
- 1 -

Submitted to WDAS-04

Implementing SD-SQL Server: a Scalable Distributed Database System

(Extended Abstract)

Witold Litwin, Soror Sahri1

Abstract: SD-SQL Server is a scalable distributed DBS using internally the SQL Server. The relational tables
of SD-SQL Server scale through splits transparently for the application. SD-SQL Server is the only DBS with
this capability at present. It constitutes an important step beyond the current technology of a parallel DBMS,
long awaited by the users. The splitting and addressing principles of our system follow those of a Scalable Dis-
tributed Data Structure. We present the 1st implementation of SD-SQL Server and experimental performance
analysis proving its efficiency.

Key words: Scalable Distributed DBS, Scalable Table, Distributed Partitioned View, SDDS

1 Introduction
The explosive growth of the volume of data to store in databases makes them often huge and permanently

growing. This evolution requires new DBS architectures, effective for scaling databases. The proposal of Scal-
able Distributed Data Structures (SDDSs) addressed similar challenge for storage and file systems [5], [6]. In
[1], the concept of a Scalable Distributed DBS (SD-DBS) was derived for databases. A specific SD-DBS termed
SD-SQL Server was proposed for the SQL Server.

In short, a scalable table T of an SD-DBS in general, and of SD-SQL Server in particular, is dynamically
and transparently for the application partitioned into some segments. This capability is crucial for the scalabil-
ity and respond to a long awaited users need, [3]. It lacks to the current technology of a parallel DBMS, offer-
ing the static partitioning only. Each segment of a scalable table resides in some segment DB. Each segment
DB is typically at a different SD-DBS server node. A high-speed network links the nodes. Each T typically
starts as a single segment sT. The SD-SQL Server application does not address the segments directly, but sees
only the SQL Server distributed partitioned (union all) view of T. The SD-SQL client node manages each such
scalable view VT that always presents T as a single table. The scalable view has the role of the client image in
an SDDS. It supports searches and updates.

An SD-SQL server checks the size of its sT using a trigger, when an insert into sT occurs. When sT scales
beyond some size of b tuples, fixed or node dependent, sT splits. Half of the tuples migrate to a new segment sT’
with the schema of T, at a new node. The process typically makes any existing client view VT outdated. It does
not address all the existing segments anymore. The SD-SQL Server checks any VT for its correctness in this
sense, when a query to VT occurs. The query activates for this purpose a dedicated trigger that further performs
the adjustment if needed. This adds the missing segments to VT prior to the query execution.

The whole mechanics allows for the scalable tables without forcing the rewriting of the SQL query opti-
mizer. That task would be most likely daunting. The research problem we addressed since [1] was the prototype
implementation of the above principles. This requires the design of some meta-tables, triggers, and stored pro-
cedures. The design should be tuned so that the overhead of segment size testing, and splitting, as well as of
view correctness testing and adjustment, remain tolerable.

1 Centre d’Etudes et de Recherches en Informatique Appliquée (CERIA), University Paris Dauphine, 75016
Paris, France. Witold.Litwin@dauphine.fr, Soror.Sahri@dauphine.fr

CERIA Res. Rep. 2004-03-28, March 2004

- 2 -

Submitted to WDAS-04

We describe our SD-SQL Server implementation in Section 2. In Section 3, we discuss the experimental
performance analysis. The measurements show our implementation scalable and efficient. We conclude in
Section 4.

2 SD-SQL Server Implementation

Figure 1 shows the gross architecture of the SD-SQL Server. At each node there is an SQL Server and an
SDDS layer. Each SQL server manages the segment database that stores the local segments and partitioned
views. The SDDS layer manages the views and segments so to make them scalable as above described. It be-
haves here as an SDDS client or server or both (a peer). As the client, it manages each scalable table T. It first
allows the application to create T. This involves the creation of VT and of 1st segment sT. It stores both in the
local SQL Server. It then manages queries to its view VT as above described. As the server, it oversees the size
bs and performs the splits of the local segment sT. It manages similarly the segments of other scalable tables
created initially by clients at other server sites. As the peer it performs both functions.

