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Abstract

This survey presents tools from polyhedral theory that are used in
integer programming. It applies them to the study of valid inequalities
for mixed integer linear sets, such as Gomory's mixed integer cuts.
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1 Introduction

~Mixed integer linear programming

;s tutorial we consider mized integer linear programs. These are prob-
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where the data are the row vectors ¢ € Q%, h € QP, the matrices A € Q™*",
G € Q™*P and the column vector b € Q™; and the variables are the column
vectors z € R and y € RP. The set S of feasible solutions to (1) is called
a mized integer linear set when p > 1 and a pure integer linear set when
p=0.
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Figure 1: A mixed integer set

The polyhedral approach is a powerful tool for solving mixed integer
linear programs (1). This is the topic of this tutorial.

1.2 Historical perspective

Babylonian tablets show that mathematicians were already solving systems
of linear equations over 3000 years ago. The eighth book of the Chinese Nine
Books of Arithmetic, written over 2000 years ago, describes the Gaussian
elimination method. In 1809, Gauss [29] used this method in his work
and presented it as a ”standard technique”. Surprisingly, the method was
subsequently named after him.

A major breakthrough occurred when mathematicians started analyzing
systems of linear inequalities. This is a fertile ground for beautiful theories.
Tn 1826 Fourier [28) gave an algorithm for solving such systems by eliminat-
ing variables one at a time. Other important contributions are due to Farkas
(26] and Minkowski [39]. Systems of linear inequalities define polyhedra and
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it is natural to optimize a linear function over them. This is the topic of
linear programming, arguably one of the greatest successes of computational
mathematics in the twentieth century. The simplez method, developed by
Dantzig [20] in 1951, is currently used to solve large-scale applications in all
sorts of human endeavors. It is often desirable to find integer solutions to
linear programs. This is the topic of this tutorial. The first algorithm for
solving (1) in the pure integer case was discovered in 1958 by Gomory [31].

When considering algorithmic questions, a fundamental issue is the in-
crease in computing time when the size of the problem instance increases. In
the 1960s Edmonds [23] was one of the pioneers in stressing the importance
of polynomial-time algorithms. These are algorithms whose computing time
is bounded by a polynomial function of the instance size. In particular Ed-
monds [24] pointed out that, by being a bit careful with the intermediate
numbers that are generated, the Gaussian elimination method can be turned
into a polynomial-time algorithrxfl. The existence of a polynomial-time al-
gorithm for linear programming remained a challenge for many years. This
question was resolved positively by Khachiyan [34] in 1979, and later by
Karmarkar [33] using a totally different algorithm. Both algorithms were
(and still are) very influential, each in its own way. In integer program-
ming, Lenstra [36] found a polynomial-time algorithm when the number of
variables is fixed. Although integer programming is NP-hard in general, the
polyhedral approach has proved successful in practice. It can be traced back
to the work of Dantzig, Fulkerson and Johnson [21). Research is currently
very active in this area. Also very promising are non-polyhedral approx-
imations that can be computed in polynomial-time, such as semidefinite
relaxations (Lovész and Schrijver [37], Goemans and Williamson [30]).

In the next section, we motivate the polyhedral approach by presenting
a cutting plane method for solving mixed integer linear programs (1).

1.3 Cutting Plane Methods
Solving a mixed integer linear program (MILP) such as (1) is NP-hard (Cook

~[16])- One approach that has been quite successful in practice is based

on an idea that is commonly used in computational mathematics: Find a
relaxation that is easier to compute and gives a tight approximation. We
focus on linear programming (LP) relazations.

Given a mixed integer linear set S := {(z,y) € Z} xRY : Az+Gy < b}, a
linear programming relaxation of S'is a set P! = {(z,y) : A'z+G’y < b’} that
contains S. Why LP relaxations? Mainly for two reasons: As mentioned
already, there are efficient practical algorithms for solving linear programs




[20], [33]. Second, one can generate a sequence of LP relaxations that provide
increasingly tight approximations of the set S.
For a mixed integer set S, there is a natural LP relazation:

Py:={(z,y): Az + Gy < b,z > 0, y > 0}

which is obtained from the system that defines S by discarding the integrality
requirement on the vector z.
Let (22, °) be an optimal solution and 2° the value of the linear program

max{cz + hy : (z,y) € Py} (2)

whose constraint set is the natural linear programming relaxation of S. We
will assume that we have a linear programming solver at our disposal, thus
(2%,1°) and 2° are available to us. Since S C Py, it follows that 20 > 2¥,
that is, z° is an upper bound on z*. Furthermore if 29 is an integral vector,
then (z°,4°) € S, z* = 20 and the MILP (1) is solved.

A strategy for dealing with an optimal solution (z°,3°) of (2) that is not
in S is to find an inequality az + vy < [ that is satisfied by every point
in S and such that az® + vy° > 8. The existence of such an inequality is
guaranteed when (z°,y°) is an optimal basic solution of (2), which can be
found by standard LP algorithms.

An inequality ax+ vy < B that is satisfied by every point in S is a valid
inequality for S. If such an inequality is violated by (x9,49), it is a cutting
plane separating (2°,4°) from S.

Define now

P =Py n{(z,y): az+yy < B}

Since S C P, C Py, a linear programming relaxation for MILP based on
P, is stronger than the natural relaxation based on Fp in the sense that the
solution (z°,%°) of the natural LP relaxation does not belong to Py. So the
optimal value of the LP

max{cz +py: (z,y) € P1}

is at least as good an approximation of the value z* as zy. The recursive
application of this idea leads to the cutting plane approach:

Starting with ¢ = 0, repeat:
Recursive Step: Solve the linear program max{cz + hy : (z,y) € F;}. If
the associated optimal basic solution (z?,3*) belongs to S, Stop.
Otherwise solve the following separation problem:



Find a cutting plane ax + vy < 8 separating (z*,y*) from S.
Set Py := PN {(2,y) : @z + vy < B} and repeat the recursive step.

If (z*,4%) is not in S, there are infinitely many cutting planes separating
(z*,y") from S. So the separation problem that is recursively solved in the
above algorithm has many solutions. There is usually a tradeoff between
the running time of a separation procedure and the quality of the cutting
planes it produces. We will discuss several possibilities in this survey.

For now, we illustrate the cutting plane approach on a two variable
~ example (see Figure 2): ‘

max z = 1lz; + 4.2z,
—zy+x < 2 3)
8z1 42z, < 17
z1,72 2 0 integer.

We first add slack variables 23 and z4 to turn the inequality constraints into
equalities. The problem becomes:

z—1lx1 —4.2z5 = 0
—z1+x9+a3 = 2
8z1 + 229 + x4 17

T1,%2,%3,24 = 0 integer.

Solving the linear programming relaxation, we get the optimal tableau:

2+ 1.16x3+ 1.52z4 = 28.16
o+ 0.8234+0.1zy = 3.3
1 —0.223 +0.1zy = 1.3

z1,T2,%3,T4 = 0

The corresponding basic solution is z3 = z4 = 0, z; = 1.3, 29 = 3.3.
Since these values of z; and 3 are not integer, it is not a solution of (3).
We can generate a cut from the constraint zp + 0.8z3 + 0.1z4 = 3.3 using

. the following reasoning. Since x9 is an integer variable, we have —— .

0.823 +0.1z4 = 0.3+ k where k € Z.
Since the left-hand-side is nonnegative, we must have k > 0, which implies
0.8z3 4+ 0.1z4 > 0.3

This is the famous Gomory fractional cut [31]. Note that it cuts off the
above fractional LP solution z3 = z4 = 0.




Figure 2: The first two cuts in the cutting plane algorithm

Since 3 = 2+ — 22 and x4 = 17— 8z — 2z, We can express Gomory’s
fractional cut in the space (z1,22). This yields z9 < 3 (see Figure 2).

Adding this cut to the linear programming relaxation, we get the follow-
ing formulation.

max 11z1 + 4.229
-1+ Z2 < 2
8zy + 210 < 17
Hi%) S 3
T1,x2 > 0.

Solving this linear program, we find the basic solution z; = 1.375, 22 = 3
with value z = 27.725. From the optimal tableau, we can generate a new
fractional cut:

zy + x9 < 4.

Adding this cut to the LP, we find a new LP optimum z; = 1.5, 29 = 2.5
with value z = 27. Two more iterations are needed to obtain the optimal
integer solution z; = 1, 3 = 3.

2 Polyhedra and the Fundamental Theorem of In-
teger Programming

A polyhedron in R™ is a set of the form P:= {z € R": Az < b} where A
is a real matrix and b a real vector. If A and b have rational entries, P is a
rational polyhedron. A polyhedron of the form {z € R" : Az < 0} is called
a polyhedral cone. Note that a polyhedral cone is always nonempty since it
contains the null vector 0.



For S C R™, the convex hull of S is the set conv(S) :={z € R": z =
Z?=1 Mozt where k > 1, A € Rﬁ_,zf:;l A =1andz!,...,zF € S}. Thisis
the smallest convex set that contains S. Note that conv(@) = 0. The convex
hull of a finite set of points in R™ is called a polytope. It will sometimes be
useful to work with ¢onv(S), the closure of conv(S), which is the smallest
closed convex set that contains S. The conic hull of a nonempty set S C R™is
cone(S) == {z €R": =% \ai where k> 1, A€ R and z!,...,2* €
S}. If S is a finite set, cone(S) is said to be finitely generated. It will be
convenient to define cone()) = {0}.

Given a cone C and r € C\{0}, the set cone(r) = {Ar : A > 0} iscalled a
ray of C. Since cone(Ar) = cone(r) for every A > 0, we will sometimes simply
refer to a vector r € C as a ray, to denote the corresponding ray cone(r).
So when we say that r and 7’ are distinct rays, we mean cone(r) # cone(r’).
We say that » € C'\ {0} is an extreme ray if there are no distinct rays r1
and r? such that = = 1 4 2. We say that C is pointed if, for every r € C,
—r ¢ C. We recall, without proof, that if C is a finitely generated pointed
cone, then C is generated by its extreme rays.

An important theorem, due to Minkowski and Weyl, states that every
polyhedron P can be written as the sum of a polytope @ and a finitely
generated cone C. Here Q4+ C = {z e R* : 2 = y + zforsomey €
@ and z € C}. Note that P =0 ifand only if Q =@. If P := {z € R :
Az < b} is nonempty, then C'is the cone {z € R" : Az < 0}, which is called
the recession cone of P. We will prove this theorem in Section 2.3.

Using the Minkowski-Weyl theorem, we will prove the fundamental the-
orem of integer programming, due to Meyer [38]:

Given rational matrices A, G and a rational vector b, let P := {(z,y) :
Az + Gy < b} and S := {(z,y) € P : = integral}. Then there exist rational
matrices A, G’ and a rational vector ¥ such that conv(S) = {(z,y) : A’z +
G'y <t}

In other words, the convex hull of S is a rational polyhedron. This the-
orem is the theoretical underpinning of the polyhedral approach to integer

- programming—Indeed; it-shows-that-(1); the problem-of optimizing & linear

function over a mixed integer set S is equivalent to solving a linear program.
The main difficulty is that the polyhedron conv(S) is not known explicitly.
In the later sections of the tutorial, we will address the constructive aspects

of conv(S).

