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P=max{c(F)=Σe∈F c(e), F ∈ F} 

where  F is the set of solutions of  P, 
F ⊂ 2E for a set ground set E and c(F) is the weignt of F. 

xF
i= { 1 if i ∈ F 

0    if i ∈ E\F  

A Combinatorial Optimization (C.O.) problem  is a 
problem of the form  

With F ∈ F, we associate a {0,1} vector xF ∈ RE   ,  called 
the incidence vector of F given by   

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 

1.1. Polyhedral Approach 
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{ } nixi ,...,1,1,0 =∈

∑ jjxcMax
Subject to: 

∑ =≤ mibxa ijij ,...,1,

0-1 Program 
  

A C.O. problem can be formulated as a 0-1 program. 

Solutions of P  (S) 

P(P)=convex hull of  S 

Idea : Reducing the problem to a linear program. 

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 
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∑ jjxcMax

∑ =≤ m1ibxa ijij ,...,,
Subject to: 

 P  ⇔  max{cx, x 
∈P(P)}   

  

  
Linear Program 

New Constraints 

xi≥ 0, i=1,…,n 
P(P)=convex hull of S 

A C.O. problem can be formulated as a 0-1 program. 
Idea : Reducing the problem to a linear program. 

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 
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Polyhedral Approach:  
 
Let P be a C.O. on a ground set E, |E|=n. 
 
1. Represent the solutions of P as 0-1 vectors. 
2. Consider these vectors as points of Rn, and define   
 the convex hull P(P) of these points. 
3.  Characterize P(P) by a linear inequality system. 
4.  Apply linear programming for solving the problem. 

This approach has been initiated by Edmonds in 1965 for  
the Matching Problem. 

Step 3. is the most difficult.  

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 
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If the problem is polynomial, generally it is possible to characterize  
the associated polytope! 

If the problem is NP-complete, there is a very little hope to get such  
a description.   

Question: How to solve the problem when it is NP-complete. 

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 
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A further difficulty:  
The number of (necessary) constraints may be exponentail.    
 

For 120 cities,  
The number of  (necessary) contraints is ≥10179 

(≅ 10100 times the number of atoms in the globe) 
(number of variables: 7140.) 

The Traveling Salesman Problem  
 

To solve the TSP on 120 cities,   
(Grötschel 1977), used only 96 contraints among the 10179 
known constraints.. 

1. Polyhedral Techniques 
    1.1. Polyhedral Approach 
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With a linear system 
    Ax≤ b 
 
we associate the following problem: 

Given a solution x*, verify whether x* satisfies Ax≤ b, 
and if not, determine a constraint of Ax≤ b which is violated by x*.  

This problem is called the separation problem associated with Ax≤ b. 

1. Polyhedral Techniques  
   1.2.  Separation and Optimization 

1.2. Separation and Optimization 
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If x* does not verify system Ax≤ b, then there is a hyperplane 
that separates x* and the polyhedron Ax≤ b. 
 

  

Ax≤ b 
x* 

Hyperplane separating x* 
And the polyhedron Ax≤ b. 

1. Polyhedral Techniques  
   1.2.  Separation and Optimization 
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Theorem: (Grötschel, Lovász, Schrijver, 1981) 
 
Given a linear program  
 
                                   P=max{cx, Ax≤ b}, 
 
there is a polynomial time algorithm for P if and only if there is a  
polynomial time algorithm for the separation problem associated with  
Ax≤ b. 

1. Polyhedral Techniques  
   1.2.  Separation and Optimization 
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P(P) 

1. Polyhedral Techniques  
   1.3.  Cutting plane method 
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bxA1 ≤

{ }bxAcxP 11 ≤= ,max

*1x

  

P(P) 

11 βα ≤x

1. Polyhedral Techniques  
   1.3.  Cutting plane method 
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1. Polyhedral Techniques  
   1.3.  Cutting plane method 
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1. Polyhedral Techniques  
   1.3.  Cutting plane method 
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1.4. Branch&Cut Method 
- A Branch&Bound based method.  

