DESIGN OF SURVIVABLE NETWORKS: POLYHEDRAL TECHNIQUES

A. Ridha Mahjoub

LAMSADE, Université Paris-Dauphine, Paris, France

Contents

1. Polyhedral techniques

1.1. Polyhedral Approach
1.2. Separation and Optimization
1.3. Cutting plane method
1.4. Branch\&Cut

2. Design of Survivable Networks

1. Polyhedral Techniques

 1.1. Polyhedral Approach
1.1. Polyhedral Approach

A Combinatorial Optimization (C.O.) problem is a problem of the form

$$
\mathcal{P}=\max \left\{c(F)=\sum_{e \in F} c(e), F \in \mathcal{F}\right\}
$$

where \mathcal{F} is the set of solutions of P, $\mathcal{F} \subset 2^{E}$ for a set ground set E and $c(F)$ is the weignt of F.

With $F \in \mathcal{F}$, we associate a $\{0,1\}$ vector $x^{F} \in R^{E}$, called the incidence vector of F given by

$$
x_{i}^{F}= \begin{cases}1 & \text { if } i \in F \\ 0 & \text { if } i \in E \mid F\end{cases}
$$

1. Polyhedral Techniques 1.1.Polyhedral Approach

A C.O. problem can be formulated as a $0-1$ program.
Idea : Reducing the problem to a linear program.
$\operatorname{Max} \sum c_{j} X_{j}$
Subject to:
$\sum a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m$
$x_{i} \in\{0,1\}, \quad i=1, \ldots, n$

0-1 Program

1. Polyhedral Techniques 1.1. Polyhedral Approach

A C.O. problem can be formulated as a $0-1$ program.
Idea : Reducing the problem to a linear program.
$\operatorname{Max} \sum c_{j} X_{j}$
Subject to:
$\sum a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m$

New Constraints

$x_{i} \geq 0, i=1, \ldots, n$
Linear Program

$$
\begin{aligned}
& \mathcal{P} \Leftrightarrow \max \{c x, x \\
& \in P(\mathbb{P})\}
\end{aligned}
$$

1. Polyhedral Techniques 1.1. Polyhedral Approach

Polyhedral Approach:

Let \mathcal{P} be a C.O. on a ground set $E,|E|=n$.

1. Represent the solutions of \mathcal{P} as $0-1$ vectors.
2. Consider these vectors as points of R^{n}, and define the convex hull $P(\mathcal{P})$ of these points.
3. Characterize $P(\mathbb{P})$ by a linear inequality system.
4. Apply linear programming for solving the problem.

This approach has been initiated by Edmonds in 1965 for the Matching Problem.

Step 3. is the most difficult.

1. Polyhedral Techniques 1.1. Polyhedral Approach

- If the problem is polynomial, generally it is possible to characterize the associated polytope!
- If the problem is NP-complete, there is a very little hope to get such a description.

Question: How to solve the problem when it is NP-complete.

1. Polyhedral Techniques 1.1. Polyhedral Approach

A further difficulty:

The number of (necessary) constraints may be exponentail.
The Traveling Salesman Problem

> For 120 cities, The number of (necessary) contraints is $\geq 10^{179}$ ($\cong 10^{100}$ times the number of atoms in the globe) (number of variables: 7140.)

To solve the TSP on 120 cities,
(Grötschel 1977), used only 96 contraints among the 10^{179} known constraints..

1. Polyhedral Techniques
 1.2. Separation and Optimization

1.2. Separation and Optimization

With a linear system

$$
A x \leq b
$$

we associate the following problem:

Given a solution x^{*}, verify whether x^{*} satisfies $A x \leq b$, and if not, determine a constraint of $A x \leq b$ which is violated by x^{*}.

This problem is called the separation problem associated with $A x \leq b$.

1. Polyhedral Techniques
 1.2. Separation and Optimization

If x^{*} does not verify system $A x \leq b$, then there is a hyperplane that separates x^{*} and the polyhedron $A x \leq b$.

Hyperplane separating x^{*} And the polyhedron $A x \leq b$.