2.1 Farkas’ lemma and linear programming duality

The following is a fundamental fact in linear algebra:




Theorem 2.1. A system of linear equations Az = b is infeasible if and only
if the system uAd = 0, ub < 0 is feasible.

A constructive proof of Theorem 2.1 is straightforward using Gaussian
elimination on the system Az = b. Furthermore, one can decide in poly-
nomial time which of the two systems is solvable and find a solution, again
using Gaussian elimination (Edmonds [24], see e.g. Schrijver [45] p.27).
Farkas’ lemma [26] provides a certificate of the solvability of a system of lin-
ear inequalities Az < b in the same spirit as Theorem 2.1. However its proof
is not as straightforward. This is not surprising since checking feasibility
of a system of linear inequalities is a linear programming problem. In fact,
Farkas’ lemma can be used to derive the strong duality theorem of linear
programming, as we will show later in this section. We first give a proof
of Farkas' lemma based on Theorem 2.1, following Conforti, Di Summa and
Zambelli [15].

Theorem 2.2. (Farkas’ lemma) The system of linear inequalities Az < b
is infeasible if and only if the system uA =0, ub <0, v > 0 is feasible.

Proof. Assume uA =0, ub < 0, u > 0 is feasible. Then 0 = uAz < ub <0
for any z satisfying Az < b. It follows that Az < b is infeasible and this
proves the "if" part.

Now we prove the “only if” part. Let A’z < b’ be an infeasible system.
Let a;, ¢ € R, denote the rows of A’. Remove inequalities from the system
Az < b until it becomes minimally infeasible, i.e. the resulting system
Az < b is still infeasible but removing any further constraint would make
the system feasible. ‘Let M C R index the rows of A. We will show that
there exists v > 0 such that uA = 0 and ub < 0. Setting u; = 0 for all
i € R\ M, this will show that there exists u > 0 such that uA’ = 0 and
ub! < 0, proving the “only if” part. Given S C M, define §:= M\ S.

Claim. For every S C M the system a;z = b;, 1 € S, ajx < b, 1 € S is
minimally infeasible.

The proof is by induction on |S|. The claim is true when S = (. Consider
S C M with |S|] > 1 and assume by induction that the claim holds for any
set of smaller cardinality than |.S]|.

The system a;z = b;, i € S, a;z < b;, i € S is infeasible. Let k € M.
By the induction hypothesis applied to S\ {k}, the system

aiz="b;, 1€ S\ {k}, asz<b;,ie€S (4)



is feasible for any k € S. Therefore, to prove the claim, we only need to
show that

az=>by, i €S, a;z<b,iel\{k} (5)

is feasible for any k € S. Let i € §. By induction, there exist " and z*

such that

' azt =b, i€ S\ {h}, ezt <b,i€ S

and '
a;z® =b;, i € S\ {h}, aiz® <b;, i€ SU{n}\{k}.

Notice that apz® < by, and apzt > by, so, setting & = apz” — by, > 0 and
B = by —apz® > 0, the vector y = Q"’Tﬁcck + E%a:h is a solution for (5). This
proves the claim.

Now, since a;z < b;, i € M, is infeasible, then clearly a;z = b;, i € M,
is infeasible and by Theorem 2.1, there exists a vector u such that uA =
0, ub < 0. The lemma holds if w > 0. So suppose u; < 0. According to
the Claim, there is a vector z* such that a;z* = b;, ¢ € M \ {1}. Since
Az < b is an infeasible system, aiz* > by. This (together with u; < 0)
shows u(Az* — b) < 0, contradicting

u(Az* - b) = (ud)z* —ub >0
where the inequality follows from 4 = 0 and ub < 0. O
Equivalently, Farkas’ lemma can be written as:

Corollary 2.3. The system of linear inequalities Az < b is feasible if and
only if ub > 0 for every vector u satisfying uA =0, u = 0.

Farkas’ lemma. can also be restated as follows:

Theorem 2.4. The system Az =b, = > 0 is feasible if and only if ub = 0
for every u satisfying uA > 0.

_ Proof. The system Az = b, = > 0 is equivalent to Az < b, -Az <

—b, —z < 0. The theorem follows by applying Corollary 2.3 to this lat-
ter system. (]

The following is a more general, yet still equivalent, form of Farkas’
lemma.

Theorem 2.5. The system Az+ By < f, Cz+Dy =g, x > 0 is feasible if
and only if uf +wvg > 0 for every (u,v) satisfying uA+vC > 0, uB+vD =
0, u=>0.



Checking the feasibility of a system of linear inequalities can be solved
in polynomial time (Khachiyan [34], Karmarkar (33]).

We derive the fundamental theorem of Linear Programming from Farkas’
lemma.

Theorem 2.6. (Linear Programming Duality) Let
P:={z: Az<b} and D:={u: uA=c¢, u >0}
If P and D are both nonempty, then
max{cz : z € P} = min{ub: u € D}. (6)

Proof. For & € P and @ € D we have that ¢z = wAZ < u@b. Therefore
» max < min” always holds. To prove equality, we need to prove that the
system

—cz+bTuT <0, Az <b, ATuT =T, 4T >0 (7

is feasible. By Farkas’ lemma (Theorem 2.5), (7) is feasible if and only
pb+ vel > 0 for every vector (A, p,v) satisfying

pA—de=0, vAT+X7 >0, M\p>0.

If A > 0, then b= A"IATuT > A" WwATuT = X"l A = —vcl.
Ifx=0,let 7€ Pand @€ D. Then pb> pAz =02 —vATWT = —uT,
Therefore in both cases we have ub+vcl > 0 and the proof is complete. O

Theorem 2.7. (Complementary slackness) Let X°P* and U be subsets of
P:={z: Az <b} and D := {u: uA = ¢, u > 0} respectively. Define
I={i:u; >0 for someu € U},
Then X°Pt and U°Pt are the sets of optimal solutions of the pair of dual
LPs
max{cz: z € P} and min{ub: u € D}

if and only if
XP ={z: qz="by,i €I, ayz <b;,i &€ I}.

Proof. By Theorem 2.6, the sets X°P* and U are the sets of optimal solu-
tions of the pair of dual LPs above if and only if cz = ub for every x € X",
w € U, For every z € P and u € D, cx = uAz < ub, hence equality holds
throughout if and only if a;z = b; for every 7 € I and every z € X oRe. O

Here is another well-known consequence of Farkas' lemma:
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Remark 2.8. Let P:={z: Az <b} and D:={u: uA=c¢, u>0}. IfD
is empty, then max{cz : = € P} is unbounded.

Proof. Since D = (), by Farkas’ lemma, the system Ay < 0, cy > 0 is
feasible: Let 7 be a solution of this system and Z € P. Then Z+ Aj € P for
every A > 0. Since cj > 0, max{cz : z € P} is unbounded. a

2.2 Caratheodory’s theorem

Theorem 2.9. (Caratheodory’s theorem) If the linear system Az = b,z > 0
is feasible, then it has o solution & where the columns of A corresponding to
the positive entries of T are linearly independent.

Proof. Let Z be a solution with the minimum number of positive entries and
let A be the column submatrix of A corresponding to the positive entries of
z. If the columns of A are linearly dependent, there exists a vector y # 0
such that Ay = 0 and y; = 0 whenever Z; = 0. We assume w.l.o.g. that y
has at least one positive component. Let A = miny;so %, let 7* be an index
for which this minimum is attained and define z* = Z— Ay. Clearly Az* = b.

By the choice of A, z* > 0 and :1:;‘ = 0 whenever Z; = 0. Furthermore :r:; =0
while Z;+ > 0, a contradiction to our choice of Z. O

The next theorem combines Caratheodory’s Theorem 2.9 with a strength-
ening of Farkas’ lemima.

Theorem 2.10. For a linear system Az = b,z > 0 exactly one of the
following two alternatives holds:

e Az = b,z > 0 admits a solution T where the columns of A, correspond-
ing to the positive entries of Z, are linearly independent.

o There is a vector u such that vA > 0, ub < 0 and there is a column
 submatriz A® of A such that uA® = 0 and rank(A®) = rank(4[b) — 1.

_Proof. If Axz.=.b, x> 0 admits a solution, then Theorem 2.9 shows that the. .

first outcome holds. So we assume that Az = b, z > 0 is infeasible and we
show that the second outcome holds.

If rank(A4) = rank(Alb) — 1, then by standard linear algebra Az = b is
infeasible, so by Theorem 2.1 there exists a vector u such that ud = 0,
ub < 0 and the theorem obviously holds in this case. :
So we consider the case rank(A) = rank(A|b) and we can assume that A has
full row-rank m. By Theorem 2.4, there exists a vector u such that u4 > 0,
ub < 0. Among such vectors, choose v such that the column submatrix AP
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of A where uA® = 0 has maximum rank. Suppose by contradiction that
rank(A%) < m — 2. Then rank(A°|A1) < m — 1 where 1 denotes the vector
of all 1s. So there exists a vector v # 0 such that vA® = 0, vA1 = 0, and
we may choose v such that vb > 0.

Let J be the set of column-indices of A = (al,...,a™) and J° be the subset
of J, corresponding to the column indices of AP, Since v # 0 and A has full
row-rank, there is an index j such that val # 0. Since vAl = 0, then there
is an index j such that vqj > 0. (Note that such an index j is in J \ J°).
Let A = minjej.uai>0 "5‘% and let 7* be an index for which this minimum
is attained. Then by the choice of A, (u — Av)A > 0 and (u — Av)b < 0.
Furthermore (v — Av)A® = 0 and (u — Mv)a/” = 0. Since vA® = 0 and
val” > 0, then rank(A4%a?") = rank(A®) + 1 by Theorem 2.1. Therefore
u — v contradicts the choice of . O

2.3 The theorem of Minkowski-Weyl

We first present the Minkowski-Weyl theorem for cones.

Theorem 2.11. (Minkowski- Weyl theorem for cones) For a set C C R,
the two following conditions are equivalent:

1. There is a matriz A such that C = {z € R": Az > 0}.
2. There is a matriz R such that C = {z € R": 2 = Rp, p > 0}.

In the terminology introduced in Section 2, Theorem 2.11 states that a
cone is polyhedral if and only if it is finitely generated. The columns of R
are the generators of the cone C.

We first show that any one of the two conditions of the theorem is implied
by the other. A pair of matrices (A4, R) that satisfy {z € R" : Az > 0} =
{z € R" : = Ry, p > 0} will be called an MW-pair. Note that if (A, R)
is an MW-pair, then all entries of AR are nonnegative (since ARe? > 0 for
the unit vectors e’).

Lemma 2.12. A pair of matrices (A, R) is an MW-pair if and only if
(RT, AT) is an MW-pair.

Proof. By Farkas' lemma (Theorem 2.4), {x € R* : © = Rp,p > 0} =
{z € R* : Ty > 0 for every y satisfying RTy > 0}. Therefore (4, R) is an
MW-pair if and only if:

{z:Az >0} ={zeR": 2Ty > 0 for every y s.t. RTy>0}.  (8)
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Assuming that (8) holds, we show that {y: RTy >0} ={y:y = ATp, p>
0}. This is the condition for (RT, AT) to be an MW-pair.

