter.

Example 4-5. The following command drops the PhotoObj scalable table. Dell2.SkyServer is the
no e where PhotoObj was initially created by the Dell1 client. Let PhotoObj be a scalable table
partitioned into 2 segments at Dell2.SkyServer and Ceria2.SkyServer nodes with the public user (.dbo) as
in the previous examp

sd_drop_table ‘Dell2.SkyServer.dbo.PhotoObj’

The processing of the sd_drop_table command for the PhotoObj scalable table follows the steps below:

o Drop the _Dell1_PhotoObj segments at SkyServer NDBs of Dell2 and Ceria2 respectively.

o Remove the tuples (Dell2,Dell1,PhotoObj) from Dell2.SkyServer.SD.P

- 22 -

ement
4.4.1

e
able table

ever, the secondary image name is like C_T and prefixed by

ese are
the steps that the secondary image creation follows:

 let it be C1, which executes the scalable table creation, let it be
e. As already described, the secondary image name is then C_T (C is the client

o avoid the concurrency conflict with other queries that use SD.Image table at the

k of the image creation. Thus, it waits the end of this
e

o removes all meta-
data ry image to remove. We recall that
the r . These are the steps it follows:

 waits the end of this query to get its exclusive lock. Thus, the query can
se the image before that the sd_drop_image command removes it. The serializability is then preserved
ith this schema.

al T image.

ith
ate and

r a view name in a query depends. The client verifies every image before it passes to
able behind the image. We now present in depth the processing of

scalable queries under SD-SQL Server. We first discuss the image binding. Next, we discuss each
command specifically.

o Delete the tuple (Dell1, PhotoObj, 160000) from SD.Size meta-table.

o Delete the tuples (Dell2, Dell1, PhotoObj), (Ceria2, Dell1, PhotoObj) from SD.RP meta-table.

4.4 Secondary Image Manag
 Image Creation

We recall that an image can be primary or secondary. Both have the same role, i.e. defining their scalabl
table. What differs is that the primary images are created on the client NDB of their scal
creation at the same time. The secondary images are created on clients that are not those where the related
primary image is created. Otherwise, a primary image has the same name of their scalable table, T for
example, and prefixed with the SD user. How
the dbo users unlike.

The sd_create_image scalable command provides then only the creation of a secondary image. Th

o The image is created on a client NDB,
T, and related to this imag
NDB on which the scalable table T is created). To get the secondary image definition, the client uses the
NDB parameter entered in the sd_create_image command that indicates the primary NDB, let it be D
found at N node, of the T scalable table. Thus, the image definition will be as follow:

CREATE VIEW dbo.C_T AS SELECT * FROM N.D.dbo._C_T

o Next, the C1 client adds a tuple describing the created image in SD.Image table, i.e (PhotoObj
.false,D,1). In order t
same time, the client puts an exclusive lock on this table. So if another query, an alter one for e.g., comes
to alter the T scalable table, it finds the exclusive loc
op ration to get its shared lock.

4.4.2 Image Removal

The sd_drop_image command removes a secondary image as already shown. It als
related to the secondary image to remove. Let D_T the seconda
emoval operation is executed on the client of the secondary image

o It gets from the secondary image name the client node, i.e. D, of the related primary image T.

o Next, it goes to the SD.Image table and puts an exclusive lock on the tuple describing D_T image.
This will put on wait any concurrent operation on SD.Image. If the sd_drop_image finds a shared lock put
by a delete query on SD.Image, it
u
w

o Fin ly it removes the D_

4.5 Scalable Query Processing
A scalable query consists for an SD-SQL Server client (peer) from query command followed w

the (scalable) query expression. We recall that these commands are sd_select, sd_insert, sd_upd
sd_delete. Each command names the stored procedure implementing it. The query expression constitutes
one or more input parameters of the procedure. The syntax of the valid expressions follows the standard
SQL rules for the query expression of the related SQL (static) command, e.g. select for sd_select. It is
also command dependant and has for each command additional SD-SQL Server rules, seen in Section 4.1.
Every scalable query, unlike static one, starts with the image binding phase that determines every image
on which a table o
SQL Server any query to the scalable t

- 23 -

The

ry object name alone by separating it from it FROM clause list. For every
u sumed a proper name, the client manager proceeds as follows:

 in turn. A multi-database base view does not have direct remote dependants in

aining for

hen two outdated images could be concurrently

erializability of the whole scalable command processing under SD-SQL Server.

on provided, following the SQL select

4.5.1 Image Binding

client (manager) parses every FROM clause in the query expression, including every sub-query, for
the table or view names it contains. The table name can be that of a scalable one, being then that of its
primary image. It may also be that of a secondary image. Finally, it can be that of a static (base) table. A
view name may be that of a scalable view or of a static view. Every reference has to be resolved. Every
image found has to be verified and perhaps adjusted before SD-SQL Server lets SQL Server to use it, as
already discussed.

The client searches the table and view names in FROM clauses, using the SQL Server xp_sscanf function,
and some related processing. This function reads data from the string into the argument locations given by
each format argument. We use it to return all the objects in the FROM clause. The list of objects is
returned as it appears in the clause FROM, i.e. with the ‘,’ character. Next, SD-SQL Server parses the list
of the objects and takes eve
name fo nd, let it be X, as

o It searches for X within Name attribute of its Image table. If it finds the tuple with X, then it puts X
aside into check_image list, unless it is already there.

o Otherwise, the manager explores with T the sysobjects and sysdepends tables of SQL Server. Table
sysobjects provides for each object name, its type (V = view, T = base table…) and internal Id, among
other data. Table sysdepends provides for each view, given its Id, its local (direct) dependants. These can
be tables or views
sysobjects. That is why we do not allow for scalable multi-database views at present. The client searches,
recursively if needed, for any dependants of X that is a view that has a table as dependant in sysobjects or
has no dependant listed there. The former may be an image with a local segment. The latter may be an
image with remote segments only. It then searches Image again for X. If it finds it, then it attempts to add
it to check_image.

o Once all the images have been determined, i.e., there is no FROM clause in the query rem
the analysis, the client verifies each of them, as usual. The verification follows the order on the image
names. The rationale is to avoid the (rare) deadlock, w
processed in opposite order by two queries to the same manager. The adjustment generates indeed an
exclusive lock on the tuple in Image. After the end of the image binding phase, the client continues with
the specific processing of each command that we present later.