1. Polyhedral Techniques
 1.2. Separation and Optimization

Theorem: (Grötschel, Lovász, Schrijver, 1981)

Given a linear program

$$
P=\max \{c x, A x \leq b\}
$$

there is a polynomial time algorithm for P if and only if there is a polynomial time algorithm for the separation problem associated with $A x \leq b$.

1. Polyhedral Techniques

1.3. Cutting plane method

1. Polyhedral Techniques
1.3. Cutting plane method

$$
P_{1}=\max \left\{c x, A_{1} x \leq b\right\}
$$

1. Polyhedral Techniques 1.3. Cutting plane method

2. Polyhedral Techniques

1.3. Cutting plane method

1. Polyhedral Techniques

1.3. Cutting plane method

1. Polyhedral Techniques

1.3. Cutting plane method

1. Polyhedral Techniques
 1.4. Branch\&Cut

1.4. Branch\&Cut Method

- A Branch\&Bound based method.
- On each node of the tree we solve a linear relaxation of the problem by the cutting plane method.

1) If an optimal solution in not still found, select a (pending) node of the tree and a fractional varaiable x_{i}. Consider two sub-problems by fixing x_{i} to 1 and x_{i} to 0 (branching phase).
2) Solve each sub-problem by generating new violated constraints (cutting phase).
Go to 1).

1. Polyhedral Techniques

1.4. Branch\&Cut

Remarks:

-The polyhedral approach (Branch\&Cut) is powerful for solving NP-hard C.O. problems. It also permits to prove polynomiality.

- Generally, it is difficult to find polynomial time separation algorithms. Then separation heuristics could be efficient in this case.
-If there is a huge number of variables, one can combine a Branch\&Cut algorithm with a column generation method (Branch-and-Cut-and-Price).
frequency assignment
vehicule routing

Contents

1. Polyhedral techniques

1.1. Introduction
1.2. Polyhedral Approach
1.3. Separation and Optimization
1.4. Cutting plane method
1.5. Branch\&Cut
2. Design of Survivable Networks

2. Networksurvivability

- type 1 (ordinary)
Δ type 2 (special)

2. Networksurvivability

Survivability

The ability to restore network service in the event of a catastrophic failure.

Goal

Satisfy some connectivity requirements in the network.

Motivation

Design of optical communication networks.

Contents

2. Design of Survivable Networks

2.1. A general model
2.2. Heuristics
2.3. Polyhedral results
2.4. Separation
2.5. Critical extreme points
2.6. A Branch\&Cut algorithm
2.7. Survivability with bounded length
2.8. Capacitated survivable networks

2. Networksurvivability

2.1. General model

2.1. A General model

A first model

Given an undirected graph $G=(V, E)$ with
a weight on each edge, a nonnegative integer matrix $R=\left(r_{i j}\right)$ of connectivity requirements,
find a minimum weight subgraph of G such that between every pair of nodes i, j of V, there are at least $r_{i j}$ edge (node)-disjoint paths

Frish (1967), Steiglitz (1969)
Chou and Frank (1970)
Winter (1985), Grötschel, Monma (1990)

2. Networksurvivability 2.1. General model

A practical model: node types

Let $G=(V, E)$ be a graph. If s is a node of G, we associate with s a connectivity type $r(s) \in N$.

If s, t are two nodes, let

$$
r(s, t)=\min (r(s), r(t))
$$

G is said to be survivable if for every pair of nodes s, t, there are at least $r(s, t)$ edge (node)-disjoint paths between s and t.
(Grötschel, Monma, Stoer (1992))

2. Networksurvivability

 2.1. General model
The Survivable Network Design Problem (SNDP)

Given weights on the edges of G, find a minimum weight survivable subgraph of G.

The SNDP is also known as the generalized Steiner tree problem and the multiterminal synthesis problem.