Given 7 such that RTg > 0, then by (8), ¥z > 0 for every z satisfying
Az > 0. By Farkas’ Lemma (Theorem 2.4) the system § = ATy, p > 0 is
feasible. This shows that {y: RTy > 0} C {y:y = ATy, u > 0}.

We show the reverse inclusion. Given 7 such that § = AT for some p > 0,
RT§ = RTAT 4 > 0, because all entries of AR are non-positive since (4, R)
is an MW-pair. 0

Proof of Theorem 2.11 ;

By Lemma 2.12 it is enough to prove that 2 implies 1.

Let 71,...,7% be the columns of R. We may assume that the vectors
71 ..., 7% span R™, else all these vectors satisfy an equation dr = 0 where
d # 0 and one variable can be eliminated (i.e. the dimension can be re-
duced). Now consider the half spaces {x € R" : az > 0} that contain
{r%,...,r*} such that the hyperplane {z € R™ : az = 0} contains n — 1
linearly independent vectors among 71,...,7*. Since these vectors span R®,
there is a finite number of such half-spaces. (In fact, at most (nﬁl)) Let A
be the matrix whose rows contain the incidence vector a of all such subspaces
and consider the cones

Ca={z€R": Az >0}, Cr:={z€R":z=Rpu,u>0}.

Since every inequality of the system Az > 0 is valid for 1,...,7*, Cg C

Ca. Let Z & Cg. Then the system & = Ry, 1 > 0 is infeasible. By Theorem
210, there exists u such that uR > 0, uZ < 0 and there exists a column
submatrix RO of R such that uR® = 0 and rank(R®) = rank(R|Z)—1=n—1
(because 71,...,7F span R™). Therefore u is one of the vectors a from
Az > 0. But then a% < ‘0, i.e. the system Az > 0 contains an inequality
that is violated by . So Cg coincides with C4 and the theorem follows. O

Remark 2.13. The proof of Theorem 2.11 shows that, if A is a rational

_matriz, there exists o rotional motriz. R such that (A, R)-is-an- MW-pair, —— - ——

We now present the Minkowski-Wey! theorem for polyhedra. Given sub-
sets V, B of R", the Minkowski sum of V, R is the set:

V+ R:={zx€R": there exist v € V, r € R such that z =v+r}.

If one of V, R is empty, the Minkowski sum of V, R is defined to be empty.
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Theorem 2.14. (Minkowski-Weyl theorem for polyhedra) For a subset P
of R", the following two conditions are equivalent:

1. P is a polyhedron, i.e. there is a matriz A and a vector b such that
P={zeR": Az <b}.

2. There are finite sets of vectors vl,...,vP, r1,..., 79 such that

P = conv (v

..., uP) + cone(r!,...,r9).

Proof. We show that 1 implies 2. Consider the polyhedral cone Cp =
{(z,y) € R* : by — Az > 0,y > 0}. Notice that P = {z : (z,1) € Cp}.
By Theorem 2.11, the cone Cp is finitely generated. Since y > 0 for every
vector (z,7) € Cp, we can assume that y = 0 or 1 for all the rays that
generate Cp. That is,

sl (2) (2.0}

Therefore P = conv{v!,...,v*} +cone{ry,...,7q}-

The converse statement follows analogously from Theorem 2.11. O
Corollary 2.15. (Minkowski-Weyl theorem for polytopes) For a set P C
R", the following two conditions are equivalent:

1. P is bounded and there is a matriz A and a vector b such that P =

{z € R": Az < b}.
2. There is a finite set of vectorsv!,. .., vP such that P = conv(vl,...,vP).

2.4 The fundamental theorem for MILP

Let S := {(z,y) : Az + Gy < b, = integral} be a mixed integer set, where
matrices 4, G and vector b have rational entries. Meyer [38] proved that
conv(S) is a rational polyhedron, i.e. there exist rational matrices A’ and
¢ and a rational vector b’ such that conv(S) = {(z,y) : A’z + G'y < b'}.

Note first that if S contains finitely many vectors (for instance this hap-
pens when S is the set of integral vectors contained in a polytope), the above
result follows from Corollary 2.15, without the need for the assumption that
A, G and b have rational entries.

Theorem 2.16. (Meyer [38]) Given rational matrices A, G and rational
vector b, let P := {(z,y) : Az + Gy < b} and let S := {(z,y) € P :
x integral}.
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1. There exist rational matrices A, G' and rational vector b’ such that
conv(S) = {(z,y) : Az + G'y < V'}.

2. If S is nonempty, the recession cones of conv(S) and P coincide.

Proof. If S = 0, the existence of rational A/, G’ and b’ satisfying the the-
orem is obvious. So we assume that S and P are both nonempty. By the
Minkowski-Weyl theorem (Theorem 2.14), P = conv(V) + cone(R) where
V= (vl,...,2?), R = (r},...,r9). Since A, G and b are rational, by Re-
mark 2.13 we can assume that V' is a rational matrix and R is an integral
matbrix.

Consider the following truncation of the rational polyhedron P

i=1

P q D
Ti={(,y): (@,9) =Y Av'+ Y mr!, > A=1,120,0<p< 1}
i=1 j=1

T is bounded and therefore it is a rational polytope (Corollary 2.15). Let
Tr :={(z,y) €T : z integral}.

Claim. conv(Tr) is a rational polytope.

Since 1" is a polytope, the set X := {z : there exist y s.t. (z,y) € Ty} is
a finite set. For fixed & € X, the set T3 := {(z,v) : (%,y) € T} is a
rational polytope and therefore by Corollary 2.15, T; = conv(Vz) for some
rational matrix Vz. Since X is a finite set, there is a rational matrix Vp,
which contains all the columns of all the matrices Vi, for Z € X. Therefore
conv(T7) = conv(Vr,) and this proves the claim.

A point (Z,7) belongs to S if and only if Z is integral and there exist
multipliers A > 0, 3°F_; X; =1 and g > 0 such that

P g g
@) =D Aot + Y (uy— L ))r? + D Lwslr?.
i=1 g=1

j=1

_Since >°7_, | #;]77 is an integral vector and Z is integral, it follows that the

point >7_; Aiv* + 539_; (15 — L)) belongs to Tr. Therefore
S=Tr+ Ry (9)

where Ry is the set of integral conic combinations of 71, ...,r9.

This shows in particular that 77 is nonempty. Now cone(R) is a rational
cone and by the above claim, conv(TT) is a rational polytope. Since by (9)
S = Tr + Ry, then conv(S) = conv(7y) + cone(R), is a rational polyhedron
having the same recession cone (namely cone(R)) as P. O
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Remark 2.17. In Theorem 2.16:

o If matrices A, G are not rational, then conv(S) may not be a polyhe-
dron. One such example is the set S = {x € 7% 1<z <211}

o If A, G are rational matrices but b 15 not rational, then conv(S) is a
polyhedron that has the same recession cone as P. However conv(S) is
not always a rational polyhedron. (This can be inferred from the above
proof).

2.5 Valid Inequalities

An inequality cz < 6 is valid for the set P C R” if cz < ¢ is satisfied by
every point in P.

Theorem 2.18. Let P := {z : Az < b} be a nonempty polyhedron. An
inequality cx < 6 is valid for P if and only if the system ud=cub<éu=>0
18 feasible.

Proof. Consider the linear program max{cz : z € P}. Since P # 0 and
cx < 6 is a valid inequality for P, the above program admits a finite optimum
and its value is & < 4.
By Remark 2.8, theset D = {u: ud=¢, u 2= 0} is nonempty. Therefore
by Theorem 2.6, ¢’ is the common value of the equation (6). This shows
ub < 4.

Conversely, assume ud = c,ub< du > 01is feasible. Then, for all z € P,
we have cz = uAz < ub < 6. This shows that cz < ¢ is valid for P. d

An inequality a;z < b; belonging to the system Az < b is redundant
if a;z < b; is a valid inequality for the system Alz < b, obtained from
Az < b by removing the inequality ajz < b;, Theorem 2.18 provides a
characterization of redundant inequalities.

2.6 Facets

Let P:= {z € R*: Az < b} be a polyhedron. A face of P is a set of the
form
F.=Pn{zeR": cx =4}

where cz < 6 is a valid inequality for P (the inequality is said to define
the face F). A face is itself a polyhedron since it is the intersection of the
polyhedron P with another polyhedron (the hyperplane cz = ). A face of
P is said proper if it is nonempty and properly contained in P. Maximal
proper faces of P are called facets.
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Theorem 2.19. Let P := {z € R™: Az < b} be a nonempty polyhedron.
Let M be the set of row indices of A and let I C M. The set

Fri={zeR":qz=0;,i€l, aixz < bj,i € M\ I}.

is a face of P. Conversely, if F' is a nonempty face of P, then F' = Fy for
some I C M.

Proof. Let u be a vector such that u; > 0,7 € I, w; = 0,4 € M \ I, and let
c:=uA, § := ub. Then, given z € P, clearly z satisfies cx = ¢ if and only
if it satisfies a;z = b;, ¢t € I. Thus Fy = PN{z € R™: cx = 6}, so Fr is a
face.
Conversely, let F':= {z € P : cx = §} be a nonempty face of P. Then
F is the set of optimal solutions of the LP max{cz: € P}. Let I be the
set of indices defined as in Theorem 2.7. Then by Theorem 2.7, F' = FJ.
0

Theorem 2.19 has important consequences:

e The number of faces of P is finite.

e The intersection of faces of P is a face of P.

e If F is a face of P and F’ i.s a face of F, then F' is also a face of P.

e If I, Fy are faces of P, there is a unique minimal face F' of P that
contains both F} and Fy (The system of equalities that defines F' is
the intersection of the systems of equalities that define F; and F3).

Furthermore, by Theorem 2.19, we can express a face F' of P as follows. Let
A7z < b% be the set of all the inequalities a;z < b; in Az < b such that
FC{zeR": a;z2 =b}. Then

F=Pn{zeR": Arz =bf}.

" Let P = {z € R": Az < b} be a polyhedron. An inequality a;z < b;

from Az < b such that g;z = b; for all z € P is called an implicit equality
of P. Let us partition the inequalities Az < b defining P into the implicit
equalities A=z < b™ and the rest A<z < b< (either of these two families of
inequalities could be empty). Thus P = {z € R*: A=z = b=, A<z < b=}
and for each inequality a;z < b; in A<z < b<, there exists Z € P such that
a;T < b;. g

Remark 2.20. P contains a point T such that A=F = b=, A<% < b<.
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Proof. Indeed, for every inequality a;z < b; in Az < b<, there is a point
2t € P such that a;z° < b;. Let r be the number of these points. Then

7 := 157 |z satisfies the statement. O

Let I< denote the set of indices of the rows of A<z < b<. For every
i € I<, denote by AFz = bY the system obtained from A<z < b< by
removing the inequality a;z < by,
Lemma 2.21. Assume that A<z < b< contains no redundant inequality.
Then for every i € I<, the polyhedron P contains a point x* satisfying
ATz =b", Az < by, afz="b
Proof. Let i € I<. Since no inequality in A<z < b< is redundant, the
system:
ATz =b, Afz<bF, afz> b5

is feasible. Let #* be a point satisfying this system. By Remark 2.20, there
is a point Z satisfying A=z = b=, A<z < b<. Then a point on the segment
having Z and Z' as endpoints satisfies the above property. O

Theorem 2.22. Let P C R™ be a polyhedron. Partition the inequalities
defining P into the implicit equalities and the rest P = {zeR": ATz =
b=, A<z < b<}. Assume that A<z < b< contains no redundant inequality.
Then the facets of P are the elements in the family:

F={F :={z€Poa z=0b}ielI }.