  

- On each node of the tree we solve  a linear relaxation of the problem 
by the cutting plane method. 

 1) If an optimal solution in not still found, select a (pending) node of  
the tree and a fractional varaiable xi. Consider two sub-problems  
by fixing  xi to 1 and xi to 0 (branching phase). 

 2) Solve each sub-problem by generating new violated constraints 
 (cutting phase).  
    Go to 1).  

1. Polyhedral Techniques  
   1.4.  Branch&Cut 
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Remarks:  

-The polyhedral approach (Branch&Cut) is powerful for 
solving NP-hard C.O. problems. It also permits to prove  
polynomiality.  

- Generally, it is difficult to find polynomial time separation 
algorithms.  Then separation heuristics could be efficient in 
this case.   

-If there is a huge number of variables, one can combine a 
Branch&Cut algorithm with a column generation method 
(Branch-and-Cut-and-Price).    

1. Polyhedral Techniques  
   1.4.  Branch&Cut 

frequency assignment 
vehicule routing 
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type 0 (optional) 

type 1 (ordinary) 

type 2 (special) 

Failure 

2.  Network survivability 
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Survivability 
 The ability to restore network service in the event of a 
 catastrophic failure. 

Motivation 
 Design of optical communication networks. 

Goal 
 Satisfy some connectivity requirements in the 
 network. 

2.  Network survivability 
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A first model   
Given an undirected graph G=(V,E) with  
 a weight on each edge,  
 a nonnegative integer  matrix R=(rij) of connectivity 
 requirements,        

find a minimum weight subgraph of G such that between every 
pair of nodes i, j of V, there are at least rij edge (node)-disjoint 
paths 

Winter (1985), Grötschel, Monma (1990) 

Frish (1967), Steiglitz (1969)  
Chou and Frank (1970)  

2.1. A General model 

2.  Network survivability 
    2.1. General model 
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A practical model: node types  
Let G=(V,E) be a graph. If s is a node of G, we associate with s a 
connectivity type r(s)∈N. 

If s,t are two nodes, let   

   r(s,t)=min(r(s),r(t)) 

G is said to be survivable if  for every pair of nodes s,t, there are at 
least r(s,t) edge (node)-disjoint paths between  s and t.  

    (Grötschel, Monma, Stoer (1992)) 

 

2.  Network survivability 
    2.1. General model 
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The Survivable Network Design Problem (SNDP) 
  
 Given weights on the edges of G, find a minimum weight 
 survivable subgraph of G. 

The SNDP is also known as the generalized Steiner tree problem  
and the multiterminal synthesis problem. 

2.  Network survivability 
    2.1. General model 
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Special cases: 

 - r(v)=1 for two nodes s,t and 0 elsewhere: the shortest path problem  
 between s and t. 

  - r(v)=1 for every v: the minimum spanning tree problem. 

 - r(v)∈{0,1} for every v: the Steiner tree problem. 

 - r(v)=k for every v (k fixed): the k-edge (k-node) connected subgraph  
 problem . 

The SNDP is NP-hard in general. 

2.  Network survivability 
    2.1. General model 
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c(e)=c for all e (uniform costs): (Chou and Franck (1970))  

 Given a set of nodes V, construct a minimum weight  graph 
on V satisfying the (edge) connectivity requirements (parallel edges 
are allowed). 

