
- 1 -

Deadlock Free Concurency Control by Value Dates
for

Scalable Distributed Data Structures

Ibrahima E. Kane1, Witold Litwin2 Tidiane SECK1, & Samba Ndiaye3

Abstract :

We define a concurrency control scheme for a Scalable Distributed Data Structure. The scheme avoids
deadlocks, including the distributed ones, through the use of transactions with value dates. Comparison of value
dates allows to abort and later restart selected transactions among those that conflict and could deadlock. We
present our schema, its implementation and experimental performance analysis. We show that the scheme should
offer satisfactory performance for the practical.

1. Introduction

A Scalable Distributed Data Structure (SDDS) stores application data in a file transparently
distributed over the nodes of a multicomputer, [LNS93]. The file consists of records identified
each by a primary or a k-d key. Each storage node, the server node of the SDDS, stores the
record in a bucket. The number of storage nodes, dynamically scales with the file size through
the splits of the overloaded buckets. A split typically evacuates half of a bucket to a new
bucket at a new server appended to the SDDS.

The application interfaces only the SDDS client component on its node. The record address
calculus at the client from the key value does not require access to any central repository.
This could otherwise constitute a hot spot. The client uses its image of the file structure. The
image can be inaccurate, as SDDS splits are not posted to the clients (clients can be
unavailable when spits occur, or mobile…). The client may send the key search or the insert
with the record to an incorrect server, or may simply invokes a multicast message. Each
SDDS server has therefore a built-in algorithm to check whether its address is the correct one
for the incoming query. If not, and the query is a unicast message, it forwards it to a server
which could be the correct one. The new server iterates the same procedure, as it may still be
the incorrect one. Ultimately, possibly only after a few hops, the query reaches the correct
server. The client gets then the Image Adjustment Message (IAM). The IAM content allows
the client to adjust its image, at least so that the same error does not occur twice.

Many SDDS schemes are now known. The LH* schemes for the scalable distributed hash
partitioning, and the RP* schemes for the scalable distributed range partitioning were the
most studied. It was shown that they provide excellent scalability. In practice, only the
number of available nodes and their storage limit the file size. The LH* or RP* file can thus
potentially scale to the magnitudes impossible in practice for more traditional data structures.

The SDDS-2000 prototype offers these schemes for the data storage in the distributed
RAM of a network multicomputer, i.e., a high-speed network of popular computers. Its
performance analysis has shown its capability to handle million-record SDDS files with key
search or record insert times of 0.1 – 0.3 ms. These times are potentially a hundred time
faster than those to traditional disk files.

1 Ecole Nationale Supérieure Polytechnique, U. Dakar
2 U . Paris 9 Dauphine
3 Dep. Mathématiques & Informatique, U. Dakar

- 2 -

An SDSS file shared by several applications needs a concurrency control. A deadlock free
scheme is preferable, as usual in a distributed system. The concept of value date allows for
such schemes, [WLH88]. A value date V for a transaction T is a time limit assigned so that T
must terminate at most by V. Every transaction should get a different value date. If two
transactions conflict, their value dates can be compared. If the comparison shows that a
deadlock could occur, one of the transactions is aborted and restarted later with a new V,
chosen to avoid the conflict. This is the principle of the VDAS schema in [WLH88] and
[WLH89].

Two cases of SDDS data sharing appear in practice. First, a file can be private to the
applications at the same client only. We refer to it as a single (SDDS) client case. More
generally, a file can be shared by multiple SDDS clients. This is the multiple (SDDS) client
case.

The single client case allows for the concurrency and transaction management only at the
client. The multiple clients require the concurrency control also at the servers. The former
property is attractive, as it allows for the coupling with any known centralized scheme.
However the performance of the coupling have to be determined. The overhead of the any
concurrency management scheme affects the performance of the SDDS, perhaps
unacceptably.