Proof. Let F be a facet of P. Since no inequality in A<z < b< is an implicit
equality for P, by Theorem 2.19 and the maximality of F', we have that
F = F;, for some i € I<. Therefore F contains all the facets of P.

Conversely, let F; € F. Then by Lemma. 2.21, F; is a proper face of P and
it is not contained in any other face Fj € F. Since F contains all the facets
of P, F; is a proper face of P that is maximal with respect to inclusion, i.e.
F, a facet of P. O

This result states that, if a polyhedron in R™ has m facets, any repre-
sentation by a system of linear inequalities in R™ contains at least m in-
equalities. In integer linear programming, we often consider polyhedra that
are given implicitly as conv(S) (see the Introduction). It is not unusual for
such polyhedra to have a number of facets that is exponential in the size of
the input. Thus their representation by linear inequalities in R™ is large. In
some cases, there is a way to get around this difficulty: a polyhedron with
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a large number of facets can sometimes be obtained as the projection of a
polyhedron with a small number of facets. For this reason, projections turn
out to be an important topic in this tutorial.

2.7 Projections

Let P C R™P where (z,y) € P will be interpreted as meaning z € R™ and
y € RP. The projection of P onto the z-space R" is

projy(P) := {z € R* : Jy € R? with (z,y) € P}.

proj,(P)

Figure 3: Projection

Theorem 2.23. Let P := {(z,y) € R* xR? : Az + Gy < b}. Then
projg(P) = {z € R™ : v'(b— Az) > 0 for all t € T} where {v'}ier is the set
of extreme rays of @ := {v € R™ : vG = 0,v > 0}.

Proof. Let z € R™. By Farkas’s Lemma, Gy < b— Az has a solution y if
and only if v¥(b— Az) > 0 for all v € Q. Since v > 0 for every v € Q, then
@ is pointed, hence it is generated by its extreme rays, and the statement
follows. a

Remark 2.24. Varients of Theorem 2.23 can be proved similarly:
Ify > 0 in P, then the relevant cone @ is {v:vG >0, v > 0}.

Ify > 0 and Az + Gy = b in P, the relevant cone is {v : vG > 0} with

W unrestricted i sign.
Enumerating the extreme rays of @) may not be an easy task in appli-

cations. Another way of obtaining the projection of P is to eliminate the
variables y; one at a time (Fourier elimination procedure):

Consider a polyhedron P C R™*! defined by the system of inequalities:

n
Zaijmj +gz<b; foriel. (10)
j=1
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Let " ={iel:g=0}L,IT={iel:g>0,I ={iel:g <0}
The Fourier procedure eliminates the variable z as follows: It keeps the
inequalities of (10) in I° and it combines each pair of inequalities i € I'*
and | € I to eliminate z.

Theorem 2.25. The system of |I°| + |IT||I7| inequalities obtained by the
Fourier procedure is the projection proj,(P) of P in the z-space R™.

We leave the proof as a (fairly easy) exercise to the reader.

3 Union of Polyhedra

In this section, we prove a result of Balas (2, 3] about the union of k poly-
hedra. Consider k polyhedra P; := {z € R®: A;z <b'},i=1,...,k We
will show that the smallest closed convex set that contains Uf=1P1-, that is
Etm_v(uleﬂ;), is a polyhedron that is the projection onto R™ of the set of
feasible solutions of a linear system of inequalities with polynomially many
variables and constraints.

The closure is needed as shown by the following example: P; consists
of a single point, and P, is a line that does not contain the point P (see
Figure 4). Let P3 denote the line going through P; that is parallel to P,. It
is easy to verify that conv(P,UPs) = conv(P,UP;3) and that conv(PUP) =
conv(PyUP3)\ (P3\ P1) (indeed, a point z* in P3\ Py is not in conv(Py U P,),
but there is a sequence of points z* € conv(P;, U P,) that converges to z*).
Here conv(Py U P,) is not a closed set, and therefore it is not a polyhedron.

conv(P, U P)

Figure 4: conv(P; U Py) # conv(P) U Py)

We recall that, by Minkowski-Weil’s Theorem 2.14, P; = Q; + C;, where
Q; is a polytope and C; a finitely generated cone.

Theorem 3.1. Let P; = Q; + C; be nonempty polyhedra i =1,...,k. Then
Q = conv(UE_,Q;) is a polytope, C = conv(UE,C}) is a finitely generated
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cone, and Tonv(US_, B;) is the polyhedron
Tonv(UE, P) = Q+C.

Proof. We first show that @ is a polytope and C a finitely generated cone.
Fori=1,...,k, let V; and C; be finite sets in R™ such that @; = conv(V;)
and C; = cone(R;). Then it is straightforward to show that @ = conv(Uf_; V;)
and C' = cone(UF_; R;), thus Q is a polytope and C a finitely generated cone.

We show conv(UE_,P) CQ+C..

We just need to show conv(US_; P;) C Q4-C, because @+ C is a polyhedron,
and so it is closed. Let = € conv(UE_; P;). Then z is a convex combination
of a finite number of points in UY_; P;. Since P; is convex, we can write z
as a convex combination of points 2* € P, say z = Zfﬂ y;%* where y; > 0
fori=1,...,k and Y)F 5 = 1. Since P, = Q; + C}, then 2% = w' +
where w' € Q;, z* € Cj, thus z = 18 | gswi + 3% | ysat, s0 2 € Q+ C since
ZLI 1;wEQ and 2?:1 vzt € C.

We show Q + C C conv(UE_; Py).
Let x € Q+ C. Then z = Eff:l yiw® + Eﬁ‘=1 z* where w' € Q;, y; > 0,
= Cifori=1,...,k, and zgc:ly,‘- =1.

Define I := {7 : y; > 0} and consider the point

k
k ; A
. 8 Z
zf 1= Z(% ] e)w* + Ze(w‘ + Em‘)
i€t ; i=1
for € > 0 small enough so that y; — IkTIE >0foraliel.
| Noti(_:e that z¢ € conv(UE_, P;) since 37, (v — |k715) +3% e = 1land
w + %E’ € F;.
Since lim_,o+ 2 = z, 2 € conv(UY_; P;).
O

Corollary 3.2. If Pi,..., Py are polyhedra with identical recession cones,
then conv(UX_, P;) is a polyhedron.

Proof. We leave it as an exercise to the reader to check how the last part of
the proof of Theorem 3.1 simplifies to show Q + C C conv(UX_, P)). O

Although Tonv(UF_, ;) may have exponentially many facets, Balas [2],
[3] proved that it is the projection of a higher dimensional polyhedron ¥
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with a polynomial size representation:

At < by
i
Fir= L = :f (11)

Ui

i = 0fori=1,...,k

In this formulation, z® is a vector in R™ and y; is ascalar, fori =1,...,k.
The vector z € IR® corresponds to the original space onto which Y is pro-
jected. Thus, the polyhedron Y is defined in RF"+"+* A formulation with
a polynomial number of variables and constraints is said to be compact. The
gist of Balas’s result is that conv(U%_; P;) has a compact representation with
respect to the systems A;z < b%, 4 =1,...,k. This fact will be fundamental
in the development of this survey.

Since it is convenient to consider also the case where some of the systems
A;x < bt are infeasible, we need a condition that is typically satisfied in the
context of integer programming.

Given the polyhedra P, := {z € R : Az < b}, ¢ = 1,...,k, let
C;:={z € R*: A;z <0}. So C; is the recession cone of P; when P; # 0.

Cone Condition: If UP; # 0, then C; C conv(U;p2¢Ci) forj=1,... k.

By Minkowski-Weil’s Theorem 2.14, if P; # 0 then P; = Q; + C; for
some polytope @;. If we let @Q; = 0 whenever P; = 0, then P; = Q; + C;,
i=1...,k.

Theorem 3.3. (Balas [2, 3]) Consider k polyhedra P; := {z € R* : Ajz <
b'} and let Y be the polyhedron defined in (11). Then

proj, Y =Q+C.

where Q = conv(UX_,Q;) and C = conv(UF_,C;).
PFurthermore, if the Cone Condition is satisfied, then

proj,Y = conv(UE_, By).

Proof. Notice that, if the Cone Condition is satisfied, then C' = conv(U;. p,£9Cs),
therefore by Theorem 3.1 Q 4 C = tonv(UX_, P;). Thus, if proj, ¥ = Q+C,

1=

then proj,Y = tonv(UE_; P;). So we only need to show proj, ¥ = Q + C.

(a) Q + C C proj,Y.
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The result holds trivially when UE_,P; = 0, so we assume UY_, P; # 0.
Without loss of generality, Pi,..., P, are nonempty and Ppyi,-.. , Pr, are
empty, where 1 < h < k.

Let z € @ + C. Then there exist wt € Q" t=1,...,h, and Z e G,
i=1,...,k suchthat z = 21_1 yiwi+ Sk 2% wherey; 2 0 ford==l, s o0
and Zi:ﬁ’h =1 Let #* = gw' + 2 fori=1,...,hand y; = 0 2t = z" for
i =h+1,...,k Then Ajz’ < biy; for i = 1,...k and z = 3 ;_;z'. This
shows that = € proj,Y and therefore (a) holds.

(b) proj,Y € Q4+ C.
The result holds if Y = 0, so we assume Y 7& . Let « € proj,Y. By

the definition of projection, there exist zt,..., 2% y such that z = Ef_l Tog
where Az* < by, E'yl =1,y>0. Let I := {z’ y; > 0}
For iel,let 2 := &, Then z* € B;. Since P; = @Q; + C;, we can write

# = wt + yir® where w* eQ.,andr € C;.
Forze’I we have A;z* < 0, that is z* € C;. Let v* = «* if ¢ ¢ I. Then

m=zyizi+2xi=2mwi+2ri eQ+C.

i€l igl i€l i=1
S —
€Q &G

O

Remark 3.4. The Cone Condition assumption in Theorem 3.3 is necessary
as shown by the following example (see Figure 5): Py :={z € R2: 0<z<
l}andPg—{:cE]R2 21 < 0,2, > 1}. Note that P, =0 and Cy = {z €
R? : z; =0}. So in this case proj,Y = PL+Cy ={z € R2: 0< 2 <1},
which is different from conv(Py, U Py) = Py.

Remark 3.5. The Cone Condition assumption in Theorem 5.8 is automat-
 ically satisfied if e
(i) C; = {0} whenever P; = Q) or

(ii) all the cones C; are identical.

