Chapter 10

Polyhedral Approaches

Several problems from various areas reduce to maximizing (or minimizing) a lin-
ear function with linear constraints with bivalent variables. These problems, said to be
combinatorial optimization problems, are generally NP-hard. Effective methods have
therefore been developed to formulate and solve this type of problem. In particular,
polyhedral approaches have proved to be powerful for optimally solving these prob-
lems. These consist of transforming the problem into a linear program by describing
the convex hull of its solutions by a system of linear inequalities. The equivalence
established between separation and optimization on a polyhedron, and the evolution
of computational tools, have given an important boost to these methods. In fact, using
these techniques we can develop polynomial algorithms and min-max relationships
between combinatorial structures. These approaches have been successfully applied
to several combinatorial optimization problems in the last few years. In this chapter,
we will discuss these methods and introduce some applications to the maximum cut
and network design problems.

10.1. Introduction

During the last three decades, combinatorial optimization has developed consid-
erably, as much on the theoretical side as on the application side. Several techniques
have been developed, and have been shown to be effective in formulating and solving
hard combinatorial problems from areas as diverse as transport and telecommunica-
tions, biology, VLSI circuits, and statistical physics [GRA 95].
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Given that the number of solutions of a combinatorial optimization problem is
finite, in order to solve the problem we might think of using, for example, an enumer-
ative method consisting of enumerating all the solutions of the problem, calculating
the value of each solution, and choosing the best of them. However, even though the
number of solutions is finite, it can be exponential, and hence this method can rapidly
reach its limits, even for small problems. If we consider this method, for instance
for the traveling salesman problem for 30 towns, and using the most powerful com-
puter currently available, more than 1019 centuries would be needed to find an optimal
solution. This shows that such naive methods cannot be applied to combinatorial op-
timization problems.

As a consequence, other, more powerful tools have proved to be necessary for tack-
ling this kind of problem. Linear programing and integer programuming are at the root
of such tools. A combinatorial optimization problem can always be formulated as an
integer program (generally in 0-1). Therefore any relaxation of the problem, obtained
by relaxing the integrality constraints and by considering a subset of constraints, is no
more than a linear program. If, by solving this program, we obtain a feasible integer
solution of the problem, then it is optimal.

At the end of the 1940s, Dantzig [DAN 51, DAN 63] introduced the first algo-
rithm, the simplex method, for solving linear programming problems. This method
not only proved to be practically effective, but it constitued a very important basic
tool for combinatorial optimization. Indeed, an optimal solution of a given linear pro-
gram, found using the simplex algorithm, always corresponds to an extreme point of
the polyhedron given by the inequalities of the program. In this way, this algorithm
allows us to solve any combinatorial optimization problem whose set of solutions cor-
responds to the vertices of a polyhedron whose description is given by a system of
linear inequalities. It follows from this that, given a combinatorial optimization prob-
lem where every solution can be represented by a vector of integers, if we can describe
the convex hull of these points using a linear system, we thus reduce the problem to

solving a simple linear program.

This transformation from optimization on a finite discrete set, which can have a
very large number of solutions, to optimization on a convex domain, has been at the
origin of an important evolution in combinatosial optimization. Indeed, this reduction
has allowed us to introduce a new approach, known as the polyhedral approach, for
combinatorial optimization problems. This consists of reducing such a problem o the
resolution of a linear program by describing the convex hull of its solutions by a linear
inequality system. This method, initiated by Edmonds [EDM 65] for the matching
problem, was later revealed to be very powerful for optimally solving these problems.
In particular, this method allows us to solve effectively a combinatorial optimization
problem even if we only have a partial description of the convex hull of its solutions
and even if the latter contains an exponential number of constraints. It also allows us
to obtain min—max relations and to devise polynomial-time algorithms.
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integral systems, and blocking and antiblocking polyhedra. In section 10.6, we intro-
duce cut, and branch-and-cut, methods. We also discuss the relationship between sep-
aration and optimization. In sections 10.7 and 10.8, we introduce some applications
of these techniques to the maximum cut and survivable network design problems.

The rest of this section is devoted to some definitions and notations. We consider
non-directed graphs. A graph will be expressed by G = (V, E)), where V is the set
of vertices and E is the set of edges. If e is an edge between two vertices ¢ and v,
then we denote it by e = uv. A path between two vertices u and v in G is a sequence

of vertices and edges (vg,e1,v1,€2,v2,. .., V-1, er,vt), where u = v, v = vy and
e; = vi_qv; fors = 1,...,0 and vp,. .., v are distinct vertices of V. Vertices » and
v are said to be the extremities of the path. A path will be given by its set of edges
(e1,...,e). Two paths between two vertices u and v are said to be edge-disjoint
(resp. vertex-disjoint) if they do not have any edges (resp. vertices, except for u and
») in common. A cycle is a path whose extremities coincide. If ' € F, then V(F)
will refer to the set of vertices of the edges of F'. If S C V, we will denote by E(S)
the set of edges having their extremities in 5.

Let 2 = {e1,...,en} be afinite set. If ' C B and z = (z(e), e € B) € R”,
then we express by z(F) the sum 3 . @(e). If a and x are vectors of RE, we
denote the sum . > a(e)x(e) by az. Therefore the inequality Yecpale)afe) < o
is written as az < cv.

10.2. Polyhedra, faces and facets

In this section, we present some definitions and basic properties of polyhedral
theory. In particular, we discuss the description of a polyhedron by its facets.

10.2.1. Polyhedra, polytopes and dimension

DEFINITION 10.1.—- A polyhedron P C R™ is the set of solutions of a finite system of
linear inequalities, that is:

P={zeR": Az < b}
where A is a matrix m X n, b € R™, and m and n are two positive integers.

A bounded polyhedron is known as a polytope. In other words, a polyhedron
P C R" is a polytope if z!, z* € R™ exists such that gl <z <z?forallz € P.

Note that any polyhedron P is convex, that is if z! and 2 are any two points of P,
then Az! + (1 — A)z? is also a point of P forany 0 < A < 1.




Polyhedral Approaches 267

Solutions of S Convex hull of §
Figure 10.1. Convex hull

The following proposition establishes the relationship between optimizing on S and
optimizing on the convex hull of 5.

PROPOSITION 10.2.— Let S C R™ be a set of points and w a vector of R™. Thus

max{wz : z € §} = max{wz : = € conv(S)}

Proof. Let T € S and z* € conw(S) such that wZ = max{wz : =z € S} and
wz* = max{wz : x € conu(S)}. Since Z € S, and therefore T € conv(S), then
wZ < waz*. Furthermore, using linear programming, we can assume that 2* is an
extreme point of conv(.9), and consequently z* € S. This means that wz* < wi, and
S0 wz* = Wi. i

Proposition 10.2 establishes the link between combinatorial optimization and lin-
ear programming., An optimal solution of a combinatorial optimization problem can
be obtained by solving the linear program induced by the convex hull of its solutions.