2. Network survivability
 2.1. General model

Special cases:

$-r(v)=1$ for every v : the minimum spanning tree problem.
$-r(v)=1$ for two nodes s, t and 0 elsewhere: the shortest path problem between s and t.
$-r(v) \in\{0,1\}$ for every v : the Steiner tree problem.
$-r(v)=k$ for every v (k fixed): the k-edge (k-node) connected subgraph problem.

The SNDP is NP-hard in general.

2. Network survivability

2.1. General model

Polynomially solvable cases

$c(e)=c$ for all e (uniform costs): (Chou and Franck (1970))
Given a set of nodes V, construct a minimum weight graph on V satisfying the (edge) connectivity requirements (parallel edges are allowed).
$c(e)=0 / 1$ for all e : The augmentation problem (edge case)
(parallel edges are allowed): (Franck) (1992)).
Polynomial time algorithms have also been devised for special classes of graphs (like series-parallel graphs) special types of node connectivities

2. Network survivability

2.1. General model

Formulation of the SNDP (edge case)

If $W \subset V, \varnothing \neq W \neq V$, let $r(W)=\max \{r(s) \mid s \in W\}$ $\operatorname{con}(W)=\min \{r(W), r(V W)\}$
$r(W)$ is the connectivity type of W.
$\delta(W)$ is called a cut of G.

$$
\sum_{e \in \delta(w)} x(e)=x(\delta(W)) \geq \operatorname{con}(W)
$$

cut inequalities

2. Network survivability

2.1. General model

The (edge) SNDP is equivalent to the following integer program

$$
\begin{array}{ll}
\min \sum_{e \in E} c(e) x(e) & \\
\text { Subject to } & \\
x(\delta(W)) \geq \operatorname{con}(W) & \text { for all } W \subset V, \varnothing \neq W \neq V \\
0 \leq x(e) \leq 1 & \text { for all } e \in E \\
x(e) \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

Follows from Menger's theorem (1927).

2. Network survivability

2.1. General model

$$
\min \sum_{e \in E} c(e) x(e)
$$

Subject to

$$
\begin{array}{ll}
x(\phi(W)) \geq \operatorname{con}(W) & \text { for all } W \subset V, \varnothing \neq W \neq V \\
0 \leq x(e) \leq 1 & \text { for all } e \in E,
\end{array}
$$

The linear relaxation can be solved in polynomial time (by the ellipsoid method).

2. Network survivability

2.2. Heuristics

2.2. Heuristics

Steiglitz, Weiner and Kleitman (1969): (general case): Local search heuristic

Monma \& Shallcross (1989): $(r(v) \in\{1,2\}$ for all $v)$: based on heuristics for the traveling salesman problem

Ko \& Monma (1989): $(r(v)=k$ for all v) (The k-edge (node) connected subgraph problem): extension of Monma \& Shallcross heuristic.

2. Network survivability

2.2. Heuristics

Heuristics with worst case garantee

A function $f: 2^{V} \longrightarrow \mathrm{Z}_{+}$is called proper (Goemans \& Williamson
(1995)) if it satisfies the following
$-f(\varnothing)=0$,

- $f(S)=f(V)$ for all $S \subseteq V$
- If $A \cap B=\varnothing$, then $f(A \cup B) \leq \max \{f(A), f(B)\}$

The connectivity function $f(S)=\operatorname{con}(S)$ is proper.

2. Network survivability

2.2. Heuristics

SNDP with arbitrary proper connectivity function

 Without multiple copies of edges$$
\begin{array}{ll}
\min \sum_{e \in E} c(e) x(e) & \\
x(\delta(W)) \geq f(W) & \text { for all } W \subset V, \varnothing \neq W \neq V, \\
0 \leq x(e) \leq 1 & \text { for all } e \in E, \\
x(e) \in\{0,1\} & \text { for all } e \in E .
\end{array}
$$

Primal-Dual polynomial $2 f_{\text {max }}$-approximation algorithm, where $f_{\text {max }}=\max \{f(S), S \subset V\}$.