With respect to the concurrent command processing, the image binding phase results for SQL Server in a
distributed transaction with shared locks or exclusive locks on the tuples of the bound images in Image
tables and with the shared locks on all the related tuples in various RP tables. The image binding for one
query may thus block another binding the same image that happened to be outdated. A shared lock on RP
tuple may block a concurrent split as already discussed. We’ll show progressively that all this behaviour
contributed to the s

4.5.2 Scalable Search

The sd_select command carries a select expression and, perhaps an INTO clause. The latter names a
scalable table if the query expression provides also the segment size and the partition key for the table to
create. Otherwise, the clause names a static table. The manager processes a scalable search, let it be Q,
with the INTO clause or with INTO clause creating a static table basically as follows:
o It forms an SQL query, let it be Q’, with the query expressi
command.

o It binds the images referred to in Q’.

o It passes Q’ for the execution to SQL Server at the serializable isolation level.

This execution scheme is obviously amended if errors occur, e.g., the name used in the query expression
does not designate any object.

If there is INTO clause creating a scalable table, let it be T, then the segment size and the partition key for
T, constitute the additional input parameters. Once the client finds these parameters, it proceeds also as
follows:

- 24 -

 is the name of SDB used (through the USE D clause of SQL Server).

rch already discussed.

how a set of scalable select queries. We give different cases that can be presented for users. We

, Peer2 and Peer3 respectively. Let Peer1 be the initial node where PhotoObj was

able. We suppose that PhotoObj contains
nition of the PhotoObj secondary image

ments of the PhotoObj scalable table in its
thus should be adjusted to include all the scalable segments. Applying the query processing

-SQL Server will get the objects in the FROM clause of the input parameter of the

In (S efined as below:

st PhotoObj, which is not already adjusted, and then executes the
quer

The e S as a copy of PhotoObj with only the 10 first tuples. The
e key attribute entered by the user (the 3rd
 primary image S, related to the S scalable

table m the PrimServ meta-table of the current client
Peer2 les. Tuples ((D, Peer2, S), (Peer2, S, 150) and

reates the S scalable table, i.e. Peer2 client.

4.5.3

modified table name, (ii) all the table names in selection
expr

o It registers T as a scalable table, i.e., T gets a primary segment site and the entries into SD-SQL Server
meta-tables.

o It replaces T name in the expression with that of its primary segment, let it be _N_T, prefixed with
N.D, where D

o It then proceeds as for the scalable sea

o Next, it creates the trigger on the N.D.dbo._N_T table.

o It searches for any tuple in T, e.g. using TOP 1 predicate, deletes it and reinserts.

The last step triggers the split if T turned out to overflow.

Example 4-6

Here, we s
use for all the examples below the PhotoObj scalable table. We suppose that it is partitioned into 3
segments at Peer1
created. We execute scalable select query on Peer2 node:

(S1) sd_select ‘* FROM PhotoObj, T1’

In (S1) statement, PhotoObj is a scalable table and T1 is a static t
Peer1 Peer2 Peer3three segments at , and . Thus, the defi

(scalable view) at Peer2 is as below:

CREATE VIEW PhotoObj AS SELECT * FROM _Peer1_PhotoObj

The PhotoObj secondary image doesn’t contain all the seg
definition and
described above, SD
select command, i.e PhotObj and T. Next, it applies the algorithm described above on each object. It finds
that PhotoObj is a scalable table and it is not adjusted, thus it adjusts it before it executes the query.

(S2) sd_select ‘COUNT (*) FROM T2’

2), we suppose that T2 is a static view d

CREATE VIEW T2 AS SELECT * FROM PhotoObj

When parsing the query, SD-SQL Server will find PhotoObj as a depending object of T2. As PhotoObj is
a scalable table, thus it adjusts at fir

y.

(S3) sd_select ‘TOP 5 P.objid FROM PhotoObj as P’

(S3) gives an example of a query with top and alias. The execution of this statement will select the first
five tuples from the PhotoObj scalable table.

(S4) sd_select ‘TOP 10 objid INTO S FROM PhotoObj’, 150, ‘Objid’

execution of (S4) will create a new tabl
new S table is created without primary keys, thus we use th
parameter: ‘Objid’) to define the primary key. A trigger and a

, are also created on a new server, let it D, selected fro
. Next, we put data related to S table in the meta-tab

(D, Peer2, S) are respectively inserted into SD.Size, SD.RP, SDprimary of the D node where the primary
segment of the S scalable table is created. The (S, .true, D, 1) tuple is inserted into SD.Image of the node
which c

 Scalable Updates

The sd_insert, sd_update and se_delete commands follow the same processing phases as follows:

o The manager binds the images to (i) the
ession of the command.

- 25 -

on common Image, as already observed. They may
on s. The image binding phase is clearly serializable. The segment processing
 b y managed by the SQL Server, trusted serializable. The concurrent processing

of ode

sert query. It finds that is a scalable table by

 SDB or NDB Creation

ne and through the
e stored procedures

need de N, simply registers N with SD.Nodes.

the user SD and SD-SQL Server meta-tables. Besides, SD.NDB and SD.MDBNode
D. It initiates SD.NDB and SD.MDBNode.

ilarly, except that it registers the NDB in SD.NDB of its primary

 with some segments, the manager should preserve elsewhere these segments. Finally, it it is a

r SD-SQL Server. These could possibly involve

rations to be least affected, and
o s.

ress on the scalable table referred to. The manager tests then the image type. If it is a secondary

o It generates the SQL Server command acting according to the scalable command. For sd_insert it is
thus INSERT etc. The clauses of the generated command are these in the scalable one.

o It launches the execution of the generated command.