Let us now consider a polyhedron P C IR™, and let us assume that P is described
by a system of m; inequalities and mg equations, that is P is expressed as:

_JzeRY: A<l =110 !
P= Bjil'.':dj, j=1,...,ma {10'2]

This implies that for any inequality A;z < b;, © € {1,...,m1}, there exists a
solution % of P such that A;Z < b;. In what follows, we will denote by A and B the
matrices whose rows are A;, i =1...,my and B;, § =1,...,mp, respectively, and
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DEFINITION 10.8.— If az: < o is a valid inequality, then the polyhedron:
F={zeP: az=0c}
is called a face of P, and we say that F' is defined by the inequality ax < o

By convention, the empty set and the polytope P itself are considered as faces
of P. A face of P is said to be proper if it is non-empty and different from P (see

Figure 10.2).

proper face

non proper face

=~

extremal points

Figure 10.2. Faces and facets

PROPOSITION 10.5.— A non-empty subset I of P is a face of P if and only if a
subsystem Alz < b of Aw < b exists such that I = {[xeP: Az=b}

Proof. (=) Let us assume that I is a face of P. So an inequality az < a, valid for
P, exists such that F* = {z € P : ax = a}. Let us consider the linear program

max{az : z € P} (10.3]

The optimal solutions of the program [10.3] are precisely the elements of F. Let
(y*,7?%) be a dual optimal solution of the program [10.3], where y! and y? are the
dual vectors corresponding to the systems Az < b and Bz = d, respectively. Let
A’z < I be the subsystem of Az < b whose dual variables have a strictly positive

value. From the condjtions of complementary slackness in linear programming, we
have F={z € P : J4':c =V}
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waust exist a point z* € R™ \ P such that:

Ajﬂfé‘ < bjs VJ € {1:" ' rinl}\ {7‘}
Ax™ > by
Bz* =d

Since P # @, from proposition 10.3, P contains an interior point, let us say . There-
fore A;& < b;. Let z be a point on the segment between z* and & such that A;z = b;.
Soz = Ad + (1 — A)z* with 0 < A < 1. Furthermore, we have:

Ajz < bj, VJ S {1)--',7”'!.}\{?.‘}
A,‘,Z:bi
Bz=d

This implies that z belongs to the set I/ = {x € P : Az = b;}, the face of P defined
by A;az < b;. Note that the system given by the equations of F' is {djz = b;, Bz =
i

d}. Since & € P\ ¥, A; is linearly independent of the rows of B. So, rank }}; =
rank(B) + 1. Hence dim(F") = dim(P) - 1, and, consequently, F is a facet of P. H

In what follows, we need theorem 10.1, known as Farlas’ lemma, which is one of
the fundamental results in-mathematical programming. For the proof, see [COO 98].

THEOREM 10.1.— (Farkas’ lemma for inequalities). Given a matrixm x n A and a
vector b € R™, the system Az < b has a solution if and only if there does not exist a
vectory > 0 of R™ such that yA = 0 and yb < 0.

COROLLARY 10.1.— (Farkas’ lemma). The system Az = b allows a solution (resp. a
positive solution) if and only if there does not exist a vector y such that yA = 0 and

yb < 0 (resp. yA > 0and yb < 0).

The following proposition shows that a facet of P must be defined by at least one
of the inequalities of P.

PROPOSITION 10.8.— For each facet F of P, one of the inequalities defining I is
necessary in the description of . P

Proof. Let us assume that F' is defined by each of the inequalities Az < by, for
i € I, where I is a subset of {1,...,m1}. Let P be the polyhedron obtained from
P by removing all the inequalities A;x < by, 4 € I. We will show that P \P#0,
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does not have a solution. Thus by corollary 10.1, a solution Z € R™ exists such that:

ot = 0
Bx = 0
ax > 0

from proposition 10.8, I # (. Since F is & facet, and, consequently, I # 0, from
proposition 10.3, F' contains an interior point, say =*. Therefore Axz* < by for
every k € {1,...,my} \ I. Lete > 0 such that Agz™ + eAxZ < by for every
ke {l,...,m}\ I Let& = * + ¢Z. Since aaZ > 0 and a3z” = ay, we have
and = asz* +can® > g, As a consequence & ¢ P. Since P # #, let y be an interior
point of P. We therefore have a1y < a, andso y ¢ F'. Let z be the point of F' on
the segment between y and . Then z = vy + (1 — v)& for a certain 0 < v < L.
Furthermore, we have a1z = vayy + (1 — v)a1d < vay + (1 — v)ay = ay, which is
impossible.

Let I < {1,...,m;} such that A;z < b; defines I for every ¢ € I. Note that

As a consequence, system [10.4] has a solution. As has been shown above, this
solution also satisfies system {10.5], and we have > 0. 2!

From proposition 10.9, for every facet of P, one and only one inequality that
defines I is necessary in the system that describes P. As a consequence of proposi-
tions 10.7, 10.8 and 10.9, we have theorem 10.2.

THEOREM 10.2.— System {10.2] that defines P is minimal if and only if the rows of
B are linearly independent and every inequality Aiz < by, 1=1,...,m, defines a
distinct facet of P.

If P is a full-dimensional polyhedron, then, from proposition 10.9, two constraints
induce the same facet if and only if one is a positive multiple of the other. We therefore
have corollary 10.2.

COROLLARY 10.2.— If P is a full-dimensional polyhedron, then a unique minimal
linear system (apart from multiplications by positive scalars) exists that describes P.
Furthermore, every constraint of this system defines a distinct facet of P.

Another important class of faces is that of minimal faces, that is the faces that
strictly do not strictly contain another face. We have the following result.

PROPOSITION 10.10.- (Hoffman and Kiuskal [HOF 56)). A non-empty subset F' of
P is a minimal face of P if and only if a subsystem A’z < b’ of Az < b exists such
that F = {z € R* : A'lz =V, Bz =d}.
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Let e = —y. Since az® < e fors = 1,...,p, from proposition 10.2 it follows that
0z < a forevery z € conv(S). Since az® > o, constraint az < o then separates z°
and conv(S). H

DEFINITION 10.12.~ A cone is the set of solutions of a homogeneous finite system,
that is a system in the form Az < 0. A cone C is said to be generated by a set of
points {z*,... 2%} if every point x of C' can be expressed in the form Zf:] AiT;
with \i > 0fori=1,...,k

THEOREM 10.3.— (Minkowski [MIN 96], Weyl [WEY 50]). A set C C R” is a cone
ifand only if C' is generated by a finite set of points.

Proof. (=) Let us assume that C' is the set of solutions of a finite system Az < 0,
We will show that C' can be generated by a finite set of points. The proof is by
induction on the number of constraints in the system that defines C. If the system
has no constraints (that is C' = IR™), then the points given by the unit vectors and the
vector whose components are all equal to —1 generate C. Let us now assume that we
have a finite set S’ of points that generate C' = {z € R® : A’z < 0} and let us
assume that Az < 0 is obtained from A’z < 0 by adding a constraint az < 0. Let
S0, 5%, 57 be the subsets of points = of S’ such that az = 0,02 > 0 and az < 0,
respectively. Note that Sg, .S, 5" form a partition of S’. For every pair (z,z'), such
that z € S and 2’ € S”_, let us consider the vector:

Yo, = (a2)z" — (a2')z [10.7]

Therefore ays o = 0 and Ay o = (az)A'z’ — (aa)A'z < 0. Let S =S~ USHU
{Yz, + © €S),2" € 5.} It then follows that § C {z € R® : A’z < 0,az < 0}.
We will show in what follows that S’ generates C. For this, let us consider a solution
z* of C, Since C C C’, then z* = Y zest AzT, where Ay > 0 forevery z € . The
solution z* can also be written as:

-T* —] ZEGSL }\mﬂ: "[‘ EZESG )\xE + Z‘IES'_ )\rgfﬂ [10,8]

If Az = 0 forevery z € 5, since Sy U 5. C S, z* is therefore generated by
elements of S. If & € S’ with Ay > 0 exists, then & € S’ with Az > 0 must exist.
Otherwise, we would have az* > 0, which would contradict the fact that * € C.
From expression [10.7], we have:

(az)E + (—af)r — ypz =0
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From proposition 10.2, the optimal value of [10.10] is equal to that of the problem:
| max{wz : x € conv(S)} [10.11]

Theorem 10.4 shows that the two problems are equivalent.

