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ABSTRACT 

K,-perfect graphs are a special instance of F - G perfect graphs, where 
F and G are fixed graphs with F a  partial subgraph of G. Given S, a col- 
lection of G-subgraphs of graph K, an F - G cover of S is a set of Tof  
F-subgraphs of K such that each subgraph in S contains as a subgraph 
a member of T. An F - G packing of S is a subcollection S’ C S such 
that no two subgraphs in S’ have an F-subgraph in common. K is F - G 
perfect if for all such S, the minimum cardinality of an f - G cover of S 
equals the maximum cardinality of an F - G packing of S. Thus K,-perfect 
graphs are precisely K,-, - K, perfect graphs. We develop a hypergraph 
characterization of f - G perfect graphs that leads to an alternate proof 
of previous results on K,-perfect graphs as well as to a characterization of 
F - G perfect graphs for other instances of f and G. 

1. INTRODUCTION 

The notion of K, -perfectness was introduced in [2]. Given a fixed integer i 2 2 
and a graph G, we let K,(G) denote the set of K , s  of G (a K, is a complete 
graph of order i ) .  For any S K,(G), a K,-cover ofS is a collection T of K,-,s 
of G such that each K, in S contains at least one K,-, in T. A K,-packing of S is 
a collection of K , s  in S that pairwise do not intersect in a K,-,. Clearly, for any 
S K,(G), the minimum cardinality of any K,-cover of S is greater than or 
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equal to the maximum cardinality of any K,-packing of S. G is defined to be 
K,-perfect if equality holds for all S C K,(G) .  K,-perfectness was studied in [2] 
where it was shown that a graph is K,-perfect if and only if it is conformal (i.e., 
contains no K,,,) and the K,-intersection graph (on vertex set K , ( G )  with X, Y 
an edge if and only if X and Y intersect in a K , - , )  has no odd hole (i.e., induced 
cycle) of length at least 5 .  

In this note we extend the notion of K,-perfectness to that of F - G perfection 
where F and G are arbitrary fixed graphs. By studying a hypergraph based on F 
and G we develop a characterization of a large class of F - G perfect graphs. 
This characterization subsumes the previously mentioned one for K, -perfectness. 
Later in the note we provide further characterizations for specific F, G combi- 
nations as well as comment on further extensions. 
P, and C, denote respectively the path and cycle on i vertices. 

2. F - GPERFECTION 

Throughout this section we assume that subgraph refers to partial subgraph 
unless explicitly stated otherwise. Let F and G be fixed graphs with the prop- 
erty that G contains at least one subgraph isomorphic to F. For a graph K, we 
let F ( K )  (respectively G (K)) denote all subgraphs of K that are isomorphic to F 
(respectively G). For a set S C G(K) we define an F - G covering of S to be 
a collection T C F ( K )  such that each subgraph in S contains at least one ele- 
ment of T. Similarly, an F - G packing of S is a collection S ' C S such that 
no two subgraphs in S' share a copy of F. For any S C G(K) we denote by 
c(F, G ,  S) and p(F,  G, S) the minimum cardinality of an F - G covering of 
S and the maximum cardinality of an F - G packing of S, respectively. As 
an example, consider the graph K in Figure 1 where F is P3,  G is C, and 
S = ((b,c,f,e},(e,g,i,f},(d,f,h,g)}. Then c(P3,C4,S) = 2 as {(e,f),{d,f)) 
is a minimum P3 - C, cover of S .  Similarly p(P3,  C,, S) = 2 as established by 
((6,  c,f, e } ,  Mf, h ,  gH. 

Lemma 2.1. For any graph K and set S C G ( K ) ,  c(F, G, S) 2 p(F, G, S). 

Proof. If S '  C S is an F - G packing of S and T C_ F ( K )  is an F - G 
cover of S, then each subgraph of S ' contains a subgraph in T and no subgraph 
in T appears in more than one subgraph in S' .  I 

The relation c(F, G ,  S)  2 p(F, G, S) and quantification over all subsets of 
G(K) leads to our new notion of perfection. K is F - G perfect if for all 
S C_ G ( K ) ,  c(F, G, S) = p(F, G , S ) .  Using this terminology, K,-perfection is 
equivalent to K , - ,  - K, perfection. The graph K in Figure 1 is not P3 - C4 per- 
fect since for S = {{b, c ,  f, e } ,  {b, c ,  i , g } ,  {e, f, i , g } }  we have c(P3, C,, S )  = 2 
whereas p(P, ,  C,,  S)  = 1. It is easy to see that the graph in Figure 2 is P3 - C, 
perfect. 
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FIGURE 1. K. 