The commands execute as the distributed transactions at the repeatable read isolation level. It is quite
easy, thought rather tedious to analyse in depth the concurrent execution of different queries and the other
operations, proving the overall serializability especially. In the nutshell, two concurrent scalable queries
never block on RP and might block without deadlock
block common segment
should e as well. It is purel

a query and of a split was already analysed. The analysis of the concurrency with respect to the n
management commands will follow.

Example 4-7

Let the insertion below into the PhotoObj scalable table with the sd_insert command:

sd_insert ‘PhotoObj (objid) VALUES (2255031257923860)’

SD-SQL Server gets the PhotoObj table used in the in
looking for it in Image table. Then, it checks if PhotoObj image is adjusted. It gets its segments number
from the RP table and compares this number with the one found in Image table. We suppose that it is the
same number, and then PhotoObj image is adjusted. Finally, the sd_insert command will execute the
INSERT clause.

4.6 Node Management
These SD-SQL Server capabilities involve the creation or the removal of a node, an SDB or an NDB.

4.6.1 Node,

The application creates an SD-SQL Server node through the script for the primary o
command otherwise. The script creates the MDB with its tables and loads into all th

ed at a peer node. The node creation command let it be of no
The manager getting the SDB creation command, let it be named D, of type T, and at node N again, acts
as follows:

o It creates an SQL Server database D and registers its name, type and node in SD.SDB in the MDB.
The database becomes the primary NDB for SDB D.

o It creates in D
these depend on the type of

o It copies into D, from MDB, the SD-SQL Server stored procedures constituting the manager of T.

o The NDB creation command acts sim
NDB.

4.6.2 NDB Removal

Dropping an NDB is a more complex operation than to create one. If it is a client NDB with some
scalable tables, then the manager should also drop all the remote segments, if any, of these tables. If it is a
server NDB
peer NDB, the manager should act both as for the client and as for the server. As for the already
discussed operations, the processing of the NDB removal should also preserve the serializability of a
concurrent execution of any commands anywhere unde
the NDB to drop or any meta-data that the manager has to use while processing the command. As usual,
the processing of the command should besides let the concurrent ope
sh uld possibly avoid deadlocks. With the aim at all these constraints, the NDB removal acts as follow

The manager first tests the NDB type, using SD.NDB. If it is a client, then the manager first, loops over its
Image table. It fetches a tuple requesting an exclusive lock. If it gets it, it means there is no client’s query
in prog

- 26 -

he tuple. Otherwise, for each primary image thus, the manager drops the scalable

t NDB or node removal can get it. Every concurrent splitting already in

 up. If it
e

nother

, and only from this point, any new query involving a segment at D will be
t

 SQL Server to drop D. If it goes OK, the manager commits the transaction. At this

 image. A client could be
a

erver may not find the segment

image, it simply deletes t
table referred to. This can be done only if there was no concurrent query or split in progress over the
dropped table. Once done with the tuple, the manager removes it and fetches the next one, if any remains.
Once done with the loop, the manager attempts to remove the tuple registering the NDB at its SD.NDB. If
it succeeds it means that there was no lock at this tuple, hence no split somewhere already in progress of
segment creation at the NDB. Finally, it requests SQL Server to drop the database underlying the NDB.
This may drop the manager itself. The manager acts therefore for the whole operation in fact through the
launch of an asynchronous job.

If the NDB to drop is a server NDB, the manager acts in the nutshell as follows. It finds a spare node (for
the SDB) and creates an NDB there. It then copies there every remaining segment. It recreates the key,
the check constraint and the indexes. It also updates accordingly the meta-data at the new NDB, and those
on other nodes affected by the move, the Primary tables especially. Finally it drops the existing NDB. In
detail, because of the already discussed concurrency control constraints, this process is quite complex. It
goes through the following steps. We denote the dropped NDB as N.D and the new one as N’.D:

o The manager creates N’.D using internally the sd_create node_database command, without the
commit. This operation inserts the tuple with N’.D into NDB table at the primary NDB of SDB D.

o Next the manager deletes the tuple with N.D from SDBNode table at the primary node. It finds its
address in its SDBNode table or through its MDBNode table (there is a rare possibility that an SDBNode
pointer is outdated, if the primary NDB was dropped, since the client last attempted to access it). Once
performed, the operation prevents any concurrent splitter at any node from getting D as an NDB for a new
segment. Likewise no concurren
progress on D had to finish.

o The manager loops over the tuples in Primary table in D. If it does not find any tuple, it means there is
no segment to save. Otherwise, for any tuple found, (i) it requests an exclusive lock, and (ii) once it gets
it, then (ii) it requests a shared lock at the segment, and (iii) it copies the segment the tuple registers into
the new D, as above discussed. If it does not get the lock in step (i), it normally means that there is a
shared lock of a split in progress started at D. This would make the drop to wait till the split ends
do s not get the lock (ii), it means there is an update query in progress. This would make the copying to
wait, and could lead to a deadlock with the query. The query may have to finish the update on a
segment that the manager locked in the meantime. The shared lock however does not affect any search
over the segment.

o The manager updates in Primary every tuple registering a primary segment at D. It sets the PrimNd
value to that of the new D node name. Once done, the manager copies Primary into new D.

o The manager requests an exclusive lock on RP. Once it gets it, it means there is no segment at D
serving a query. From now on
pu on wait at the stage of its image adjustment, so before it accesses any data.

o The manager now loops again through Primary. For each tuple, it updates the related tuple in RP,
pointing to D, so it points to new D instead. Next, it copies RP to new D.

o The manager determines from SDB whether D is primary in its SDB. If so, it requests the exclusive
lock on SDB table at D. Once it gets it means there is no split in progress anywhere in the SDB. Any split
coming from now on and needing to search for nodes in D waits. Next, the manager copies SDB and all
the remaining meta-tables to new D. Next, it updates SDBNode at every NDB so it points to new D.

o Finally, it requests
time, SQL Server nodes let continue any query or other command waiting on a tuple in any meta-table
manipulated above.