THEOREM 10.4— A (non-empty) set of points P C R™ is a polytope if and only if
there exists a set of points S such that P = conu(S)

Proof. (=) Let us assume that P is a polytope. Let S be the set of its extreme
points. It is clear that conu(S) C P. Let us assume that there exists a point 20 &
P\ conv(S). From proposition 10.11, an inequality az < « exists such that az <o
for every z € conu(S) and az® > a. Let o — max{az : x € P}, and let
f: FP'={z€ P : az = &*}. Note that F is a non-empty face of P. Since z° € P, we
; must have o < ", But this implies that F' does not contain any extreme points of P,
which would contradict corollary 10.3,

(<=)Let S = {z!,...,2P} be a finite set of points of R™ and let P = conv(S).
We will show that P is the set of solutions of a finite linear system. To do this, let us
consider the set 7' C R™*! given by the points (A, ¥) € R x R™ such that:

-1<€A<1
=18yt o1
yazt <X, fori=1,...,p

where 1 denotes the vector of IR whose components are all equal to 1. It is clear that
T'is a polytope. Let (A1, y%), ..., (A, ¥*) be the extreme points of T". From the first

pait of this proof, T' = conv({(A1,%%), .. ., (A, 44)}). We will show that P is the set
of solutions of the system:

vz <N, fori=1,.. . ¢ (10.12]

To do this, we first show that every point of P is a solution of system [10.12]. Indeed,
if £ € P, then Z = myz! + ... + P for certain scalars M1, -y fip > 0 such that
> i1 i = L. Therefore y'z = pyyiz! + ... + Uy TP < pidi oo+ pghy = X;
fort=1,...,¢ This implies that 7 is a solution of system [10.12]

Let us now consider a solution % of system (10.12]. If £ ¢ P, then from propo-
sition 10.11, an inequality az < o exists such that az < o forevery x € P and
az > a. By dividing the inequality by an appropriate coefficient, we can assume that
-1<a” <land -1 < @ < 1. Therefore (2,a) € T, and consequently (o, a)
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be an interior point of F'. Since dim(f” } > 0, there must exist a further point y € ho
Consider the straight line A going through the points & and y. It contains the points
2(\) = My + (1 — N for A € R. Assume that A intersects one of the hyperplanes
{z e R* : Az = b}, 1 € . Let A = min{|N| : 1 € I, Aiz(\) = b}, and let
i € I such that \* = |A'|. Since & is an interior point of F, and, consequently,
Az < b, it follows that A* # 0. Consider the set F** = {z € F: Az = bi- }.
It is clear that F* is a face of P. Also, since z(\") € F*\ F, F* is a face of lower
dimension, a contradiction.

Consequently, A does not intersect any of the hyperplanes {z € R* : Az =
b;}, i € I. This implies that A C P, that is AMy+(1—A\)2) < bforevery A € R. As
A% < b, it follows that A(y—&) = 0 foreveryy € I". So, F={yeP: Ay= A%}
Since rank{A) = n — k, by proposition 10.4, we have dim(F) = k. f

THEOREM 10.7.— Suppose that rank(A) = n, and the problent:
max{wz : = € P} [10.16]

has a finite optimal solution. Then there exisis an optimal solution of [10.16] that is
an extreme point of P.

Proof. The set of optimal solutions of [10.16] is a non-empty face F = {z €
P : wz = wp)}. Since rank(A) = n, by theorem 10.6, F' contains a 0-dimensional
face. By proposition 10.6, it follows that F contains an extreme point.

THEOREM 10.8.— If rank(A) = nand max{wz : = € P} is unbounded, then P has
an extreme ray v such that wr* > 0.

Proof. Since the linear program max{wz : = € P} does not have a finite optimal
solution, by duality in linear programming, the system {yA = w, y > 0} does not
have a solution. By Farkas' lemma, 7 € R™ exists such that Ar < 0 and wr > 0.
Consider the linear program.

max{wr : Ar <0, wr < 1}. [10.17]

The optimal value of [10.17] is then equal to 1. Since this value is bounded and
rank(A) = n, by theorem 10.7, [10.17] has an optimal solution that is an extréme
point of {r : Ar < 0, wr < 1}. Let 7* be such a point. It is clear that v* is a
point of P° \ {0}, and therefore 7* is a ray of P. Furthermore, since * is the unique
solution of n equations of the system {Ar <0, wr < 1}, the subsystem of Az <0,
equally satisfied by 7*, must be of rank 7 — 1. Otherwise »* would be zero, which
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a strong min—max relationship between the optimal solutions of the primal problem
max{wz : x € P} andits dual. Furthermore, the use facet defining inequalities in the
framework of a cutting-planes method for the primal problem can enable us to speed
up the resolution of the problem. Consequently, if P is the polytope associated with
a combinaterial optimization problem, given a valid inequality for P, a fundamental
question that arises is to determine if this inequality defines a facet of P, Moreover,
given a system of inequalities valid for P, it would be interesting to see if the system
completely describes P. In this section, we discuss certain proof techniques for these
questions.

10.4.1. Facet proof techniques

10.4.1.1. Proof of necessity

A first technique for proving that a valid constraint az < o« defines a facet of
P is to show that az < « is essential in describing P. In other words, if P = {z €
R™ : Az < b},and if az < o is one of the constraints of Az < b, then we must show
that there exists a point & such that aZ > o, and Z satisfies all the other inequalities
of Az < b. This implies that the constraint axz < « is necessary to describe P. If
P is full-dimensional, from corollary 10.2, it follows that az < « defines a facet. If
P is not full-dimensional, then we must also show that az < « is not an equation in
the system Az < b. To do this, it is enough to establish a solution & € P such that
at < a.

This technique is generally used for simple constraints. We illustrate this here for
the trivial inequalities of the stable set polytope.

A stable set in a graph G = (V, E) is a subset of non-adjacent pairwise vertices.
If each vertex v of V has a weight w(v), the stable set problem is to determine a stable
set S such that ) _gw(v) is maximum. The stable set problem is NP-hard even
when the weights are all equal to 1.

If S C V is a subset of vertices, let z° € RY be the incidence vector of S given

by:
s |1 ifve S
2= (v) “_{ 0 if not

Let
P(G) = conv{z® : §C Visastableset}

be the convex hull of the incidence vectors of all the stable sets of G. P(G) is called
the stable sets polytope of G. The stable set problem in G is therefore equivalent to
the linear program max{wz : x € P(G)}. The stable set polytope has been widely
studied and reported in the literature. Since the problem is NP-hard, the polytope
P(G) is known explicitly only for certain particular classes of graphs.
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10.4.1.2. Direct proof

The most direct technique for showing that a valid constraint induces a facet con-
sists of showing that there exist dim(P) affinely independent solutions satisfying the
constraint with equality. If P is full-dimensional, we then obtain ax < « defines a
facet of P. If P is not full-dimensional, as for the first method, we must also show
that az < «is not an equation in Az < b by determining a solution of P that satisfies
ax < a with strict inequality. We will also illustrate this method on the stable set
polytope.

A (simple) graph is said to be complete if an edge exists between each pair of
vertices. If G = (V, E) is a graph, a subset K of vertices of V is called a cligue of G
if it induces a maximal complete subgraph, that is a complete subgraph which is not
strictly contained in any complete subgraph. If § C V is a stable se, it is clear that
S cannot intersect a clique in more than one vertex. This implies that the following
constraints

2(K) <1, YK cliqueof ¢ (10.21]

are valid for the polytope P(G).

PROPOSITION 10.18.— [nequalities {10.21] define facets of P(G).