2.1 Server Side

2.1.1 Meta-tables

SD-SQL Server gets queries from the application and passes them to its SQL Server for execution. Every
split occurring on the server changes the current partitioning which is stored in meta-tables. The meta-tables
are at each server and represent the actual image of a partition. To describe these, let Di; i=1,2…be the DBSs un-
der SD-SQL servers storing the segments of a scalable table T, initially created in database Di. Then, as defined
in [1]:

- The SD-RP (DB-S, Table) describes the actual partitioning of each T. The tuple (Di, T) enters Di.SD-
RP each time a segment of T is created at Di.

- The SD-S (Table, S-max) fixes the maximal size of a segment for each table at the site.
- The SD-C (DB-T, Table, S-size) contains the tuple (Di, T) at each server storing a segment sT.
- The SD-Site table includes the servers a available for T segments.

The meta-tables are updated when any T is created or splits. We now describe T creation more in depth.

SD-DBS
Manager

SD-DBS
Manager

SD-DBS
Manager

Queries

SDDS
Layer

D1

SQL
Server

D2

SQL
Server

D3

SQL
Server

SQL
Servers

Figure 1 Architecture of SD-SQL Server

2.1.2 Scalable Table Creation

The creation of a scalable table T, is similar to that of any table. Nevertheless, we use a different statement
and have an optional clause related to the segment size, specific to a scalable table. More precisely, the applica-
tion calls instead of traditional CREATE TABLE statement, a stored procedure termed create_scalable_table.

- 3 -

Submitted to WDAS-04

The procedure transparently executes CREATE TABLE statement, but also calls a number of other distributed
stored procedures with the respective goals. These are:
- Creation of a check constraint to the partitioning attribute, i.e. the primary key. The use of check con-

straints allows the query to be redirected to the node where it should reside.
- Insert of the size bs into the SD-S meta-table.
- Creation of the trigger on T calling the split_table stored procedure. That one splits T when it exceeds bs

tuples.
- Insert of the tuples (Di, T) into SD-RP and SD-C meta-tables respectively.
- Creation of the partitioned view VT of T on server Di.

Example 1
We create the scalable table Customer on Server1.DB1database. Let Customerid be its only attribute, hence

the primary key (it is the only attribute we need for performance measurements below). We suppose that the
capacity of Customer segment is b = 100 tuples at any segment DB. We call the stored procedure cre-
ate_scalable_table with input parameters: which are the string that contains the SQL Customer table creation
statement, and b value. We execute the procedure using the SQL Server EXEC command at Server1.DB1:

 EXEC create_scalable_table ‘CREATE TABLE Customer (Customerid numeric PRIMARY KEY)’, 100

This stored procedure will:
- Create the table Customer as a single segment at the local site Server1.DB1. Once the table is created, a

trigger that launches the split is added to it.
- Insert into Server1.DB1.SD-S the maximal size of Customer segment, i.e. 100.
- Insert the tuples (Server1.DB1, Customer) and (Server1.DB1, Customer) into Server1.DB1.SD-RP and

Server1.DB1.SD-C respectively.
- Create the partitioned view Customer_view on Server1.DB1.

If we wanted to create Customer with more attributes, we would enumerate them in the CREATE TABLE
statement, as usual for Transac SQL.

2.1.3 Split Mechanism

Each time Di.T exceeds the maximal segment size in Di.SD-S, a split results. First, a new database server is
selected from the Di.SD-Site for the new segment of T. The selected site should be among the SQL Servers
linked to the current one. The split partitions T at Di and creates a new segment with the same schema at a new
node; let it be Di+1. Half of T tuples migrates from the split segment to thtat on the new node Di+1 [1]. Once the
SD-DBS server completes this process, it alters the check constraints of the segment Di.T and updates the meta-
tables.

2.2 Client Side

The client side of SD-SQL Server manages the already presented views of scalable tables. We call them
scalable (distributed) views. Any scalable view VT of a table T, is an SQL Server distributed partitioned view of
T, with the additional capability of the dynamic adjustment to T partitioning, as resulting from the splits. We
recall that distributed partitioned views of SQL Server are the range partitioned (union all) views. The ranges
are defined by the check constraints at the segment DBs. The views support searches inserts and updates. This
capability makes the tool crucial for SD-SQL Server design.

