
Ann Oper Res (2006) 146:41–73

DOI 10.1007/s10479-006-0047-2

Design of survivable IP-over-optical networks

Sylvie Borne · Eric Gourdin · Bernard Liau ·
A. Ridha Mahjoub

Published online: 27 June 2006
C© Springer Science + Business Media, LLC 2006

Abstract In the past years, telecommunications networks have seen an important evolution

with the advances in optical technologies and the explosive growth of the Internet. Several op-

tical systems allow a very large transport capacity, and data traffic has dramatically increased.

Telecommunications networks are now moving towards a model of high-speed routers in-

terconnected by intelligent optical core networks. Moreover, there is a general consensus

that the control plan of the optical networks should utilize IP-based protocols for dynamic

provisioning and restoration of lightpaths. The interaction of the IP routers with the optical

core networks permits to achieve end-to-end connections, and the lightpaths of the optical

networks define the topology of the IP network. This new infrastructure has to be sufficiently

survivable, so that network services can be restored in the event of a catastrophic failure.

In this paper we consider a multilayer survivable network design problem that may be of

practical interest for IP-over-optical neworks. We give an integer programming formulation

for this problem and discuss the associated polytope. We describe some valid inequalities and

study when these are facet defining. We discuss separation algorithms for these inequalities
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38-40 rue du Général-Leclerc, 92794 Issy-les-Moulineaux Cedex 9, France
e-mail: eric.gourdin@rd.francetelecom.com

B. Liau
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and introduce some reduction operations. We develop a Branch-and-Cut algorithm based on

these results and present extensive computational results.

Keywords IP-over-optical network . Survivability . Integer programming .

Branch-and-Cut algorithm

1. Introduction

In the past years, telecommunications networks have seen a big development with the ad-

vances in optical technologies and the explosive growth of the Internet. Also the data traffic

has increased dramatically and has now surpassed voice traffic in volume. Using the new

optical technologies, different systems allow a very large increase of transport capacity and

the transfert of almost illimitated quantities of informations. Hence, in the event of a catas-

trophic failure, a big amount of traffic may be lost. Now telecommunications networks must

have a survivable topology, that is to say a topology that permits to the service to be restored

and the network to remain functionnal in the event of a failure. For this network survivability

has become a major objective in the design of telecommunications networks.

Data networks have always been analysed, described and managed in a multilayer struc-

ture. Indeed, it is quite natural to assume that the more elaborate functionalities of a network

rely on a set of simple ones provided by some lower layer. This is in particular the case of

modern telecommunications networks where different technologies (SDH/SONET, WDM,

Gigabit Ethernet, ATM, IP, . . . ) are combined in various ways on successive layers. From a

practical point of view, this means that, in order to carry its traffic on some layer, the network

may need to use a lower-level technology. Then several layers can be piled up in order to

have an operational network offering a variety of services. The advantage of this is that each

technology can be used for its most favorable features. Moreover, each technology is charac-

terized by a certain range of traffic rates. The drawback, however, is that each technology, and

hence each layer, manages its own routing control scheme independantly from the others,

and addresses its own survivability issues.

The capacities of a given layer correspond to the (worst-case) traffic demands that must

be routed on the layer just below. The process of determining the capacities (usually called

dimensioning) to install on the different layers of a network often reduces to a succession

of multicommodity flow problems. Usually there is an empirical relation between these

problems, and the whole dimensioning problem is never treated in an optimal way. As a

consequence, in a network design problem, reliability is considered layer by layer without

tackling the redondancy and the non-optimality yielded by the multilayer structure. Moreover,

a failure in the network can be handled by several successive layers. This results in a potential

huge global over-provisioning of ressources, each layer protecting in turn the ones above.

However the relation between technologies used in the different layers is usually complex, and

does not permit to efficiently correlate the control of the successive layers. In consequence,

the solution provided for this multilayer survivability problem usually consists of an over

protection of the whole network. But this may be very costly and sometimes not efficient.

The introduction of new protocols in telecommunications (like GMPLS (Zouganeli, 2001))

gives a new trend for multilayer data networks. This new system provides a common signal-

ing and routing framework between the different layers, and it does not restrict the way these

layers work together. This evolution is yielding new survivability issues in multilayer net-

works. In this paper we introduce a multilayer survivable network design problem that may be

of practical interest for the design of survivable IP-over-optical networks, the networks that
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consist of two layers, the IP (service, client) layer and the optical (transport) layer. We give an

integer programming formulation for this problem and devise a Branch-and-Cut algorithm.

Survivability and dimensioning have been already studied in the literature for multilayer

networks. In particular, heuristic approaches have been proposed. In Gouveia et al. (2003),

Gouveia and Patrício study the design of MPLS-over-WDM networks. They address the

dimensioning subject to some path constraints in the WDM layer and hop constraints in the

MPLS layer. They give an integer programming formulation and devise a heuristic technique

based on that formulation. In Ricciato et al. (2002), Ricciato et al. consider the problem

of off-line configuration of MPLS-over-WDM networks under time-varying offered traffic.

They present a mixed integer programming formulation for the problem and discuss heuristic

approaches.

The paper is organised as follows. In the following section we discuss the IP-over-optical

networks and examine the interconnection models proposed for these networks as well as

system GMPLS and its interaction with these models. In Section 3, we present a multilayer

survivable network design problem, called the multilayer survivable IP network design prob-

lem, and give a 0–1 integer programming formulation for this problem. In Section 4, we study

the associated polytope. We give the dimension of the polytope, identify three classes of valid

inequalities and describe conditions for theses inequalities to be facet defining. In Section

5, we introduce some reduction operations. In Section 6, we discuss separation techniques

and describe a Branch-and-Cut algorithm for the problem. Our computational results are

presented and discussed in Section 7. In Section 8, we give some concluding remarks.

2. A new infrastructure of telecommunications networks

Telecommunications networks are now moving toward a model of high-speed routers inter-

connected by intelligent optical core networks. Moreover, there is a general consensus that

the control plan of the optical networks should utilize IP-based protocols for dynamic pro-

visioning and restoration of lightpaths (Bradner, 1995; Jensen, 2001; Postel, 1981a, 1981b,

1981c).

The optical network consists of multiple switches (also called Optical Cross-Connects

(OXC)) interconnected by optical links. The IP and optical networks communicate through

logical control interfaces called User-Network-Interfaces (UNI). The optical network essen-

tially provides point-to-point connectivity between routers in the form of fixed bandwidth

lightpaths. These lightpaths define the topology of the IP network.

Each router in the IP network is connected to at least one of the optical switches. Moreover

to each link in the IP network between two routers corresponds a routing path in the optical

one between two switches corresponding to these routers. Figure 1 shows an IP-over-optical

network. The IP network has four routers R1, . . . , R4 and the optical network has four

switches S1, . . . , S4. Each optical switch communicates with one router throught the UNI.

In order to formalize the IP-over-optical network, the Internet Engineering Task Force

(IETF) proposed three interconnection models (Rajagopalan et al., 2000) : overlay, peer and

augmented models.

The overlay model is the model currently used by the operators. Under this model, the

IP network routing, topology distribution, and signaling protocols are independent of the

corresponding protocols in the optical network. The client network requests a connection

between two routers. The optical network offers end-to-end wavelength services to client

network via the UNI to respond to this request. In this model, the client network has otherwise

no control over the exact routing and priority received within the intelligent optical network
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Fig. 1 An IP-over-optical
network

which has full control over its network ressources. The advantage of the overlay model is that

it is the most practical for near-term deployment. Its drawback is that it requires the creation

and management of IP routing adjacencies over the optical network.

Under the peer model, the IP and optical networks are treated together as a single integrated

network managed and traffic engineered in a unified manner. In this regard, the optical

switches are treated just like any other IP router as far as the control plane is concerned. IP

routers and optical switches use the same addressing scheme. The optical network elements

become IP addressable entities. The optical network topology is fully visible to routers. A

single routing protocol instance runs over both the IP and optical domains. The advantage

of the peer model is that it allows seamless interconnection of IP and optical networks. The

architecture is scalable, functionality is not duplicated and conflicts between several control

planes do not arise. Its drawback is that it requires routing information specific to optical

networks to be known to IP routers. There are excessive information flows between the two

networks. This type of tight integration may not be pratical in the near term. Despite its

drawbacks, the peer model can be expected to be the architecture to be adopted in the long

term if IP indeed dominates the scene.

The augmented model is between the overlay and the peer models. There are separate

routing instances of the same routing protocol in the IP and optical domains, but with limited

routing exchange between the two domains. Some reachability information is exchanged

between the two networks but the topology of the optical network is opaque to the client

network. This option may be a good compromise in that it is relatively easy to deploy in the

near term compared to the peer model, and at the same time it is less rigid and more efficient

than the overlay model.

The introduction of the peer model (and the GMPLS control plane) gives rise to new

survivability issues for the IP-over-optical networks. For example consider the IP-over-optical

network given in Figure 1. Suppose that the link R1 − R2 of the IP network, corresponds to

the optical path S1 − S3 − S2, and the link R1 − R4 corresponds to the path S1 − S3 − S4.

Here, the network is not survivable. For instance, if the optical link S1 − S3 fails, then the

links in the IP network R1 − R2 and R1 − R4 are cut, and therefore the router R1 is no

more connected to the rest of the routers. In consequence, survivability strategies have to be

considered. If the transport network is fixed, one has to determine the suitable client network

topology for the network to be survivable. If however, the client network is fixed as well as

its routing, then we have to determine an optimal survivable routing in the transport network.

And finally if none of both layers is fixed, then a routing has to be determined for each of the
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layers in order to get a whole survivable network. In this paper we shall be interested in the

first problem.

3. The multilayer survivable IP network design problem

3.1. The problem

The first major survivability requirement used in telecommunications networks is the so-

called 2-connectivity. That is there must exist at least two edge-disjoint paths between every

pair of nodes in the network. This implies that the network remains connected in the event of

any single edge failure. The problem of finding a minimum cost 2-edge connected subgraph

has been extensively investigated in the past decade (Barahona and Mahjoub, 1995; Grötschel,

Monma, and Stoer, 1995; Kerivin, 2000; Kerivin, Mahjoub, and Nocq, 2004; Mahjoub, 1994;

Stoer, 1992).

The assumption that only one edge may fail at a time is based on the naive idea that the

links in the network are independant and no equipment can be commonly used by two distinct

links. However, this is not the case, for instance, for the IP-over-optical networks, when the

optical layer is taken into account in the management of the IP network.