Proof. Since P(G) is full-dimensional, it is enough to show that there exist n = [V/|
stable sets of G whose incidence vectors satisfy {10.21] with equality and are affinely
independent. Since K is a clique, for every vertex vin V' \ K, a vertex v’ € K exists
such that vv’ ¢ E. Let us consider the sets

-5y = {v} foreveryv € K,

=8y = {v,v'} foreveryv € V\ K.

Tt is clear that these sets are stable sets of G. Furthermore, their incidence vectors
z5v, v € V satisfy [10.21] with equality and are linearly independent. Since 0 does
not belong to the affine hull of the incidence vectors z5v, v € V, from comment 10.1,
these points are also affinely independent. H

Observe that if wv is an edge such that {u,v} is contained in a clique X, thén
inequality [10.18] corresponding to uv is dominated by [10.21].

10.4.1.3. Proof by maximality

A final method for showing that a constraint ax < ¢, valid for P, defines a facet,
consists of proving that the face ¥ = {& € P : az = a} induced by az < « is not
strictly contained in a facet of P. In other words, if F' C {z € P : bz = f}, where
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Consider a vertex w € V' \ W. Smce w is not adjacent to wy, the set S" = {w,wp}

is then a stable set of G’ Since azS” = aziwe} = o, and thus bz5" = bzlwe} = B,
it follows that 0 = bzS" — bz (e} = b(w). Since w is arbitrary in V'\ W, we have:
bw)=0 forevarywe V\W (10.25]

From [10.23]-[10.25], it follows that b = pa. Furthermore, for every vertex v of G
there is a stable set S of G which contains v such that az® = o The face defined by
az < o is different from a trivial face {x € P(G) : z(v) = 0}. This implies that the
face induced by bz < 3 is not contained in a trivial face. From proposition 10.16, it
follows that b(v) > 0 for every v € V. Since bz < f3 defines a facet of P(G), there
must exist at least one vertex v € V such that b(v) > 0. Consequently p > 0. i

10.4.2. Integrality techiiques

Let P C R™ be the solutions polyhedron of a combinatorial optimization problem,
and et Az < b be a system of valid inequalities for P. In what follows, we discuss
techniques which enable us to show that Az < b completely describes P. For this, we
assume that every integer solution of Az < b is a solution of the problem.

10.4.2.1. Extreme points integrality proof

A first technique for showing that Az < b describes P consists of proving that the
extreme points of the polyhedron P = {z € R™ : Az < b} are all integers. This
would imply that 2 C P. Since P C P, we therefore have P = P. To demonstrate
this technique, we consider the 2-edge connected subgraph problem.

A graph G is said to be k-edge connected, for fixed &k > 0, if between each pair of
vertices of G, there exist at least k edge-disjoint paths. Given a graph G = (V, E) and
a weight functionw : £ — R that associates the weight w(e) with each edge e € £,
the k-edge connected subgraph problem is to determine a k-edge connected subgraph
(V,T) of G containing all the vertices of V' and such that ), w(e) is minimum.
This problem has applications in the design of reliable telecommunications networks
[GRO 95, KER 05].

Let G = (V, E) be a graph. If W C V, the set of edges having one extremity in
W and the other in V'\ W is called a cut, and denoted by §(W). If W = {v}, we write
d(v) instead of §({v}). Theorem 10.10 (Menger’s theorem), establishes a relationship
between edge-disjoint paths and cuts in a graph.

THEOREM 10.10.— (Menger [MEN 27]). In a graph G, there are k edge-disjoint
chains between two vertices s and t if and only if every cut of G that separates s and
t contains at least k edges.
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e € '\ {eg}. Itis clear that Z’ is an extreme point of Q(G — eg), where G — eq is
the graph obtained from G by removing eg. Since ' is fractional and Q(G — ep) =
TECP(G — eg), we have a contradiction. §

LEMMA 10.2.— G is 3-edge connected.

Proof. Assume that G is not 3-edge connected. Since G is 2-edge connected, then G
contains a cut consisting of exactly two edges, say e; and es. Consequently, z(e;) =
w(ez) = 1. Let G* = (V*, E*) be the graph obtained from & by contracting e;.
Let z* € RIEI-1 be the restriction of  on E*. Then «* is a solution of Q(G™).
Furthermore, z* is an extreme point of Q{G*). Indeed, if this is not the case, there
must then be two solutions ¢, y of Q(G*) such that z* = 1(y'+y"), hence y/(e3) =
y"(e2) = 1. Consider the solutions y* , y*" € R™ given by:

“oa | yle) VYee k*
Y (e) 0 1 ife= el
and:
PN T () Vee E*
¥ @)= 1 ife=e;

It is clear that y*', y*" are solutions of Q(G). We also have & = %(y*' +y*), a
contradiction. Consequently, z* is an extreme point of P(G*). Since G* is series-
parallel, | £*| < | B, and »* is fractional, this contradicts the minimality of |[E|.  §

By lemma 10.1, Z(e) > 0 forevery e € E. Since Z is an extreme point of Q(Q),

from corollary 10.3, there must be a set of cuts {6(W;), 4 = 1,...,¢} and a subset of
edges £y C E such that Z is the unique solution of the system:

) =1, Vee By
Wi)=2, i=1,...,t (10.29]

where |Eq| + ¢ = | E|.

LEMMA 10.3.~ Eachvariable z(e) has a non-zero coefficient in at least two equations
of [10.29].

Proof. It is clear that z(e) must have a non-zero coefficient in at least one equation
of system [10.29]. Otherwise every point Z’ such that #'(f) = Z(f) if f € E \ {e}
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Az < b, we have P = {& : Az < b}. The method can be presented as follows. We
consider an inequality az < o that defines a facet F' of P. By usin g the structure of the
extreme points of P (that is the solutions of the underlying combinatorial problem},
we establish certain properties related to a, which imply that az < « is a constraint of
the system Az < . We will illustrate this method on the matching polytope.

Given a graph G = (V, E), a subset of pairwise non-adjacent edges is called a
maiching. If each edge of G has a certain weight, the matching problem in G is
to determine a matching whose total weight is maximum. Edmonds [EDM 65] has
shown that this problem can be solved in polynomial time. He also produced a linear
system that completely describes the associated polytope.

If ¢ = (V,E) is a graph, the matching polytope of G, denoted by Pe(G), is
the convex hull of the incidence vectors of the matchings of G. It is not difficult to
see that if I is a matching of G, then its incidence vector 2% satisfies the following
constraints:

2(e) 20 Vec B [10.30]
z(0(v)) <1 VveV [10.31]
<(B(S)) < %ﬁ VSCV, S| > 3andodd [10.32]

Theorem 10.12, established by Edmonds [EDM 65], has been proven by Lovdsz by
applying the technique described above [LOV 79].

THEOREM 10.12.~ For every graph G = (V, E), the matching polytope Pe(@G) is
given by inequalities [10.30]-[10.32]).

Proof. First of all, we can easily verify that P¢(G) is full-dimensional. Indeed, the sets
{e}, e € E with the empty set form a family of || + 1 matchings whose incidence
vectors are affinely independent. Consequently, from corollary 10.2, two constraints
define the same facet of P°(G) if and only if one is a positive multiple of the other.

Let az < o be a constraint that defines a facet of P¢(G), and let C, be the set
of matchings of G' whose incidence vectors satisfy az < @ exactly. Assume that

ez < o is different from constraints [10.30] and [10.31]. We will show that az <o
is necessarily of the type {10.32].

Since az < a is different from inequalities [10.30], then a(e) > 0 for every
e € B. Indeed, if a(e) < 0 for a certain edge e, then every matching in C, does
not contain e, and, consequently, the face defined by ez < a is contained in the face
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linear program max {wz : Az < b} hasan integer optimal solution. Indeed, by the-
orem 10.5, this implies that the extreme points of {z € R™ : Az < b} are all integers.
This technique has been introduced by Edmonds [EDM 65] to show the integrality
of system [10.30]-[10.32] for the matchings of a graph. Other techniques, based on
projection, can also be used to show the integrality of a polyhedron [SCH 03].