The default naming convention for the current implementation of SD-SQL Server is to call VT as T_view.
Assuming that one creates T at Di DB, each VT is defined initially as:

CREATE VIEW T_view AS
 SELECT *FROM Di.T

Once Di.T splits, creating new segment Di+1.T, the definition of T_view should be adjusted. It should be-
come the SQL Server distributed partitioned view including Di+1.T segment. According to the general princi-

- 4 -

Submitted to WDAS-04

ples of an SDDS, the client checks the view correctness asynchronously. That is the servers performing the
splits do not adjust any views. Such approach could be highly ineffective. Only the client performs this opera-
tion when a query addresses T. If a query involving T follows the T first split, the T_view definition becomes,
[3]:

 CREATE VIEW T_view AS
 SELECT *FROM Di.T
 UNION ALL
 SELECT * FROM Di+1.T

To adjust the scalable view, the client uses C-Image (Table, Size) meta-table. When a table T is initially cre-
ated at Di, the tuple (T, n), where n is the number of T segments in the federated view, is inserted into Di.C-
Image. The SD-DBS client compares n corresponding to Di.T with the number of segments of T in Di.SD-RP,
let it be n’. If n<n’, the view is adjusted to include all the n’ segments of T in Di.SD-RP. Once the view is ad-
justed, the SD-SQL Server passes the query to the SQL Server for execution [1].

3 Performance Analysis
To prove the scalability and efficiency of the SD-SQL Server, we made a series of experiments. The goal was

to determine the overhead at the servers and clients with respect to SQL Server. At the servers we measured the
split time. At the client, we measured the overhead of a scalable view management during a query, i.e., of the
view checking and, perhaps, of adjustment. We experimented with search and insert queries. For all the ex-
periments, we used the Customer table of Example 1. We measured the timing of the operations using the SQL
Server Profiler. The hardware consisted of 1.8 GHz P4 PCs, connected through 1Gbs Ethernet.

3.1 Server Side

We measured two types of splits. Both concerned the Customer table created in the DB termed DB_1 at
SQL Server site Server1. A centralized split created the new segment in a different DB, namely DB_2, at the
same Server1. Alternatively, a distributed split created new segment in a DB termed DB_1 at different site,
termed Server2. Both cases were generated for b = 100, 1000, 10000.

The results are in Figure 2. The time for each b is the average one over several experiments. We recall that
the split operation involves (i) the creation of the segment, (ii) the move of b/2 tuples, (iii) the alteration of the
check constraints of all the segments, and (iv) updates to the meta-tables. As expected, the overhead of a dis-
tributed split is systematically greater. This is probably due to the internal dialog of the linked SQL Servers.
The difference is about four times for larger b’s. The split remains nevertheless fast, e.g. 2 sec. at most in our
experiments. Notice that the scale is logarithmic, hence the curves are sub-linear. Thus the scalability is good
with respect to the segment size.

3.2 Client Side

We have created again the table Customer on Server1.DB_1. Next, we have generated its (distributed) splits
towards Server2.DB_1. This was done for three segment capacities b measured above. We also used two scal-
able partitioned views of Customer table, both termed Customer_view, one in Server1.DB_1 and one in
Server2.DB_1. Both were as follows:

 CREATE VIEW Customer_view AS
 SELECT * FROM Server1.DB1.Customer

The view in Server1.DB_1 was in fact the initial one generated by create_scalable_table from Example 1.
Next, to test the basic search performance, we used the following Transac SQL query to Customer table2, [4]:

(Q 1) SELECT * FROM Customer_view WHERE Customerid=90

2 In the 1st SD-SQL Server implementation used for the measurements, the query to a scalable table T must refer explicitly

to the name of its scalable partitioned view. We recall that this name is T_view by default.