In fact, any edge of the client network is supported by a path in the optical network

(lightpaths). That is the traffic of an edge in the client network is routed in the optical

network along the path corresponding to that edge. Therefore an edge of the optical network

may appear in several paths supporting distinct edges. In consequence, the failure of an edge

in the optical network may affect several optical paths, and hence the edges of the client

network corresponding to these paths. Moreover, these edges may all fail at the same time.

Consequently, a more realistic model which has to be investigated, would consist in

designing a minimum cost client network that remains connected for any simple edge failure

in the transport network.

In this section we consider this problem. More precisely we consider the overlay model

where the IP and optical networks are separated. We suppose that the topology and the routing

of the optical network are fixed and satisfy some survivability requirements. We suppose that

a set of IP routers (resp. optical switches) is given as well as the possible links between the

routers (resp. switches). As the routing of the optical network is known, one can determine

for each optical link e, the set of edges of the IP network that may be affected if e is cut.

If a certain cost is associated with each edge of the IP network, the multilayer survivable
IP network design problem (MSIPND problem) is to find the set of links to be installed in

the IP network so that if a failure occurs on an optical link, the IP subnetwork obtained by

removing the corresponding edges is connected.

In what follows we give an integer programming formulation for the MSIPND problem.

To this end, we first introduce some definitions and notations.

3.2. Definitions and notations

We consider undirected and finite graphs. We denote a graph by G = (V, E) where V is the

node set and E the edge set of G. If e ∈ E is an edge between two nodes u and v, then we

also write e = uv to denote e. Given W ⊆ V , we denote by δG(W ) the set of edges of G
having exactly one node in W . The edge set δG(W ) is called a cut. A subset F ⊆ E of G
is called an edge cutset if F is a cut. If W ⊂ V , W denotes V \W . For F ⊆ E we let G\F
denote the subgraph of G obtained by removing the edges of F and by G[F] the subgraph of

G induced by F . If F = {e}, we write G\e for G\{e}. For W ⊆ V , we denote by G(W ) the
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Fig. 2 Graphs of an
IP-over-optical network

subgraph of G induced by W . If U and W are two node subsets such that U ∩ W = ∅, then

we denote by [U, W ] the set of edges having one node in U and the other in W . If V1, . . . , Vp

is a partition of V , we let δG(V1, . . . , Vp) denote the set of edges of G between the elements

of the partition. For F ⊂ E , VG(F) denotes the set of nodes of the edges of F . For W ⊂ V ,

EG(W ) denotes the set of edges of E having both endnodes in W .

Given a graph G = (V, E), contracting an edge set F of G consists in contracting the

nodes of VG(F) to a new node w (retaining parallel edges). A path P in G = (V, E) is an

alternate sequence of nodes and edges (v1, e1, v2, e2, . . . , vp, ep, vp+1) such that ei = vivi+1

for i = 1, . . . , p and vi �= v j for i = 1, . . . , p + 1, j = 1, . . . , p + 1. Nodes v1, vp+1 are

the extremities of P and we will say that P goes from v1 to vp+1 or P is between v1 and

vp+1. If no confusion may arise, we will sometimes denote P by either its sequence of edges

(e1, . . . , ep) or its sequence of nodes (v1, . . . , vp+1). A chord of P is an edge of G that is

not in P and that connects two nodes of P . A path P is called a cycle if vp+1 = v1, p ≥ 1,

v1, . . . , vp+1 are all distinct, and e1, . . . , ep are all distincts.

Given a vector x ∈ IRE and F ⊆ E , we let x(F) = ∑
e∈F x(e).

Throughout the paper, given an IP-over-optical network, we suppose that to each router

of the IP layer corresponds exactly one optical switch. We will represent an IP-over-optical

network by two graphs G1 = (V 1, E1) and G2 = (V 2, E2), that represent the IP and optical

networks, respectively. The nodes of G1 (resp. G2) correspond to the routers of the IP layer

(resp. the optical switches), and the edges represent the possible links between the routers

(resp. switches). For an edge f ∈ E1, we denote by Pf the path in G2 corresponding to f .

Figure 2 shows graphs G1 and G2 corresponding to the IP-over-optical network of Fig. 1. In

G2, are indicated two paths Pe and Pf which correspond to the edges e and f of G1.

3.3. Formulation

In terms of graphs, the MSIPND problem can be presented as follows. Let c : E1 −→ IR+ be

a function that associates with each edge f of graph G1 = (V 1, E1), a cost c( f ) > 0. For an

edge e of graph G2 = (V 2, E2) corresponding to the optical network, let Fe be the set of edges

of the IP network that may be affected by a failure of e, that is Fe = { f ∈ E1 | e ∈ Pf }. Then,

the MSIPND problem consists in finding a minimum weight subgraph H of G1 such that for

every edge e ∈ E2, the graph obtained from H by removing the edges of Fe is connected.

Note that if |Fe| = 1 for all e ∈ E2 and
⋃

e∈E2 Fe = E1, the MSIPND problem is nothing

but the 2-edge connected subgraph problem. As this latter problem is NP-hard, the MSIPND

problem so is.
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In order to formulate this problem, let us associate with each F ⊆ E1, the inci-

dence vector x F given by x F ( f ) = 1 if f ∈ F and x F ( f ) = 0 otherwise. It is not hard

to see that the MSIPND problem is equivalent to the following integer programming problem:

Minimize
∑
f ∈E1

c( f )x( f )

x(δG1\Fe
(W )) ≥ 1 for all W ⊆ V 1, ∅ �= W �= V 1, for all e ∈ E2, (1)

0 ≤ x( f ) ≤ 1 for all f ∈ E1, (2)

x( f ) ∈ {0, 1} for all f ∈ E1. (3)

Inequalities (1) express the fact that G1 remains connected after removing the edges of

Fe, for all e ∈ E2. They will be called cut inequalities. Inequalities (2) are called trivial
inequalities.

In the MSIPND problem we suppose that the failures may happen only on the links

of the optical network. We may also consider the case when the failures may affect the

optical switches as well. For this, one can associate with each node v ∈ V 2 the edge set

Fv = ⋃
e∈δ(v) Fe. The problem here would be to find a subgraph H such that for each e ∈ E2

(v ∈ V 2), the subgraph of H obtained by removing Fe (Fv) is connected. The problem in

this case can be formulated in a similar way.

4. Associated polyhedron and valid inequalities

In this section we will discuss the polytope associated with the MSIPND problem. We will

describe its dimension and identify three classes of valid inequalities.

Throughout the two following sections we consider a graph G = (V, E) and a family

F = {F1, . . . , Ft } ⊆ 2E with t ≥ 2 of edge subsets of E . For i ∈ {1, . . . , t}, we will

denote by Gi = (V, Ei ) the subgraph of G obtained by removing the edges of Fi . Hence

Ei = E\Fi . Let MSIPND(G,F) denote the convex hull of the integer solutions of the system

x(δGi (W )) ≥ 1 for all W ⊆ V, ∅ �= W �= V, i = 1, . . . , t, (4)

0 ≤ x( f ) ≤ 1 for all f ∈ E . (5)

Note that if G = G1 and F = {Fe, e ∈ E2}, MSIPND(G,F) is nothing but the polytope

associated with the MSIPND problem. MSIPND(G,F) will then be called the Multilayer
Survivable IP Network Design Polytope. We will assume that a solution of the MSIPND

problem is a set of edges T ⊆ E such that G[T \Fi ] is connected for i = 1, . . . , t . We will

denote by S(G,F) the set of solutions of the MSIPND problem with respect to G and F .

We will also assume that E ∈ S(G,F).

An edge e of G is said to be essential if there is i ∈ {1, . . . , t} such that e is an edge cutset

of Gi . Note that e is essential if and only if e belongs to every solution T ∈ S(G,F). Let

E∗ be the set of essential edges of G. The following theorem gives the dimension of the

polytope.

Theorem 4.1. dim(MSIPND(G,F)) = |E | − |E∗|.
Springer



48 Ann Oper Res (2006) 146:41–73

Proof: If e ∈ E∗, as e ∈ T for all T ∈ S(G,F), the constraint x(e) = 1 is an equation of

the linear system describing MSIPND(G,F). Hence dim(MSIPND(G,F)) ≤ |E | − |E∗|.
On the other hand, if e ∈ E\E∗, Te = E\{e} ∈ S(G,F). By considering the sets Te, e ∈
E\E∗ and E , we have that the incidence vectors xTe , e ∈ E\E∗, x E are affinelly independent.

Thus dim(MSIPND(G,F)) ≥ |E | − |E∗|, and therefore the theorem follows. �

As a consequence of Theorem 4.1, we have the following corollary.

Corollary 4.2. MSIPND(G,F) is full dimensional if and only if Gi is 2-edge connected for
i = 1, . . . , t .

In the remainder of this section we assume that MSIPND(G,F) is full dimensional. We

also assume that G = (V, E) is a complete graph. This latter assumption is not restrictive

since the problem in an incomplete graph can be reduced to the problem in a complete graph

by giving sufficiently high cost to non-existing edges. We also suppose that every edge of G
belongs to some Fi ∈ F . In the following, we introduce three classes of valid inequalities.

We also give necessary conditions and sufficient conditions for these inequalities to be facet

defining. We assume that the reader is familiar with polyhedral combinatorics, for more

details see Schrijver (2003).

A subgraph H = (W, F) of G = (V, E) is said to be F-connected with respect to F =
{F1, . . . , Ft } if for all i ∈ {1, . . . , t}, the graph H\Fi is connected. H is said to be 2-F-
connected if for all e ∈ F , the graph H\e is F-connected.

4.1. Partition inequalities

Proposition 4.3. Let V1, . . . , Vp, p ≥ 2, be a partition of V and Fi ∈ F . Then

x(δGi (V1, . . . , Vp)) ≥ p − 1 (6)

is valid for MSIPND(G,F).

Proof: Since Gi must be connected, every graph obtained from Gi by contraction of edges

must also be connected, and hence contains a spanning tree. If the number of nodes of the

contracted graph is p, then this graph contains at least p − 1 edges. �

Inequalities (6) are called partition inequalities.

If G = (V, E) is a graph and V1, . . . , Vp, p ≥ 2, is a partition of V , we denote by G̃ =
(Ṽ , Ẽ) the subgraph of G obtained by contracting the nodes of Vj , j = 1, . . . , p. Hence

G̃i = (Ṽ , Ẽi ) will denote the graph obtained from Gi , i = 1, . . . , t , by contracting the sets

V1, . . . , Vp. We also denote by F̃i the restriction of Fi in Ẽ .