10.5. Integer polyhedra and min-max relations

As has been highlighted in section 10.4, the principal motivation for
integrality of a polyhedron is to establish a combinatorial min—max relati
the optimal solutions of the underlying dual problems. This dual relation
natorial optimization has been the subject of extensive studies, which hav
introduction of new concepts such as total

proving the
on between
s in combi-
e led to the

ly dual integral systems, and blocking and
antiblocking polyhedra. In this section, we introduce these concepts and discuss some
applications.

10.5.1. Duality and combinatorial optinization

Let:

max {wz : Az <b, z > 0} [10.34]

be a linear program (said to be primal) and:

min {47y : ATy > T, y > 0} [10.35]

be its dual. From linear programming duality, if one of problems [10.34] or [10.35] has
an optimal solution, then the other also has one, and the two optimal solutions have the
same value. In other words, if [10.34] has an optimal solution Z, then its dual [10.35]
has an optimal solution g such that wz = b7y, Thus, if two optimal solutions are
known for the primal problem and the dual problem, then we obtain a min—-max re-
lation between the optimal solutions of the two problems. This can have interesting
applications when the two dual problems have a combinatorial interpretation. Indeed,
if the system Az < b describes the solutions polyhedron of a combinatorial opti-~
mization problem P; and ATy > w7 describes that of a combinatorial optimization

problem Py, and if [10.34] has an optimal solution, then we obtain a relation of the
form;

max {w(F) : F € 1} = min {6(F) : FeF) [10.36]
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where A is the vertex-edge incidence matrix of G (let us remember that 1 refers to the
vector whose components are all equal to 1). Since A is TU, by theorem 10.13, PHG)
is integral. Consequently, every extreme point of P* (G) represents a matching of G,
and therefore P*(G) C P°(G). It then follows that P*(G) = P°(G).

Let us now consider the maximum cardinality matching problem. Since PG) =
PE(G), this problem is equivalent to the linear program:

max {IT:c Az <1, 2 >0} [10.37]
The dual of [10.37] can be written as:
min {17y : ATy >1, y> 0} [10.38]

Note that the variables in [10.38] correspond to the vertices of G and that the con-
straints correspond to the edges. Since the matrix A is TU, and A7 is also TU, an
optimal solution 7 of [10.38) can be supposed to be integer. Therefore i is a 0-1 vec-
tor, and we can see that in this case §j represents a set of vertices that covers all the
edges of the graph. Such a set is called a vertex cover. From [10.36], we then obtain
theorem 10.15.

THEOREM 10.15.~ (Kénig [KON 311). In a bipartite graph, the maximum cardinality
of a matching is equal to the minimum cardinality of a vertex cover.

If G = (V, E) is a directed graph, the vertex-arc incidence matrix of G is the
matrix [) whose rows correspond to the vertices of G, and columns to the arcs of G
such that for a vertex { and an arc e, the entry D is 1if 7 is the initial vertex of e, —1
if 4 is the terminal vertex of e and O if not. This matrix is TU, and, as a consequence,
we can obtain the famous maximum-flow minimum-cut theorem [FOR 56, FOR 62].

Unfortunately not all the integer matrices (in —1, +1, 0) are TU. Integral polyhedra
exist for which the matrix of the corresponding system is not TU.

If{zeR" : Az <0, z > 0} is an integral polyhedron where A is not TU,
although the linear program:

max{wz : Az <b, = >0} [10.39]

still has an integer optimal solution, its dual may not have one (even if w is integer).
Consequently, no combinatorial min-max relationship can be obtained. A natural
question that can therefore be asked is: under what conditions can the dual of [10.39]
have an integer optimal solution each time that [10.39] has one for an integer w?
Edmonds and Giles [EDM 77] have studied this question, and have introduced the
concept of a totally dual integral system, which we discuss in what follows.
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Note that this theorem generalizes Konig's theorem 10.15. Extensions of the no-

tion of TDI have also been studied. For more details see Schrijver [SCH 03].

16.5.4. Blocking and antiblocking polyhedra

Another aspect of the duality that has been studied in combinatorial optimization
is that of blocking and antiblocking polyhedra. These concepts, introduced by Fulk-
erson [FUL 71, FUL 72], have been the source of several important developments in

combinatorial optimization.

10.5.4.1. Blocking polyhedra

Let A be a positive m x n matrix and w € R, Consider the linear program:

max {17z : ATz <w, z >0} [10.40]

Problem [10.40] is called a packing problem. lts dual can be written as:

min {wTy : Ay >1, y >0} [10.41]

Let B be the polyhedron given by {y € R} : Ay > 1}. Note that 3 is bounded and
is full-dimensional. Moreover, the system Ay > 1 may contain redundant constraints.
If Ay > 1 does not contain any redundant inequalities, then the matrix A is said to
be proper. A malrix is also said to be proper if it does not contain any rows (that is
B =RY or B = 0). If Ais a proper 0-1 matrix, then the rows of A can be considered
as incidence vectors of m non-comparable pairwise subsets of a set of n elements. In

this case the family of subsets, represented by the rows of 4, is said to be a clutter.

Let:

B={zeR? : zTx>1,Vz € B} [10.42]

The set B is called a blocking of B. Note that if B = (, then B =R, andif B = R%,
then B = §. Consequently, 3 can be seen as the dual of B and vice versa. Fulkerson

[FUL 71] established the following relationships between B and its blocking B.

THROREM 10.20.— (Fulkerson [FUL 71]). Let A be a proper matrix whose rows are
al,...,a™ Letb',... b" be the extreme points of B, and let B be the q x n matrix

whose rows are bt,. .. b%. Then
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Let G = (V, E) be a graph and s and ¢ be two vertices of V. Let A be the matrix
whose rows are the incidence vectors of the minimal paths between s and t. Let B
be the matrix whose rows are the incidence vectors of the minimal cuts separating s
and £. Note that the two matrices A and B are 0-1 matrices. Let w € R, where
n = |E|. By considering w as a capacity vector associated with the edges of G, the
problem (10.40] corresponding to A and w is nothing but the maximum flow problem
between ¢ and ¢ in G with respect to the capacity vector w. From Fulkerson’s max-
: flow min-cut theorem, we know that the maximum value of a flow between s and £
is equal to the minimal capacity of a cut separating s and ¢, where the capacity of a
cut is the sum of the capacities of the edges of the cut. Consequently, the min-max
relation [10.43] is satisfied for A and B, which implies that A, B is a blocking pair.

If w = 17, the programs [10.40] and [10.41] for A can be written as:
max {17z : ATz <1,z >0} [10.44]
and:
min {17y : Ay > 1, y > 0}. [10.45]

Note that the variables in [10.44] correspond to the minimal paths of G between s
and t, and those in [10.45] correspond to the edges of G. Observe that the packing
problem [10.44] has an integer optimal solution. Such a solution represents a packing
of paths between s and t, that is a set of pairwise disjoint paths between s and ¢.

Since A and B form a blocking pair, from theorem 10.20, the extreme points of
the polyhedron {y € R%} : Ay > 1} are precisely the minimal cuts separating s and
t. From [10.43], we thus obtain the following min-max relation, which is nothing but
theorem 10.10, Menger’s theorem.,

THEOREM 10.22.— The minimum number of edges in a cut separating s and t is equal
to the maximum number of pairwise disjoint paths between s and t.

In a similar way, by using the fact that the min-max relationship is also satisfied
for B and A, we obtain theorem 10.23.