Williamson, Goemans, Mihail, Vazirani (1995)
Generalizes a factor 2 when $f(W)=0$ or 1 (Goemans \& Williamson)

2. Network survivability

2.2. Heuristics
$2 \mathcal{H}\left(f_{\text {max }}\right)$-approximation algorithm where $\mathcal{H}\left(f_{\max }\right)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{f_{\text {max }}}$ is the harmonic function.

> Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson (1996)

Factor 2 approximation algorithm when the function f is weakly supermodular

Jain (2001)

$f(V)=0$, and for every $A, B \subseteq V$ at least one of the following holds:
$-f(A)+f(B) \leq f(A \cap B)+f(A \cup B)$ or
$-f(A)+f(B) \leq f(A \backslash B)+f(B \backslash A)$.

If a function is proper then it is weakly supermodular.

2. Network survivability

2.2. Heuristics

Case when copies of edges are allowed

Jain's algorithm also works when multiple copies of an edge are allowed: \Rightarrow factor 2 approximation algorithm
$\min \left\{2 r_{\text {max }} 2 p\right\}$-approximation algorithm
Goemans and Bertsimas (1993)
where p is the number of distinct connectivity requirement
values and $r_{\text {max }}=\max \{r(u), v \in V\}$.
$2 \log r_{\max }$-approximation algorithm
Agrawal, Klein and Ravi (1995)
$2 \mathcal{H}\left(f_{\max }\right)$ - approximation algorithm
Goemans \& Williamson (1992)

2. Network survivability
 2.3. Polyhedral results

2.3. Polyhedral Results

Let $\operatorname{SNDP}(G)$ be the convex hull of the solutions of SNDP, i.e.
$\operatorname{SNDP}(G)=\operatorname{conv}\left\{x \in R^{E} \mid x\right.$ is a (an integer) solution of SNDP $\}$.
$\operatorname{SNDP}(G)$ is called the survivable network design polyhedron.

2. Network survivability

2.3. Polyhedral results

2.3.1. Restricted graphs

A graph is said to be series-parallel if it can be constructed from an edge by iterative application of the following operations:

1) Addition of parallel edges
2) Subdivision of edges

2. Network survivability

2.3. Polyhedral results

Theorem: (Kerivin \& M. (2002))
If G is series-parallel and $r(v)$ is even for every v, then $\operatorname{SNDP}(G)$ is given by the trivial and the cut inequalities.

Generalizes Cornuéjols, Fonlupt and Naddef (1995), Baïou \& M. (1996), Didi-Biha \& M. (1999).

Corollary:

If G is series-parallel and $r(v)$ is even for every v, then SNDP can be solved in polynomial time.

2. Network survivability

2.3. Polyhedral results

k-Connectivity with \boldsymbol{k} odd

Let $\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V. Chopra (1994) showed that

$$
\begin{equation*}
\left.x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right) \geq \backslash k / 2\right\rceil p-1 \tag{1}
\end{equation*}
$$

is valid for the $\operatorname{SNDP}(G)$ when G is outerplanar (a subclass of series-parallel graphs), k is odd and an edge can be used more than once. Here $\delta\left(V_{1}, \ldots, V_{p}\right)$ is the set of edges between the V_{i} 's.
Theorem: Chopra (1994)
If G is outerplanar, k odd and multiple eges are allowed, then the k-edge connected polyhedron is given by inequalities (1) and $x(e) \geq 0$ for all e.
Generalized by Didi Biha \& M. (1996) to series-parallel graphs (with and without possibility of multiple copies of edges).

2. Network survivability

2.3. Polyhedral results

General graphs

Low connectivity case: $r(v) \in\{0,1,2\}$
2.4.2. Valid inequalities:

Trivial inequalities:

$$
0 \leq x(e) \leq 0 \text { for all } e \in E
$$

Cut inequalities:

$$
x(\delta(W)) \geq \operatorname{con}(W) \quad \text { for all } W \subset V, \varnothing \neq W \neq V
$$

2. Network survivability

2.3. Polyhedral results

Partition inequalities:

Let $V_{1}, \ldots, V_{p}, p \geq 2$, be a partition of V such that $\operatorname{con}\left(V_{i}\right) \geq 1$ for all V_{i}. Then the following inequality is valid for $\operatorname{SNDP}(G)$.