- 5 -

Submitted to WDAS-04

The query was distributed. It executed at Server2.DB_1 and looked up for the tuple in
Server1.DB1.Customer. In particular its execution under SD-SQL Server had to adjust the scalable partitioned
view. For this purpose, SD-SQL Server client side at Server2 consulted the meta-table SD-RP at Server1. This
query was thus more time consuming than if it performed at Server1 site.

0
500

1000
1500
2000
2500

100 1000 10000

Segment Capacity

S
p

lit
 t

im
e

(m
s)

centralized split distributed split

Figure 2 SD-SQL Server segment split time

Likewise, to measure the insert overhead, we have used the query:

(Q 2) INSERT INTO Customer_view VALUES (25)

This query was also distributed, executing at Server2.DB_1, while inserting the tuple into
Server1.DB1.Customer. Again (Q 2) was more time consuming than if it executed at Server1.

0
50

100
150

100 1000 10000

Segment Capacity

E
xé

cu
tio

n

T
im

e
(m

s)

Query execution

Query execution + View update
 View update

Figure 3 SD-SQL Server search query (Q 1) execution time

Figure 3 and Figure 4 show the results, averaged over several experiments. The line “query execution”
shows the time to execute the query with the view test, but without the view update. Other lines show the view
update time and the total time. It appears from the figures that for both queries, the overhead of view adjust-
ment is rather low. Notice however that it always takes more time than (Q 1) itself. This query is indeed par-
ticularly simple. We recall that view updates should be nevertheless infrequent. In any case, the scalability of
SD-SQL Server appears good, being largely sub-linear.

Finally, to determine also the overhead of the SD-SQL Server view test at the client side, and of its insert
overhead at the server side, we have experimented with the execution time of (Q 1) and of (Q 2) directly on
SQL Server. The average execution time was about 30 ms for a search query, and about 76 ms for an insert

- 6 -

Submitted to WDAS-04

query. These times are only slightly inferior to the time of the same query to SD-SQL Server. They thus termi-
nate the proof of low overhead of our implementation.

0
100
200
300

100 1000 10000

Number of tuples

E
xe

cu
ti

o
n

 t
im

e
(m

s)

Query execution

Query execution + View update

 View update

Figure 4 SD-SQL Server insert query (Q 2) execution time

4 Conclusion
The SD-SQL Server is the first DBS we are aware of putting into practice the scalable distributed database

partitioning. The transparency of the distribution is an important step beyond the current technology of a paral-
lel DBMS. Lack of this capability is felt by users as one of most important limitation of DBS technology at
present, [3]. We have presented our architecture and validated it through basic experiments. These show the
scalability and the efficiency of our approach. As a result, SD-SQL Server opens new prospects for the applica-
tions.

 The work on the implementation is far from finished. In particular the splitting algorithm will be ex-
panded to better deal with inserts of a large (much greater than bs) number of tuples at once. Likewise, we will
expand the query processing that is limited at this time, e.g., to queries without subqueries and without views in
FROM clause. We will also add to the interface more SQL operations on the scalable tables, e.g., ALTER,
DELETE. We also continue with the performance study, using more complex SQL queries, including TPC
benchmarks. Finally, we plan to apply our architecture to SkyServer database, [2].

Acknowledgments

This work was partly supported by the research grants from the European Commission project ICONS project
no. IST-2001-32429 and from Microsoft Research.

References
[1] Litwin, W., Rich, T. and Schwarz, Th. An Architecture for a scalable Distributed DBSs/ application to SQL
Server 2000. 2nd Intl. Workshop on Cooperative Internet Computing (CIC 2002), August, 2002, Hong Kong.
[2] Gray, J. & al. Data Mining of SDDS SkyServer Database. WDAS 2002, Paris.
[3] Ben-Gan, I., And Moreau, T. Advanced Transact-SQL for SQL Server 2000. Apress Editors, 2000.
[4] SQL Server Books Online of Microsoft SQL Server 2000.
[5] Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for Distributed Files. ACM-SIGMOD Interna-
tional Conference on Management of Data, 1993.
[6] Litwin, W., Neimat, M.-A., Schneider, D. A Scalable Distributed Data Structure. ACM Transactions on
Database Systems (ACM-TODS), Dec. 1996.