The scheme lets the queries to execute during possibly relatively long operations of segment copying. The
queries have to wait only during a relatively short time, when the manager copies RP table and some
others, and drops D. Next, notice that the operation does not adjust any client
un vailable anyhow at the time of the operation. A side effect of a server NDB dropping may be that
every existing image of the scalable tables whose segment moved becomes outdated. SD-SQL Server
may detect this fact at the SQL Server query execution time. First, SQL S

- 27 -

i

ur if

tabase command, or would require SQL Server to break the deadlock. Besides, there
an NDB creation or

al wise, it cannot be any concurrent removal of the SDB in progress beyond the

y, it requests through an asynchronous

mand requesting to create or remove an NDB at N. The manager moves then to N’ every

 NDB does it. Notice that,
the s no more an SD-SQL Server node, it remains an SQL Server linked node.

that of the manual repartitioning by an SQL Server user. For the latter, we aimed at the overhead of the

po nted to by a clause in the distributed partitioned view. Then, the manager at the query node forces the
image adjustment. Next, the segment moved elsewhere could be the primary one. The client with the
primary or secondary image to verify will not then find the RP table at all at the location it should be, or
will not find the registration of the segment in RP at the NDB at the node. The latter case could occ
an NDB is dropped and then another created at the same node and for the same SDB. In both cases, the
manager searches then every RP of an NDB currently in the SDB to find the displaced primary segment.
Next it updates the client meta-tables, verifies and adjusts the image, as in Section 4.3.2.2, and finally
executes the query.

Finally, if the NDB to drop is a peer, then the manager acts as for both cases above.

4.6.3 SDB Removal

To drop an SDB, the manager removes (through an asynchronous job) all its peer and server NDBs with
everything they contain. It does not remove any client NDB . The latter can be unavailable for access
anyhow while the SDB removal takes place. The client NDB will need to remove itself later, when it will
not find its SDB through any of its pointers to.

As above the processing has to preserve the serializability of the concurrent operations and the related
constraints. The steps of an SDB removal are therefore as follow:

o The manager requests an exclusive lock on the tuple describing the SDB to remove in the SD.SDB
meta-table. Once it gets it, no split can be in process of creating a new segment in some NDB. Notice that
a split could be holding an exclusive lock on some RP tuple. This lock would need to be rolled back by
SQL Server drop da
cannot be anymore a creation of a DB by SQL Server in progress, on behalf of
remov command. Like
same step.

o Next, the manager loops over NDB table of the primary NDB of the SDB to remove. For each tuple
there, it accesses RP table at NDB pointed to. It locks there exclusively every tuple registering a primary
segment. Once done, there cannot be any query in progress beyond the search for an image it needs.

o The manager restarts the loop over NDB. For each tuple that neither points to the primary NDB, nor to
itself, it issues the SQL Server drop database command. Next, it drops the primary NDB. It also removes
the tuple registering the SDB from SDB table in the MDB. Finall
job from SQL Server to remove its own DB, provided the job does not find the SDB still registered in
SDB which would mean that the command was rolled back, and it commits.

4.6.4 Node Removal

The command sd_drop_node can concern any node, let it be N. It selects at Nodes in MDB a spare (yet
empty) node, let it be N’, provided there is one. Next, it deletes N from Nodes. This blocks every
incoming com
NDB at N. It also reconstructs at N’ any meta-table at N, with the tuples conveniently updated if the need
occurs. To process the command, the manager iterates over N.SD.NDB. For each NDB found, except
perhaps its own, it loops over its removal, without committing the operation. For itself, it only copies its
NDB.

At the end, the manager updates Nodes table. If needed, it updates SDB as well (at the primary node).
The update may concern its own NDB as if it is already moved to N’. If N was the primary node itself, the
manager copies also its meta-tables to the new one. Finally, if its NDB was itself to move, the manager
requests as the asynchronous job its DB removal from SQL Server, provided the job does not find the
node in Nodes. The scheme preserves the serializability, since the removal of an
while removed node i

5. Experimental Performance Analysis
To validate the SD-SQL Server architecture, we evaluated its scalability and efficiency over some

Skyserver DB data. We measured split times and query response times under various conditions. For the
former we dealt with different segment capacities and split types, comparing in particular the timing to

- 28 -

y 1 Gbs Ethernet. We used the SQL Profiler to take measurements.

1.

test for the smaller 2-segment splits. Likewise, an i-
t. In the best case that is the 2-segment split of 1000

tup

verhead is basically the time
others above discussed SD-SQL operations. We expected the latter much smaller than

e of the transfer and of the deletion commands took about 40 sec on SQL Server for a
2-s

image management. Our hardware consisted of 1.8 GHz P4 PCs with either 785 MB or 1 GB of RAM,
linked b

5.1 Split Time
We used a 120 GB fragment of the SkyServer database and some of its benchmark queries, [2]. We

studied the bulk inserts of 1000…160,000 tuples (260 MB) from the original PhotoObj table into an
empty 1-segment scalable PhotoObj table. We varied the segment capacity b for these inserts and the
number of tuples loaded. The inserts triggered splits into 2..5. segments accordingly, Fig 6 and Table

For every insert, the split time is predictably the fas
segment split, i = 2…5, is faster for a smaller inser

les, a few seconds suffice. It remains relatively fast, about three minutes for the most demanding one,
moving around over 200 MB of tuples.