$$
\begin{gathered}
x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right) \geq p-1, \quad \text { if } \operatorname{con}\left(V_{i}\right)=1 \text { for all } V_{i} \\
\geq p, \quad \text { if not }
\end{gathered}
$$

(Grötschel, Monma and Stoer (1992))

2. Network survivability

2.3. Polyhedral results

F-partition inequalities:

Let $V_{0}, V_{1}, \ldots, V_{p}$ be a partition of V such that con $\left(V_{i}\right)=2$ for all V_{i}

2. Network survivability

2.3. Polyhedral results

F-partition inequalities:

Let $V_{0}, V_{1}, \ldots, V_{p}$ be a partition of V such that $\operatorname{con}\left(V_{i}\right)=2$ for all V_{i}

Let F be a set of edges of $\delta\left(V_{0}\right)$ and $|F|$ id odd.

$$
\begin{array}{cl}
x\left(\delta\left(V_{j}\right)\right) \geq 2, & i=1, \ldots, p \\
-x(e) \geq-1, \quad e \in F \\
x(e) \geq 0, \quad e \in \delta\left(V_{0}\right) \backslash F \\
\Rightarrow & 2 x(\Delta) \geq 2 p-|F|,
\end{array}
$$

-_ Edges of F
where $\Delta=\delta\left(V_{0}, V_{1}, \ldots, V_{p}\right) \backslash F$

2. Network survivability

2.3. Polyhedral results

Then

$$
x(\Delta) \geq p-\frac{F-1}{2}
$$

is valid for the $\operatorname{SNDP}(\mathrm{G})$.
These inequalities are called F-partition inequalities. (M. (1994))
Further valid inequalities related to the traveling salesman polytope have been given by Boyd \& Hao (1994) for the 2-edge connected subgraph polytope. And general valid inequalities for the SNDP have been introduced by Grötschel, Monma and Stoer (1992)
(generalizing the F-partition inequalities).

2. Network survivability

2.4. Separation

2.4. Separation

Consider the constraints

$$
x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right) \geq p-1 .
$$

called multicut inequalities.
These arise as valid inequalities in many connectivity problems.
The separation problem for these inequalities reduce to $|E|$ min cut problems Cunningham (1985) .

It can also be reduced to| $V \mid$ min cut problems Barahona (1992).
Both algorithms provide the most violated inequality if there is any.

2. Network survivability

2.4. Separation
F-partition inequalities
$(r(v)=2$ for all node $v)$
Theorem. (Barahona, Baïou \& M.) If F is fixed, then the separation of F-partition inequalities can be solved in polynomial time.

Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the graph obtained by deleting the edges of F. Hence the F-partition inequalities can be written as

$$
x\left(\delta\left(V_{0}, \ldots, V_{p}\right)\right) \geq p-(|F|-1) / 2
$$

where $\left(V_{0}, \ldots, V_{p}\right)$ is a partition of V^{\prime} such that for each edge $u v \in F,\left|\{u, v\} \cap\left(V_{0}\right)\right|=1$.

2. Network survivability

2.4. Separation

There are $2^{[F]}$ possibilities for assigning these nodes.
For each possibility we contract the nodes that must be in V_{0} and solve the separation problem for the inequalities.

$$
x\left(\delta\left(V_{0}, \ldots, V_{p}\right)\right) \geq p-(|F|-1) / 2
$$

where $|F|$ is fixed. These are partition inequalities, and hence the separation can be done in polynomial time.

2. Network survivability

2.4. Separation

Partition inequalities
These inequalities can be written as

$$
\begin{aligned}
& x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right) \geq p-1, \quad \text { if } \operatorname{con}\left(V_{i}\right)=1 \text { for all } V_{i} \\
& \geq p, \quad \text { if not },
\end{aligned}
$$

For any partition $\left(V_{1}, \ldots, V_{p}\right)$ of V.

If $r(v) \in\{0,1,2\}$, the separation problem is NP-hard (Grötcshel, Monma, Stoer (1992)).