Theorem 4.4. Inequality (6) defines a facet of MSIPND(G,F) only if

(a) Gi (Vj ) is 2-edge connected, for j = 1, . . . , p,

(b) G(Vj ) is F-connected for j = 1, . . . , p, if Ẽ ∩ Fi = ∅,

(c) for every j ∈ {1, . . . , t}\{i} such that Fj ∩ Ẽi �= ∅, there is an edge set T̃ ⊆ Ẽi such that

(c.1) Fj ∩ T̃ �= ∅,

(c.2) G̃i [T̃ ] is a tree and,

(c.3) any cut δG̃(W ) intersects Fi , if W ⊂ Ṽ and δG̃i
(W ) = Fj ∩ T̃ ,
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(d) there exists an edge set T̃ ⊂ Ẽi that induces a tree in G̃i , and such that

T0 = T̃ ∪ Fi ∪ ( ∪p
j=1 EG(Vj )

)
is a solution of S(G,F),

Proof:

(a) Suppose for instance that Gi (V1) is not 2-edge connected. Hence there is a partition

V 1
1 , V 2

1 of V1 such that |[V 1
1 , V 2

1 ]\Fi | ≤ 1. Consider the partition V ′
1, . . . , V ′

p+1 such that

V ′
1 = V 1

1 ,

V ′
2 = V 2

1 ,

V ′
j = Vj−1 for j = 3, . . . , p + 1.

If [V 1
1 , V 2

1 ]\Fi = ∅, then inequality (6) is dominated by the partition inequality corre-

sponding to partition V ′
1, . . . , V ′

p+1. If this is not the case and, hence [V 1
1 , V 2

1 ]\Fi = { f }
for some edge f , then inequality (6) can be written as the sum of −x( f ) ≥ −1 and the

partition inequality associated with V ′
1, . . . , V ′

p+1.

(b) Suppose that G(V1) is not F-connected. Then there is k ∈ {1, . . . , t} such that Gk(V1) is

not connected. In consequence, there is a partition V 1
1 , V 2

1 of V1 with [V 1
1 , V 2

1 ]\Fk = ∅.

If Ẽ ∩ Fi = ∅, then any solution of S(G,F) must contain at least p edges from Ẽi . This

implies that inequality (6) is satisfied with strict inequality by the incidence vector of any

solution of S(G,F). Therefore (6) can not define a facet.

(c) Assume the contrary. Then let j ∈ {1, . . . , p}\{i} with Fj ∩ Ẽi �= ∅ such that for every

T̃ ⊆ Ẽi , at least one of the statements (c.1) (c.2) and (c.3) is not satisfied. We will

show that (6) can not define a facet. As Fj ∩ Ẽi �= ∅, let f ∈ Fj ∩ Ẽi . If inequality (6)

defines a facet, as (6) is different from the inequalities x( f ) ≥ 0, there must exist a

solution, say T ∈ S(G,F) containing f whose incidence vector satisfies inequality (6)

as equation. As G[T \Fi ] is connected, T̃ = T ∩ Ẽi induces a connected subgraph of G̃i .

Moreover as |T̃ | = |T ∩ Ẽi | = p − 1, T̃ must be a tree in G̃i . Note that f ∈ T̃ and hence

T̃ ∩ Fj �= ∅. Therefore T̃ satisfies (c.1) and (c.2). By our hypothesis, T̃ does not thus

satisfy (c.3). Let W ⊆ Ṽ be a node set that induces the unique cut δG̃i
(W ) in G̃i such that

δG̃i
(W ) = T̃ ∩ Fj . (This cut can be detected by a simple labeling of the nodes.) As T̃

does not satisfy (c.3), it follows that δG̃(W ) ∩ Fi = ∅. Since δG̃i
(W ) = T̃ ∩ Fj , we have

that δG̃(W ) ∩ T ⊆ Fj , and therefore the subgraph induced by T \Fj is not connected.

But this contradicts the fact that T is a solution of S(G,F).

(d) If the statement does not hold, then every solution of S(G,F) contains at least p edges

from Ẽi . Hence the face defined by inequality (6) is empty, and therefore this inequality

can not define a facet.
�

Theorem 4.5. Inequality (6) defines a facet of MSIPND(G,F) if

(a) condition (a), (b), (c) of Theorem (4.4) are satisfied,

(b) G(Vi ) is 2-F-connected for i = 1, . . . , p,

(c) there is T̃ ⊆ Ẽi satisfying condition (d) of Theorem 4.4, such that for all W ⊂ Ṽ
and Fj , j �= i , if δG̃(W ) ∩ (F̃i\F̃j ) = ∅ (resp. |δG̃(W ) ∩ (F̃i\F̃j )| = 1), then |δG̃(W ) ∩
(T̃ \F̃j )| ≥ 2 (resp. |δG̃(W ) ∩ (T̃ \F̃j )| ≥ 1),

(d) G̃i is 2-node connected.

Springer



50 Ann Oper Res (2006) 146:41–73

Proof: Let us denote inequality (6) by ax ≥ α, and let bx ≥ β be a facet defining inequality

of MSIPND(G,F) such that {x ∈ MSIPND(G,F)|ax = α} ⊆ {x ∈ MSIPND(G,F)|bx =
β}. To show that ax ≥ α define a facet, it suffices to show that there is ρ > 0 such that b = ρa.

For this, we first prove that there exists ρ ∈ IR such that

b(e) = ρ for all e ∈ Ẽi . (7)

By condition c) there exists an edge set T̃ ⊆ Ẽi inducing a tree in G̃i such that T0 = T̃ ∪
Fi ∪ (∪ j=1,...,p EG(Vj )) belongs to S(G,F). Let T̃0 = T̃ ∪ F̃i . We have that T̃0 is a solution

of S(G̃, F̃). As T̃ is a spanning tree in G̃i , for any edge e ∈ Ẽi\T̃ , there is a unique cycle in

G̃i formed by e and a path of T̃ . We will denote by Ce, Ve and Pe, this cycle, its node set and

the path of T̃ in Ce, respectively.

Let e ∈ Ẽi\T̃ . Let f ∈ Ce\{e}. Let Te = (T0\{ f }) ∪ {e}. We claim that Te ∈ S(G,F). As

T0 ∈ S(G,F), it suffices to show that T̃e = (T̃0\{ f }) ∪ {e} is a solution of S(G̃, F̃). First of

all note that, as (T̃ \{ f }) ∪ {e} is a tree in G̃i , T̃e\F̃i induces a connected subgraph in G̃i . Now

consider a set F̃j , j �= i . If f ∈ F̃j , as T̃0 ∈ S(G̃, F̃) and hence G̃[T̃0\F̃j ] is connected, it

follows that G̃[T̃e\F̃j ] is connected. So suppose f �∈ F̃j . If G̃[T̃e\F̃j ] is not connected, then

there is W ⊆ Ṽ such that δG̃(W ) ∩ (T̃e\F̃j ) = ∅. As G̃[T̃0\F̃j ] is connected, one should have

δG̃(W ) ∩ (T̃0\F̃j ) = { f }. Hence δG̃(W ) ∩ (F̃i\F̃j ) = ∅ and |δG̃(W ) ∩ (T̃ \F̃j )| < 2. But this

is a contradiction. Thus G̃[T̃e\F̃j ] is connected. In consequence, T̃e ∈ S(G̃, F̃), and therefore

Te ∈ S(G,F).

As axT0 = axTe = α, we have bxT0 = bxTe = β and in consequence b(e) = b( f ). As f
is an arbitrary edge of Ce and e is arbitrary in Ẽi\T̃ , we have

b(e) = b( f ) for all f ∈ Ce, for all e ∈ Ẽi\T̃ . (8)

If Ce contains a chord, say h = uv, not in Fi , then h ∈ Ẽi\T̃ . Note that Ch\{h} ⊂ Ce. By

(8) with respect to e and Ce and h and Ch we obtain that b(e′) = ρ for some ρ for all edge

e′ ∈ Ce ∪ Ch . As h is an arbitrary chord of Ce, we get

b(e′) = ρ for all e′ ∈ EG̃i
(Ve). (9)

Since by d) G̃i is 2-node connected, Ẽi\T̃ �= ∅. Hence, by the above development together

with (9), we may suppose that there is a node subset U ⊂ Ṽ such that the restriction of T̃ on

U , say T̃U is a spanning tree in G̃i (U ), and

b(e) = ρ for all e ∈ EG̃i
(U ). (10)

If U = Ṽ , then (7) is satisfied and we are done. Suppose this is not the case. So to prove (7), it

suffices to show that there is a subset U ′ that strictly contains U and for which (10) holds. As

T̃ is a spanning tree in G̃i , there exists an edge say g = uw of T̃ that belongs to the cut δG̃i
(U )

with u ∈ U and w ∈ Ṽ \U . Since T̃U is a spanning tree in G̃i (U ), there must exist a node

u′ ∈ U such that g′ = uu′ is an edge of T̃U . As G̃i is 2-node connected, there must exist a path

P between u′ and w not going through u. Let C be the cycle formed by g together with g′ and

P . We claim that there is at least one edge, say e′, in C\T̃ such that the path Pe′ of Ce′ contains

both edges g and g′. In fact, if not, then the edge set T ∗ = {g, g′} ∪ {⋃e∈C\T̃ Pe} ∪ (T̃ ∩ C)

contains a cycle. As T ∗ ⊂ T̃ , this is impossible. In consequence, cycle Ce′ contains g and g′.
By (10), we have b(e) = ρ ′ for some ρ ′ ∈ IR and for all edge e ∈ EG̃i

(Ve′ ). As g and g′ belong
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to Ce′ , from (8) we have ρ = ρ ′, and therefore b(e) = ρ for all e ∈ EG̃i
(U ∪ Ve′ ). As w ∈ Ve′ ,

U ′ = U ∪ Ve′ strictly contains U . Moreover we have that b(e) = ρ for all e ∈ EG̃i
(U ′), which

completes the proof of (7).

If e is an edge of δG(V1, . . . , Vp) ∩ Fi , we can show as above that T̃ ′
0 = T̃0\{e} is a solution

of S(G,F). As ax T̃ ′
0 = ax T̃0 = α and thus bx T̃ ′

0 = bx T̃0 = β, this implies that b(e) = 0. Also

if f is an edge of EG(Vi ), as by b) G(Vi ) is 2-F-connected, T̃0\{ f } ∈ S(G,F), and similary

we get b( f ) = 0.

All together we have

b(e) =
{

ρ for all e ∈ δGi (V1, . . . , Vp),

0 for all e ∈ ∪(∪ j=1,...,p EG(Vj )).