We furthermore determined the overhead of an SD-SQL Server split, with respect to the same manual
repartitioning by an SQL Server user. We have compared our split time with the one of the necessary
SQL Server commands on the same tuples. The SQL Server time includes the transfer time of the
portions, and the time to delete the transferred tuples. The SD-SQL Server o
to perform a few
the former. The tim

egment split of 80000 tuples. The split time under SD-SQL Server was 46 sec (Table 1). Thus, the
difference imputable to SD-SQL Server confirmed the efficiency and utility of SD-SQL Server, being
only about 6 sec, i.e., about 15 %.

o

0

50
100

2 3 4 5
Segments

Sp
lit

 T
im

e 150

200

 (s
)

1000 tuples 10000 tuples 20000 tuples
40000 tuples 80000 tuples 160000 tuples

Fig 6 Split time (s) as function of split segment size (tuples) and number of resulting segments

 Result

Segment Size 2 seg 3 seg 4 seg 5 seg
1000 2.45 4.83 7.84 11.62

10000 7.11 12.15 21.40 26.42
20000 10.55 18.94 32.08 37.12
40000 22.42 38.88 59.59 60.73
80000 46.17 56.79 104.02 104.15

160000 54.65 77.86 130.89 165.11

Table 1 Split time (s) as function of split segment size (tuples) and number of resulting segments.

Next, we studied th litting of an indexed segment. We aimed at the additional cost of the update of the
existing indexes, an the creation of these on the new segments Fig 7 and Table 2 show the result. The
inse s
that the split time increases naturally with the num r of existing indexes and the number of resulting
segments. The index ma ment overhea ains ess negligible, u r 10 %, for up to 4-
segment split. The e 5 ent spl po he exp t, but remains quite
moderate, about 22

e sp
d

rt size is 160 000 tuples. The blue curve in Fig 7 matches the brown one in Fig 6. The conclusion i
be

nage d rem neverthel
re im

nde
 increase for th
 %.

-segm it is mo rtant t erimen

- 29 -

0

50

2 3 4 5

Segments

Sp
lit 100

150

 T
im

200

e
(s

250

)

No index 1 index 2 indexes 3 indexes

Fig 7 Split time as function of existing indexes and of number of resulting segments

 2 3 4 5

No index 54,656 77,86 130,89 165,11
1 index 52,33 77 133,86 187,813

2 indexes 54,816 82,596 137,626 196,783
3 indexes 56,486 83,61 139 202,65

Table 2 Split time as function of existing indexes and of number of resulting segments

5.2 Image Binding
To study the overhead of image binding, we used queries to our scalable SkyServer DB, modelled

upon the actual ones [2]. The following two queries benchmarked the image check g and adjustment
overhead:

1) sd_

(SELECT objid FROM PhotoObj WHERE bjid <= @obj ax’

(Q2) sd_selec PhotoObj WHERE (sta 0000200 D (status 0> 0)’

Query (Q1) rep he rather on-trivial q es. It eval rough th ted processing
with the respo hat has up with bj, as w below, b finally to the
application alw a few t he image overhea uld affect eries the most.
The experim age
checking es. It

g m all the segments. The theoretical analysis points towards negligible image
both image adjustment and checking. We launched both queries at Dell2 node

wh

as the primary key, the subquery
always addres y most likely using the
(automat

mage

in

select ‘TOP 10 objid FROM PhotoObj WHERE objid not in (Q

 o idM

t ‘* FROM tus &0x 0>0) AN &0x001

resents t fast n ueri uates th e distribu
nse time t to scale PhotoO e show ut brings
ays only uples. T binding d sho such qu

ental analysis seems the easiest way to find how much. Especially, whether at least the im
 overhead may turn out to be usually negligible. Query (Q2) represents the expensive queri

brin s 130K tuples fro
binding overhead for

ere we had the secondary PhotoObj image. The table had two segments of various sizes, Fig 8. The
node dell1 was the primary one, thus with the RP table. The execution time of (Q1) depended on the
PhotoObj size because if the subquery. Furthermore, for every segment capacity studied, the parameter
@objidMax was the maximal key in the 1st segment. Since objid w

sed all and only first segment. SQL Server evaluated the quer
ic) indexes on objid at the segments only.

The measures of (Q1) show its response time with (i) the image checking only and (ii) with the i
adjustment. We compared these times at Fig 8 to (iii) that of the (Q1) within the SQL Server, i.e., that of
the generated SELECT query. The user of SQL Server would formulate that one. The difference between
(i) and (iii) appeared always negligible. Both case (i) and (iii) execute in about 300 msec for our largest
tupleset. If the LZV option was set, the experiments discussed later show that this bound should reduce to
under 200 msec. The SD-SQL Server overhead should be constant, as it corresponds always to the same
operations that are independent of the query semantics. The curves show thus that, even for short queries,
usually, i.e., without the image adjustment, the overhead of query processing by SD-SQL Server should
be negligible.

- 30 -

he distributed query to RP to bring the new nodes,

responds to the same operations as well. But now it represents only about 2% overhead,

Next, we studie alable views. We
were intere a view of a view of an
image etc. We e image binding
loops recursively eases, using the
potentially expen le for our set up of
this experiment.

We have therefore

CREATE VI

CREATE VI

CREATE VI

(Q3) sd_select

(Q4) ‘sd_select COUNT (*)

 also that the overall times are about those at Fig 9.

The adjustment overhead in case (ii) dominates the query time that becomes constant. Again, one could
expect this result. The total time appears about 0.7 sec. The query time became thus substantially longer.
It remains however still largely negligible in practice, given also that the image adjustment should remain
a rare operation. The image adjustment overhead time itself appears about 0.5 sec. It is about constant, as
it should be. We recall that this time is due to t
followed by the SD-SQL Server processing preparing the new image, and SQL Server queries dropping
the existing distributed partitioned view and creating the new one. The individual incidence of these
operations remains to be measured.

The execution of (Q2) took predictably much longer than for (Q1), about 45 sec with the image
adjustment. The execution without required 44 sec. The time of (Q2) within the SQL Server was
practically the same. The image checking time stayed naturally the same. It should be so, since it
corresponds to the same operations as for (Q1). The incidence of the image checking became
proportionally even more insignificant than for a short query. The image adjustment took again under 1
sec, since it cor
becoming thus negligible in practice as well. The use of LZV option would get unnoticed. Since the
image adjustment processing is independent of the query semantics, the overhead of image adjustment
should remain negligible in practice for any long query.