  

Polynomially solvable cases 

  c(e)=0/1 for all e: The augmentation problem (edge case) 

 (parallel edges are allowed):  (Franck) (1992)).                                                          

   Polynomial time algorithms have also been devised for  
 special classes of graphs (like series-parallel graphs) 
 special types of node connectivities    

2.  Network survivability 
    2.1. General model 
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Formulation of the SNDP (edge case) 

If W⊂V, ∅ ≠ W≠V ,  let 
r(W)=max{r(s) | s∈W} 
con(W)=min{r(W), r(V\W)} 
 
r(W) is the connectivity type  
of W. δ(W)W V\W

 

δ(W) is called a cut of G.  
 

cut inequalities 
= x(δ(W))≥con(W)  

( )
∑

∈ We
ex

δ

)(

2.  Network survivability 
    2.1. General model 
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The (edge) SNDP is equivalent to the following integer program  

Follows from Menger’s theorem (1927). 

min ∑
∈Ee

exec )()(

     x(δ(W))≥con(W)           for all W⊂V, ∅ ≠ W≠V  

  x(e)∈{0,1}                  for all e ∈ E. 

Subject to 

  0≤x(e)≤1                      for all e ∈ E, 

2.  Network survivability 
    2.1. General model 
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min 

Subject to 

min ∑
∈Ee

exec )()(

Subject to 

The linear relaxation can be solved in polynomial time (by the  
ellipsoid method). 

     x(δ(W))≥con(W)           for all W⊂V, ∅ ≠ W≠V  

  0≤x(e)≤1                      for all e ∈ E, 

2.  Network survivability 
    2.1. General model 
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2.2. Heuristics 
Steiglitz, Weiner and Kleitman (1969): (general case):  
 Local search heuristic 
    
Monma & Shallcross (1989): (r(v) ∈{1,2} for all v):               
 based on heuristics for the traveling salesman problem  
 
Ko & Monma  (1989): (r(v)=k for all v) (The k-edge (node) connected  
 subgraph problem): extension of Monma & Shallcross 
 heuristic. 

2.  Network survivability 
    2.2. Heuristics 
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A function f: 2V            Z+  is called proper (Goemans & Williamson 
(1995)) if  it satisfies the following 
- f(∅)=0, 
- f(S)=f(V\S) for all S ⊆V 
- If A∩B=∅, then f(A∪B) ≤ max {f(A), f(B)} 

The connectivity function f(S)=con(S) is proper.  

Heuristics with worst case garantee 

2.  Network survivability 
    2.2. Heuristics 
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min ∑
∈Ee

exec )()(

     x(δ(W)) ≥ f(W)          for all W⊂V, ∅ ≠ W≠V,  

  x(e) ∈{0,1}                    for all e ∈ E. 
  0≤x(e) ≤1                       for all e ∈ E, 

Primal-Dual polynomial 2fmax-approximation algorithm, where 
fmax=max{f(S), S ⊂ V}. 

 Williamson, Goemans, Mihail, Vazirani (1995)
  

SNDP with arbitrary proper connectivity function  
Without multiple copies of edges  

Generalizes a factor 2 when f(W)= 0 or 1 (Goemans & Williamson)  
(1995) 

2.  Network survivability 
    2.2. Heuristics 



M2 MODO Dauphine 39 

Goemans, Goldberg, Plotkin, Shmoys,  
Tardos, Williamson (1996) 
 

max
... f

1
3
1

2
11 ++++

Factor 2 approximation algorithm when the function f is weakly 
supermodular   

2H(fmax)-approximation algorithm where H(fmax) = 

is the harmonic function. 

Jain (2001) 

f(V)=0, and for every A,B ⊆ V at least one of the following holds:  
- f(A)+f(B) ≤ f(A ∩ B)+ f(A ∪ B)  or 
- f(A)+f(B) ≤ f(A\B)+ f(B\A). 

If a function is proper then it is weakly supermodular. 

2.  Network survivability 
    2.2. Heuristics 
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Goemans and Bertsimas (1993)
   

 min{2rmax,2p}-approximation algorithm 

  
Jain’s algorithm also works when multiple copies of an edge are 
allowed:    ⇒   factor 2 approximation algorithm 

Case when copies of edges are allowed  

Agrawal, Klein and Ravi (1995) 

Goemans & Williamson (1992)  

where p is the number of distinct connectivity requirement  
values and rmax = max{r(u), v∈V}. 