Thus b = ρa. Since the face induced by bx ≥ β is a facet of MSIPND(G,F), b ≥ 0. There-

fore ρ > 0 which ends the proof of the theorem. �

Remark that the partition inequalities have only coefficients 0 and 1. Our second class of

inequalities, given in the following, may have non 0-1 coefficients.

4.2. Cut-cycle inequalities

In this section we introduce a further class of valid inequalities for the MSIPND(G,F). These

inequalities are induced by edge subsets of cuts, and may have arbitrary high coefficients.

Theorem 4.6. Let W ⊂ V and T1 = {e1, . . . , es}, s ≥ 3, be an edge subset of δG(W ). Let 1 ≤
q < s be an integer. Suppose that for every i = 1, . . . , s, there is ji ∈ {1, . . . t} such that Fji ∩
T1 = {ei , . . . , ei+q−1} (the indices are modulo s). Let T2 = δG(W )\(T1 ∪ (

⋂
i=1,...,s Fji )). For

e ∈ δG(W ), let re = |{i ∈ {1, . . . , s} | e ∈ δG(W )\Fji }|, and r be the smallest integer such that
r (s − q) ≥ maxe∈T2

{re} . Then the inequality

x(T1) + r x(T2) ≥
⌈

s

s − q

⌉
(11)

is valid for MSIPND(G,F).

Proof: The following inequalities are valid for MSIPND(G,F).

x(δG ji
(W )) ≥ 1 for all i = 1, . . . , s, (12)

(r (s − q) − re)x(e) ≥ 0 for all e ∈ T2. (13)

By summing these inequalities we obtain

(s − q)x(T1) + r (s − q)x(T2) ≥ s.

By dividing this inequality by s − q and rounding up the right hand side we get inequality

(11). �

Inequalities (11) will be called cut-cycle inequalities.
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Fig. 3 A fractional extreme point

Consider for example the graph G = (V, E) shown in Fig. 3. Let F = {F1, . . . , F5}
such that Fi = { f, ei , ei+1} (the indices are modulo 5). Let W = {w}. Let T1 = {e1, . . . , e5}.
Observe that Fi ⊂ δ(W ) for i = 1, . . . , 5 and T2 = ∅. By Theorem 4.6, it follows that the

inequality x(T1) ≥ 2 is valid for MSIPND(G,F). Moreover we can see that this cut-cycle

inequality cuts the extreme point given by x̄(ei ) = 1
3

for i = 1, . . . , 5, x̄( f ) = 1 and x̄(e) = 1

otherwise. The solution x̄ is an extreme point of the polytope given by the cut and the partition

inequalities.

In what follows we restrict ourselves to the case where q = 1 and δG(W )\(T1 ∪ T2) = ∅.

We give necessary and sufficient conditions for inequality (11) to be facet defining in this case.

When solving the MSIPND(G,F) by cutting planes, we remarked that most of cut-cycle

violated inequalities are of that type.

Theorem 4.7. Suppose q = 1 and δG(W )\(T1 ∪ T2) = ∅. Then inequality (11) defines a
facet of MSIPND(G,F) if and only if the following conditions are satisfied.

(a) T1 is maximal, that is for every edge e of T2 there is i ∈ {1, . . . , s} such that e ∈ Fji .
(Note that in this case we have r = 1.)

(b) G(W ) and G(W ) are F-connected.

(c) If G(W ) (resp. G(W )) is not 2-F-connected, then for every edge e ∈ EG(W ) such that
G(W )\e (resp. G(W )\e) is not F-connected, there are two edges g1, g2 ∈ δG(W ) such
that

(c.1) g1, g2 �∈ Fi , for all i ∈ Ie,

(c.2) |Fj ∩ {g1, g2}| ≤ 1 for all j ∈ {1, . . . , t}\Ie,

(c.3) for every subset W1 of W (resp. W ′
1 of W ) such that δG(W1, W\W1) ⊂ Fi ∪ {e} (resp.

δG(W ′
1, W\W ′

1) ⊂ Fi ∪ {e}) for some i ∈ Ie, we have |δG(W1, W ) ∩ {g1, g2}| = 1

(resp. |δG(W ′
1, W ) ∩ {g1, g2}| = 1).

Here Ie denotes the set {i ∈ {1, . . . , t} | Gi (W )\e is not connected} (resp. {i ∈
{1, . . . , t} | Gi (W )\e is not connected}.

Proof: Necessity:

(a) Suppose there is an edge f of T2 that does not belong to any of the sets Fji , i = 1, . . . , s.

Then r f = s. As q = 1, it follows that r = 2 and therefore the cut-cycle inequality

corresponding to T1 and T2, in this case, can be written as

x(T1) + 2x(T2) ≥ 2. (14)
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Since every edge of E belongs to some Fi , there is l ∈ {1, . . . , t}\{ j1, . . . , js} such that

f ∈ Fl . Consider the sets T ′
1 = T1 ∪ { f } and T ′

2 = T2\{ f }. Consider the valid inequalities

x(δGl (W )) ≥ 1,

x(e) ≥ 0 for all e ∈ (T1 ∩ Fl ),

2x(e) ≥ 0 for all e ∈ (T2 ∩ Fl )\{ f },
x( f ) ≥ 0.

By summing these inequalities, the inequalities (12) and the inequalities (13) for all

e ∈ T2\{ f }, we obtain

sx(T ′
1) + 2sx(T ′

2) ≥ s + 1.

(Recall that r = 2.) Dividing by s and rouding up the right hand side, imply that the

inequality

x(T ′
1) + 2x(T ′

2) ≥ 2

is valid for MSIPND(G,F). As this inequality dominates (14), the latter one can not

define a facet.

Thus T1 must be maximal. And as a consequence, we have re ≤ s − 1 for all e ∈ T2. As

q = 1, it then follows that r = 1.

(b) Suppose that for some i ∈ {1, . . . , t}, we have for instance that, Gi (W ) is not connected.

Then there is a partition W1, W2 of W such that δGi (W1, W2) = ∅. Hence δGi (W1) =
δGi (W1, W ) and δGi (W2) = δGi (W2, W ). Thus

x(δGi (W )) = x(δGi (W1, W )) + x(δGi (W2, W ))

= x(δGi (W1)) + x(δGi (W2))

≥ 2.

As δGi (W ) ⊆ T1 ∪ T2 and x(e) ≥ 0 for all e ∈ E , we have, in consequence, x(T1) +
x(T2) ≥ 2. But this inequality dominates(14), and hence (14) is not facet defining.

(c) We will prove the statement for G(W ), the proof is similar for G(W ). So suppose that

G(W ) is not 2-F-connected. Suppose that the statement does not hold for an edge e ∈
EG(W ). We claim that every solution T of S(G,F) such that |T ∩ δG(W )| = 2 contains

e. In fact, assume on the contrary, that e �∈ T . Let g1, g2 be the edges of δG(W ) in T .

Thus g1, g2 do not satisfy at least one of the conditions (c.1), (c.2), (c.3).

– If g1, g2 do not satisfy (c.1), then there is i ∈ Ie such that for instance g1 ∈ Fi . Then

there is W1 ⊂ W such that δG(W1, W\W1) ∩ T ⊆ Fi ∪ {e}. W.l.o.g., we may assume

that g1 ∈ δG(W1, W ). If g2 ∈ δG(W\W1, W ) (resp. g2 ∈ δG(W1, W )), then δGi (W1) ∩
T = ∅ (resp. δGi (W\W1) ∩ T = ∅). Hence the graph induced by T \Fi is not connected,

a contradiction.

– If there is j ∈ {1, . . . , t}\Ie such that g1, g2 ∈ Fj then clearly T \Fj does not induce a

connected graph, a contradiction.

– Now suppose that g1, g2 do not satisfy (c.3). Then we may assume that there is a parti-

tion (W1, W\W1) of W and i ∈ Ie such that δG(W1, W\W1) ⊂ Fi ∪ {e} and δG(W1, W )

either contains {g1, g2} or does not intersect this set. If {g1, g2} ⊂ δG(W1, W )

(resp. {g1, g2} ∩ δG(W1, W ) = ∅), then δGi (W1) ∩ T = ∅ (resp. δGi (W\W1) ∩ T = ∅).
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Hence T �∈ S(G,F), a contradiction.

Thus for all T ∈ S(G,F) such that |T ∩ δG(W )| = 2, we have e ∈ T . This implies

that the face defining by (14) is contained in {x ∈ MSIPND(G,F) } x(e) = 1}. As

(14) is not a trivial inequality, it follows that (14) does not define a facet.

Sufficiency: Suppose δG(W ) ∩ (T1 ∪ T2) = ∅ and q = 1. Suppose also that conditions (a), (b)

and (c) are satisfied. By (a) inequality (11) can be written as

x(T1) + x(T2) ≥ 2.

Let us denote inequality (11) by ax ≥ α, and let bx ≥ β be a facet defin-

ing inequality of MSIPND(G,F) such that {x ∈ MSIPND(G,F) } ax = α} ⊆ {x ∈
MSIPND(G,F) } bx = β}. To show that ax ≥ α defines a facet we will show as before

that there is ρ > 0 such that b = ρa.

As s ≥ 3, let e1, e2 be two edges of T1. Let

�0 = {e1, e2} ∪ EG(W ) ∪ EG(W ).

As e1 and e2 belong to different Fi ’s, and by condition (b) both graph G(W ) and G(W ) are

F-connected, it follows that �0 ∈ S(G,F). Consider the edge sets �i = (�0\{e1}) ∪ {ei } for

i = 3, . . . , s. Clearly, �i ∈ S(G,F) for i = 3, . . . , s. Moreover we have ax�0 = ax�i = α.

Hence bx�i = bx�0 = β and in consequence b(ei ) = b(e1) for i = 3, . . . , s. By symmetry,

we then obtain that

b(e) = ρ for some ρ ∈ IR, for all e ∈ T1. (15)

Now consider an edge f ∈ T2. By condition (a), there is i ∈ {1, . . . , s} such that f ∈ Fji .

Consider the set � f = (�i\{ei }) ∪ { f } (resp. � f = (�0\{ei }) ∪ { f }) if i ∈ {3, . . . , s} (resp.

i ∈ {1, 2}) where �0 and �i are the edge sets introduced above. Clearly ax� f = ax�i =
ax�0 = α. Thus bx� f = bx�i = bx�0 = β, and therefore b( f ) = b(ei ). This together with

(15) yield

b(e) = ρ for all e ∈ T1 ∪ T2. (16)

Consider an edge e ∈ EG(W ). If G(W )\e is F-connected, then �0\{e} is a solution of

S(G,F), and hence b(e) = 0. If not, then by (c), there are two edges g1, g2 that satisfy con-

ditions (c.1), (c.2), (c.3). Let �′
0 = (�0\{e1, e2, e}) ∪ {g1, g2}. We claim that �′

0 ∈ S(G,F).