THEOREM 10.23.— The mininuon number of edges in a chain between s and t is
equal to the maximum number of pairwise disjoint cuts separating s and t.

Other examples of blocking pairs and matrices ate given in [FUL 71, SCH 03].
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THEOREM 10.25.— (Fulkerson [FUL 71]). The min-max relation [10.48] is satisfied
or two matrices A and B (in this order) if and only if A and B Jorm an antiblocking
pair of matrices.

If relation [10.48] is satisfied for A and B, from theorem 10.25, it is also satisfied
for B and A.

To illustrate this concept, let us consider the matching polyhedron. We have seen
in section 10.4 that if G = (V, E) is a graph, the matching polytope of G, P4(G), is
given by inequalities [10.30)-[10.32]. P(G) can also be written in the form PE(3) =
{z € R® : Bz <1, 2 > 0}. If we denote by A the matrix whose rows are the
incidence vectors of the matchings in G, the min—-max relation [10.48] is nothing
but that established by duality. Consequently, A and B form an antiblocking pair of
matrices. If w = 1, the min-max relation for A and B implies theorem 10.19 (Berge's
theorem).

10.6. Cutting-plane method

Given a combinatorial optimization problem, it is generally difficult to characterize
the associated polyhedron by a system of linear inequalities. Moreover, if the problem
is NP-complete, there is very little hope of obtaining such a description. Furthermore,
even if it is characterized, the system describing the polyhedron can contain a very
large (even exponential) number of inequalities, and therefore cannot be totally used
to solve the problem as a linear program. However, by using a cutting-plane method, a
partial description of the polyhedron can be sufficient to solve the problem optimally.
We discuss this method below.

Let us consider a combinatorial optimization problem in the form:
max {wz : Az <b, xinteger} [10.49]

where A is an m x n matrix and b € R™. Let P be the convex hull of the solutions
of [10.49]. From proposition 10.2 and theorem 10.4, the problem [10.49] is equivalent
to the program max{wz : = € P}. If the inequalities of the system Az < b are
sufficient to describe the polyhedron P, then every extreme point of the polyhedron
{z € R™ : Az < b} is integral, and, consequently, the problem [10.49] is equivalent
to its linear relaxation:

max {wz : Az < b} [10.50]

Unfortunately, this is not always the case, and the polyhedron {z € R™ : Az <
b} can indeed contain fractional extreme points. Consequently, an optimal solution
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obtained as a linear combination of constraints of the system Az < b. Since yA7 —
lyA7] > 0andz; > 0forj = 1,...,n, the constraint:
n
> lyAT)z; < yb [10.53]
Jj=1
is also satisfied by the solutions of [10.49]. Since the left-hand side of [10.53] is
integer, it follows that the inequality:

> Al |z < |yb) [10.54]

j=1
is valid for P. Inequalities of type [10.54] are called Chvdtal-Gomory inequalities,
and the above procedure is known as the Chvdtal-Gomory method.

As is stated in theorem 10.26, every valid constraint for P can be obtained using
the Chvdtal-Gomory method.

THEOREM 10.26.— (Schrijver [SCH 80)). Let axz < o be avalid inequality for P # ()
with (a, &) € Z"+L. Then ax < «vis a Chvdtal-Gomory inequality.

A valid inequality for P, equivalent to (or dominated by) a positive linear combi-
nation of Az < bis said to be of Chvdtal rank 0 with respect to Az < b. An inequality
az < o valid for P is said to be of Chvdtal rank k with respectto Az < bifax < aris
not of Chvdtal rank less than or equal to k& — 1, and if it is equivalent to (or dominated
by) a positive linear combination of inequalities, each one can be obtained using the
Chvital-Gomory method from inequalities of Chvital rank less than or equal to k — 1.
In other words, an inequality valid for P is of Chvétal rank & if & applications of the
Chvatal-Gomory method are necessary to obtain this inequality. Thus the constraints
of Chvdtal rank 1 are those which are not of rank 0 but which are either equivalent to
or dominated by a positive linear combination of constraints of Az < b and inequali-
ties obtained using the Chvdtal-Gomory procedure from constraints of Az < b. Note
that the constraints [10.53] are of Chvdtal rank 1 with respect to Az < b. The valid
inequalities that contribute to the resolution of a combinatorial problem, in the context
of a cutting-plane method, are generally of Chvital rank < 1.

Theorem 10.26 implies that every constraint that is valid for the polyhedron P
is of finite Chvdtal rank with respect to Az < b. The maximum Chvital rank with
respect to Az < b of a valid constraint (facet) for P is called the Chvdtal rank of the
polyhedion {x € R™ : Az < b}. Note that the rank of {z € R™ : Az < b}is 0if
andonly if P = {x € R™ : Az < b}, thatisif {z € R*® : Az < b} is integral.

Suppose that P is the matchings polytope in a graph G = (V, E), and let Az < b
be the system given by inequalities [10.30] and [10.31]. It is not hard to see that in-
equalities [10.32] are of Chvdtal rank 1 with respect to Az < b. Since constraints [10.30]-
[10.32] completely describe P, it follows that the polyhedron Az < b is of rank 1.
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10.6.3. Branch-and-cut algorithms

If the cutting-plane algorithm does not allow us to provide an optimal solution
of the problem, it is necessary to use a branch-and-bound technique to establish one.
This technique allows us to construct a resolution tree where each veriex of the tree
corresponds to a subproblem, the initial problem being the one associated with the
root. This technique is based on two essential procedures:

— Branching: this procedure is simple; it just allows us to divide the problem as-
socjated with a given vertex of the tree into two disjoint subproblems by fixing one
of the variables z; to I for one of the problems and to O for the other. An optimal
solution of the problem (corresponding to this vertex of the tree) will thus be optimal
for one of the subproblems.

— Bounding: the aim of this procedure is to establish an upper bound (lower bound
in the case of minimization) for the optimal value of the problem associated with a
vertex of the tree.

To solve problem [10.49], we can start by solving a linear relaxation of the prob-
lem using a cuts algorithm. If an optimal solution is not found in this phase (called the
cutting phase), we choose a fractional variable =;, and we apply the branching proce-
dure. In this way we create two subproblems (two vertices of the solution tree, which
we link to the root). We establish an upper bound for each subproblem by solving the
relaxed programs. If for one of the subproblems the optimal solution is integer, we
stop its exploration. Otherwise, we choose one of the vertices, say .S, and we divide
the associated problem into two subproblems. We then create two new vertices, say
S and S5, which we link to the father vertex S. By repeating this procedure, we con-
struct a tree where the vertices correspond to the subproblems created. If the optimal
solution for one of the problems is feasible for the initial problem or not as good as
a feasible solution already found, then we stop developing the corresponding vertex.
This one is declared sterile. At each step, we choose a pending vertex of the tree that
is not sterile. We divide the corresponding problem into two subproblems and calcu-
late a bound for each of the subproblems created. The algorithm stops when all the
pending vertices of the tree are sterile. In this case, the best feasible solution found is
optimal.

To calculate a bound for each vertex of the tree, we can simply solve the linear
program obtained from the program of the father vertex by adding cither the equation
z; = 0, or the equation x; = 1. However, this bound can be weak, and can lead
to a very slow resolution process, especially when the problem is large. However, if
we add violated constraints to this relaxation, we can obtain better bounds and further
accelerate the resolution of the program. A branch-and-cut algorithin is a branch-
and-bound technique in which we apply the cutting-plane algorithm to calculate the
bound of each subproblem. This method, introduced by Padberg and Rinaldi [PAD 91]
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where & ¢ P, the problem consists of finding a hyperplane that separates & and P
(see Figure 10.3). If P is given by a system of inequalities Az < b, then we talk of a
separation problem associated with the system Az < b.