 Below, we present the concurrency manager for the single client case, coupling VDAS
scheme with SDDS-2000. The system required the study of various issues. One is the strategy
for the calculus of the value dates for the VDAS scheme. This choice influences the ratio of
the restarted transactions and the resulting overhead. Some transactions may in particular
potentially restart several times. This creates the potential for the livelock that we should
prevent. The whole overhead depends on the load of the system, on the length of the
transactions involved etc. We thus had to find out what performance, especially the
throughput, our implementation could finally offer in practice.

We first describe our design choices. We recall the VDAS scheme and show how we
completed it to avoid the livelock. We then present our method for the value date
determination. Next, we analyze the system performance. For this purpose, we carry the
simulations of various transactions entering our manager. The results prove the effectiveness
of our scheme. Only a fraction of transactions restarts, and a few times only, leading to an
efficient throughput.

Our results are of importance beyond their application to an SDDS. Under the name of
transactions with deadlines, value dates have been extensively studied for real-time databases.
We are aware of theoretical analysis only. Our scheme is the first implemented to the best of
our knowledge.
 Section 2 presents our concurrency management. Section 3 discusses the performance.
Section 4 concludes the study.

2. Concurrency management

2.1 Basic VDAS scheme
A VDAS-transaction is basically any ACID transaction provided with the value date. Other

non-atomic transaction models can be applied as well, e.g., the flexible transaction model [_].
The value date is computed by the application, or the transaction manager. Obviously, it has
to be far enough to allow the transaction to complete. How it is computed however is not the
part of the VDAS schema. The only condition is that no two concurrent VDAS-transactions
ever enter with the same value date.

To manipulate (read or write) a data item a VDAS-transaction T has to stamp it with its
value date. The data that could be stamped by T behaves as it was locked by T in the usual

- 3 -

sense, until T terminates with a commit or abort. The lock can be considered exclusive or
shared. It is granted to T if the data item does not already carry another lock (value date).

In the latter case two VDAS-transactions conflict. Let D be the item, let T1 be the
transaction with value date V1 that already locked D, and let T2 with V2 be the one that
requests D. The VDAS conflict resolution rule is as follows:

(1) if V2 > V1, T2 waits else abort and restart either T1 or T2 with new V.

The deadlock avoidance is proven in [WLH88]. In short, T1 and T2 never deadlock since
only T2 can wait. The choice of the abort and restart victim, as well as of its new value date
are not the parts of the VDAS scheme. These are nevertheless very important choices. A naïve
approach, such as “always abort T1” may lead to a livelock. If V depends essentially on the
duration of T, and T1 is a very long transaction while most of others are very short, and come
randomly with the rate much shorter than T1 duration, T1 may end up being aborted
systematically.

The waiting time imposed by rule (1) to T2 may also potentially cause it to reach V2
without the completion and thus get aborted anyhow. T2 restarts then with a new value date
V2

’ > V2. The restart clearly does not guarantee the completion by V2
’. Notice finally that

transactions with value dates cannot deadlock even without rule (1). Any interlock lasts only
until the smallest value date of the transactions involved in it.

The transaction management is beyond the scope of VDAS scheme and of our manager we
report on. Notice nevertheless that VDAS scheme behaves for ACID transactions as the most
popular strict two-phase locking (2-PL) schema. It thus guarantees the serializability of the
VDAS-transactions.

In our case, the granularity of locking is basically an SDDS record. However, VDAS
scheme works for any granularity. In our single-client case, one-phase commit (1 PC)
suffices. In general, one can apply also other popular commit protocols, e.g. the 2 PC. For
transaction schemes beyond ACID, e.g., for the flexible transactions, VDAS allows for new
types of commit. The implicit commit by value date is especially promising. The commit
process does not require any specific message from the coordinator, if no server requests an
abort before the value date. This is an important advantage over 2 PC for a larger number of
participants, e.g., SDDS servers in the multiple client case.
2.2 Priority based VDAS schema
To avoid the livelock and more generally multiple restarts of any transaction, we have
completed the basic VDAS scheme with the priority management. In our priority based
VDAS scheme, every VDAS transaction T gets an identifier I when the application submits it.
T keeps I when it restarts, until it completes or the application drops it. Every T also have
some priority P ; 0 ≤ P ≤ P. Every new T gets P = 0. Then P increases by one with every
restart of T, until some maximal P. Let again T1 and T2 conflict with current priorities P1 and
P2 both smaller than P. Let also P be a parameter ; 0 <P < P. The new conflict resolution is
given by rule (2) below. It means that basic VDAS applies until one of the priorities reaches
P. Then, the resolution starts to be based on P value. We used rule (2) for our prototype.
(2) If P1 = P2 or max (P1 , P2) < P then /* Case of rule (1)