In the following, we will denote by Hi the subgraph of G induced by �′
0\Fi , for i ∈ {1, . . . , t}.

Let Fi such that i ∈ Ie (where Ie is defined in condition (c)). By (c.1), g1, g2 �∈ Fi .

As G(W ) is F-connected, if Hi is not connected, then there must exist W1 ⊂ W , such

that δHi (W1) = ∅. Since EG(W )\{e} ⊂ �′
0, it follows that δG(W1, W\W1) ⊂ Fi ∪ {e} and

g1, g2 ∈ δG(W\W1, W ). But this contradict (c.3).

Now consider a set Fi with i ∈ {1, . . . , t}\Ie. Then Gi (W )\e is connected. As by (c.2),

{g1, g2}\Fi �= ∅, and G(W ) is F-connected, we have that Hi is connected. Consequently

�′
0 ∈ S(G,F). Also we have ax�′

0 = α. Hence bx�′
0 = β. As bx�0 = β and by (16),

b(g1) = b(g2) = b(e1) = b(e2), we obtain that b(e) = 0.

Thus b(e) = 0 for all e ∈ EG(W ). Similarly we have that b(e) = 0 for all e ∈ EG(W ). This

together with (16) yield b = ρa. Moreover we should also have ρ > 0, and the proof is

complete. �
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Fig. 4 A fractional extreme point

Consider the graph displayed in Fig. 4 and the edge sets Fi = {ei+5} for i = 1, . . . , 5.

Let x̄ be the solution given by x̄(ei ) = 1
2

for i = 1, . . . , 5 and x̄(ei ) = 1 for i = 6, . . . , 10.

Clearly, x̄ satisfies the trivial and the cut inequalities with respect to F1, . . . , F5. Solution x̄
also satisfies the partition and the cut-cycle inequalities. Moreover, it is not hard to see that

x̄ is an extreme point of the polytope given by these inequalities. However, x̄ violates the

inequality

x(e1) + x(e2) + x(e3) + x(e4) + x(e5) ≥ 3,

which is valid for the associated polytope. In what follows we will show this as a special case

of a more general class of valid inequalities for the MSIPND(G,F).

4.3. star-partition inequalities

Let G = (V, E) be a graph and F = {F1, . . . , Ft }, with t ≥ 2, be a family of edge subsets of

E . Let V0, V1, . . . , Vp be a partition of V with p odd. Suppose that for every i = 1, . . . , p,

there is ji ∈ {1, . . . , t} such that Fji ∩ [Vi , V0] �= ∅. Let � = {e ∈ E | e ∈ [Vk, Vl ] ∩ Fjk ∩
Fjl , for some k, l ∈ {1, . . . , p}}. Let F = ⋃p

i=1(Fji ∩ [Vi , V0]) ∪ �. Such a configuration

will be called a star-partition configuration (see Fig. 5).

Consider the inequality

x(δG(V0, . . . , Vp)\F) ≥
⌈

p

2

⌉
. (17)

Theorem 4.8. Inequality (17) is valid for the MSIPND(G,F).

Proof: Clearly, the following inequalities are valid for the MSIPND(G,F).

x(δG\Fji
(Vi )) ≥ 1 for all i = 1, . . . , p,

x(e) ≥ 0 for all e ∈ δ(V0)\F,

x(e) ≥ 0 for all e ∈ ([Vk, Vl ] ∩ Fjk )\Fjl , k = 1, . . . , p, l = 1, . . . , p, k �= l.

By summing these inequalities, we obtain the inequality

2x(δ(V0, . . . , Vp)\F) ≥ p.
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Fig. 5 A star-partition configuration

By dividing by 2 and rounding up the right hand side we get inequality (17). �

For example, consider the star-partition configuration given in Fig. 5. The corresponding

partition has six elements V0, V1, . . . , V5. With each Vi it is associated an edge set Fji such

that Fji ∩ [Vi , V0] �= ∅ for i = 1, . . . , 5. These sets are represented by different types of lines.

Note that edge e7 belongs to both sets Fj1 and Fj2 , and hence � = {e7}. The star-partition

inequality corresponding to this configuration is given by

x(δ(V0, V1, . . . , V5)\F) ≥ 3,

where F = {e1, . . . , e6, e7}.
Inequalities (17) will be called star-partition inequalities.

Inequalities similar to (17) called F-partition inequalities have been introduced in Mahjoub

(1994) for the 2-edge (node) connected subgraph problem.

Let R ji = Fji ∩ [Vi , V0] for i = 1, . . . , p and � = F ∪ (
⋃

i=0,...,p EG(Vi )).

Theorem 4.9. Inequality (17) defines a facet of MSIPND(G,F) only if the following hold.

(a) There is an edge set T̃ ⊆ δG(V1, . . . , Vp) such that T̃ ∪ � ∈ S(G,F) and |T̃ | = p+1
2

.

(b) For every edge e ∈ [Vi , V ′
i ], i, i ′ ∈ {1, . . . , p}, there is no i0 ∈ {1, . . . , t} such that (R ji ∪

R ji ′ ∪ {e}) ⊆ Fi0
.

Proof: Suppose (17) defines a facet of MSIPND(G,F). It is clear that there exists a solution

T ∈ S(G,F) such that |T ∩ (δG(V0, . . . , Vp)\F)| = p+1
2

. For otherwise the face defined

by (17) would be empty, and hence can not be a facet. Let T ′ = T ∩ (δG(V0, . . . , Vp)\F).

Suppose that T ′ ∩ δG(V0) �= ∅. We claim that |T ′ ∩ δG(V0)| = 1. In fact, suppose that this

is not the case and let f1, f2 be two edges of T ′ ∩ δG(V0). Let i1, i2 ∈ {1, . . . , p} such

that f1 ∈ [Vi1
, V0] and f2 ∈ [Vi2

, V0], and suppose, w.l.o.g., that i1 �= i2. As T ∈ S(G,F),

and hence G[T \Fji ] is connected for i = 1, . . . , p, one should have T ∩ (δG(Vi )\Fji ) �=
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∅ for all i ∈ {1, . . . , p}\{i1, i2}. As T ∩ (δG(Vi )\Fji ) = T ′ ∩ (δG(Vi )\Fji ), we then have

T ′ ∩ (δG(Vi )\Fji ) �= ∅ for all i ∈ {1, . . . , p}\{i1, i2}. Since p is odd, this implies that

|T ′| ≥ p+3
2

, a contradiction.

In consequence, any solution of S(G,F), whose incidence vector satisfies (17) with

equality, contains at most one edge of δG(V0)\F . If a) does not hold, then every so-

lution of S(G,F) whose incidence vector satisfies (17) with equality contains exactly

one edge of δG(V0)\F . But this implies that the face defined by (17) is contained

in the hyperplane
∑

e∈δG (V0)\F x(e) = 1.But, this contradicts the fact that (17) defines a

facet.

Now consider an edge e ∈ [Vi , Vi ′ ] for some i, i ′ ∈ {1, . . . , p}. Since (17) is differ-

ent from inequality x(e) ≥ 0, there must exist a solution, say T1, of S(G,F) that con-

tains e and whose incidence vector satisfies (17) with equality. Let T̃1 = T1\�. Since

|T̃1| = p+1
2

, e can be adjacent to at most one edge of T̃1\{e} and [Vi , Vi ′ ] ∩ T̃1 = {e}. If

R ji ∪ R ji ′ ∪ {e} ⊆ Fi0
for some i0 ∈ {1, . . . , t}, then G[T1\Fi0

] is not connected, which is

impossible. �

Theorem 4.10. Inequality (17) defines a facet of MSIPND(G,F) if

(a) condition (a) of Theorem (4.9) is satisfied,

(b) G(Vi ) is 2-F-connected for i = 0, 1, . . . , p,

(c) for all i, i ′ ∈ {1, . . . , p}, e ∈ R ji and l ∈ {1, . . . , t}, (R ji ∪ R ji ′ )\(Fl ∪ {e}) �= ∅,

(d) for all e ∈ [Vi , Vi ′ ], i, i ′ ∈ {1, . . . , p}, there is no i0 ∈ {1, . . . , t} with either Fji ∪ {e} ⊆
Fi0

or Fji ′ ∪ {e} ⊆ Fi0
.

Proof: Let denote (17) by ax ≥ α and let bx ≥ β be a facet defining inequality of

MSIPND(G,F) such that {x ∈ MSIPND(G,F) | ax = α} ⊆ {x ∈ MSIPND(G,F) | bx =
β}. As we did before, we will show that b = ρa for some ρ > 0.

Let G̃ = (Ṽ , Ẽ) be the graph obtained by contracting the sets V0, . . . , Vp. Let p = 2k + 1,

k ≥ 1. By condition a) of Theorem 4.9 there is an edge set T̃ ⊆ δG(V1, . . . , Vp) such

that |T̃ | = k + 1 and T0 = T̃ ∪ � ∈ S(G,F). Hence T̃ ∩ δG(Vi ) �= ∅ for i = 1, . . . , 2k +
1. After eventual permutation of the sets V1, . . . , V2k+1, one may suppose that T̃ =
{e1, e3, . . . , ek+1} such that ei ∈ [V2i−1, V2i ] for i = 1, 2, . . . , k + 1 (where the indices are

taken modulo 2k + 1). Observe that T̃ ∩ δ(V1) = {e1, ek+1} and the edges of T̃ \{e1} are pair-

wise non-adjacent. Let e be an edge of δG(V2)\Fj2 between V2 and Vl , l �= 2. Consider the

edge set Te = (T0\{e1}) ∪ {e}. We claim that Te ∈ S(G,F).

Since by (b) G(Vi ) is 2-F-connected and hence F-connected, for i = 0, 1, . . . , 2k + 1, it

suffices to show that G̃[Te\Fj ] is connected for j = 1, . . . , t .
Consider a node Vi , i ∈ {1, . . . , p}. Let f be the edge of Te\� incident to Vi . Note that

f ∈ (T̃ \{e1}) ∪ {e}. Let i ′ such that f ∈ [Vi , Vi ′ ]. By (c), we have (R ji ∪ R ji ′ )\Fj �= ∅. And

by (d) we have that (Fji ∪ { f })\Fj �= ∅ �= (Fji ′ ∪ { f })\Fj . Hence in G̃[Te\Fj ], Vi is linked

to V0 by a path consisting of either one or two edges.