In a branch-and-cut algorithm, we solve a sequence of separation problems on
each vertex of the branching tree, each problem allowing generation of one (or sev-
eral) violated constraints. The complexity of the algorithm will therefore naturally
depend on that of the separation problem of the different classes of inequalities used
in the algorithm. Using the ellipsoid method, introduced by Khachian [KHA 79] for
linear programming, Grétschel et al. [GRO 81] have shown that if we can solve the
separation problem in- polynomial time for a polyhedron P, then we can solve the
optimization problem for P, max{wz : x € P} in polynomial time. The converse
of this result is true. If we can optimize in polynomial time, we can also separate
in polynomial time. Consequently, the complexity of a cutting-plane algorithm on a
polyhedron {# € R™ : Az < b} does not depend on the number of constraints
in the system Az < b (even if it is exponential), but rather on the complexity of the
separation problem that is associated with it. So, to solve an optimization problem of
the form max{wz : Az < b}, using a cutting-plane algorithm, we do not need to
know the system Az < bexplicitly. It is sufficient just to be able to verify if a solution
& satisfies A2 < b, and, if not, to determine one constraint among Az < b that is
violated by &.

To illustrate this concept, let us again consider the stable set problem in a graph
G = (V, E). The formulation of the problem, given by inequalities [10.18] and [10.19],
contains a polynomial number of constraints and, consequently, the separation prob-
lem corresponding to these constraints can be solved in polynomial time. Let us fur-
ther consider constraints the [10.51] given below, which are also valid for the stable
set polytope.

[V({C) -1

2(V(C)) < Fa—,

¥V C' odd cycle of & [10.55]

Constraints {10.55] are called odd cycle inequalities. As will be shown below, the
branching problem for these constraints can also be solved in polynomial time.

THEOREM 10.27 .~ (Grétschel et al. [GRO 88]). Inequalities [10.55] can be sepa-
rated in polynomial time.

Proof. Let# € RY. Since inequalities [10.18] and [10.19] can be separated in
polynomial time, to solve the separation problem for constraints [10.55], we can
assume that £ > 0 and that & satisfies inequalities [10.18]. If e = ij € E, let
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10.7.1. Spin glass models and the maximum cut problem

A spin glass is a system obtained by a small dilution (1%) of a magnetic material
(iron) in a non-magnetic material (gold). Physicists’ interest in this material comes
from observing a peak in the curve of what is called the magnetic susceptibility as a
function of temperature. Such a peak is generally an indication of a transition phase,
a change of state of the system, hence the search for models that are likely to explain
this phenomenon.

In a spin glass, the magnetic atoms are laid out randomly in space. Between two
atoms 1, 7, there exists an interaction energy:

Hij = —J(R)S:S;

where 5; (S;) is the spin of the atom 7 (5), and J (R) is a function that depends on
the distance R between the two atoms. To model these systems, physicists have con-
structed a simplified model: they assume that the spins are situated at the nodes of a
regular mesh (instead of being randomly distributed) and are defined by unidimen-
sional vectors (instead of being tridimensional) S;, taking the values 41 and —1.
These meshes are generally square or cubic. They further assume that the interac-
tions between the spins only take place between the closest neighbors, and that their
energies (J;) are random variables taking positive or negative values. The interactions
then correspond to the links of the mesh.

The energy of the system corresponds to a configuration S of spins (that is an
assignment of 41 and —1 to the spins), given by:

o H(S) =~ > J;;5:S; [10.57)

ijel

where L is the set of the links and Jy; the interaction between the spins ¢ and j. The
problem that physicists study is to determine a configuration S that minimizes the
energy [10.57] of the system. Such a configuration is called the fundamental state
of the system and the problem is called the fundamental state problem. Physicists
traditionally use Monte Carlo type heuristics to determine approximate solutions for
this problem, even in the case where the mesh is square (planar). As is shown in the
following, this problem can be reduced to the maximum cut problem,

We can associate with a spin glass system, a graph G = (V, ) where the vertices
correspond to the spins, and two vertices are linked by an edge if there is a link be-
tween the spins corresponding to the vertices. We associate the weight wy; = —Jj;
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0<az(e)<l VecE [10.60]

It is not hard to see that every integer solution of the system above represents a cut of
G. Consequently , these constraints induce an integer formulation of the maximum
cut problem. Constraints [10.59] are called cycle inequalities. Given a cycle C, a
chord of C' is an edge whose two extremities are in C' and are not consecutive when
running through C. Theorem 10.28 gives the necessary and sufficient conditions for
constraints [10.59] and [10.60] to define facets of P.(G).

THEOREM 10.28.—

1} An inequality [10.59] defines a facet of Pe(G) if and only if C does not have a
chord.

2) An inequality z(e) > 0 (z(e) < 1) defines a facet of Po(G) if and only if e does
not belong to a triangle.

Since constraints [10.59] and {10.60] formulate the maximum cut problem as an
integer program, and, from theorem 10.28, can define facets, it would be useful to
have a polynomial separation algorithm for these constraints. This would allow us to
use them efficiently in the context of a cutting-plane method for the problem. It is
clear that constraints [10.60] can be separated in polynomial time. In what follows,
we show that constraints [10.59] can also be separated in polynomial time.

By changing the variables from z(e) to 1 —z(e), constraints [10.59] can be written
as:

> ale)+ Y (1-z(e)) =1, VCeycleof G, FCC, [Flodd  [10.61]
TzEC\F e€F

If & € R, the separation problem of constraints [10.59] with respect to & reduces to
checking whether for every C, by associating a weight 1 — &(e) with an odd number
of edges of C and a weight #(e) with the other edges of C, the total weight of C is
greater than or equal to 1. To solve this problem, we will consider an auxiliary graph.

Let G = (V', E') be the graph obtained from G in the following way. For every
vertex ¢ of G, we consider two vertices ¢’ and 7" in G'. For every edge ij of G, we
consider the edges 7§’ and +" 5" with a weight z(i7) and the edges i7" and "5 with
a weight 1 — x(ij). As we will see, the separation problem of constraints [10.61}
reduces to determining a shortest path in G’ between two vertices ¢ and i”. Let us
denote by E;; the set of edges {i'5’,'5",4"§’,i""} for ij € E. Observe that every
path in G’ between two vertices ¢ and ¢”, which uses at most one edge from each set
E;;, corresponds to a cycle in G going through the vertex 3. Denote by V{ (resp. V4)

the set of vertices 4’ (resp. ") for 7 in V. Note that an edge e in G’ has a weight
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Gerards [GER 85] has shown that the separation problem of constrajnts [10.62]
can be reduced to a polynomial sequence of shortest path problems and can therefore
be solved in polynomial time.

THEOREM 10.31.— et Ky = (W,T') be a complete subgraph of G of order p. So the
inequality:

2(T) < [Z)[%) [10.63

is valid for P.(G). Furthermore, it defines a facet of P, (G) if and only if pis odd.
Inequalities [10.63] can be separated in polynomial time if p is fixed.

Branch-and-cut algorithms based on these classes of facets (and on other families
of valid constraints) have been developed to solve planar and non-planar instances of
the spin glass fundamental state problem [BAR 88, JUN 98, LIE 03, SIM 95]. This
approach has proved to be the most effective for this problem.

10.8. The survivable network design problem

With the introduction of optical technology, the telecommunications field has seen
substantial evolution in recent years. Indeed, fiber-optics offer large transmission ca-
pacity, and thus allow the transfer of great quantities of information. Therefore, cur-
rent networks tend to have a sparse topology (almost a tree). However, the failure of
one or more links (or nodes) of a telecommunications network can have catastrophic
consequences if the network is not in a position to be able to provide rerouting paths.
S0, designing a sufficiently survivable network, that is one which can continue to work
in the event of a failure, has today become one of the objectives of telecommunications
operators.