0

200

400

600

800

1000

39500 79000 158000
Segment Size

Time (ms)

With Image Adjustment
SD-SQL Server
SQL Server

Fig 8 SD-SQL Server query (Q1) execution time

d the execution time and the image binding overhead of the queries to sc
sted in the overhead of a query addressing a view of an image, then

 call such views of level i = 1, 2... The image itself is here at level 0. Th
 through SD-SQL Server and SQL Server meta-tables when i incr
sive and joins, as discussed in Section 4.5.2. This was the rationa

 created the scalable views:

EW T1 AS SELECT * FROM PhotoObj

EW T2 AS SELECT * FROM T1

EW T3 AS SELECT * FROM T2

‘COUNT (*) FROM PhotoObj’

FROM T1’

 Etc.

A PhotoOb segment had in this example, 39.500 tuples (in 2 segments). Fig 9 shows the result with and
without the image adjustment. The curves at the figure increase slightly, but remain about flat in practice.
The incidence of the scalable view level on the image binding time, hence the query time is thus
negligible. Notice

Queries With Image Adjust.

- 31 -

Fig 9 Query (Q3) and queries (Q4) with scalable views time

We have finall s, Fig 9. It had
successively 2, 3, every segment.
The segment ca
Server user an ters the manual
repartitioning h e table gets new
30K tuples, i.e., at th corresponds thus
to the same com L Server user is
the scalab th cases (i) and
(ii) we studied th rver, we
measured (Q3)

The figure disp e (i), i.e., of the
centralized Phot i). The curve
shows the minim o other curves
correspond to SD-SQL Se

om for improvement. This would further increase the

y executed query (Q3) on growing PhotoObj table in various condition
4 and 5 segments, generated each by a 2-split. The query counted at

pacity was 30K tuples. We aimed at the comparison of the response time for an SD-SQL
d for the one of SQL Server. We supposed that the latter (i) does not en
assle, or, alternatively, (ii) enters it by 2-splitting manually any time th

e same time when SD-SQL Server would trigger its split. Case (i)
fort as that of an SD-SQL Server user. The obvious price to pay for an SQ

ility, i.e., the worst deterioration of the response time for a growing table. In bo
e SQL Server query corresponding to (Q3) for a static table. For SD-SQL Se

 with and without the LSV option.

lays the result. The curve named “SQL Server Centr.” shows the cas
oObj. The curve “SQL Server Distr.” reflects the manual reorganizing (i
um that SD-SQL Server could reach, i.e., if it had zero overhead. The tw

rver.

We can see that SD-SQL Server processing time is always quite close to that of (ii) by SQL Server. Our
query-processing overhead appears only about 5%. We can also see that for the same comfort of use, i.e.,
with respect to case (i), SD-SQL Server without LZV speeds up the execution by almost 30 %, e.g., about
100 msec for the largest table measured. With LZV the time decreases there to 220 msec. It improves thus
by almost 50 %. This factor characterizes most of the other sizes as well. All these results prove the
immediate utility of our system.

Notice further that in theory SD-SQL Server execution time could remain constant and close to that of a
query to a single segment of about 30 K tuples. This is 93 ms in our case. The timing observed practice
grows in contrast, already for the SQL Server. The result seems to indicate that the parallel processing of
the aggregate functions by SQL Server has still ro
superiority of SD-SQL Server for the same user’s comfort.

93
156

220
250

326

106

164
226

256

343

283

203
93

356

436

220203
123100

200

300

400

Ex
ec

ut
io

n
Ti

m
e

(m
s)

76
160

1 2 3 4 5

Number of Segments

500

SQL Server-Distr SD-SQL Server

SQL Server-Centr. SD-SQL Server LSV

1000
 Time (ms)

800
600
400
200

0
0 1 2 3

View Level

- 32 -

 option.

6. Related Works
Efficient parallel and distributed database partitioning has been studied for many years, [12]. It naturally
triggered the work on the reorganizing of the partitioning, with notable results as early as in 1996, [11].
The common goal was a global reorganization, unlike for our system.

The editors of [11] contributed themselves with two on-line reorganization methods, termed respective
new-space and in-place reorganization. The former method created a new disk structure, and switches the
processing to it. The latter approach balanced the data among existing disk pages as long as there was
room for the data. Among the other contributors to [11], concerned a command named ‘Move Partition
Boundary’ for Tandem Non Stop SQL/MP. The command aimed on on-line changes to the adjacent
database partitions. The new boundary should decrease the load of any nearly full partition, by assigning
some tuples into a less loaded one. The command was intended as a manual operation. We could not find
wheth

A more recent proposal of efficient s in [10]. One proposes there an
automatic advisor, balancing the overall database load through the periodic reorganizing. The advisor is
intended as DB2 offline utility. Another attempt, in [4], the most recent one to our knowledge, describes

eorganizing technique, based on the database clustering. Termed AutoClust, the

easily take advantage of the new capabilities of our system. Its

nd of a cache. For the nodes,

le tables at present. Next, the concurrent query processing could be perhaps made faster,
especially during the splitting or NDB removal. We aimed at using the exclusive locks as little as it

r the correctness, but there is perhaps still a better way. Our performance analysis

 of

Fig 10 Query (Q4) execution time on SQL Server and SD-SQL Server, including the “Lazy
Schema Validation”

er it was ever realized.

 global reorganizing strategy i

yet another sophisticated r
technique mines for the closed sets, then groups the records according to the resulting attribute clusters.
The AutoClust processing should to start when the average query response time drops below a user
defined threshold. It is unknown whether AutoClust was put into practice.

With respect to the partitioning algorithms used in other major DBMSs, the parallel DB2 uses the (static)
hash partitioning. Oracle offers both, hash and range partitioning, but over the shared disk multiprocessor
architecture only. How the scalable tables may be created at these systems remains an open research
problem.