In consequence, in G̃[Te\Fj ] all the nodes Vi , i = 1, . . . , p are linked to V0. Therefore

G̃[Te\Fj ] is connected, yielding Te is a solution of S(G,F).

Since axT0 = axTe , we have bxT0 = bxTe and hence b(e1) = b(e). Since e is an arbitrary edge

of δG(V2)\Fj2 it follows that there is ρ2 such that

b(e) = ρ2 for all e ∈ δG(V2)\Fj2 . (18)
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Consider a node Vi , i ∈ {1, . . . , p}\{2}, and let i ′ ∈ {1, . . . , p}\{i} such that [Vi , Vi ′ ] ∩
(T̃ \{e1}) �= ∅. Note that either i ′ = i + 1 or i ′ = i − 1. Since G is complete, [Vi ′ , V2] �= ∅.

Let g be an edge of [Vi ′ , V2], and consider the edge set Tg = (T0\{e1}) ∪ {g}. By the above

development, Tg ∈ S(G,F). Also note that Tg has a structure similar to that of T0, that

is |Tg\�| = k + 1. Now along the same line as above, we can show that there is ρi such

that

b(e) = ρi for all e ∈ δG(Vi )\Fji . (19)

From (18) and (19), it follows that ρi = ρ for i = 1, . . . , p and some ρ ∈ IR, and therefore

b(e) = ρ for all e ∈ δG(V0, . . . , Vp)\F .

If e is an edge of EG(Vi ), for i ∈ {0, . . . , p}, as G(Vi ) is 2-F-connected, T ′
0 = T0\{e} is a

solution of S(G,F) and hence b(e) = 0.

Now let e be an edge of R ji for i ∈ {1, . . . , p}. We claim that T 0 = T0\{e} ∈ S(G,F).

Let i ′ ∈ {1, . . . , p}\{i} such that [Vi , Vi ′ ] ∩ T̃ �= ∅. Let j ∈ {1, . . . , t}. By (c) we have (R ji ∪
R ji ′ )\Fj �= ∅. If e ∈ Fj , then G(T 0\Fj ) = G(T0\Fj ), and therefore G(T 0\Fj ) is connected.

So suppose e �∈ Fj . By (c) (R ji ∪ R ji ′ )\(Fj ∪ {e}) �= ∅. Then in G̃[T̃0\Fj ] both nodes Vi and

Vi ′ are linked to V0. As T0 ∈ S(G,F) and hence all the other nodes are linked to V0, we have

that G̃[T 0\Fj ] is connected. Consequently, we get b(e) = 0. Similary we show that b(e) = 0

for all e ∈ �. We then have shown that

b(e) =
{

ρ for all e ∈ δG(V1, . . . , Vp)\F,

0 for all e ∈ �.

Thus b = ρa. As bx ≥ β is a facet defining, we also have ρ > 0. �

5. Reduction operations

Let P(G,F) be the polytope given by inequalities (4) and (5). In this section we introduce

some reduction operations defined with respect to a solution x of P(G,F). These permit

to reduce G and F to G ′ and F ′ and x to x ′ so that if x is an extreme point of P(G,F),

then x ′ is an extreme point of P(G ′,F ′). As it will turn out, these operations are useful in a

preprocessing phase of a cutting plane based algorithm for the MSIPND problem, then allow

to much accelerate the resolution of the problem. These operations use some ideas similar

to those developed by Kerivin et al. (Kerivin, Mahjoub, and Nocq, 2004) for the 2-edge

connected subgraph problem.

Given a solution x of P(G,F), we denote by E0(x) (resp. E1(x)) the set of edges e ∈ E
such that x(e) = 0 (resp. x(e) = 1). We also denote by τi (x) the set of cuts δGi (W ) tight for

x , that is x(δGi (W )) = 1.

If x is an extreme point of P(G,F), then there are subsets τ ′
i (x) ⊆ τi (x), i = 1, . . . , t

such that x is the unique solution of the system

S(x)

⎧⎪⎨⎪⎩
x(e) = 0 for all e ∈ E0(x),

x(e) = 1 for all e ∈ E1(x),

x(δGi (W )) = 1 for all δGi (W ) ∈ τ ′
i (x), i = 1, . . . , t,
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where |E0(x)| + |E1(x)| + ∑
i=1,...,t |τ ′

i (x)| = |E |.
Consider a solution x of P(G,F), we have the following lemmas.

Lemma 5.1. Let f ∈ E be an edge such that x( f ) = 0. Let G ′ = (V ′, E ′) be the graph
obtained from G by deleting f . Let F ′ = {F ′

1, . . . , F ′
t } with F ′

i = Fi\{ f } for i = 1, . . . , t .
Let x ′ be the restriction of x on E ′. Then x is an extreme point of P(G,F) if and only if x ′

is an extreme point of P(G ′,F ′).

Proof: Easy. �

Lemma 5.2. Let W ⊆ V be a node subset of V with δG(W ) = { f, g} such that x( f ) =
x(g) = 1. Suppose that f belongs to only one set of F , say Fi0

, and that Fi0
= { f }. Let

G ′ = (V ′, E ′) be the graph obtained from G by contracting f . Let F ′ = {F ′
1, . . . , F ′

t } with
F ′

i = Fi\{ f } for i = 1, . . . , t . If x is an extreme point of P(G,F) then x ′ is an extreme point
of P(G ′,F ′) where x ′ is the restriction of x on E ′.

Proof: Suppose x is an extreme point of P(G,F). First observe that as δG(W ) = { f, g},
f, g do not belong to the same Fi . For otherwise, one would have x(δGi (W )) = 0 < 1,

contradicting the fact that x is a solution of P(G,F). We claim that the cuts of system S(x)

are also cuts in G ′ and, hence tight for x ′. For this it suffices to show that for every cut δGi (U )

of S(x), we have δGi (U ) = δG ′
j
(U ′) for some U ′ ⊂ V ′ and j ∈ {1, . . . , t}, where G ′

j is the

graph obtained from G ′ by deleting F ′
j . Indeed, first note that, since x( f ) = x(g) = 1 and

S(x) is nonsingular, f, g �∈ δGi (U ). If f belongs to EG(U ) (resp. f ∈ EG(U )), then clearly

δGi (U ) = δG ′
i
(U ′), where U ′ = U (resp. U ′ = U ). Note that this case applies if i �= i0.

So suppose that i = i0, and that f ∈ δG(U ). Let J ⊂ {1, . . . , t} such that g ∈ Fj for

all j ∈ J . Let U1 = U ∩ W , U2 = W\U , U3 = W ∩ U , U4 = W ∩ U . As g �∈ δGi0
(U ), we

may, w.l.o.g., assume that g ∈ [U2, U3]. Also we may suppose that f ∈ [U1, U3] (see Fig. 6).

Let D = δGi0
(U ). Note that, as Fi0

= { f }, δG(U ) = D ∪ { f }. If [U3, U4] �= ∅, then either

δGi0
(U1) or δGi0

(U4) is strictly contained in δGi0
(U ). As δGi0

(U ) is tight for x , this im-

plies that at least one of the cuts δGi0
(U1) and δGi0

(U4) is violated by x , a contradiction.

Thus [U3, U4] = ∅, and, therefore U4 = ∅. In consequence, we have D = [U1, U2], and

δG(U2) = D ∪ {g}. Since x(D) = x(δGi0
(U )) = 1, it follows that any edge of D, that belongs

to some Fj , j ∈ J , must have a zero value. For otherwise, we would have x(δG j (U2)) < 1,

which is impossible. Now let U ′ = U2. We have that δGi0
(U ) = δG ′

j
(U ′), and the claim is

proved.

Fig. 6 A cut of cardinality two
with one contractible edge
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Let S′(x) be the system obtained from S(x) by deleting the equation x( f ) = 1. In conse-

quence x ′ is a solution of S′(x). Since S(x) is nonsingular, clearly S′(x) is also nonsingular.

As the equations of S′(x) correspond to constraints of P(G ′,F ′), we then have that x ′ is an

extreme point of P(G ′,F ′). �

Lemma 5.3. Let u, v be two nodes of V . Suppose there are two edges f, g ∈ [u, v] such that

(a) x( f ) = x(g) = 1, and

(b) there is no i ∈ {1, . . . , t} such that f, g ∈ Fi .

Let G ′ = (V ′, E ′) be the graph obtained by contracting [u, v], and F ′ = {F ′
1, . . . , F ′

t } with
F ′

i = Fi\[u, v]. Then, if x is an extreme point of P(G,F), x ′ is an extreme point ofP(G ′,F ′).

Proof: It is clear that x ′ ∈ P(G ′,F ′). Let δGi (U ) be a cut of τ ′
i (x). We claim that δGi (U ) ∩

[u, v] = ∅. Suppose not, then [u, v]\Fi ⊂ δGi (U ). As by (b) f, g do not belong both to Fi ,

we may suppose, for instance, that f �∈ Fi . Since x( f ) = 1 and x(g) > 0, it then follows

that g ∈ Fi and x(e) = 0 for all e ∈ [u, v]\(Fi ∪ { f }). But this implies that x(δGi (U )) = 1

is redondant in S(x), which contradicts the fact that S(x) is nonsingular.

Thus, δG(U ) ∩ [u, v] = ∅. In consequence, δG ′
i
(U ) = δGi (U ) and therefore x ′(δG ′

i
(U )) =

x(δGi (U )) = 1. Let S̃(x) be the system obtained from S(x) by deleting the equation x( f ) = 1,

x(g) = 1 and x(e) = 0 with e ∈ [u, v]. We then have that x ′ is a solution of S̃(x). Also note that

all the equations of S̃(x) correspond to inequalities of P(G ′,F ′). Since S(x) is nonsingular,

S̃(x) so is, which implies that x ′ is an extreme point of P(G ′,F ′). �

Lemma 5.4. Let W ⊆ V be a node set with |W | ≥ 2 such that G(W ) is F-connected and
x(e) = 1 for all e ∈ EG(W ). Let G ′ = (V ′, E ′) be the graph obtained by contracting W .
Let F ′ = {F ′

1, . . . , F ′
t } with F ′

i = Fi\EG(W ). Let x ′ be the restriction of x on E ′. If x is an
extreme point of P(G,F), then x ′ is an extreme point of P(G ′,F ′).