We now provide a characterization of F - G perfect graphs by studying the 
underlying hypergraph structure. 

3. A HYPERGRAPH CHARACTERIZATION 

Our hypergraph notation follows, in general, that of Berge [ I ] .  One modification 
is our use of the term cycle; a cycle oflengrh n L 2 is an alternating sequence 
of distinct vertices and hyperedges xo, E o , x I ,  E l ,  . . . , x ~ - ~ ,  En- ,  such that (with 
mod n arithmetic) xi E Ei n for i = 0,  . . . , n - 1 and Ei n E, # 4 if and 
only if i - j = - 1, 0, or 1. The term linear refers to a hypergraph that has no 
cycles of length 2 (equivalently if and only if for all distinct hyperedges E and 
E ' ,  IE n E'I 4 1). The line graph of the hypergraph H is the graph L ( H )  
whose vertices are the hyperedges of H and whose edges are those pairs { E ,  , E,} 
for which E ,  fl E,  # 4. As in [l]  a hypergraph H '  is a partial hypergraph of 
H if the hyperedges of H '  are in H and every vertex of H' is in at least one 
hyperedge (of H '). 

In his classic paper on perfection, LovAsz [3] introduced the notion of normal 
hypergraph. A vertex cover T of hypergraph H is a collection of vertices such 

FIGURE 2. A p3 - C, perfect graph 
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that every hyperedge contains at least one vertex in T ;  a marching is a collec- 
tion of hyperedges of H that are pairwise disjoint. Finally, H is normal if and 
only if for every partial hypergraph H ’ of H ,  T(H ’), the minimum size of a ver- 
tex cover of H ‘ is equal to u(H ‘), the maximum size of a matching in H ’. We 
now relate normality to F - G perfection of graph K by associating to K a 
hypergraph H(F, G, K )  on vertex set F ( K ) .  For each G ’  E G ( K )  construct a 
hyperedge of H(F,  G, K )  on the vertices corresponding to copies of F that are 
contained in G’. The hypergraph H(P, ,  C,, K )  for the K of Figure 1 is presented 
in Figure 3. 

For S C G ( K )  let H,(F ,  G ,  K )  denote the partial hypergraph of H(F, G, K )  
with S the set of hyperedges of H , .  From the definitions we immediately see 
the one-to-one correspondence between the F - G covers of S (C G(K) )  and 
the vertex covers of H,(F,  G, K ) .  Similarly, we have a one-to-one correspon- 
dence between the F - G packings of S and the matchings of H,(F, G ,  K ) .  Thus 
c (F ,  G ,  S) = 7(H,(F,  G ,  K ) )  and p ( F ,  G, S )  = u(H,(F, G ,  K ) ) .  Since the partial 
hypergraphs of H(F, G ,  K )  are in a one-to-one correspondence with the subsets 
S G ( K ) ,  we amve at the following essential observation. 

Proposition 3.1. K is F - G perfect if and only if H ( F ,  G, K )  is normal. 

As pointed out in [2] this observation does not provide the characterization of 
K,-perfect graphs. Examination of H ( K , - , ,  K , ,  K )  shows that this hypergraph is 
always linear since two distinct K , s  cannot overlap in more than one K , - l  ( i  2 2). 
Linearity also holds for other pairs of F and G ,  for example for F = P , - , ,  G = P, 
and F = P , - , ,  G = C, (i 2 3). Therefore, we now concentrate on linear hyper- 
graphs and develop necessary and sufficient conditions for them to be normal. 

A hypergraph H has the Helly property [ 11 if for every collection of hyper- 
edges E l ,  . . . , En of H with pairwise nonempty intersection, n:=, E, = 4. The 
next two lemmas follow from the definitions. 

Lemma 3.2. 
no cycle of length three. 

A linear hypergraph has the Helly property if and only if it has 

bc c f  be e f  

0 ab 

0 ac 

0 bd 

0 cd 

9‘ 
FIGURE 3. H(P3, C,, K) .  
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Lemma 3.3. A linear hypergraph H has an odd cycle of length greater than or 
equal five if and only if L ( H )  has an odd hole of length greater than or equal 
five. I 

In [3] LOV~SZ proved the following: 

Theorem 3.4. 
then H is normal. 