2. Network survivability
 2.4. Separation

Theorem: (Kerivin, M. (2002)) The separation of the partition inequalities when $r(v) \in\{1,2\}$ for all v can be done in polynomial time.

The separation reduces to minimizing a submodular function. (A function $f: 2^{V}$----> R is said to be submodular if

$$
f(A \cup B)+f(A \cap B) \leq f(A)+f(B) \text {, for all } A, B \subset V \text {. }
$$

Recently Barahona and Kerivin (2004) showed that the problem reduces to $O\left(|V|^{4}\right)$ minimum cut problems.

2. Network survivability

2.5. Critical extreme points

2.5. Critical extreme points

 of the 2-edge connected subgraph polytope
(Fonlupt \& M. (1999))

We suppose $r(v)=2$ for all v.
Consider the linear relaxation of the problem:

$$
\begin{array}{rlr}
\min & \sum_{e \in E} c(e) x(e) & \\
& x(\delta(W)) \geq 2 & \\
& \text { for all } W \subset V, \ell \\
0 \leq x(e) \leq 1 & & \text { for all } e \in E .
\end{array}
$$

2. Network survivability

2.5. Critical extreme points

2.5. Critical extreme points

 of the 2-edge connected subgraph polytope(Fonlupt \& M. (1999))

We suppose $r(v)=2$ for all v.
Consider the linear relaxation of the problem:

$$
\min \sum_{e \in E} c(e) x(e)
$$

$P(G)$ for all $W \subset V, \varnothing \neq W \neq V$ $0 \leq x(e) \leq 1 \quad$ for all $e \in E$.

2. Network survivability

2.5. Critical extreme points

Reduction Operations

Let x be a fractional extreme point of $P(G)$.
O_{1} : delete edge e such that $x(e)=0$,
O_{2} : contract a node set W such that the subgraph induced by W, $G(W)$ is 2-edge connected and $x(e)=1$ for every $e \in E(W)$.

G'
$G(W)$ is 2-edge connected and $x(e)=1$ for every $e \in E(W)$.

2. Network survivability

2.5. Critical extreme points

O_{3} : contract an edge having one of its endnodes of degree 2.

Lemma: Let x be an extreme point of $P(G)$ and x ' and G 'obtained from x and G by applications of operations O_{1}, O_{2}, O_{3}. Then x ' is an extreme point of $P\left(G^{\prime}\right)$. Moreover if x violates a cut, a partition or an F-partition inequality, then x 'so does.

2. Network survivability

2.5. Critical extreme points

Domination

Let x and y be fractional two extreme points of $P(G)$. Let $F_{x}=\{e \in E \mid x(e)$ is fractional $\}$ and $F_{y}=\{e \in E \mid y(e)$ is fractional $\}$. We say that x dominates y if $F_{y} \subset F_{x}$.

Question:

Characterise the minimal fractional extreme points.

2. Network survivability

2.5. Critical extreme points

Definition : A fractional extreme point x of $P(G)$ is said to be critical if: 1) none of the operations $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ can be applied for it,
2) it does not dominate any fractional extreme point of $P(G)$.

Example:

Critical

Non-critical

2. Network survivability

2.5. Critical extreme points

Definition : A fractional extreme point x of $P(G)$ is said to be critical if: 1) none of the operations $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ can be applied for it,
2) it does not domine any fractional extreme point of $P(G)$.

Example:

Critical

Non-critical

2. Network survivability

2.5. Critical extreme points

Definition : A fractional extreme point x of $P(G)$ is said to be critical if 1) none of the operations $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ can be applied for it, 2) it does not domine any fractional extreme point of $P(G)$.

Example:

Critical

Critical

2. Network survivability

2.5. Critical extreme points

Theorem: An extreme point of $P(G)$ is critical if and only if G and x are of the following form:

$$
\sum_{e \in C} x(e) \geq \frac{|C|+1}{2}
$$

is valid and defines a facet

(it is an F-partition inequality)

2. Network survivability

2.5. Critical extreme points

Theorem: If x is a critical extreme point of $P(G)$, then x can be separated (in polynomial time) by an F-partition inequality.