Proof: Since x ′ ∈ P(G ′,F ′), as we did before, we will show that x ′ is the unique solution

of a subsystem of S(x) that come from P(G ′,F ′).
Let δGi (U ) ∈ τ ′

i (x) for some U ⊆ V and i ∈ {1, . . . , t}. We claim that either W ⊆ U or W ⊆
V \U . Indeed suppose, on the contrary, that U ∩ W �= ∅ �= (V \U ) ∩ W . Let u ∈ U ∩ W and

u′ ∈ (V \U ) ∩ W . Since G(W ) is F-connected, we have that G[EG(W )\Fi ] is connected.

Consequently, u and v must be linked by a path of EG(W )\Fi . Hence δGi (U ) ∩ E1(x) �= ∅.

But this implies that x(δGi (U )) = 1 is redondant in S(x), a contradiction. In consequence, all

the cut equations of S(x) correspond to cut inequalities of P(G ′,F ′). Let S̄(x) be the system

obtained from S(x) by deleting the equations x(e) = 1, e ∈ EG(W ). Hence x ′ is a solution

of S̄(x). As S̄(x) is nonsingular, this implies that x ′ is an extreme point of P(G ′,F ′). �

Let θ1, . . . , θ4 be the operations introduced in Lemmas 5.1– 5.4, respectively, that is

θ1: Delete an edge e with x(e) = 0.

θ2: Contract an edge f such that f belongs to a 2-edge cutset.

θ3: Contract a set of parallel edges [u, v] such that there are two edges f, g ∈ [u, v] with

x( f ) = x(g) = 1 and f, g do not both belong to some Fi , i ∈ {1, . . . , t}.
θ4: Contract a node subset W ⊆ V such that |W | ≥ 2, G(W ) is F-connected and x(e) = 1

for all e ∈ EG(W ).
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Operations θ1, . . . , θ4 have interesting algorithmic consequences. In fact, note that these

operations can be implemented in polynomial time and in any order. If x is an extreme point

of P(G,F), by applying repeatedly operations θ1, . . . , θ4, we get a graph G ′ = (V ′, E ′), a

set F ′ and a solution x ′ ∈ IRE ′
which is, by Lemmas 5.1–5.4, an extreme point of P(G ′,F ′).

As it will be shown in the next section, the separation of inequalities (4), (6), (11) and (17)

with respect to x in G, reduces to the separation of theses inequalities in G ′ with respect to

x ′.
In Fig. 7(a) we display a fractional vector obtained by solving a MSIPND problem on

graph G with 28 nodes and |F | = 46. The dashed lines represent the edges with fractional

values, which are all equal to 0.5 and the solid lines, the edges with value 1. By applying

operations θ1, . . . , θ4, we obtain the reduced graph G ′ of Fig. 7(b) as well as the corresponding

fractional solution. The nodes u and u′ of G ′ induce the violated cut-cycle inequalities

x(e1) + x(e2) + x(e3) ≥ 2,

x(e4) + x(e5) + x(e6) ≥ 2.

(The edges e1, e2, e3 (resp. e4, e5, e6) do not belong to the same F ′
i of F ′). Note that the

cut-cycle induced by u′ does not appear as a node cut in G. By lifting these inequalities and

adding them to the linear relaxation, we get the fractional solution displayed in Fig. 7(c).

Denote by Ḡ the support graph of this solution. Using operations θ1, . . . , θ4 we get the graph

Ḡ ′ of Fig. 7(d). Let F be the set of edges incident to v0 in Ḡ ′. Each edge of F belongs to a

set F ′
i ∈ F ′. By considering the nodes of Ḡ ′ as the elements V0, . . . , V3 of a node partition

of Ḡ ′ where Vi = {vi }, for i = 0, . . . , 3, we obtain the following star-partition inequality

x(δḠ ′ (V0, . . . , V3)\F) ≥ 2.

Fig. 7 Fractional solutions and reduced graphs
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This inequality is violated by the solution of Ḡ ′. By lifting this inequality, we get a violated

star-partition inequality that cuts off the fractional solution of Ḡ.

6. A Branch-and-cut algorithm

In this section, we describe a Branch-and-Cut algorithm for the MSIPND problem. Our aim

is to address the algorithmic applications of the results presented in the previous section. For

this let us assume we are given two graphs G1 = (V 1, E1) and G2 = (V 2, E2) representing

respectively the IP and the optical networks. Suppose also given a familyF = {Fe ⊆ E1, e ∈
E2} of edge subsets of E1 associated with the edges of G2, where Fe is the set of edges of E1

that may fail if e so does. For convenience, and in order to follows the notations of Section 4

and 5, we will denote the elements of F by F1, . . . , Ft , where t = |E2| and G1 = (V 1, E1)

by G = (V, E).

Consider the polytope P(G,F) given by inequalities (4) and (5). Let x be a solution

of P(G,F). Let G ′ = (V ′, E ′) be a graph obtained by repeated applications of operations

θ1, . . . , θ4. Let F ′ = {F ′
1, . . . , F ′

t } where F ′
i = Fi ∩ E ′, for i = 1, . . . , t . Let x ′ be the re-

striction of x on E ′. If x is an extreme point of P(G,F), then x ′ is an extreme point of

P(G ′,F ′). In what follows, we show that there is an inequality of type (6) (resp. (11)) (resp.

(17)) violated by x in G with respect to F if and only if there is an inequality of the same

type violated by x ′ in G ′ with respect to F ′.
Given a partition V ′

1, . . . , V ′
p, p ≥ 2 of V ′, we let V1, . . . , Vp denote the partition of V

where Vi , for i = 1, . . . , p, is obtained from V ′
i by expanding the nodes of V ′

i that arise from

the contraction.

Lemma 6.1.

(a) If x violates an inequality, valid for MSIPND(G,F), of type (6) (resp. (11)) (resp.
(17)), then x ′ violates an inequality of type (6) (resp. (11)) (resp. (17)) valid for
MSIPND(G ′,F ′).

(b)

(b.1) If a′x ≥ α′ is an inequality valid for MSIPND(G ′,F ′) of type (6) corresponding to
V ′

1, . . . , V ′
p and a set F ′

i , i = 1, . . . , t , then the inequality ax ≥ α where

a(e) =
⎧⎨⎩

a′(e) if e ∈ E ′,
1 if e ∈ δG(V1, . . . , Vp)\(Fi ∪ E ′),
0 if not,

and α = α′ is an inequality of type (6) valid for MSIPND(G,F).

(b.2) If a′x ≥ α′ is an inequality valid for MSIPND(G ′,F ′) of type (11) associated with
edge sets T ′

1 and T ′
2 . Let T1 = T ′

1 and T2 = T ′
2 ∪ (δG(W )\(T ′

1 ∪ T ′
2)). Let r be as

defined in Therorem 4.6. Let ax ≥ α be the inequality where

a(e) =
⎧⎨⎩

r if e ∈ T2,

1 if e ∈ T1,

0 if not,

and α = α′. Then ax ≥ α is an inequality of type (11) valid for MSIPND(G,F).
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(b.3) If a′x ≥ α′ is an inequality valid for MSIPND(G ′,F ′) of type (17) associated with
a partition V ′

0, . . . , V ′
p of V ′ and sets F ′

j1
, . . . , F ′

jp
, valid for MSIPND(G ′,F ′). Then

the inequality ax ≥ α where

a(e) =
⎧⎨⎩

a′(e) if e ∈ E ′,
1 if e ∈ ([V0, Vi ]\(Fji ∪ E ′) for some i ∈ {1, . . . , p},
0 if not,

and α = α′ is an inequality of type (17) valid for MSIPND(G,F).
Moreover if a′x ≥ α is violated by x ′, then ax ≥ α is violated by x.

Proof:

(a) We will show the statement for the partition inequalities. The proof is similar for the other

types of inequalities. For this we may suppose that G ′ is obtained by one application of

either θ1, θ2, θ3 or θ4. Let V1, . . . , Vp be a partition of V and i ∈ {1, . . . , t}. And suppose

that x(δGi (V1, . . . , Vp)) − p + 1 < 0.

– If G ′ is obtained by operation θ1, it is clear that x ′ violates the partition inequality in

G ′ corresponding to δG ′
i
(V1, . . . , Vp).

– Suppose that G ′ is obtained by operation θ2 with respect to an edge f . We claim

that f �∈ δGi (V1, . . . , Vp). Indeed, suppose for instance that f = uv ∈ [Vj , Vj ′ ]\Fi ,

where j, j ′ ∈ {1, . . . , p}. Let U = Vj ∪ Vj ′ . As x( f ) = 1 and x(e) ≥ 0 for all e ∈
[Vj , Vj ′ ], we have that x([Vj , Vj ′ ]) ≥ 0. Let Ṽ1, . . . , Ṽp−1 be the partition of V obtained

from V1, . . . , Vp by fusionning Vj and Vj ′ , in one set, say Ṽ1. Let Ṽ ′
1 = (Ṽ1\{u, v}) ∪

{w}, where w is the node that arises from the contraction of edge f . Notice that

Ṽ ′
1, Ṽ2, . . . , Ṽp−1 is a partition of V ′. Moreover we have

x ′(δG ′
i
(Ṽ ′

1, Ṽ2, . . . , Ṽp−1)) = x(δGi (Ṽ1, . . . , Ṽp−1))

= x(δGi (V1, . . . , Vp)) − x([Vj , Vj ′ ]\Fj )

= x(δGi (V1, . . . , Vp)) − x( f ) − x([Vj , Vj ′ ]\(Fj ∪ { f }))
< p − 2.

Hence x ′ violates the partition inequality induced by Ṽ ′
1, Ṽ2, . . . , Ṽp−1 with respect to

F ′
i .

– If G ′ is obtained from G by either θ3 or θ4, we can construct in a similar way a partition

of G ′ such that the associated inequality with respect to F ′
i is violated by x ′.

(b) Observe that all the edges e of E\E ′ with x(e) = 1 have both nodes in the same element

of the partition.
�

Lemma (6.1) shows that looking for inequalities of type (6), (11) or (17), which are

violated by x , reduces to looking for such inequalities which are violated by x ′ on G ′. Note

that this procedure can be applied for any solution of P(G,F) and, in consequence, may

permit to separate fractional solutions which are not necessarly extreme points of P(G,F).