For ezample (i) holds when all the P;s are nonempty, or when C; = {0} for
all 1.
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Figure 5: ¢onv(P U Pp) # proj,Y

4 Split disjunctions

Let P:= {(z,y) e R xRP: Az + Gy < b} and let S := PN(Z™ x RP). For
w € Z"™ and my € Z, define

H}_ — Pﬂ{(:c,y): ’J‘T:CS’:T[)} (12)
I, = Pn{(z,y): 7z > m+1}.

Clearly S C II; UIIp and therefore conv(S) C conv(Tl; UIl3). We call this
latter set P(mmo),

Theorem 4.1. P(™7) 45 o polyhedron.

Proof. It follows from Theorem 3.1 that P(™70) is a polyhedron, thus we
only need to show that P{™™) is closed. This is obvious if at least one of IT;
and Il is empty, so we assume Iy, II3 # §. Because IT; UTI; C plmm) C P,
II; = P™mm) N {(z,y) : mz < mp} and Iy = Pmm) N {(z,y) : mz > mo+1}.
Thus P{™m) = IT; UITI,UTI, where IT = P(“'"“)ﬂ{(m,y) :mg <z < mo+1}.
By definition, II; and Ily are polyhedra, so they are closed. We show that
I1 is a polyhedron, thus P{™70) is closed because it is the union of a finite
number of closed sets.

Let P, =11 N{(z,y): mz =mo} and Py :=1yN{(z,y) : nz =mo+1}.
Notice that Py and P, have the same recession cone C := {(z,y) : Az+By <
0,7z = 0}, thus, by Corollary 3.2, conv(P; U P») is a polyhedron.

We show that IT = conv (P, U P,), thus showing that IT is a polyhedron.
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The inclusion IT 2 conv(P; U Pp) comes from the definition. We prove
IT C conv(PLUPR,). If (Z,7) € II, then there exist (z/,y’) € Iy, (z",y") € Il2
such that (Z,7) is contained in the line segment L joining (', y’) and (z", y").
Since mg < 7% < mo + 1, L intersect {(z,y) : 7wz = mp} in a point (#',7) €
I;, and {(z,y) : mz = mp + 1} in a point (z”,§"”) € IIo. Furthermore,
(Z,7) is contained in the line segment joining (#',7') and (z”,7"). Thus
(Z,7) € conv(Py U B). O

Lemma 4.2. The polyhedra I1; and Iy satisfy the Cone Condition of The-
orem 3.3.

Proof. The conditions of Theorem 3.3 trivially hold when II; and IIz are
either both empty or both nonempty.

Assume now that II; = @ and Il # 0. For the conditions of Theorem
3.3 to hold, we need to show that Cy C Cs where C; := {(z,y) : Az+By <
0,7z < 0} and Cy := {(2,y) : Az+ By < 0,7z > 0}.

We claim that Cy = {(z,y) : Az+ By < 0,7z = 0}. Suppose not. Then
there exists (Z,7) such that A% + By < 0 and 7 < 0. Since Il # 0, there
exists (#,7) such that Az 4+ Bfj < b. Now consider the point (2*,3*) =
(2,8) + A(Z,7). We have Az* + By* < b and, for A > T=F2, we have
7z < mp. But then (:c)‘,y)‘) is in IT;, contradicting the assumption that
II; = (. This proves the claim. '

The claim implies C; C Cs. O

Thus, by Theorem 3.3, P(mmo) hag the following extended formulation,
with additional vectors of variables (z',1), (22,%%) and variable ).

Azt + Gyt < X
! < Amg
Az? +Gy? < (1-X)b
ma? > (1—=X(mo+1) (13)
331 + 332 = % i e e .
) a .yl + y2 = '!J
0< A < L

If the system Az + Gy < b has m constraints, the extended formulation (13)
has 2m + n+ p + 4 constraints. By contrast, a formulation of plmmo} in the
original space (z,y) may be considerably more complicated, as P(mm) may
have a large number of facets (Recall from Section 2.6 that any description
of a polyhedron must have at least one inequality for each facet).
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Tz < Mg x> me+ 1

‘4—1 e

split inequality

11, P 11y

w

Figure 6: A split inequality

A splitis a disjunction 7z < mg or mz > mo+1 where 7 € Z™ and mg € Z.
We will also say that (m,mo) defines a split. An inequality cz + hy < ¢ is
called a split inequality [17) if it is valid for some polyhedron P(mm0) where
(m,m9) € Z™ x Z defines a split (see Figure 6).

The split closure PSP of P is

M #&4, (14)

(m,mo)EZ™XZ

Clearly S C PSPt C P. In general PSP provides a tighter relaxation of
S than P. However, although each of the sets P(mmo) ig a polyhedron, it is
not clear that PSP is a polyhedral set, for it is the intersection of infinitely
many of them. This will be discussed in Section 6.

4.1 One-side splits, Chvatal inequalities

Given a polyhedron P := {(z,y) € R® x RP : Az + Gy < b}, we consider
the set § = PN (Z" x RP). Let n € Z™ and 2z := max{nz : (z,y) € P}. A
split defined by (w,mo) € Z™ x Z is a one-side split for P if

o < z < my+ 1. (15)

This is equivalent to:
II; CPand Il = ]

where II; and II, are the polyhedra defined in (12). Note that, if (7,mo)
defines a one-side split, then the polyhedron P{mm) can be easily described
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in its original space, for P(™™) = IT; = {(z,y) : Az + Gy < b, nz < mo}.
Therefore the inequality mz < mg is valid for S. We call such an inequality
a Chvdtal inegquality.

The Chudtal closure PC" of P is

N plmmo), (16)

(,mo)eZnxZ defines a one-side split

Equivalently, PC? is the set of vectors (z,y) that satisfy the system Az +
Gy < b and all the Chvétal inequalities. Note that S C PSP C POh C P.

Notice that inequality 7z < mo satisfies (15) if and only if [z] = 7.
Since 7 is an integral vector and mz < z is a valid inequality for P, by
Theorem 2.18, ma < mg is a Chvétal inequality if and only if the system:

u>0,uA=71€eZ™, uG=0,u <z (17)

is feasible. By Theorem 2.23, condition u > 0, uG = 0 shows that mz < 2
is valid for the projection proj,(P) of P onto the z-space.

¢ Chvétal inequality
. Tz < o

° L
e Pigure-7:- Chvétal-inequality —

We can assume that u is chosen so that the coefficients of 7 are relatively
prime: If not, let m be the G.C.D. of the components of 7: The inequality
Iz < |%] is a Chvétal inequality that dominates 7z < mg. The equation
mx = T = | z| admits infinitely many integral solutions, while the equation
7z = a, has obviously no integral solution for |z| < @ < z.

Therefore the Chvétal closure is obtained by taking any rational inequal-
ity 7z < z that is valid for the projection proj,(P) of P (which is generated
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without loss of generality by a vector u such that u > 0, vd =m € Z", uG =
0 such that the coefficients of 7 are relatively prime) and then tightening
the inequality by decreasing the right-hand side until an integral point (and
hence infinitely many integral points) are encountered. See Figure 7.

5 Gomory’s mixed-integer inequalities

We consider a polyhedron P := {(z,y) € R? x RE : Az + Gy < b} and
the set S := PN (Z% x RY). Note that P is defined by a system of inequal-
ities together with nonnegativity constraints on the variables, and this is
important in this section. By standard linear algebra, any system of linear
inequalities can be converted into a system of the above type (variables that
are unrestricted in sign can be replaced by the difference of two nonnegative
variables, etc).
We consider the following equality form of the system defining P:

Az +Gy+Is=b, z,y,s 2 0. (18)

For A € Q™, we consider the equation AAz + AGy + Als = Ab, which we

denote by
n P m
Soadzi 4> glui+ 0y hisi =0 (19)

Let fo = f* — |f*] and f; = a} — |a}]. We consider the following
Gomory mized-integer (GMI) inequality [32[7 :

& a oy = f)t 1 Yoot N A
Z(La’y_] + Ty ):C_? + 1= fO( Z g;y; t Z Misi) < 1B%] (20)
=1

j;g;.‘<0 1:A;<0

where (f; — fo)* = max{f; — fo, 0}. By substituting s =b— (Az + Gy) we
get an inequality in the (z,y)-space.

‘We denote by (’IfA,’ﬂ'é) the vector in Z™ x Z defining the following split:

Either Z [a?jmj + Z [ag‘]:cj < 18 (21)
figfo fi>fo
or Y la})zi+ Y [a}le; > 1B + 1 (22)
figfo fi>fo

where (21) is ™z < 7} while (22) is Tz > 73 + 1.
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Lemma 5.1. Inequality (20) is a split inequality, valid for P 3).
Proof. Consider the sets
= PO () Po<m), Ta=Pn): o> m+1)

To prove that inequality (20) is a split inequality, we will show that it is
valid for IT; U Ils.

Since the constraints > 0, y > 0, s > 0 are valid for II; and Ily, it is
enough to show that each of Iy and II; admits a valid inequality az + gy +
ls < | 3] whose coefficients are greater than or equal to the corresponding
coefficients in inequality (20). (This is where the nonnegativity plays a role).

Since inequality 7z < 73 has this property, inequality (20) is valid for
II;. Inequality (20) is valid for IT, since it is implied by the inequality

1 fo
=7 (19) - 72502
D

A consequence of the above lemma is a proof that the GMI inequalities
(20) are valid for S.

Lemma 5.2. Chuvdtal inequalities are GMI inequalities.

Proof. For A > 0 such that A € Z™ and AG = 0 the Chvital inequality
(17) coincides with the inequality given by the formula (20). a

The Gomory mized integer closure PGMI of P is the set of points in P
that satisfy all the GMI inequalities (20). It follows from Lemmas 5.1, 5.2
that PSplit ¢ pGMI C pCh and in light of the particular derivation of the
GMI inequalities, it may appear that the first containment can be strict.

This is not the case: In the next section we show that PSP coincides with
PGM I .

5.1 Equivalence between split closure arndr Go_n_lqry mix_e;_l__ -

"~ integer closure
In this section we will need the following.

Lemma 5.3. Let P := {z € R": Az < b} be a polyhedron and let 11 :=
Pn{z: 7z <m}. IfIl# 0 and ax < f is a valid inequality for II, then
there exists a scalar A € Ry such that

az — Mrz —m) < 3

is valid for P.
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Proof. By Theorem 2.18, since II # @, there exist u > 0, A > 0 such that
a=uA+dr and [ > ub+ Anp.

Since udz < ub is valid for P, so is uAz < 8 — Amg. Since uAz = az — Arz,
the inequality az — M7z — mg) < f is valid for P. O

X
/ az — Mrz —m) < B
IT
| 1 e
_;r‘-$<7l'0

az < f8

Figure 8: Ilustration of Lemma 5.3

Remark 5.4. The assumption II # 0 is necessary in Lemma 5.3, as shown
by the following example: P:={z € R?*: £1 >0, 22 > 0} and I := PN{z:
zg < —1}. Thus II is empty. The inequality 1 < 1 is valid for 11 but there
is no scalar ) such that £y — A(z2 + 1) < 1 is velid for P.