2 log rmax-approximation algorithm 

2H(fmax)- approximation algorithm 

2.  Network survivability 
    2.2. Heuristics 
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Let  SNDP(G) be the convex hull of the solutions of SNDP, i.e. 
 

SNDP(G) = conv{x ∈RE| x is a (an integer) solution of SNDP}. 
 
SNDP(G) is called the survivable network design polyhedron. 
  

2.3. Polyhedral Results  

2.  Network survivability 
    2.3. Polyhedral results 
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2.3.1. Restricted graphs 

A graph is said to be series-parallel if it can be constructed from  
an edge by iterative application of the following operations: 
1) Addition of parallel edges  
2)   Subdivision of edges  

2.  Network survivability 
    2.3. Polyhedral results 
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Theorem: (Kerivin & M. (2002))  
If G is series-parallel and r(v) is even for every v, then SNDP(G) is 
given by the trivial and the cut inequalities. 
 
Generalizes Cornuéjols, Fonlupt and Naddef (1995), Baïou & M. 
(1996), Didi-Biha & M. (1999). 

Corollary:  
If G is series-parallel and r(v) is even for every v, then SNDP  
can be solved in polynomial time. 

2.  Network survivability 
    2.3. Polyhedral results 
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k-Connectivity with k odd  

is valid for the SNDP(G) when G is outerplanar (a subclass of 
series-parallel graphs), k is odd and an edge can be used more than 
once. Here δ(V1,...,Vp) is the set of edges between the Vi’s. 
Theorem: Chopra (1994)  
If G is outerplanar, k odd and multiple eges are allowed, then the  
k-edge connected polyhedron is given by inequalities (1) and x(e) ≥ 0 
for all e. 

(1) 

Generalized by Didi Biha & M. (1996) to series-parallel graphs (with 
and without possibility of multiple copies of edges) . 

x(δ(V1,…,Vp)) ≥k/2p-1  
Let  (V1,…,Vp)  be a partition of V. Chopra (1994) showed that 

2.  Network survivability 
    2.3. Polyhedral results 
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General graphs 
Low connectivity case:  r(v)∈{0,1,2} 

 2.4.2. Valid inequalities: 

0 ≤ x(e) ≤ 0   for all e∈E 

x(δ(W) )≥ con(W)         for all W⊂V, ∅ ≠ W≠V  

Trivial inequalities: 

Cut inequalities: 

2.  Network survivability 
    2.3. Polyhedral results 



M2 MODO Dauphine 46 

Partition inequalities: 

x(δ(V1,...,Vp)) ≥ p-1, if con(Vi)=1 for all Vi        

        ≥ p,       if not,        

Let V1,...,Vp  , p ≥ 2, be a partition of V such that con(Vi) ≥ 1 for all 
Vi. Then the following inequality is valid for SNDP(G).  

(Grötschel, Monma and Stoer (1992)) 

2.  Network survivability 
    2.3. Polyhedral results 
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F-partition inequalities: 

V 1 

V 2 

V 3 

V 0 

V 4 

V p 

Let V0,V1,...,Vp  be a partition of V such that con (Vi)=2 for all Vi 
       

2.  Network survivability 
    2.3. Polyhedral results 
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V 1 

V 2 

V 3 

V 0 

V 4 

V p 

Edges of   F 

Let F  be a set of edges of δ(V0) 
and |F| id odd.  

x(δ(Vi))≥2,      i=1,…,p 

-x(e) ≥ -1, e∈F 
x(e) ≥ 0,          e∈ δ(V0)\ F 

Let V0,V1,...,Vp  be a partition of V such that con (Vi)=2 for all Vi 
       

F-partition inequalities: 

 ⇒  2x(∆) ≥ 2p-|F|, 

where ∆ =δ(V0,V1,...,Vp)\F 

2.  Network survivability 
    2.3. Polyhedral results 
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Then 
      
  
is valid  for the SNDP(G). 
  