If hypergraph H has the Helly property and L ( H )  is perfect 

We can now characterize normal linear hypergraphs. 

Theorem 3.5. 
tain a cycle of odd length. 

A linear hypergraph H is normal if and only if it does not con- 

Proof. If H contains a cycle of odd length, then it is easy to see that it is 
not normal. Conversely suppose that H has no odd cycle. By Lemma 3.2, H 
has the Helly property. If L ( H )  is perfect, Theorem 3.4 would imply that H is 
normal. We now show that L ( H )  does not contain a diamond (i.e., a K4 with 
one edge removed). Suppose e l ,  e2, e3, e4 are distinct hyperedges of H such that 
ei f l  e, = 4 if and only if i = 2 and j = 4. Since H has no cycle of length 3, 
let el fl e2 f l  e3 = {x}. Since x E e4, e4 f l  e3 # 4 and e,  fl e3 = {x}, H must 
contain a cycle of length 3 on the hyperedges e , ,  e3, and e4, a contradiction 
(see Figure 4). 

A well known result due to Tucker [4] states that a graph that does not con- 
tain an induced diamond is perfect if and only if it does not contain an induced 
odd cycle of length greater than or equal five. Lemma 3.3 implies that L ( H )  is 
perfect and hence we conclude that H is normal. I 

Combining Proposition 3.1 and Theorem 3.5 we obtain the following charac- 
terization of F - G perfection for those graphs K where H(F, G ,  K )  is linear. 

FIGURE 4. Structure on {el, e2, e3. e4} 
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Theorem 3.6. If K is a graph where no two subgraphs isomorphic to G 
overlap in more than one copy of F, then K is F - G perfect if and only if 
H(F, G, K)  contains no odd cycles. 

In particular for F = K i - ,  and G = K i  ( i  2 2) the above theorem implies 
that K is Ki-perfect if and only if H ( K i - l ,  Ki , K )  does not contain an odd 
cycle. The conformality of K (i.e., K does not contain a Ki+I) corresponds to 
H ( K i +  ,, K i  , K )  having the Helly property (equivalently no cycle of length 
three), so the characterization of Ki-perfection given in [2] follows immediately 
from Theorem 3.6. We now use Theorem 3.6 to study other particular exam- 
ples of F - G perfection. 

4. PARTICULAR EXAMPLES O F F  - G PERFECTION 

Our first example is Kl, i - l  - Kl.i  perfection ( K , , i  denotes a star of degree i). 
Since any two K , , i s  can overlap in at most one Kl, i - l ,  Theorem 3.6 applies; a 
further characterization is given below ( A ( K )  will denote the maximum degree 
of a vertex of the graph K). 

Theorem 4.1. K is Kl,i - l  - K l . i  perfect if and only if 

(i) i = 1 and K is bipartite, 
(ii) i = 2 and K is the disjoint union of paths and even cycles, 
(iii) i 2 3 and A ( K )  5 i .  

Proof. For i = 1, the K , . o  - K , .  I perfect graphs are precisely the K,-perfect 
graphs studied in [2]. There it was shown that a graph is K,-perfect if and 
only if it is bipartite. This is also seen immediately from Theorem 3.6 since 
H(Kl,o,Kl,l,K) = K. For i = 2, we see that K is K , , ,  - K l , 2  perfect if and 
only if H ( K , ,  ,, K , . , ,  K )  (z L ( K ) )  is bipartite, and hence if and only if K is the 
disjoint union of paths and even cycles. 

For i 2 3 first assume that A ( K )  5 i. Now no two K , . i s  of K intersect in 
a Kl, i - l  so H ( K l ~ i - l , K l . i ,  K) is a matching and hence is normal. Thus K is 
Kl, i - l  - Kl , i  perfect. Conversely, if A ( K )  > i ,  then K contains a K l , i + l  as a 
subgraph which implies that H(Kl.i-l,Kl.i, K )  contains a cycle of length 3 (note 
i + 1 2 3) so it is not normal. Then K is not Kl, i - l  - K l , i  perfect. I 