if V2 > V1 then T2 waits else abort T1
Else if P1 < P2 then abort T1
Else if V2 > V1 then T2 waits else abort T2. /* Case of P2 < P1

Any transaction T, whose P reaches P gets longest possible value date and goes to a special
first-in first-out queue Q. The transactions in Q execute serially. They thus cannot conflict

- 4 -

with each other, while they abort or put to wait through (2) any transaction they conflict with.
No lifelock may thus occur. Notice however that the Q length may increase arbitrarily if the
system can’t accommodate the throughput.

Notice that when the transaction to abort to solve the conflict can be either one, it may be
be less costly to choose the one that has less operations to redo. Our priority rules above do
not take to the account this criterion. They can nevertheless be easily be expanded to do so,
using as basis the data for calculus of the value dates that follows.
2.3 Value date calculus

The transaction manager knows for each transaction the estimate of the number of reads
and writes it should perform. This description is supposed provided by the application or
inferred by the transaction manager. The concurrency control manager also dispose of the
estimates of time to complete an operation. Let nR and nW be respectively the number of reads
and writes, tR and tW times to read or write, and ε > 0 a real number. The factor ε is a
provision for estimation error and for the waiting time during the execution. The manager
estimates the length Lm of the transaction to (re)start for m-th time as :

L0 := (nR * tR + nW * tW) * (1 + ε0)

εm := 2*εm-1

 Lm := Lm -1 * (1 + εm)

In other words, ε doubles at each restart. Increasing εm is necessary to prevent a
permanently incorrect estimate, hence a livelock. The initial ε0 value should be generous
enough so that T2 waiting for the 1st time does not have V expired before it could finish. For
the experimental performance analysis, we set ε0 simply to 1. The reason is that (i)
transactions generated for our performance study have the same number of operation and that
(ii) every operation of a transaction is equally likely to generate a conflict, hence to abort T2.

The value date V is computed as V = Lm + Dm, where D is the current time (date-time)
when first operation of T is launched by the manager for the m-th execution. The operation
use the usual services of SDDS-2000 [ref].

3. Performance measurements
To validate our manager, we have studied its performance through the simulation of

transactions operating over the actual SDDS-2000 system. The simulation consisted in the
generation of streams which are series of concurrent transactions. The stream size which is the
number of transactions per stream was a parameter we have varied. The concurrency resulted
from the multithreaded launches of the streams prepared for launch in a queue. The
transactions conflicted randomly on predefined set of a thousand records in an RP* file. For
the file access, our manager used an RP*N client. We had to group several SDDS servers of
this file at the same machine, as we disposed of a few machines only. Hence the CPU
bandwith of each machine was shared among the servers. This slowed the response times
accordingly; with respect to the normal SDDS case of one server per machine.

First, as the reference, we have determined performance of the system for a single
transaction in the system whose number of operations was a parameter. Next, we have
generated multiple conflicting transactions. Of prime interest to the efficiency of our manager
was the quantity of restarts, and especially of multiple restarts. Also, we had to know the
incidence of the concurrency management on the execution time of a transaction, with respect
to its execution time determined when the transaction was alone in the system. then analysed
the behaviour of the concurrent transactions We have expected that the system will respond
somehow differently have sknow the One aspect was the correctness The characteristic of
main interest was the efficiency of the conflict resolution. Especially, the ratio of aborts and

- 5 -

of multiple restarts. rate behaviour of In this environment, we have studied the timeliness and
scalability of the entire system. Since our goal was the concurreOur objective was to validate
the transaction manager by studying its behaviour when a certain number of the transaction
model key parameters need to be evaluated :
 - the transactions length (number of operations)
 - competition degree (transactions batch size).
The indicators retained to qualify the transaction manager behaviour are :
 * the conflict rate (abortion rate and locking rate)

* number of other attempts
 * the average time of execution of a transaction
 - the transaction manager stability study in continuous running of the transaction manager.