The concept of critical extreme points has been extended (with respect to appropriate reduction operations) to 2-node connected graphs and (1,2)-survivable networks (Kerivin, M., Nocq (2001)), And to k-edge connected graphs (Didi Biha \& M. (2004)).

2. Network survivability 2,6. Branch\&Cut algorithm

2.6. Branch\&Cut algorithm

(Kerivin, Nocq, M. (2001))
$r(v) \in\{1,2\}$ for all v
Used constraints:
trivial inequalities
cut inequalities
F-partition inequalities partition inequalities

2. Network survivability 2,6. Branch\&Cut algorithm

If x is a fractional extreme point (critical or not), we apply the reduction operations. Let G^{\prime} and x^{\prime} be the graph and the solution thus obtained.

If a cut, a partition or an F-partition constraint is violated by x ' for G^{\prime}, then it can be lifted to a constraint of the same type violated by x for G.

2. Networksurvivability

 2,6. Branch\&Cut algorithm

G 51 nodes

G' $\quad 14$ nodes

$$
x\left(\delta\left(V_{1}, \ldots, V_{p}\right) \backslash F\right) \geq 11
$$

This contraint cuts the extreme point of G^{\prime} and that of G.

2. Network survivability
 2,6. Branch\&Cut algorithm

2. Network survivability

2,6. Branch\&Cut algorithm

2. Network survivability
 2,6. Branch\&Cut algorithm

\#nodes48
\#type $1 \quad 20$
\#type 28
\#variables 1128
\#constraints 428
CpuTime 202 sec

2. Network survivability

 2,7. Length constraints
2.7. Survivable networks with length constraints

Motivation: to have effective routing cost
Local rerouting:
Each edge must belong to a bounded cycle (ring). SONET/SDH networks

End-to-end rerouting:
the paths between the terminals should not exceed a certain length (a certain number of hops) (hopconstrained paths).

ATM networks, INTERNET

2. Network survivability 2.7. Length constraints

2.7.1. Bounded rings

2-node connected graphs

```
                                    Fortz, Labbé, Maffioli (1999)
                                    Fortz, Labbé (2002)
```

Valid inequalities
Separation algorithms
Lower bounds on the optimal value
Cutting plane algorithms
2-edge connected graphs
Fortz, M., McCormick, Pesneau (2003)

2. Network survivability

2.7. Length constraints

2.7.2. Hop-constrained paths

The minimum hop constrained spanning tree problem
Determine a minimum spanning tree such that the number of links between a root node and any node in the tree does not exceed a bound L.
(NP-hard (even for $L=2$))
Multicommodity flow formulation
Lagrangean relaxations
Gouveia (1998)
Gouveia \& Requejo (2001)
Gouveia \& Magnanti (2000)

2. Network survivability

 2,7. Length constraints
The minimum hop-constrained path problem

Determine a minimum path between two given nodes s and t, of length no more than L (L fixed).

Dahl \& Gouveia (2001)

Formulation in the natural space of variables
Valid inequalities
Description of the associated polytope when $L=2,3$.

The L-star inequalities

(Dahl (1999))
Let $V_{0}, V_{1}, \ldots, V_{L+1}$ be a partition of V such that $s \in V_{0}$ and $t \in V_{L+1}$.

2. Networksurvivability 2.7. Length constraints

The L-star inequalities

Let $V_{0}, V_{1}, \ldots, V_{L+1}$ be a partition of V such that $s \in V_{0}$ and $t \in V_{L+1}$.

The L-star inequalities

(Dahl (1999))
Let $V_{0}, V_{1}, \ldots, V_{L+1}$ be a partition of V such that $s \in V_{0}$ and $t \in V_{L+1}$.

$$
x(T) \geq 1
$$

(L-star inequalities)

2. Network survivability

Theorem: (Dahl (1999))

The L-star inequalities together with the cut inequalities (separating s and t) and the trivial inequalities completely describe the L-path polyhedron when $L \leq 3$.