Theorem 5.5. (Nemhauser and Wolsey [40]) Let P := {(z,y) € R} xRY :
Az + Gy < b} be a polyhedron and let S := P 0O (Z} x RE). Then pepl
coincides with PEMI

Proof. (Cornuéjols and Li [18]) Lemma 5.1 shows that Pyt € pGMI Ty
prove the reverse inclusion, we show that every split inequality is a GMI
inequality.

We assume that the constraints > 0 and y > 0 are part of the system
Az + Gy < b that defines P. Let cx + hy < cg be a split inequality. Let
(w,mo) define the split disjunction used in deriving this inequality and let
TI;, I3 be the corresponding intersections with P.

First assume that one of IIy, Il is empty. Then the inequality cz+hy <
co is a Chvétal inequality and by Lemma 5.2 it is also a GMI inequality.
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‘We now assume that both IT;, II; are nonempty. By Lemma 5.3, there
exist o, 8 € Ry such that

ez + hy — a(rz — mo) < ¢o and (23)

cz + hy + f(rz — (mo + 1)) < co (24)

are both valid for P. We can assume o > 0 and § > 0 since, otherwise,

cx + hy < ¢ is valid for P and therefore also for PGMI e now introduce

. slack variables s; and s2 in (23) and (24) respectively and subtract (23) from
(24). We obtain

(a+ Bz + s3 — 81 = (a+ B)mo + B.

Dividing by a + (§ we get

52 S1

a+ﬁ_a+ﬁ= (%)

T+

7r0+a+ﬁ.

We now derive the GMI inequality associated with equation (25). Note that
the fractional part of the right-hand side is Efjﬁ and that the continuous
variable s has a positive coefficient while s; has a negative coefficient. So
the GMI inequality is
T+ lsl < 7.
a

We now use (23) to eliminate s; to get the GMI inequality in the space of
the z,y variables. The resulting inequality is cz + hy < ¢p and therefore
ez + hy < ¢p is a GMI inequality. 0O
6 Polyhedrality of closures

In this section we show that the GMI closure (or equivalently, the split

_closure) of a rational polyhedron is a rational polyhedron. This result isdue

to Cook, Kannan and Schrijver [17]. Simpler proofs appear in (1], [22] and
[47). In this section, we follow the approach of Dash, Giinliik and Lodi [22].
The idea is to prove that a finite number of splits are sufficient to generate
PSPlit defined in (14). The result follows, since then PSP! is the intersection
‘of a finite number of polyhedra and therefore is a polyhedron.

For this idea to work, it is fundamental to assume that the polyhedra that we
deal with are rational. We first illustrate this in an easy case: The Chvétal
closure of a pure integer set.

31



6.1 The Chvatal closure of a pure integer set

We consider here pure integer sets of the type S := P NZ", where P =
{z € R": Az < b} is a rational polyhedron. Therefore we can assume that
A, b have integral entries.

In the pure integer case, a Chvétal inequality 7z < mp is derived from a
vector u satisfying:

>0, ud=x€Z", |ub|] =mo. (26)

Lemma 6.1. Let (m,70) € Z™ and u € Q satisfying (26) such that 7z <
7o is not valid for P and not redundant for PCh. Thenu < 1.

Proof. Suppose u does not satlsfy U < 1. We will show that 7z < 7 is the
sum of a Chatal inequality 7'z < m§ and an inequality w2z < m} valid for
P such that 7% # 0. This contradicts the assumption that mz < o is not
valid for P and not redundant for P,

Let f = u— |u), and let ' = fA, mg = | fb], 7% = |u]A, 73 = [|u)b).
Since A is an integral matrix, 72 is an integral vector. Smce 7 is an integral
1 2

vector, m+ =7 —7* is 1ntegra1 as well.

Since b is integral, 73 = |u]b, therefore T2 < 3 1s valid for P. Fur-
thermore, 7 < 7o is the sum of 7! a; < 7} and n?z < w3. Since u does not
satisfy u < 1, then |u] # 0, thus 7% # 0. O

Theorem 6.2. (Chudtal [18]) PC" is a rational polyhedron.

Proof. By Lemma 6.1, any irredundant valid inequality for PC" that is not

valid for P is of the form (uA)x < |ub] for some u satisfying uA € Z", 0 <
w < 1. Since {uA € R" : 0 < u < 1} is bounded, {uA € Z" : 0 < u < 1}
is finite. Thus there is only a finite number of such inequalities, hence FCh
is a polyhedron. O

6.2 The split closure of a mixed integer set

This is more tricky, uses the fact that PSPt = POMI (Theorem 5.5) but
the idea is the same.

Throughout this section, P := {(z,y) € RL xR : Az + Gy < b} is a
rational polyhedron, and S := P N (Z% x RY). We w1ll also assume that A,
G, b are integral. We let s = b — (Az + Gy) be the slacks of Az + Gy < b.
Recall from Section 5 that a vector A € Q™ yields the GMI inequality:

Z(L )\J+(f_’r f(;) Z 93y3+ Z Kt 2 [ﬂ)\

j=1 i:X;<0

32



that is valid for S. We denote it by GM(}).
Given A € Q™ and the corresponding GMI inequelity GM (X), we con-
sider the following partitions of M := {1,...,m} and P := {1,...,p}:

Mt={ieM: >0 M ={ieM: \<0}
Pt={jeP:g >0} P ={jeP: g; <0}
and the following cone:

Ch={ueR™: gf>0,je P, ¢f <0,jeP, u1>0zeM+, pi <0,6€ M™
’ (27)

Lemma 6.3. Let A € Q™. Let A}, A2 € Cy such that X = X + A\? and
22 e Zm\ {0}. Then

GM(\) = GM(\Y) + GM(\?)
and either GM()) is valid for P or it is redundant for peMl
Proof. Since A%b is an integer, fo = 0 and GM (A\?) is the following inequality:
Za z; + Z 9 “yi + 5 +a2s; < B
592 20 i:A2<0

Therefore GM ()\?) is implied by the following inequalities, valid for P:

n D m
Soadei+ ) gyt dei=pY 520, y20
j=1 j=1 i=1

Hence GM(A\?) is valid for P. Moreover, since 4, G, b are integral, all
coefficients of GM (%) are integral.

Since A!, 3 € Cy, gj < 0 implies g)‘ < 0 and g_:;“ < 0;and N <0
implies A} < 0 and A} < 0. This shows tha.t GM()) = GM(\) + GM()?).
—Thus; since GM (3? ) is-valid for P; either GM(X) is valid for P; or it'is”
redundant for PEMT, O

Let A be the largest of the absolute values of the determinants of the
square submatrices of G.

Lemma 6.4. Let A € Q™ such that GM(X) is not valid for P and it is
irredundant for PGMI_ Then

—-mA < <mA, i=1,...,m. (28)
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Proof. We will show that if A does not satisfy (28), then there exist M, A2 e
Cy, such that A = AL+ X% and A2 € Z™\ {0}. This will finish the proof, since
by Lemma 6.3 either GM () is valid for P or it is redundant for pEML 4
contradiction.

Assume ) violates (28). Let r1,...,7% be a set of vectors generating
Cy. By Remark 2.13, we can choose r}. ..., r9 integral, and by standard
linear algebra we can choose them so that —A1 <r* < Al t=1,...,¢9 (we

Jeave this as an exercise). Since A € C), by Caratheodory’s Theorem 2.9,
A= 317_,w»rt, and at most m of the v, are positive, while the others are 0.
Let

q q
AN =3 - )t X =) (w)r"
t=1 t=1

Clearly A1, A% € C) and A = A} + A2, Since r!,...,r? are integral vectors,
A2 is integral. We show that A2 =£ (0. Since at most m of the v, are positive,
and by definition —A1 < 7t < Al,t =1,...,q, then —Am < X! < Am.
Thus A2 # 0, as A violates (28). O

Theorem 6.5. (Cook, Kannan and Schrijver [17]) PEMI(= P5P%) is a
rational polyhedron.

Proof. By Lemma 5.1, for every A € Q™, GM(}) is a split inequality valid
for Pm™m3), where the split (7*,73) € Z"*! is defined by (21)-(22). By
Lemma 6.4, if GM()) is irredundant for PeM and not valid for P, then
) satisfies (28). By Theorem 5.5, POMT = PSPt thus any inequality valid
for P(™3) is valid for PEMI Therefore

peMI _ N plrm).
(mr mdyezntist.

A satisfies (28)

Since the set {\ € R™ : ) satisifes (28)} is bounded, then the set {(z*,7}) €
Zrtl . ) satisifes (28)} is finite. Therefore PEMT is the intersection of a
finite number of polyhedra, hence it is a polyhedron. O

A natural question is whether one can optimize a linear function over
PGMI iy polynomial time. It turns out that this problem is NP-hard
(Caprara and Letchford [12], Cornuéjols and Li [19]). Equivalently, given a
point (Z,7) € P, it is NP-hard to find a GMI inequality that cuts off (Z,7)
or show that none exists. A similar NP-hardness result was proved earlier
by Eisenbrand [25] for the Chvétal closure.
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Note that this is in contrast with the problem of finding a GMI inequality
that cuts off a basic solution (Z,7) € P\ S. Indeed, any row of the simplex
tableau where Z; is fractional for some j = 1,...,n can be used to generate
a GMI inequality that cuts off (Z,7).

Although it is NP-hard to optimize over the Chvétal closure, there are
empirical results on its strength. Bonami, Cornuéjols, Dash, Fischetti, Lodi
[10] found that the Chvétal closure closes at least 29 % of the integrality
gap on average on 41 MIPLIB instances (all the MIPLIB 3 instances that
have at least one continuous variable and nonzero integrality gap). For the
remaining 24 instances (pure integer programs in MIPLIB 3 with nonzero
integrality gap), Fischetti and Lodi [27] found that the Chv4tal closure closes
at least 63 % of the integrality gap on average.

The split closure and the GMI closure are identical. How tight is it in
practice? Balas and Saxena [7] addressed this question by formulating the
separation problem for the split closure as a parametric mixed integer linear
program with a single parameter in the objective function and the right
hand side. They found that the split closure closes 72 % of the integrality
gap on average for 57 MIPLIB instances. This experiment shows that the
split closure is surprisingly strong. Finding deep split inequalities efficiently
remains a challenging practical issue.

7 Lift-and-Project

In this section, we consider mixed 0,1 linear programs. These are mixed
integer linear programs where the integer variables are only allowed to take
the values 0 or 1. It will be convenient to write mixed 0,1 linear programs

in the form
min ¢z
Az > b
z; € {0,1} forj=1,...,n
zj 2 0 forj=n+1,..,n+p

where the matrix A € QM*("+P) the row vector ¢ € Q"*? and the column
vector b € Q™ are data, and z € R™*P is a column vector of variables.
Consider the polyhedron P := {z € R}"?: Az > b} and the mixed 0,1
linear set § := {z € {0,1}" x ]R’j_ : Az > b}. Without loss of generality,
throughout this section we assume that the constraints Az > b includes
—z; > —1for j=1,...,n, but not z > 0.
Balas, Ceria and Cornuéjols [4] study the following ”lift-and-project”
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relaxation for S: given an index j € {1,...,n}, let
Pj =conv{(Az 2 b, £ >0,z;=0)U(Az 2 b,z 20, z; = 1)}.