6.1- Test environment

 The measurements were made on three machines having identical configurations,
connected to a local network of 10Mb/s. One of the machines is used to serve as a client and
the two others support.
The 10 SDDS servers on the basic of 5 servers a machine.
The common characteristics of the sets used for the test re as follow.
 - operating system : windows N T server
 - CPU type : Pentium II 400 MHz
 - RAM : 64 MB

All measures to be carried out are related to the client (transactions manager).
We specify that the response time of the servers involved in the transactions operation is
included in the measures made.

6.2- A transaction execution time variation in function of its length

 We have measured the total execution time per transaction and per operation. The ideal
scalability would mean that the total time is proportional to the transaction’s length, and that
the time per operation is constant. We expected some deviation of this ideal.
 In this part is studied the variation of the execution time of a transaction of its length, that is
the number of operations it generates, and this in succession for a reading and updating
transaction.
 This approach will not only allow the execution time evolution of a transaction to be
observed in function of its length but will also make it possible to bring out the processing
cost of an updating transaction compared with the one executing only reading operations.
 To this end, measurements of a transaction response time will be made by gradually
increasing transaction. In this study, the keys manipulated by the transaction different
operations are sequentially generated. i.e. that to leave of a transaction length 100 the requests
of redirection will be carried out by first server SDDS [AWD98].

 The following graph is deduced from taken measurements. It presents the variations of
execution time of a transaction of reading on the one hand and a transaction of update on the
other hand according to its length

- 6 -

Fig6.1. Variation of the execution time of a transaction according to its length

 This graph (Fig6.1) shows that execution time of a transaction does not vary in an
exponential way when one varies his length (operation number). This result joined the
hypothese of the SDDS scalability.

 From these same measurements, we deduced the graph below. It shows the execution time
variations by reading operation on the one hand and of updating on the transaction.

 Fig 6.2. time by operation in function of the transaction length.

On the graph (Fig 6.2), a decrease in the execution time per transaction operation can be noted
up to 100 operation, and then the beginning of a slight increase for a reading transaction as
well as an updating transaction.
 In spite of that slight gradual rise of the execution time per operation, the times
values per operation for a 600-operation transaction (9.94 ms a reading operation and 12026
ms an up-dating operation) are lower than those of a 10 – operation transaction (14.6 ms a
reading operation and 17.44 ms an up – dating operation).
 The time decrease per operation can be explained by the client and before servers
speeds gradual increase. Form a length transaction superior to 100 operations, the first server

0

2

4

6

8

10

12

14

16

18

20

10 50 100 150 200 250 300 400 500 600

lengths (operations)

T
im

e
(m

s)

update
reading

- 7 -

operates a request redirection in multicast towards the nine other servers. The combined
effect of this phenomenon and the client has reached its maximum speed can explain the
slight time rise per operation starting a transaction lengthier than 100 operations. On that
account, the influential parameter on the execution time per operation with the client is its
speed.

6.3. Study of the transaction manager behaviour in a concurrent environment.

 The transaction manager behaviour in a competitive environment was studied in this
part. The VDAS algorithm and the priorities based extra module behaviours were
distinguished in this study.
 The experimental procedure consisted in starting series of updating transactions
steam of the same lengths 10 operations), and gradually changing the stream size. The
transactions recording keys were randomly generated on a key area between 1 and 1000.
 The two measurements were made in this part. In the first was recorded the
transactions different streams execution time as well as the conflicts numbers (and locks)
observed. The results are recapitulated in the table below.