These inequalities are called F-partition inequalities. (M. (1994)) 
 

2
1Fpx −−≥∆)(

Further valid inequalities related to the traveling salesman polytope 
have been given by Boyd & Hao (1994) for the 2-edge connected  
subgraph polytope. And general valid inequalities for the SNDP have 
been introduced by Grötschel, Monma and Stoer (1992)  
(generalizing the F-partition inequalities). 
 

2.  Network survivability 
    2.3. Polyhedral results 
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Consider the constraints  
    x(δ(V1,...,Vp)) ≥ p-1. 
called multicut inequalities.  
 
These arise as valid inequalities in many connectivity problems. 
 
The separation problem for these inequalities reduce to |E| min   
 cut problems Cunningham (1985) . 

It can also be reduced to|V| min cut problems  Barahona (1992). 

2.4. Separation 

  Both algorithms provide the most violated inequality if there is any.   

2.  Network survivability 
    2.4.  Separation 
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Theorem. (Barahona, Baïou & M.) If F is fixed, then the separation 
of F-partition inequalities can be solved in polynomial time.  
 
Let G'=(V',E') be the graph obtained by deleting the edges of F.  
Hence the F-partition inequalities can be written as   

x(δ(V0,...,Vp) ) ≥ p-(|F|-1)/2 
 
where (V0,...,Vp) is a partition of   V’ such that for each edge  
uv ∈ F, |{u ,v}∩(V0)|=1. 

 F-partition inequalities 

(r(v) =2 for all node v) 

2.  Network survivability 
    2.4.  Separation 
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There are 2|F| possibilities for assigning these nodes.   
 
For each possibility we contract the nodes that must be in V0 and 
solve the separation problem for the inequalities.    

x(δ(V0,...,Vp) ) ≥ p-(|F|-1)/2 
 

where |F| is fixed. These are partition inequalities, and hence the 
separation can be done in polynomial time.    
  

2.  Network survivability 
    2.4.  Separation 
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x(δ(V1,...,Vp)) ≥ p-1, if con(Vi)=1 for all Vi        

        ≥ p,       if not,        

Partition inequalities 

These inequalities can be written as 

For any partition (V1,...,Vp) of V.  

If r(v)∈{0,1,2}, the separation problem is NP-hard (Grötcshel, 
Monma, Stoer (1992)). 

2.  Network survivability 
    2.4.  Separation 
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Theorem:  (Kerivin, M. (2002)) The separation of the partition 
inequalities when r(v)∈{1,2} for all v can be done in polynomial time.  

2.  Network survivability 
    2.4.  Separation 

The separation reduces to minimizing a submodular function.  ( A 
function  f: 2V ----> R is said to be submodular if  

f(A∪B) + f(A∩B) ≤ f(A) + f(B), for all A, B⊂V. 

Recently Barahona and Kerivin (2004) showed that the problem  
reduces to O(|V|4) minimum cut problems.  
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We suppose r(v)=2 for all v. 

Consider the linear relaxation of the problem: 

∑
∈Ee

exec )()(

2.5. Critical extreme points 
         

(Fonlupt & M. (1999)) 

     x(δ(W))≥ 2           for all W⊂V, ∅ ≠ W≠V  

  0≤x(e)≤1              for all e ∈ E. 

2.  Network survivability 
    2.5.   Critical extreme points 

         of the 2-edge connected subgraph polytope 

 min 
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P(G) 

 
 

We suppose r(v)=2 for all v. 

Consider the linear relaxation of the problem: 

∑
∈Ee

exec )()(

2.5. Critical extreme points 
         

(Fonlupt & M. (1999)) 

     x(δ(W))≥ 2           for all W⊂V, ∅ ≠ W≠V  

  0≤x(e)≤1              for all e ∈ E. 

2.  Network survivability 
    2.5.   Critical extreme points 

         of the 2-edge connected subgraph polytope 

 min 
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O2: contract a node set W such that the subgraph induced by W,  
G(W) is 2-edge connected and x(e)=1 for every e∈E(W).                          