Clearly S C P; C P, so P; is a relaxation of S tighter than P, and by
definition it is the tightest possible among the relaxations that ignore the
integrality of all the variables z; for i # j.

The set ﬂ?=1Pj is called the lift-and-project closure. It is a better ap-
proximation of conv(S) than P:

conv(S) C N7, P € P.

How much better is it in practice? Bonami and Minoux (11] performed com-
putational experiments (see also Bonami’s dissertation [9]). On 35 mixed
0,1 linear programs from the MIPLIB library (8], they found that the lift-
and-project closure reduces the integrality gap by 37 % on average (the
integrality gap is the difference between the objective value optimized over
conv(S) and over P).

7.1 Lift-and-project cuts

Optimizing a linear function over P; amounts to solving a linear program.
In fact, it is possible to express P; using Theorem 3.3 and then projecting
onto the z-space. Pj is the convex hull of the union of two polyhedra:

Az > b Az > b
x>0 and x>0
—Xy = 0 j > 1.
By Theorem 3.3,
( Az® > byo
~gd > 0
ASE{ > bin
P; = proj, T > |
bt = =
yo+y = 1
k z, -TDJT'layU:yl > 0.

Let e; denote the j-th unit vector. Using the projection theorem (The-
orem 2.23), we get that P; is defined by the inequalities ax > [ such that
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The inequality cez > f is called a lift-and-project inequality. Clearly
lift-and-project inequalities are special type of split inequalities, relative to
splits of the type z; < O or z; 2 1.

Given a fractional point Z, we can determine if there exists a lift-and-
project inequality az > 3 valid for P; that cuts off Z. In fact, this problem
amounts to finding (a, B, u,uo, v, vo) satisfying (29) such that aZ — 8 < 0.
Adding a normalization constraint, we obtain the following cut generating
LP:

min oz -8

a —uAd  +uge; > 0

o -vA —we; = 0
Ie] —ub < 0 (30)

Jé] —vb —yg < 0

moui Hue +Y v tw =1

%, up, v, v = 0.

Balas and Perregaard [6) give a precise correspondence between the basic
feasible solutions of (30) and the basic solutions (possibly infeasible) of the
usual LP relaxation

(R) min{cz: Az > b,z > 0}.

A geometric view of this correspondence may be helpful: The n +p ex-
~treme rays emanating from a basic solution of (R) intersect the hyperplanes
z; = 0 and z; = 1 in n+p points (some of these points may be at infinity).
These points uniquely determine a hyperplane ax = [ where (o, B) are as-
sociated with a basic feasible solution of the cut generating LP (30). For
example, in Figure 9, cut 1 corresponds to the basic solution 1 of (R) and
cut 2 corresponds to the basic (infeasible) solution 2 of (R).

Using the correspondence, Balas and Perregaard [6] show how simplex
pivots in the cut generating LP (30) can be mimicked by pivots in (R). The
major practical consequence is that the cut generating LP (30) need not be
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basic solution 2

basit solution 1.7

0 1

Figure 9: Correspondence between basic solutions and lift-and-project cuts

formulated and solved explicitly. A sequence of increasingly deep lift-and-
project cuts can be computed by pivoting directly in (R). We elaborate on
these pivoting rules in section 7.3.

7.2 Strengthened lift-and-project cuts

Again we consider the mixed 0,1 linear set S := {z € {0,1}* xR} : Az >
b}. We assume that the constraints Az > b contain —z; > —1 for j =
1,...,m, but not z > 0. The cut generating LP (30) produces a lift-and-
project inequality az > f that is valid for P;. The derivation only uses the
integrality of variable z;, not of the variables xy for k= 1,...,n and k#3j.
Balas and Jeroslow [5] found a simple way to use the integrality of the other
variables to strengthen the lift-and-project cut. This strengthening has the
nice property that it is straightforward to implement once the cut generating
LP (30) has been solved.
Note that, given u,ug, v, vo, the optimal values of o and § in (30) are:
. { max(ua"f,vak) _ for k # J (31)
max(ua? — ug,va? +vg) for k= j,

where a¥ denotes the k-th column of A, and
3 = min(ub, vb + vg).
To strengthen the inequality az > J, one can try to decrease the coeffi-

cients oy, Balas and Jeroslow [5] found a way to do just that by using the
integrality of the variables z for k =1,...,n.
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Theorem 7.1. (Balas and Jeroslow [5]) Let Z satisfy Az > b,z > 0. Given

an optimal solution u,ug,v,v of the cut generating LP (30), define my =

'uak—ua.’“

ug+vo ’
o = min(uaf + ug[my],vak —volme)) fork=1,...,n
=1 max(ua®, vak) fork=n+1,...,n+p
and B = min(ub, vb+ vg). Then the inegquality ax > B is valid for conv(S).

Proof. For m € Z*, the following disjunction is valid for conv(S):

n 1
either Zﬂ'kmk >0 or — Z"kaﬂk > 1.
k=1 k=1

Let us repeat the derivation of (30) with this disjunction in place of —z; > 0
or z; > 1 as before. We consider the union of

Az >b Az > b
z>0 and >0
E}:_—_l Tz = 0 = ZE:l LT = L.

Using Theorem 3.3 and the projection theorem (Theorem 2.23), we get that
any inequality az > § that satisfies

o —uA —uU(E}LI TReL) > 0
o —vA +v(>p_gmker) = 0
B —ub <0

B —vb -y < 0

u, U, v, v = 0

is valid for conv(S). We can choose u,ug,v,vo to be an optimal solution
of the original cut generating LP (30). This implies that, for k =1,...,n,
we can choose oy = max(uaf 4 ugmg, va® — vomg). Smaller coefficients oy
produce stronger inequalities since the variables are nonnegative. What is
_ the best choice of mx € Z to get a small a? It is obtained by equating
ua® + upmy and va* — vomy, which yields the value my in the statement of
the theorem (both ug and vg are strictly positive since otherwise ax > B
is valid for P, contradicting that it is a cut for %), and then rounding this
value my, either up or down since mj, must be integer. The best choice is the
minimum stated in the theorem. O

Bonami and Minoux [11] found that applying the Balas-Jeroslow strength-
ening step improves the average gap closed by an additional 8 %, as com-
pared to the lift-and-project closure, on the 35 MIPLIB instances in their
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experiment. Specifically, the integrality gap closed goes from 37 % to 45 %.
The time to perform the strengthening step is negligible.

7.3 Improving mixed integer Gomory cuts by lift-and-project

In this section we discuss the correspondence between basic feasible solutions
of the cut generating LP (30) and basic solutions (possibly infeasible) of the
usual LP relaxation (R) introduced in Section 7.1. The simplex tableaux of
(30) and (R) will be referred to as large and small respectively.
Let
Tj = Gjo — Zajhiﬂh (32)
heJ

be a row of the small optimal simplex tableau such that 0 < ajo < 1. The
GMI cut from this row is equivalent to the strengthened lift-and-project cut
from some basic feasible solution of (30), where index j in (30) is the same
as in (32). To identify this solution, partition J into subsets M; and M,
such that h € M if aj, < 0, and h € My if aj5 > 0 (h € J such that
ajn = 0 can go into either subset). Then eliminating e, § from (30), the n
columns indexed by M; U My together with the two columns indexed by ug
and vy define a feasible basis of the resulting system of n+ 2 equations. The
strengthened lift-and-project cut associated with this basic feasible solution
to (30) is equivalent to the GMI cut from (32).

To evaluate the GMI cut generated from the small simplex tableau (32)
as a lift-and-project cut, we calculate the reduced costs in the large tableau
of the nonbasic variables of the above solution to (30). Each row z; of
the small tableau corresponds to a pair of columns of the large tableau,
associated with variables u; and v;. The reduced costs 7(u;), (v;) of these
variables in the large tableau are known simple functions of the entries a;;
and ajp, for h € J, of rows j and ¢ of the small tablean. If they are all
nonnegative, the current large tableau is optimal, hence the GMI cut from
(32) cannot be improved. Otherwise, the cut can be improved by executing
a pivot in a row i of the small tableau, such that r(u;) <0 or r(v;) < 0.

To identify the nonbasic variable zj, to replace z; in the basis of the small
tableau, we calculate for each h € J the objective function value f(a;) of
(30) resulting from the corresponding exchange in the large tableau. This
value is a known simple function of the ratio a;n/an and of the coefficients
of rows j and 7 of the small tableau. Any column h for which f(a:p) < 0is
a candidate for an improving pivot, and the most negative value indicates
the best column k.
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Executing the pivot in the small tableau that exchanges x; for zj, yields
a new simplex tableau (whose solution is typically infeasible), whose j-th
row (the same j as before!) is of the form

z; = ajo+taio— Y (ajn+tain)zh, (33)
heJUNK

with ¢ := ajr/aix. The GMI cut from (33) is then stronger than the one
from (32), in the sense that it cuts off the LP optimum of (R) by a larger
amount. ‘,

These steps can then be repeated with (33) replacing (32) for as long as
improvements are possible.

Practical experience shows that in about three quarters of the cases GMI
cuts from the optimal simplex tableau can be improved by the pivoting
procedure described above. On the other hand, improvements beyond 10
pivots are not frequent, and beyond 20 pivots they are very rare.

This procedure was extensively tested and has been incorporated into
the mixed integer module of XPRESS, with computational results reported
in [42].

7.4 Sequential convexification
Theorem 7.2. (Balas [2]) Po(Pp—1(... P2(P1)...)) = conv(S).

Before proving Theorem 7.2, we need a lemma. Let H C R™ be a
hyperplane and S C R™. In general, conv(S) N H # conv(S N H), as shown
by the example where S consists of two points not in H but the line segment
connecting them intersects H. The following lemma shows that equality
holds when S lies entirely in one of the closed half spaces defined by the
hyperplane H (see Figure 10).

Lemma 7.3. Let H := {z € R"® : az = b} be a hyperplane and S C {z :

_az <b}). Thenconv(S)NH=conv(SNH).

Proof. Clearly conv(S N H) C conv(S) and conv(S N H) C H so conv(S N
H) C conv(S) N H.
We show conv(S)NH C conv(SNH). Let z € conv(S)NH. This means

ar=band z = i;l)\.;a:" where z!,...,zF € 8§, A > 0 and Zf=1 A=l
k . k
b=az=) Aaz' <) Ab=b (34)
i=1 i=1



conv(S)

H

Figure 10: Illustration of Lemma 7.3

where the inequality follows from az! < b and )\; > 0. Relation (34) implies
that these inequalities are in fact equations, i.e. azt = bfori=1,...,k
Therefore ¢ € SN H. This implies = € conv(S N H). O

Proof of Theorem 7.2. By induction. Let S := {z € {0,1}} xRY P Az >
b}. We want to show Py(Pi-1(... Pa(P1)...)) = conv(S;). By definition, this
is true for t = 1, so consider t > 2. Suppose that this is true for ¢ — 1. By
the induction hypothesis we have

Py(Pi1(... Po(P1)...)) = Py(conv(S-1))

= conv(conv(S;_1) N {z; = 0}) U (conv(S;_1) N {z¢ = 1}).