 Stream size
 (transactions)

2 4 6 8 10 50 100 200 300 400

Times (ms)

40
1

76
2

 1
00

1

 1
51

2

 1
43

2

 7
90

1

19
29

5

39
57

4

58
08

3

78
64

3

Abortion number Vdas 0 0 3 2 4 20 40 76 140 194

Suppl 0 0 0 2 0 9 54 124 149 248

Lock number Vdas 1 2 0 3 2 21 48 92 320 403

Suppl 0 0 0 5 7 28 53 64 226 305

Conflicts number 1 2 3 12 13 78 195 356 835 1150

Tab6.1. Measurement of the execution time Of a transactions stream, (of the number) of abortions and locks of
simultaneous execution transactions

 Then the number of times each stream transaction was restarted in the system. As a matter of
fact, each aborted transaction was placed ion a waiting list and then restarted later in the
system. The stream execution came only to an end when al the stream transactions were
committed. Those measurements results are recorded in the following table (Tab 6.2)

 Number of restarts
1 2 3 4 5 6

2 0 0 0 0 0 0

4 0 0 0 0 0 0

- 8 -

Stream sizes
(transactions)

6 3 0 0 0 0 0

8 4 0 0 0 0 0

10 4 0 0 0 0 0

50 18 4 1 0 0 0

100 37 19 5 1 0 0

200 73 35 15 3 0 0

300 82 42 26 8 2 1

400 91 66 39 19 4 1

 Tab.6.2. Number of times a transaction has been restarted.

Form the table Tab6.1 can be inferred the average execution duration per transaction in a
stream by dividing the total execution time by the stream size. The abortions, jamming and
therefore conflicts propositions are calculated comparatively to the conflicts total number.
That evaluations are recorded in the following table (Tab 6.3):

 Stream size
 (transactions)

2 4 6 8 10

50

10
0

20
0

30
0

40
0

G
lo

ba
l

ev
er

ag
e

 Exécution time per
 transaction (ms)

20
0,

50
0

19
0,

50
0

16
6,

80
0

18
9,

00
0

14
3,

20
0

15
8,

02
0

19
2,

95
0

19
7,

87
0

19
3,

61
0

19
6,

60
8

18
2,

90
9

 Ratio
 of abort

Vdas

0,
00

0

0,
00

0

0,
33

3

0,
16

7

0,
30

8

0,
25

6

0,
20

5

0,
21

3

0,
16

8

0,
16

9

0,
19

0

Suppl

0,
00

0

0,
00

0

0,
00

0

0,
16

7

0,
00

0

0,
11

5

0,
27

7

0,
34

8

0,
17

8

0,
21

6

0,
13

0

Globals proportions
 of abortion

0,
00

0

0,
00

0

0,
33

3

0,
33

3

0,
30

8

0,
37

2

,0
48

2

0,
56

2

0,
34

6

0,
38

4

0,
32

0

 Locks
 proportions

Vdas

1,
00

0

1,
00

0

0,
00

0

0,
25

0

0,
15

4

0,
26

9

0,
24

6

0,
18

0

0,
38

3

0,
35

0

0,
38

3

Suppl

0,
00

0

0,
00

0

0,
66

7

0,
41

7

0,
53

8

0,
35

9

0,
27

2

0,
18

0

0,
27

1

0,
26

5

0,
29

7

 Globals Proportions
 of locks

1,
00

0

1,
00

0

0,
66

7

0,
66

7

0,
69

2

0,
62

8

0,
51

8

0,
36

0

0,
65

4

0,
61

6

0,
68

0

Tab6.3. Measurement of the average execution time by transaction in a concurrent environment, the abortions
and locks proportion related to the conflicts.