Our next example is for F = Pi-I and G = Pi ( i  2 2). Since any Pi contains 
exactly two Pi- , s ,  H ( P i - , ,  Pi, K )  is itself a graph. From Theorem 3.6 we see 
that a graph K is Pi-, - Pi perfect if and only if H(Pi- , ,  P i , K )  is bipartite. It is 
natural to ask whether we can characterize Pi- ,  - Pi perfect graphs in terms of 
forbidden subgraphs. Such a characterization must exist for any F - G perfec- 
tion since any subgraph of a F - G perfect graph is F - G perfect and hence 
there is a unique set of minimal F - G imperfect graphs. From Theorem 4.1 
we see that the set of forbidden subgraphs for K,+ ,  - Kl. i  perfection is {C2n+l: 



A NOTE ON K,-PERFECT GRAPHS 339 

n 2 1) if i = 1, {C2n+l: n 2 1) U { K , , 3 }  if i = 2 and { K , , i + l }  if i 2 3. For 
P I w l  - P, perfection we state the following conjecture: 

Conjecture 4.2. 
not contain an odd cycle of length 2 i. 

For all i # 3, K is Pi-l  - Pi perfect if and only if K does 

It is clear that any graph K that contains an odd cycle of length 2 i is not 
Pi-, - PI perfect since H(Pi- l ,  P i ,  K )  contains an odd cycle of the same length. 
Since H ( P , , P , , K )  = K ,  the conjecture holds for i = 2; however, it fails for 
i = 3 by our characterization of K l , l  - K l , 2  perfect graphs (for example K , , 3  is 
cycle-free but not P2 - P3 perfect). We remark that we can show for any even 
i 2 2, every bipartite graph is Pi-l - P, perfect. 

Finally, we examine P3 - P4 perfection. In Sections 2 and 3 we saw that the 
graph in Figure 1 is not P3 - C, perfect because of the 3-cycle in Hs(P3, C,, K )  
where S = {{bc, cf,fe, be}, {ef,fi, ig, eg}, {ig, gb, bc, ci}}. This example leads to 
the following characterization of P3 - C, perfect graphs. 

Theorem 4.3. 
subgraph of K .  

K is a P3 - C, perfect graph if and only if K2,3  is not a partial 

Proof. From Theorem 3.6 we need only be concerned with odd cycles in 
H(P3, C,, K ) .  If K2.3 is a partial subgraph of K we immediately have a 3-cycle 
in H(P3,  C,, K ) .  Now assume that K is not P3 - C, perfect and thus that there 
is an odd cycle in H(P3, C,, K ) .  Since there is such a cycle we know that there 
exists pairs of C,s in K that overlap in a P3. Since no two C,s as partial sub- 
graphs of K4 can share a P3 we have the situation depicted in Figure 5 ,  where 
cycles {a, b, c, d} and {a, b, c, e} share the P,{a, b, c}. This, however, forces the 
third cycle {a, e, c ,  d} and in fact there exists a 3-cycle in H(P3, C,, K ) .  I 

We also see that K is P3 - C, perfect if and only if no two C,s in K overlap 
in a P3 (i.e., H(P3, C,, K )  is a matching). 

a 

C 

FIGURE 5. K2.3 .  
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5. CONCLUDING REMARKS 

In the previous three sections we have assumed that F is contained as a partial 
subgraph in G .  Alternatively, we could replace partial containment with in- 
duced containment. An examination of the development in Sections 2 and 3 
shows that very similar results hold for the induced form of F - G perfection. 

Finally, we mention one further extension to F - G perfection. Let 9 and % 
be families of graphs with the property that every G E % contains as a sub- 
graph (either defined to be partial or induced) some F € 9. For a graph K we 
define 9 ( K )  to be all subgraphs of K isomorphic to some F E 9 and define 
% ( K )  analogously. For a collection S c % ( K )  an 9 - % cover ofS is a collec- 
tion T c 9 ( K )  such that every subgraph in S contains as a subgraph a member 
of T ;  an S - % packing of S is a subcollection S'  S such that no two rnem- 
bers of S '  both contain a subgraph F '  E 9 ( K ) .  K is said to be 9 - % perfect 
if for all S c % ( K ) ,  the minimum cardinality of an 9 - % cover of S equals 
the maximum cardinality of an 9 - % packing of,S. Results similar to those 
developed in Sections 2 and 3 may be obtained for 9 - % perfection. 
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