By Lemma 7.3, conv(S;-1) N {z: = 0} = conv(S;—1 N {z; = 0}) and
conv(S;—1) N {z¢ = 1} = conv(S;-1 N {z¢ = 1}). Thus

Pu(Pis(c Po(PL).. ) = conv((Siet N{ze = 0}) U (St N {me = 1))
= COI'IV(St).

O

8 Rank

8.1 Chvatal Rank

In this section, we consider a pure integer set S := P NZ" where P := {z €
R™ : Az < b is a rational polyhedron. The Chvétal closure PC" introduced
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in Section 4.1 will be denoted by P{) in this section. We can iterate the
closure process to obtain the Chvétal closure of PM). We denote by P?
this second Chvatal closure. Iteratively, we define the tth Chvétal closure
of P to be the Chvital closure of P(t~1), for t = 2 integer. An inequality
that is valid for P® but not P¢-1 is said to have Chwvdtal rank t. Are
there inequalities of arbitrary large Chvatal rank or is there a value ¢ after
which P® = P@1)? The main result of this section is that the second
statement is the correct one. We will prove that there exists a finite ¢ such
that P® = conv(S). Therefore, every valid inequality for conv(S) has a
bounded Chvétal rank. This result for the pure integer case is in contrast
with the situation for the mixed case, as we will see in the next section.

We will need the following theorem, that we state without proving. We
refer the reader to [45] for a proof.

Theorem 8.1. (Integer Farkas Lemma or Kronecker Approzimation Theo-
rem) Let A be a rational matriz and b o rational vector. The system Az = b
has an integral solution if and only if for every rational vector u such that
uA is integral, ub is an integer.

Given a set P C R™, we denote by aff(P) the affine hull of P, that is the
minimal affine subspace of R" containing P.

Lemma 8.2. Let P C R™ be a nonempty rational polyhedron such that
aff(P)NZ" # 0. If Pr = 0, then dim(rec(P)) < dim(P).

Proof. Let d = dim(P) = dim(aff(P)). Suppose, by contradiction, that
P; = 0 and there are linearly independent integral vectors ...t e
rec(P). Let z € P. Since aoff(P) NZ" # 0, and z +1%,...,2 +rdis a
basis of aff(P), there exist pa,. .., g such that z + E;Ll pirt € Z™. Thus
z+ Z?ﬂl(,u,i — |u:))r* is an integral point in P, contradicting the fact that
Pr=0. O

A consequence of the above lemma is that every rational polyhedron.

having full-dimensional recession cone contains an integer point.

Lemma 8.3. Let P A(_: R™ be a rational polyhedron such that aff(P)NZ™ # 0.
Then Py = {z : Az < b} Naff(P) for some integral A and b such that, for
every row a; of A,

1. a; is not orthogonal to aff(P);

9. there exzists d; € R such that a;z < d; is valid for P.
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Proof. Assume first Py # 0. Then clearly there exist an integral matrix A
and an integral vector b such that Pr = {z : Az < b} N aff(P) and no row
of A is orthogonal to aff (P). We prove 2): Since rec(Py) = rec(P), then, for
every row a;, d; = max{a;z: z € P} is finite, thus a;z < d; is valid for P.

Assume now P; = (). By standard linear algebra, aff(P) = z 4+ L where
z € P and L is a linear subspace of R™ such that dim(L) = dim(P). Notice
that rec(P) C L. By Lemma 8.2, dim(rec(P)) < dim(P), thus there exists
an integral ¢ € L such that a is orthogonal to rec(P). Thus both u =
max{az : = € P} and | = min{az : z € P} are finite, hence P; = {z :
ax < -1, —az < 0} = 0, a,—a are not orthogonal to aff(P), and az < u,
—ax < —{ are valid for P. Od

Lemma 8.4. Let P be a rational polyhedron and F' a nonempty face of P.
Then F) = PO)NF for every s € Z.

Proof. It suffices to show that F(!) = P(1) 0 F. This is a consequence of the
following statement, that we prove next:

If cx < |d] is a Chvdtal inequality for F, there is a Chuvdtal inequality
c*z < |d*] for P such that FN{z:cx < |d]} = Fn{z: 'z < |d*|}.

Since P is rational, by Theorem 2.19, we can write P as {z : A’z <
b, A%z < b"}, where A', A", ¥/, V" are integral, so that F = {z : A’z <
b, A"z = b"}. We can assume that d = max{cz : = € F}. By the duality
theorem 2.6 there exist vectors ¥/, y” such that

yn’AJ’ +y”A” - C, ylbn’ + yﬂbh' — d, yl 2 O

Note that y” is unrestricted in sign. To obtain a Chvétal inequality for P,
we have to use nonnegative multipliers. Define ¢* and d* as:

C* = ‘y’A’ 4 (yﬁ e LyHJ)AH, d.* = y!bl + (yH _ L'yHJ)b”-

The multipliers ¥’ and y” — |y”] are nonnegative. We have ¢* = ¢ —
(ly"NA"), d* =d — (ly"|)b"). Since A” is an integral matrix and b”, ¢ are
integral vectors, then ¢* is integral and |d| = |d*] - (|3"])V". So ¢z < |d*¥|
is a Chvétal inequality for P and FN{z : c*z < |d*|} = Fn{z: [y"|A"z =
ly" |b7, ¢fz < |d*|}F N{z : cz < |d|}. This completes the proof of the
theorem. O

Theorem 8.5. (Chuvdtal [13], Schrijver [{4]) Let P be a rational polyhedron.
Then there ezists t € Z,. such that P®) = Py,
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Proof. The proof is by induction on d = dim(P), the cases d = -1, d =0
being trivial. If aff(P) NZ" = @, by Theorem 8.1 there exists an integral
vector @ and a scalar d & Z such that P C {z : ax =d}, hence Py =@ = {z :
az < |d), —az < —[d]} = PY). Therefore we may assume aff (P) N Z"™ # 0.
By Lemma 8.3, Pr = {z : Az < b} Naff(P) for some integral A and b such
that, for every row a; of A, a; is not orthogonal to aff(P) and a;z < d; is
valid for P for some d; € R.

We only need to show that, for any row a; of A, there exists a nonnegative
integer t such that the inequality a;z < b; is valid for P®). Suppose not,
then, since a;z < d; is valid for P, there exists an integer d > b; and r € Z
such that, for every s > 7, a;z < d is valid for P(8) but g;z < d—1 is not valid
for P). Then F = P n{z: a;z = d} is a face of P} and Fy = 0. Since
a; is not orthogonal to aff(P), dim(F) < dim(P), therefore, by induction,
there exists h such that F(*) = . By Lemma 8.4, F) = plr+th) 0 F| hence
@z < d for every z € PU+h) therefore a;z < § — 1 is valid for PO+h+1),
contradicting the choice of d and r. O

8.2 Split Rank

Let P:={(z,y) ER* xRP: Az + Gy < b} and let S:= PN (Z" x R?). In
this section, we denote the split closure PSPt of P by P,

For k > 2, P* denotes the split closure relative to P*~1 and it is called
the k-th split closure relative to P. It follows from Theorem 6.5 that P* is
a polyhedron. Unlike for the pure integer case, there is in general no finite 7
such that P" = conv(S) in the mixed integer case, as shown by the following
example [17].

Example 8.6. Let S := {(z,y) € Z3 xRy : £1 >y, 222y, ©1+22+2y <
2}. Starting from P = {(z1,22,y) €R3 : m >y, 2>y, ;1 +22+2y <
2}, we claim that there is no finite v such that P" = conv(S).

To see this, note that P is a simplex with vertices O = (0,0,0), A =

(2,0,0), B = (0,2,0) and C = (},1,3) (see Figurel1). S is containedin

the plane y = 0. More generally, consider a simplex P with vertices O, A, B
and C = (3,3,t) with t > 0. Let Cy = C, let Cy be the point on the edge
from C to A with coordinate z, = 1 and C3 the point on the edge from C
to B with coordinate zo = 1. Observe that no split disjunction removes all
three points Cy, Cq, C3. Let Q; be the intersection of all split inequalities
that do not cut off C;. All split inequalities belong to at least one of these
three sets, thus P! = Q1N Q2N Q3. Let S; be the simplez with vertices
0, A, B,C;. Clearly, S; € Q;. Thus 81N S2N Sz C PL. It is easy to verify

45



Figure 11: Example showing that the split rank can be unbounded

Remark 8.7. For mized 0,1 programs, Theorem 7.2 implies that P" =
conv(S).

Example 8.8. Cornuéjols and Li [18] observed that the n-th split closure
is needed for 0,1 programs, i.e. there are exzamples where Pk £ conv(S) for
all k < n. They use the following well-known polytope studied by Chudtal,
Cook, and Hartmann [1{]:

” 1
Pocp ={z € [0,1]": gmﬂ—%(l—mﬂ > = for allJ C {1,2,-+,n}}
j

Let F; be the set of all vectors z € R™ such that j components of = are
% and each of the remaining n — 7 components are equal to 0 or 1. The
polytope Pocy is the convex hull of Fy.

Lemma 8.9. If a polyhedron P C R" contains Fj, then its split closure pl
contains Fji1.

Proof. It suffices to show that, for every (m,mo) € Z" X Z, the polyhedron
I = conv((PN{z: mz < m})U(PN{z: mz > mp+1})) contains Fj1.
Let v € Fj41 and assume w.l.o.g. that the first j+1 elements of v are equal
to 1. If mv € Z, then clearly v € IL. If 7v ¢ Z, then at least one of the
first 7 + 1 components of 7 is nonzero. Assume w.l.o.g. that w3 > 0. Let
v1,v2 € F; be equal to v except for the first component which is 0 and 1
respectively. Notice that v = %2, Clearly, each of the intervals [7rv1, W)

and [rv, nvy] contains an integer. Since 7z is a continuous function, there
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are points U1 on the line segment conv(v,v;1) and 73 on the line segment
conv(v,vz) with 7iy; € Z and w9y € Z. This means that 9; and 9y are in II.
Since v € conv(#y,¥3), this implies v € IL. O

Starting from P = Pgeop and applying the lemma recursively, it follows
that the (n — 1)-st split closure relative to Pocp contains Fy, which is
nonempty. Since conv(Pgcm N {0,1}") is empty, the n-th split closure is
needed to obtain conv(Poom N {0,1}"). End of Example 8.8.

Remark 8.10. In view of Ezample 8.6 showing that no bound may exist on
the split rank when the integer variables are general, and Remark 8.7 showing
that the rank is always bounded when they are 0,1 valued, one is tempted to
convert general integer variables into 0,1 variables. For a bounded integer
variable 0 < z < u, there are several natural transformations:

(i) a binary expansion of & (see Owen and Mehrotra [{1]);

(it) & =37 iz, 3,2 <1, z € {0,1} (see Sherali and Adams [46] and
Képpe, Lowveauz and Weismantel [35]);

(ii) & = 3> i q 2, 2 < 731, % € {0,1} (see Roy [43]).
More studies are needed to determine whether any practical benefit can be
gained from such transformations.
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