- 9 -

 It can be inferred that a transaction average execution time is if the order of 182.909
milliseconds. This evaluation also shows 32 % of the conflicts (19 % due to the algorithm
VDAS and 13 % to the extra module) lead to abortions and the rest (68) to jamming and
29.1% due to the extra module.
 The average conflict rate (Tc) with which the transactions were executed is
computed started from the following formula translating the different streams conflict rate
average :

 In practice, it appeared difficult to note the executed operations number in a stream
after its commit. That is why the average conflict rate observed in the system will be framed
by two values (Tmin and Tmax) for which

 Tmin < Tc < Tmax

Will always be obtained, where

And

It is later found the average conflict rate is included between 8.92 % and 15.24 %

 8.92 % < Tc < 15.24 %

The variation curve of the conflicts number (Fig6.3) and that of the average execution time by
transactions (Fig6.4) in function of a stream size are respectively represented in the following
two graphs.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

2 4 6 8 10 50 100 200 300 400
stream size (transaction)

co
n

fl
ic

ts
 n

u
m

b
er

conflicts number

∑
= +

=
N

i inumberabortssizestream
conflictsofnumber

NT
1

min)(10*)(
1

∑
=

=
N

i isizestream
conflictsofnumber

NT
1

max)(10*
1

∑
=

=
N

i i
c numberoperationsexecuted

conflictsofnumber
NT

1
)(1

- 10 -

 Fig 6.3 conflicts number variation depending on a stream size

 Fig 6.4. A transaction execution time variation depending on a stream size

 The preceding graph (Fig 6.4) shows a transaction execution time does not exploited
for transactions streams executed in an environment liable to a conflict rate between 8.92 %
and 15.24 %. This result verifies the SDDS scalability hypothesis for our transaction manager.

6.4 Study of the transaction manager stability.

 In real operation, the transactions from applications are placed in a waiting list the
transaction manager manages in FIFO. In the same why, if a transaction aborts, it will be put
in the waiting list and will, in this case, be considered as new transaction which will, at the
right time, be restarted for operation in the system.
 The object of this study is to determine a stability condition for the transaction
waiting list. That is to determine a condition for which this list length is almost constant even
when the transactions manager is set going for a long enough duration.
 To this end, a stream of 10 length updating random transactions (10 operations) is
started at each time interval Dt, for a time D. Then, the size L of the list is noted down at each
time just before a new stream arrives.
 The procedure is repeated until the list size variations between two consecutive
streams are equal to zero for a given value Dt. This Dt value will in this case represent an
acceptable value for the transactions list stability.
 The following graph illustrates the aspects of three variation curves of the
transactions list size, corresponding each to a Dt given value and for a D= 60.000 milliseconds
execution duration.

y = 1,02x + 177,29

0

20

40

60

80

100

120

140

160

180

200

220

2 4 6 8 10 50 100 200 300 400
stream size (transaction)

T
im

e
(m

s)

execution time by transaction
ajustement line

- 11 -

 Fig 6.5. Transaction waiting list variation in function of the arrival rate.

 The above graph shows that for any interval Dt>1500 ms milliseconds, the
transactions list size remains almost constant starting for a certain moment of the working of
the transactions manager.
 On the other hand, for any Dt<1500 ms value, a list size increase can be observed.
The list would infinitely rise if the transactions manager working in a quasi–permanent mode.
In such a situation, the transactions would Riske to wait a long time before set into operation.
Litter’s law on the waiting list theory states that if TR L, λ respectively represent the mean
reponse time of any random transaction, the transactions average arrivals rate in the execution
module, then Litter’s law can be expressed by the following formula :

3.1.1.1.1.1.1 Where

The condition of transactions list stability means

 Dt < 1500 (6.3)

Now, it be inferred from the fomula (6.2)

According to (6.4), the inequality (6.3) so becomes

0

10

20

30

40

50

60

70

80

90

100

110

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Arrivals intervals

Tr
an

sa
ct

io
n

w
ai

tin
g

lis
t s

iz
e

(tr
an

sa
ct

io
n)

Dt=1000 ms
Dt=1500 ms
Dt=2000 ms

λ
LTR = (6.1)

(6.2) DD tt

sizestreamnstransactioa 10
==λ

(6.4)
 λ

10
=Dt

150010
≥

λ

- 12 -

3.1.1.1.1.1.2 Hence

For the transactions waiting list to stabilise, it is necessary and it suffices the arrivals rate λ of
the transactions the execution module be strictly inferior to 6.66 transactions persecond in
average.