G W 
G' 

G(W)           is 2-edge connected  
and x(e)=1 for every e∈E(W).  

Reduction Operations 

O1: delete edge e  such that x(e)=0, 
 Let x be a fractional extreme point of P(G).  

2.  Network survivability 
    2.5.   Critical extreme points 
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O3: contract an edge having one of its endnodes of degree 2. 

G 

u z 

G' 

u v z 

 
Lemma: Let x be an extreme point of P(G) and x’ and G’ obtained 
from  x and G by applications of operations O1, O2, O3. Then x’ is an 
extreme point of P(G’). Moreover if x violates a cut, a partition or an 
F-partition inequality, then x’ so does. 

2.  Network survivability 
    2.5.   Critical extreme points 
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Domination 
 
Let x and y be fractional two extreme points of P(G). Let 
Fx={e∈E | x(e) is fractional} and Fy={e∈E | y(e) is fractional}. 
We say that x dominates y if Fy⊂Fx.  

Question:  
     Characterise the minimal fractional extreme points. 

2.  Network survivability 
    2.5.   Critical extreme points 
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Example: 

1 
1/2 

1/2 

1/2 

1/2 

1/2 
1 1 

1 
1 

Critical 
Non-critical 

1/2 

1/2 
1/2 1/2 

1/2 

1/2 

1 

1 

1 

Definition :  A fractional extreme point x of P(G) is said to be critical if: 
1) none of the operations O1, O2, O3 can be applied for it, 
2) it does not dominate any fractional extreme point of P(G). 

2.  Network survivability 
    2.5.   Critical extreme points 
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Example: 

1 
1/2 

1/2 

1/2 

1/2 

1/2 
1 1 

1 
1 

Critical 
Non-critical 

1/2 

1/2 

1/2 

1 

1 

1 

1 

1 
1 

Extreme point 

Definition :  A fractional extreme point x of P(G) is said to be critical if: 
1) none of the operations O1, O2, O3 can be applied for it, 
2) it does not domine any fractional extreme point of P(G). 

2.  Network survivability 
    2.5.   Critical extreme points 
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Definition :  A fractional extreme point x of P(G) is said to be critical if: 
1) none of the operations O1, O2, O3 can be applied for it, 
2) it does not domine any fractional extreme point of P(G). 

Example: 

1 
1/2 

1/2 

1/2 

1/2 

1/2 
1 1 

1 
1 

Critical 
Critical 

1/2 

1/2 

1/2 

1 
1 

1 

Extreme point 

2.  Network survivability 
    2.5.   Critical extreme points 
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Theorem: An extreme point of P(G) is critical if and only if   
G and  x are of the following form: 

1 

forest 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1 
1 

1 

1 

1 
1 

Odd cycle C G 
is valid and defines a facet 

Σ  x(e) ≥  
|C|+1 

2 e∈C 

(it is an F-partition inequality) 

⇒ 

2.  Network survivability 
    2.5.   Critical extreme points 
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Theorem: If x is a critical extreme point of P(G), then x can be 
separated (in polynomial time) by an F-partition inequality.  
 

2.  Network survivability 
    2.5.   Critical extreme points 

The concept of critical extreme points has been extended (with     
respect to appropriate reduction operations ) to 2-node connected 
graphs and (1,2)-survivable networks (Kerivin, M., Nocq (2001)), 
And to k-edge connected graphs (Didi Biha & M. (2004)).  
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2.6. Branch&Cut algorithm 
     (Kerivin, Nocq, M. (2001)) 
 
        r(v)∈{1,2} for all v 
 
 Used constraints: 
 
  trivial inequalities 
  cut inequalities 
  F-partition inequalities 
  partition inequalities   
 
 

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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If x is a fractional extreme point (critical or not), we apply the 
reduction operations. Let G’ and x’ be the graph and the solution 
thus obtained.  

If a cut, a partition or an F-partition constraint is violated by  x’ for 
G’, then it can be lifted to a constraint of the same type violated by 
x for G.  