7. Conclusion
SD-SQL Server makes the use of scalable tables about as comfortable as that of the static ones. Its user
interface lets the user/application to
efficiency of the scalable distributed partitioning processing should allow for much larger tables than
those of SQL Server applications today, or for a faster response time of complex queries, or for both.

The current design of our interface is geared towards the “proof of concept” prototype. It is naturally
simplified with respect to a full-scale system. Further work could expand it. It may concern the existing
commands or add new ones. Both directions should address especially the capabilities for the image and
node management. For the images, one could design a scalable sd_Create_View command, providing the
transparency of the secondary images. It would make any such image a ki
one could design the command sd_Connect uniting separate configurations of SD-SQL Server nodes into
one. All such issues lead to various processing choices, to study in consequence.

The processing level has also interesting challenges on its own. There is no user account management for
the scalab

seemed necessary fo
should be expanded, uncovering perhaps further directions for our current processing optimization. Next,
while SD-SQL Server acts at present as an application of SQL Server, the scalable table management
could alternatively enter the SQL Server core code. Obviously we could not do it, but the owner of this
DBS can. On the other hand, our design could apply almost as is to other DBSs, provided they also offer
the updatable distributed partitioned (union-all) views. On the other hand, we did not address the issue
the reliability of the scalable tables. More generally, there is a security issue for the scalable tables, as the
tuples migrate to places unknown to their owners.

- 33 -

.

for a scalable Distributed DBSs application to SQL Server
2000. 2nd Intl. Workshop on Cooperative Internet Computing (CIC 2002), August 2002, Hong Kong

plementing SD-SQL Server: a Scalable Distributed Database System. Intl. Workshop on
uctures, WDAS 2004, Lausanne, Carleton Scientific (publ.), to app

 Computer Society
mittee on Data Engineering, 1996

lduriez, P. Principles of Distributed Database Systems, 2nd edition, Prentice Hall, 1999.
esearch Report

ristopher
.,

Acknowledgments
We thank J. Gray (Microsoft BARC) for providing the SkyServer database and for the counselling crucial
to this work, and G. Graefe (Microsoft) for information on SQL Server linked servers’ capabilities. The
initial support for this work came partly from the research grant of Microsoft Research

References
1. Ben-Gan, I., and Moreau, T. Advanced Transact SQL for SQL Server 2000. Apress Editors, 2000
2. Gray, J. & al. Data Mining of SDDS SkyServer Database. WDAS 2002, Paris, Carleton Scientific (publ.)
3. Gray, J. The Cost of Messages. Proceeding of Principles Of Distributed Systems, Toronto, Canada, 1989
4. Guinepain, S & Gruenwald, L. Research Issues in Automatic Database Clustering. ACM-SIGMOD, March 2005
5. Lejeune, H. Technical Comparison of Oracle vs. SQL Server 2000: Focus on Performance, December 2003
6. Litwin, W., Neimat, M.-A., Schneider, D. LH*: A Scalable Distributed Data Structure. ACM-TODS, Dec. 1996
5. Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for Distributed Files. ACM-SIGMOD International

Conference on Management of Data, 1993
7. Litwin, W., Rich, T. and Schwarz, Th. Architecture

8. Litwin, W & Sahri, S. Im
Distributed Data and Str

9. Microsoft SQL Server 2000: SQL Server Books Online
10. Rao, J., Zhang, C., Lohman, G. and Megiddo, N. Automating Physical Database Design in a Parallel Database,

ACM SIGMOD '2002 June 4-6, USA
11. Salzberg, B & Lomet, D. Special Issue on Online Reorganization, Bulletin of the IEEE

Technical Com
12. Özsu, T & Va
13. Soror Sahri, Witold Litwin, SD-SQL Server: a Scalable Distributed Database System, CERIA R

2005-03-05, March 2005
h14. Alexander S. Szalay, Jim Gray, Ani R. Thakar, Peter Z. Kunszt, Tanu Malik, Jordan Raddick, C

Stoughton & Jan vandenBerg, The SDSS SkyServer – Public Access to the Sloan Digital Sky Server Data
Technical Report, MSR-TR-2001-104, February 2002

- 34 -

lossary

pplication Interface
he application interface manipulates scalable tables and their views essentially through the SD-SQL

G

A
T
Server commands.

lient DB
 client (N)DB manages the user/application interface only.

lient Node
 client node is a node which stores only client

C
A

C
A DBs.

inding determines every image on which a table or a view name in a query depends. It
f SELECT expressions.

 SQL Server script whose execution installs the primary node of SD-SQL Server.

ase
base at the primary node

Image Binding
The image b
concerns the FROM clause o

Install Script
An install script is an

Meta-datab
A meta-database (MDB) is a specific SD-SQL Server data . It contains basic

 the nodes and SDBs currently under the SD-SQL Server management. It also contains
er code itself, in the form of stored procedures.

Node Database
) is a database registered as an element of an SDB. An NDB can be a client

meta-data on all
the SD-SQL Serv

A node database (NDB , server
or peer DB. Under SD-SQL Server, every NDB is an SQL Server DB. It shares there the (proper) name
of the SDB. It also contains an instance of SD-SQL Server specific manager component.

Peer DB
Peer (N)DB unions the capabilities of the server and client DB.

Peer Node
A peer node is a node that is both server and client node. It can store a client, server or peer DBs.

Primary Image
A primary image is the definition of a scalable table partitioning. It is created at the SD-SQL client, which

able. Internally, it is a partitioned and distributed view. It defines the union all of the creates the scalable t
scalable segments that constitute a scalable table. If any segment of the scalable table is not defined in the
primary image, thus the image will be adjusted.

Primary Node
ode is the first ever node created for the current SD-DBS configuration. It is created under A primary n

SD-SQL Server by executing the install script. It registers the other (secondary) nodes in its meta-
database.