7. Conclusion
 The concurrent access management protocol based on value dates has the advantages
of being interlock free, it causes few rejections and therefor provides better performance
compared with other existing protocols.
 The implemented transaction manager ensures that any transaction in operation in the
system will be satisfactorily carried out at the end of a finite waiting time, and provides extra
functionality to minimise the chances of livelock and critical failure the VDAS is liable to. To
this end, some functionality based on the concept of priority associated with each transaction
in operation was added.
 The performance measurements and test carried out showed that with a conflict rate
between 8.92 % and 15.24 % the transaction manager behaves in a stable way and the streams
processing time does not explode until streams with a size equalling 400 transactions.
 Furthermore, studies carried out not only enabled the transactions manager behaviour
to be observed but also contributed to fix the values of the different parameters allowing a
reasonable response time.
 Those different achievements later made it possible to more easily face the
concurrent access problem linked to a truly distributed architecture, what is the SDDS
multiple clients / SDDS servers.
[This work also made it possible for the researches to get accustomed with the JAVA
language programming concepts, ore precisely the network programming and that of the
multitask in a NT and TCP/IP windows environment

3.1.1.1.1.2

nstransactionstransactio 66.6
1500
10

=<λ

- 13 -

References

[WLH88] Litwin, W., Tirri, H. Flexible Concurrency Control Using Value Dates IEEE Distributed Processing Techn.
Newsletter. Special Issue on Heterogeneous Distributed Databases. Vol. 10, 2, Nov. 1988, 42 - 49.

[WLH89] Litwin, W., Tirri, H. Flexible Concurrency Control using Value Dates. Integration of Information Systems:
Bridging Heterogeneous Databases. Gupta, A. (ed.). IEEE Press, 1989.

- [LNS94] W.Litwin, M-A Schneider ,SDDS RP* :A family of Order-preserving Scalable Distributed Data
Structures. 20 th Intl.Conf on very large data Bases (VLDB), 1994

- [AKF72] A.Kaufmann , Méthodes et modelés de la recherche opérationnelle (tome1) , DUNOD, Paris, 1972

- [HFA91] Henry F.Korth, A.Silberschatz , Système de gestion des bases de Données, McGRAW-HILL, 1991

- [CHT98] Craig Hunt, TCP/IP Administration de réseau, O’REILLY, Paris, 1998

- [EDM96] P.Niemeyer, Joshua Peck , Java par la pratique, O’REILLY INTERNATIONAL THOMSON,
Paris, 1996

- [GPV90] G.Gardarin, P.Valduriez, Base de données objets, déductives, reparties, EYROLLES, Paris, 1990

- [SAR94] S.Miranda, A.Ruols, Client-Serveur, Concepts moteurs SQL et architectures parallèles,
EYROLLES, Paris, 1994

- [AMR99] A.Mirecourt, Le développeur Java2, OSMAN EYROLLES MULTIMEDIA, Paris, 1999

- [JBB90] J.Beauquier, B.Berard, Système d’exploitation Concepts et Algorithmes, McGRAW-HILL, Paris,
1990

- [AWD98] A.W.Diéne, Manipulations parallèles et haute disponibilité de structure de données distribuées et
scalables, Rapport de recherche UCAD, Dakar, 1998

- [YBD98] Y.Ben Adelkader Ndiaye, Architecture de communication des SDDS RP*n et SDDS RP*c, Rapport
de recherche UCAD, Dakar, 1998

- [NAS95] N.M.Diop, A.Lo, S.Andrianjafy, Adjonction d’un module de contrôle de concurrences par la méthode
de verrouillage à deux phases (2 Phases Lock) à un prototype existant, Projet de recherche ESP, Dakar, avril
1995

	Deadlock Free Concurency Control by Value Dates
	for
	Scalable Distributed Data Structures
	1. Introduction
	2. Concurrency management
	2.1 Basic VDAS scheme
	2.2 Priority based VDAS schema
	2.3 Value date calculus

	3. Performance measurements
	3.1.1.1.1.1.1 Where
	3.1.1.1.1.1.2 Hence
	3.1.1.1.1.2