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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G 51 nodes 

F 
G’ 14 nodes 

x(δ(V1,…,Vp)\F)≥11 

This contraint cuts the extreme point of G’ and that of G.  

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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#nodes            299        
  (type 2) 
  

#variables   44551      

 
#constraints      357 
 
CPU Time          142 sec     

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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#constraints     1369 
  

CPU Time     152 min 

 
#nodes                400 
  (type 2) 
  2-node connected 
  

#variables       79400 

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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#nodes              48 
           #type 1     20 
           #type 2     28 
  

#variables      1 128 

 
#constraints   428 
  

CpuTime         202 sec 

2.  Network survivability 
    2.6. Branch&Cut algorithm 
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2.7.  Survivable networks with length constraints 
Motivation: to have effective routing cost 

Local rerouting: 
Each edge must belong to a bounded cycle (ring). 
  SONET/SDH networks 
    End-to-end rerouting:  
the paths between the terminals should not exceed  
a certain length (a certain number of hops) (hop-
constrained paths). 
  ATM networks, INTERNET 

2.  Network survivability 
    2.7. Length constraints 



M2 MODO Dauphine 72 

 2-node connected graphs  
     Fortz, Labbé, Maffioli (1999) 
     Fortz, Labbé (2002) 
  Valid inequalities  
  Separation algorithms 
  Lower bounds on the optimal value 
  Cutting plane algorithms  

2-edge connected graphs  
             Fortz, M., McCormick, Pesneau (2003) 

2.7.1. Bounded rings   

2.  Network survivability 
    2.7. Length constraints 
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2.7.2. Hop-constrained paths   

 The minimum hop constrained spanning tree problem 
 Determine a minimum spanning tree such that the number of 
 links between a root node and any node in  the tree does not 
 exceed a bound L.  
 
(NP-hard (even for L=2)) 

Gouveia (1998) 
Gouveia & Requejo (2001)  
Gouveia & Magnanti (2000)  

Multicommodity flow formulation 
Lagrangean relaxations 

2.  Network survivability 
    2.7. Length constraints 
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The minimum hop-constrained path problem 

Determine a minimum path between two given nodes s and t, of 
length no more than L (L fixed).    

Dahl & Gouveia (2001) 

Formulation in the natural space of variables  
Valid inequalities 
Description of the associated polytope when L=2,3. 

2.  Network survivability 
    2.7. Length constraints 
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s t 

V 1 V 2 V L+1 V 3 V 0 

T 

Let V0,V1,...,VL+1  be a partition of V such that s∈ V0 and t ∈VL+1.
       

The L-star inequalities (Dahl (1999)) 

2.  Network survivability 
    2.7. Length constraints 
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V 1 V 2 V L+1 V 3 V 0 

s t 

Let V0,V1,...,VL+1  be a partition of V such that s∈ V0 and t ∈VL+1.
       

The L-star inequalities (Dahl (1999)) 

2.  Network survivability 
    2.7. Length constraints 
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(L-star inequalities) 

x(T)≥1 

V 1 V 2 V L+1 V 3 V 0 

s t 

T 

Let V0,V1,...,VL+1  be a partition of V such that s∈V0 and t ∈VL+1.
       

The L-star inequalities (Dahl (1999)) 

2.  Network survivability 
    2.7. Length constraints 
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Theorem: (Dahl (1999)) 
The L-star inequalities together with the cut inequalities (separating 
s and t) and the trivial inequalities completely describe the L-path 
polyhedron when L≤3.  

 x(T)≥K                          

If at least K paths are required between s and t, then  

is valid for the corresponding polytope. 

The separation problem for the L-star inequalities  
can be solved in polynomial time, if L ≤ 3. 

Fortz, M., McCormick, Pesneau (2003) 

2.  Network survivability 
    2.7. Length constraints 
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The hop-constrained network design problem (HCNDP): 
 
 Given a graph with weights on the edges, a set of terminal-  
 pairs (origines-destinations), two intgers K, L, find a 
 minimum weight subgraph such that between each pair of 
 terminals there are at least K paths of length no more than L.  