If at least K paths are required between s and t, then

$$
x(T) \geq K
$$

is valid for the corresponding polytope.
The separation problem for the L-star inequalities can be solved in polynomial time, if $L \leq 3$.

2. Network survivability

2.7. Length constraints

The hop-constrained network design problem (HCNDP):

Given a graph with weights on the edges, a set of terminalpairs (origines-destinations), two intgers K, L, find a minimum weight subgraph such that between each pair of terminals there are at least K paths of length no more than L.

$$
\boldsymbol{K}=\mathbf{1}, \mathbf{L}=\mathbf{2} \quad \text { (Dahl, Johannessen (2000) }
$$

Formulation of the problem
Valid inequalities
Greedy approximation algorithms
Cutting plane algorithm

2. Network survivability

 2.7. Length constraints
$K=2, L=3$, and only one pair of terminals

```
Huygens, M., Pesneau (2003)
```

Formulation of the problem
Complete description of the associated polytope by the trivial, the cut and the L-star inequalities
a polynomial time cutting plane algorithm for the problem (when $K=2, L=3$)

No formulation (using the design variables) is known for the problem when $K=2$ and $L=4$.

Length constrained 2-connected graphs

Ben Ameur (2000)

Classes of length constrained 2-connected graph
Lower bounds on the number of edges
Valid inequalities for the 2-connected polytope with length constraints

2. Network survivability

2,8. Capacitated networks

2.8. Capacitated Survivable Networks

Given

- a graph $G=(V, E)$ (the supply graph),
- a set of demands $\left\{d_{u v}\right\}$ between pairs of origines-destinations (u, v),
- a set $\left\{C_{e}^{t}, t=1, \ldots, T_{e}\right\}$ of discrete capacities, specified for each edge e
- a cost K_{e}^{t} for each capacity $C_{e}{ }^{t}$,
- for every demand $d_{u v}$, a parameter $0<\rho_{u v}<1$ representing the fraction of demand $d_{u v}$ that must be satisfied if an edge (or a node) fails.

The problem: \quad Stoer \& Dahl (1994)
Which capacities to install on the edges such that for every single edge (or node) failure, at least the fraction $\rho_{u v}$ of $d_{u v}$ can be routed for every demand $d_{u v}$, and the total cost is minimum.

2. Network survivability

Stoer \& Dahl $(1994,1998)$ proposed

- a mixed integer programming formulation,
- valid and facet defining inequalities (some of the inequalities obtained by exploiting the knapsack structure of some subsystems) and the 2-connected topology,
- a cutting plane algorithm.

A more general model with path length and routing constraints

$$
\text { Alevras, Grötschel, Wessäly }(1997,1998)
$$

Mixed integer programming formulation
Cutting plane algorithms

2. Network survivability 2,8. Capacitated networks

Cut subsystem

Let C be a cut. Usually inequalities of the following form are valid.

Demand inequality

$$
\begin{equation*}
\sum_{e \in C} x(e) \geq D \tag{1}
\end{equation*}
$$

Let $P_{n}(D, L)(|C|=n)$ be the polyhedron given by (1)-(3).

2. Network survivability

$P_{n}(D, L)$ (and some extensions) have been studied by

Bienstock and Muratore (1997)

Muratore (1998)

- Structural properties of the extreme points of $P_{n}(D, L)$
- Description of valid and facet defining inequalities
- Development of cutting plane algorithm for solving capacitated SNDP.

Magnanti \& Wang (1997) studied the same polyhedron but without constraint (1) (capacity constraint) and with different right hand sides for the survivability inequalities.

Conclusion

- The Survivable network design problems are difficult to solve (even special cases).
- The problems with length constraints remain the most complicated SNDP. A better knowledge of their facial structure would be usefull to establish efficient cutting plane techniques.
- The capacitated SNDP needs more investigation, from both the algorithmic and polyhedral points of view.
-Develop usefull cutting plane and column generation techniques for the very general model with length constraints, capacity assignment and routing....?