- 35 -

se Scalable Databa
 A scalable (distributed) database (SDB) is a dynamically defined collection of SD-SQL Server node
databases. SD-SQL Server and its applications may dynamically add or remove node databases to or
from an SDB.

Scalable Distributed Database System
ted Database System (SD-DBS) applies the principles of the Scalable Distributed Data A Scalable Distribu

Structures (SDDSs) to database systems. It manages scalable databases with scalable tables dynamically
spreading over SD-DBS nodes.

Scalable Query
uery that may invoke a scalable tableA scalable query is a q , through its image name, or indirectly

through a scalable view of its image. It executes correctly for any dynamic change to the number of the
segments in the invoked scalable table. Under SD-SQL Server, the user/application formulates a scalable
query using a dedicated SQL Server command. A scalable query may also involve a static tables, i.e.,
created under SQL Server only.

Scalable Table
A scalable table T is formally a tuple (T, S), where T is the primary image of T and S are the segments
distributed each in some NDB. It scales through the splits of its overflowing segments, stored each at
some NDB.

Scalable view
A scalable view is a view that may depend on a scalable table, directly or through a view. Otherwise a
view is static. A scalable view may refer to a scalable table through the name of its primary or secondary
image.

SD-DBS Manager
An SD-DBS manager is the software component that takes care of SD-DBS specific capabilities. We

erver
 an SD-DBS designed for data in SQL Server databases. It manages scalable databases

distinguish between the client manager, residing at a client DB, a server manager, and a peer manager.

SD-SQL S
SD-SQL Server is
and scalable tables at a collection of SD-SQL Server nodes.

application interface command offered by SD-SQL Server. These commands let to manage the
DBs, and the nodes. The commands for the scalable tables generalize these of
ore generally) for the static tables. Such commands are typically named upon

SD-SQL Server Manager
manager is an SQL Server specific prototype implementation of the SD-DBS

SD-SQL Server command
It is a user/
scalable tables, NDBs, S
SQL Server (and SQL m
their originals, e.g., SD_SELECT upon SELECT.

An SD-SQL Server
manager concept. An SD-SQL Server manager is operationally a collection of stored procedures within
each NDB.

SD-SQL Server Node
An SD-SQL Server node is a linked SQL Server node declared for SD-SQL Server as a node. It is the
SQL Server specific implementation of the concept of an SD-DBS node.

- 36 -

ew, which defines the actual partitioning of a scalable

Secondary Image
A secondary image is a distributed partitioned vi
table. It is created on a client, which is not the one creating the scalable table.

Segment
A segment is a table that is fragment of a scalable table. Under SD-SQL Server, the segments range
partition the scalable table. A segment can be primary or secondary. The client creates the primary

calable table. A secondary segment results from a split.

ment. If an insert makes the
apacity, the segment becomes overloaded and it splits

segment while it creates the s

Segment Capacity
The segment capacity is the maximal tolerated number of tuples in the seg
segment to exceed its c . Under SD-SQL Server all
the segments of a scalable table have the same capacity.

B stores the segments of scalable tables

Server DB
A server (N)D , without having the user/application interface.

Server Node
A server node is a node which stores only server DBs.

Spare Node
For an SDB, a spare node is a node without an NDB belonging to the SDB. It can carry an NDB of
another SDB.

Split
ment occurs when it overflows. It creates one or more new segments. These absorb the

ange
ent

The split of a seg
overflowing tuples, as well as up to half of the tuples of the overflowing segment. The split r
partitions the splitting segment. SD-SQL Server launches a split by an AFTER trigger at each segm ,

verflow after each insert. Every split is carried out by the splitterchecking for an o .

an asynchronous job which is launched by the splitting

Splitter
The splitter is trigger. It achieves the split

with the insert that leads to the overflow.

 table is a table which is unknown by SD-SQL Server. Any relational table, in current DBMSs, are
r SD-SQL Server, thus are not scalable.

asynchronously

Static Table
A static
static fo

.Static View
Under SD-SQL Server, any view which is not scalable is a static view. A static view is an SQL Server
view unknown by SD-SQL Server.

	1. Introduction
	2. SD-SQL Server Architecture
	3. Application Interface
	3.1 Overview
	3.2 Node Management
	3.2.1 Node Creation
	3.2.2 Node Removal
	3.2.3 Node Alteration

	3.3 Scalable Database Management
	3.3.1 Scalable Database Creation
	3.3.2 Scalable Database Alteration
	3.3.2.1 Node Database Creation
	3.3.2.2 Node Database Removal

	3.3.3 Scalable Database Removal

	3.4 Scalable table management
	3.4.1 Table Creation
	3.4.2 Table Alteration
	3.4.3 Index Creation
	3.4.4 Index Removal
	3.4.5 Table Removal
	3.4.6 Image Creation
	3.4.7 Image Removal

	3.5 Scalable Queries
	3.5.1 Search
	3.5.2 Insert
	3.5.3 Update
	3.5.4 Delete

	4. Command Processing
	4.1 Naming rules
	4.2 Meta-tables
	4.3 Scalable Table Management
	4.3.1 Table Creation
	4.3.2 Table Evolution
	4.3.2.1 Splitting
	4.3.2.2 Image Adjustment
	4.3.2.3 Table Alteration
	4.3.2.4 Index Creation and Removal
	4.3.2.5 Table Removal

	4.4 Secondary Image Management
	4.4.1 Image Creation
	4.4.2 Image Removal

	4.5 Scalable Query Processing
	4.5.1 Image Binding
	4.5.2 Scalable Search
	4.5.3 Scalable Updates

	4.6 Node Management
	4.6.1 Node, SDB or NDB Creation
	4.6.2 NDB Removal
	4.6.3 SDB Removal
	4.6.4 Node Removal

	5. Experimental Performance Analysis
	5.1 Split Time
	5.2 Image Binding

	6. Related Works
	7. Conclusion
	Acknowledgments
	References
	Glossary