Survivability is generally expressed in terms of connectivity in the network. We
ask that between each pair of nodes, depending on their importance in the network,
a minimum number of disjoint paths exist, in such a way that in the case of failure,
there is always at least one path that allows traffic to flow between the nodes. If the
design of each link in the network carries a certain cost, the problem that is then posed
is of designing a network whose topology satisfies the survivability conditions and is
of minimum cost.

This problem has attracted much attention in recent years. Several methods of
solving the problem have been developed, in particular polyhedral techniques. These
have been effective for optimally solving instances of great size [GRO 92a, GRO 92b,
KER 04]. In what follows, we discuss these techniques for certain varjants of the
problem. First of all we give a formulation of the problem in terms of graphs.
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According to Menger's theorem 10.10, the ESNDP is equivalent to the following in-
feger program:

min Z c(e)z(e)

eel
0<z(e) <1, Veek [10.64]
z(§(W)) > con(W) YW CV,0#AW £V (10.65]
z(e) € {0,1} Vee E [10.66]

Constraints [10.65] are called cut inequalities.

Let G = (V, E) be a graph and r = (r(v), v € V) be a vector of connectivity
types. Let:

ESNDP(G) = conv{z € R® : = satisfies [10.64] — [10.66]}

be the convex hull of the solutions of the ESNDP problem. ESNDP(G) is called
edge-survivable subgraph polytope.

Given a graph G = (V, E) and a vector r = (r(v), v € V), we say that an edge
e € B is essential if the graph G — e is not edge-survivable. The essential edges must
therefore belong to every solution of the problem. If £* denotes the set of essential
edges in G, then we have the following result.

PROPOSITION 10.20.— (Grotschel, Monma [GRO 90]). The dimension of ESNDP(G)
is equal to |E| — | E*|.

10.8.2. Valid inequalities and separation

To lighten the presentation, we consider the weak survivability case, that is r(v) €
{0,1,2} for each vertex v € V. Most of the results established in this case can easily
be extended to the general case. Furthermore, given that the survivability conditions in
this case induce a topology that has shown itself to be sufficiently effective in practice,
this variant has been intensively investigated.

A first class of valid inequalities for the polytope ESNDP(G) is that given by the
cut inequalities [10.65]. The separation problem for these constraints is equivalent to
the minimum cut problem with positive weights on the edges, and can therefore be
solved in polynomial time. Given a solution & € RE, we associate with each edge e
a capacity #(e), and we calculate the maximum flow between each pair of vertices.
From the max-flow min-cut theorem, if for a pair s,t, the flow between s and ¢ is
strictly less than min{r(s),7(t)}, then the constraint [10.65] induced by the minimum
cut between s and ¢ is violated by &. This separation can be implemented in O(n?)
using the Gomory—Hu tree [GOM 61].
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where (V4,...,V,) is a partition of V, can be reduced to the minimization of a
submodular function, and can therefore be solved in polynomial time (a function
f:25 — R, where S is a finite set, is said to be submodular if f(AU B) +
F(AN B) < f(A) + f(B) for all subsets A and B of S). Recently, Barahona and
Kerivin [BAR 04] have given a polynomial combinatorial algorithm to separate con-
straints [10.69] in this case. As a consequence of the complexities of the separation
problems of [10.67] and [10.69], the separastion problem of constraints [10.68] is

polynomial if r € {1,2}".

10.8.2.3. F-partition inequalities

Let us now assume that the connectivity types are all equal to 2, that is 7(v) = 2
forevery v € V. A class of valid inequalities for the ESNDP(G) in this case has been
introduced by Mahjoub [MAH 94] as follows. Consider a partition Vo, Vi,..., V)
of V and let ¥ C §(V,) be of odd cardinality. By adding up the following valid

inequalities:

z(6(V;) 22, Vi=1,...,p
—z(e) > —~1, Veel
z(e) >0, Yeed(V)\F

we obtain:

2z(A) = 2p — |F|
where A = §(Vp, . .., Vp) \ F. By dividing by 2 and rounding up the second member
to the next integer, we obtain:

#(X) 2 p— [l—g—lj [10.70]

Inequalities [10.70] are called F-partition inequalities. Note that these inequalities are
of Chvital rank 1 with respect to the system given by the trivial constraints and the
cut constraints. Let us also note that if || is even, inequality [10.70] can be obtained
from the trivial inequalities and the cut inequalities.

Inequalities [10.70] are a special case of a more general class of valid inequalities
given by Grotschel et al. [GRO 92b] for the ESNDP(G). Kerivin et al. [KER 04] have
considered a subclass of F-partition constraints called odd wheel inequalities and have
given sufficient conditions for these to define facets. They have also extended these
inequalities for the case where the connectivity types are 1 or 2 for each vertex of the

graph.

The separation problem for the F-partition constraints is still an open problem.
However, if I is fixed, as has been shown by Baiou ef al. [BAI 00], the problem can

be solved in polynomial time.
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For separating the F-partition inequalities (10.70] and [10.72], Kerivin et al. pro-
pose two heuristics [KER 04]. The first is based on the concept of critical extreme
points introduced by Fonlupt and Mahjoub [FON 99]. The procedure consists of ap-
plying some graph reduction operations, and of looking for odd cycles formed by
edges whose value is fractional. If such a cycle is found, then an F-partition con-
straint violated by % is detected. The second heuristic allows us to transform cuts,
with as many edges e € E with Z(e) = 1 as possible, into F'-partitions. This is done
by calculating a Gomory—Hu tree with respect to the weights (1 — &(e), e € E). If
&(W) is a cut of the Gomory—Hu tree, the F-partition constraint is therefore generated
by considering the partition given by W and the vertices in V' \ W, and by choosing a
set of edges /" C §(W) (the same process can be applied for the partition induced by
V'\ W and the vertices in W).

The numerical results presented in [KER 04], concermning uniform instances where
7(v) = 2 for every v € V having up to 417 vertices and instances with r € {1,2}V
having up to 101 vertices, show that these different classes of inequalities are useful
for solving the problem optimally. In particular, in the case where r(v) = 2 for every
v € V, the F-partition inequalities seem to play a decisive role in establishing the
optimal solution. They allow us to improve the bound at the root of the branching
‘tree, and to thus decrease its size. When 7 € {1, 2}V, the partition constraints [10.68]
seem to be the most important deciding factor in solving the problem. Like the F'-
partitions constraints for the uniform case, these constraints allow us to significantly
reduce the bound at the root, and to considerably reduce the size of the branching tree.

10.9. Conclusion

In this chapter we have discussed polyhedral approaches in combinatorial opti-
mization. We have closely examined polyhedron descriptions in terms of facets and in
terms of extreme points and their implementations in the context of a branch-and-cut
technique. As has been highlighted, these approaches have been shown to be pow-
erful in exactly solving difficult combinatorial optimization problems. As examples,
we have presented applications to spin glass in statistical physics and to survivable
network design problems, for which these approaches are particularly effective.

For certain problems, it is possible that a branch-and-cut algorithm does not give
an optimal solution even after an enormous computation time. It is then useful in such
cases to have an approximate solution with a relatively very small error. For this, it
is useful to be able to compute, in each iteration of the algorithm, a feasible solution
of the problem. This gives (in the maximization case) a lower bound on the optimal
value. This bound with that given by the linear relaxation allows us to calculate the
relative error of the current solution. One of the most commonly used techniques for
calculating feasible solutions is that known as random rounding. The method con-
sists of transforming a fractional solution into a feasible integer solution by randomly
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