K=1, L=2  (Dahl, Johannessen (2000) 

Formulation of the problem 
Valid inequalities  
Greedy approximation algorithms 
Cutting plane algorithm 

2.  Network survivability 
    2.7. Length constraints 
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K=2, L=3, and only one pair of terminals   

Huygens, M., Pesneau (2003) 

Formulation of the problem 
Complete description of the associated polytope by  
the trivial, the cut and the L-star inequalities 

a polynomial time cutting plane algorithm for the problem 
(when K=2, L=3 ) ⇒ 

No formulation (using the design variables) is known for the  
problem when K = 2 and L = 4.  

2.  Network survivability 
    2.7. Length constraints 
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Length constrained 2-connected graphs 
Ben Ameur (2000) 

 Classes of length constrained 2-connected graph 
 Lower bounds on the number of edges  
 Valid inequalities for the 2-connected polytope with  
 length constraints 
  

2.  Network survivability 
    2.7. Length constraints 
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2.8. Capacitated Survivable Networks 
    Given 
   - a graph G=(V,E) (the supply graph) , 
   - a set of demands {duv} between pairs of origines-destinations (u,v), 
   - a set {Ce

t, t=1,…,Te} of discrete capacities, specified for each edge e 
   - a cost Ke

t for each capacity Ce
t,  

   - for every demand duv, a parameter 0<ρuv<1 representing  the fraction  
     of demand duv that must be satisfied if an edge (or a node) fails.  

 Which capacities to install on the edges such that for every 
 single edge (or node) failure, at least the fraction  ρuv of duv can 
 be routed for every demand duv, and the total cost is minimum.   

Stoer & Dahl (1994) The problem: 

2.  Network survivability 
    2.8. Capacitated networks 
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Stoer & Dahl (1994, 1998) proposed  
         -  a mixed integer programming formulation,  
         - valid and facet defining inequalities (some of the inequalities   
 obtained by exploiting the knapsack structure of some 
  subsystems) and the 2-connected topology, 
         - a cutting plane algorithm. 

A more general model with path length and routing constraints     

Mixed integer programming formulation  
Cutting plane algorithms 

Alevras, Grötschel, Wessäly (1997, 1998) 

2.  Network survivability 
    2.8. Capacitated networks 
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Let C be a cut. Usually inequalities of  the following form are 
valid. 

Σ x(e) ≥D 
e∈C 

Σ x(f) ≥L,  e∈C 
f∈C\{e} 

(1) 

(2) 

x(e)∈ Z+  ,                     e∈C         (3) 

Let Pn(D,L) (|C|=n) be the polyhedron given by (1)-(3). 

Cut subsystem 

Demand inequality 

Survivability inequalities 

2.  Network survivability 
    2.8. Capacitated networks 
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Bienstock and Muratore (1997) 
Muratore (1998)  

Pn(D,L) (and some extensions) have been studied by  

- Structural properties of the extreme  points of Pn(D,L) 
- Description of valid and facet defining inequalities 
- Development of cutting plane algorithm for solving capacitated  
  SNDP.   

Magnanti & Wang (1997) studied the same polyhedron but 
without constraint (1) (capacity constraint) and with different 
right hand sides for the survivability inequalities.   

2.  Network survivability 
    2.8. Capacitated networks 
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- The Survivable network design problems are difficult to  
solve (even special cases). 
  
- The problems with length constraints remain the most  
complicated SNDP . A better knowledge of their facial structure 
would be usefull to establish efficient cutting plane techniques.   
 
- The capacitated SNDP needs more investigation, from both the  
algorithmic and polyhedral points of view. 
 
-Develop usefull cutting plane and column generation techniques for 
the very general model with length constraints, capacity assignment 
and routing….?    
 
 

 Conclusion 
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