In consequence, for more efficiency, our separation routines will be performed on the reduced

graph G ′.
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We now describe the framework of our algorithm. To start the optimization we consider

the following linear program given by the cut inequalities associated with the vertices of the

graph G together with the trivial inequalities, that is

Minimize
∑
f ∈E

c( f )x( f )

x(δGi (v)) ≥ 1 for all v ∈ V, for all i = 1, . . . , t, (20)

0 ≤ x( f ) ≤ 1 for all f ∈ E . (21)

The optimal solution y ∈ IRE of this relaxation of the MSIPND problem is feasible for

the problem if y is an integral vector that satisfies all the cut inequalities. Usually, the

solution y is not feasible, and thus, in each iteration of the Branch-and-Cut algorithm, it

is necessary to generate further inequalities that are valid for the multilayer survivable IP

network design problem but violated by the current solution y. For this one has to solve the so-

called separation problem. This consists, given a class of inequalities, in deciding whether

the current solution y satisfies the inequalities, and if not, in finding an inequality that is

violated by y. An algorithm which solves this problem is called a separation algorithm. For

the classes of valid inequalities presented above, the separation is performed in the following

order

1. cut constraints

2. cut-cycle constraints

3. star-partition constraints

4. partition constraints

We remark that all inequalities are global (i.e. valid in all the Branch-and-Cut tree) and

several constraints may be added at each iteration. Moreover, we go to the next class of

inequalities only if we haven’t found any violated inequalities. Our strategy is to try to detect

violated constraints at each node of the Branch-and-Cut tree in order to obtain the best

possible lower bound and thus limit the number of generated nodes. Generated inequalities

are added by sets of 200 or less inequalities at a time.

Now we describe the separation procedures used in our Branch-and-Cut algorithm. These

may be either exact algorithm or heuristics depending on the associated class of inequalities.

All our separation algorithms are applied on G ′ with weights (y′(e), e ∈ E ′) associated with

its edges where y′ is the restriction on E ′ of the current LP solution y.

The separation of the cut constraints for some Fi , i ∈ {1, . . . , t}, can be done in polyno-

mial time using the Gomory-Hu algorithm (Gomory and Hu, 1961). This algorithm produces

the so-called Gomory-Hu tree with the property that for all pairs of nodes s, t ∈ V ′ the

minimum (s,t)-cut in the tree is also a minimum (s,t)-cut in G ′. Actually, we use the algo-

rithm developed by Gusfield (1990) which requires |V ′| − 1 maximum flow computations.

The maximum flow computations are handled by the efficient Goldberg and Tarjan algo-

rithm (Goldberg and Tarjan, 1988) that runs in O(m ′n′log n′2
m ′ ) time where m ′ and n′ are the

number of edges and nodes of G ′, respectively. The separation of the cut constraints for

each Fi then runs in O(m ′n′2log n′2
m ′ ) time. The algorithm that permits to separate the cut

inequalities for Fi i = 1, . . . , t is, in consequence, implemented to run in O(m ′n′2t log n′2
m ′ )

time.
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Partition inequalities (6) have been shown to be valid for different polyhedra that involve

connectivity (Barahona, 1992). A first separation algorithm for these inequalities has been

devised by Cunningham (1985) and requires |E | minimum-cut computations. Barahona

(1992) reduces this computing time to |V | minimum-cut computations. Both Cunningham

and Barahona’s algorithm give the most violated inequality. For more efficiency we have

implemented Barahona’s algorithm which, in consequence, runs in O(m ′n′3t log n′2
m ′ ).

To separate the partition inequalities we have developped a faster heuristic. This consists

in two steps. In the first step we contract all the edges of E ′ with value 1. In fact we can

remark that if there is a violated partition with some edges with value 1 between some of its

elements, then the partition obtained by contracting theses edges is also violated. Then we

check whether the trivial partition given by the resulting graph is violated. If not, then we

start contracting edges with high value until we get either a graph on p nodes with weight

less than p − 1 or a graph consisting of two nodes. In the later case, if a violated partition

inequality is found, then it is a violated cut inequality.

In our separation we first use this heuristic. If no violated inequality is found, then we try

to generate violated partition inequalities using Barahonas’s algorithm (Barahona, 1992).

Now we turn our attention to the separation of the cut-cycle inequalities (11). For more

efficiency, we have used these constraints only when q = 1. From Theorem 4.7 (a) a cut-cycle

inequality with q = 1, induced by a cut δG(W ), which defines a facet for MSIPND(G,F) is

of the form

x(T1) + x(T2) ≥ 2, (22)

where T1 ∩ T2 = ∅, T1 ∪ T2 ⊂ δG(W ) and T1, T2 satisfy Theorem 4.6. To separate constraints

of type (22), we have developed a Gomory-Hu tree based heuristic that works as follows.

First we contract all the edges of value 1. Then we compute the Gomory-Hu tree in

the resulting graph, say G̃ ′. Each cut given by the Gomory-Hu tree, with value less than

2 yields an inequality of type (22) violated by y′. If δG̃ ′ (W ) = { f1, . . . , fm}, then sets

T1 and T2 are determined so that T1 is maximal, using the following greedy procedure

(Algorithm 1).
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Since Gomory-Hu algorithm runs with a complexity close to O(|V ′|4), in order to accel-

erate our separation for the cut-cycle inequalities, we first consider the degree cuts δG̃ ′ (v),

v ∈ V ′. The computation of the Gomory-Hu tree on the graph G̃ ′ is considered only if no

cuts of this type of value less than 2 are found.

We now discuss our separation routine for the star-partition inequalities (17). Our rou-

tine consists in determining fractional odd cycles in the supporting graph, satisfying some

conditions. In fact, as it can be observed, the graph induced by δ(V1, . . . , Vp)\F where

V0, . . . , Vp is a violated star-partition with respect to F , may consist of an odd cycle. This

is the case, for instance, of the star-partition of the example of Fig.7 (d). This observation,

led to the following separation heuristic. We look for odd cycles in G ′ that are formed by

edges whose value is fractional in y′. Thus, for each detected cycle (v1, . . . , vp) we try to

find edge subsets Fji , ji ∈ {1, . . . , t}, i = 1, . . . , p among the edges of [vi , V ′\{v1, . . . , vp}]
in such way that the star-partition inequality induced by V ′\{v1, . . . , vp}, {v1}, . . . , {vp},
and Fji , i = 1, . . . , p is violated by y′. This heuristic can be implemented in O(|V ′|2)

time.

To store the generated inequalities, we created a pool whose size increases dy-

namically. All the generated inequalities are put in the pool and are dynamic, i.e.

they are removed from the current LP when they are not active. We first sepa-

rate inequalities from the pool. If all the inequalities in the pool are satisfied by

the current LP-solution, we separate the classes of inequalities in the order given

above.

7. Computational results

The Branch-and-Cut algorithm described in the previous section has been implemented in

C++, using ABACUS (A Branch-And-CUt System) 2.4 alpha (abacus, Elf et al., 2001,

Thienel, 1995) to manage the Branch-and-Cut tree and Cplex 8.1 as LP-solver (cplex). It

was tested on a Pentium IV 2,4 GHz with 1 Gb RAM, running under Linux. We fixed the

maximum CPU time to 5 hours.

Results are presented here for instances coming from real applications and instances

obtained from problems of the TSP Library (Reinelt, 1991) by randomly generating the node

set and the edge sets Fe. For all the instances, the graph G1, representing the IP network, is

considered complete.

The edge costs for the random instances are equal to rounding Euclidian distances. These

instances were generated with 10 to 45 nodes and |F | = 10, 15, 20, 30. Five instances of

each size and each |F | were tested. We will consider the average results obtained for these

instances.

The real instances are extracted from operational networks and have been provided by

the french telecommunications operator France Télécom. These instances have 18 to 60

nodes and F with 31 to 102 edge sets. Actually France Télécom has provided the opti-

cal network and the routing between every pair of nodes in this network. With an edge

f of the IP network, we associate the routing path of the optical network between the

switches corresponding to the IP routers extremities of f . Using these paths we have

computed F = {Fe ⊆ E1, e ∈ E2} where Fe is the set of edges f of E1 such that e
belongs to the path associated with f . For these instances we have used different cost

functions.
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In the various tables, the entries are:
|V 1| : the number of nodes of G1,

|F | : the number of sets Fe,

NC : the number of generated cut inequalities,

NCC: the number of generated cut-cycle inequalities,

NSP : the number of generated star-partition inequalities,

NP : the number of generated partition inequalities,

NT : the number of generated nodes in the Branch-and-Cut tree,

o/p : the number of problems solved to optimality over the

number of instances tested (only for random instances),

Copt : the value of the optimal solution (only for real instances),

Gap : the relative error between the best upper bound (the

optimal value if the problem has been solved to optimality)

and the lower bound achieved by the cutting plane phase

(before branching),

TT : the total CPU time in h:mm:ss.

Our first series of experiments concern the random instances. Table 1 reports the average

results obtained for these instances. We remark that for 25 nodes or less, all problems could

be solved to optimality. Moreover for |F | = 10 all instances have been solved to optimality

within the time limit. For the instances of 30 nodes (resp. 35 nodes) with |F | ≤ 20 (resp.

|F | ≤ 15) we could also get the optimal solution for all the tested instances. However for

|F | = 30 (resp. |F | = 20), only four over the five tested instances have been solved.

The problems with 35 nodes and more and |F | ≥ 20 seems to be harder to solve. In fact

we can remark that for 40 and 45 nodes and |F | ≥ 20, no more that two instances have been

solved in the time limit. For |F | = 30, none of the instances have been solved to optimality.

We may also observe that, in general, the problem gets harder when |F | increases, which

explains the rising of the CPU time with respect to |F |. This is quite natural since for a given

F we have to solve |F | connected subgraph problems.

We can also note that, for most of the instances, a significant number of cut, cut-cycle

and partition inequalities have been generated. This implies that these inequalities are useful

for the random problems. However, the star-partition inequalities do not seem to play an

important role for this type of instances. This can be explained by the fact that, for these

instances, the edges do not necessarily belong to some Fe’s, and hence, it could be hard to

find star-partitions satisfying the conditions of Theorem 4.8.

Finally, we notice that for many problems, our constraints have not been sufficient to solve

the problem in the cutting plane phase. We can observe, however, that the gap is relatively

small when |F | ≤ 20. (The gap does not appear in the table for the problems where no upper

bound could be obtained for one of the five tested instances). Tables 2–4 present results for

the real instances obtained for different cost functions. Usually the cost associated with a

link in the client network is related to the corresponding routing path in the optical network,

and then depends on the cost of this path. Actually, the cost c( f ) of link f in the IP network

is given by

c( f ) = c + ω( f ),

where c is a fixed cost representing the equipments of the extremity ports on the routers of

f in the IP layer, and ω( f ) is a cost depending on the lenght of the path Pf corresponding

to f in the optical network.
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Table 1 Results for random instances

|V 1| |F | NC NCC NSP NP NT o/p Gap TT

10 10 59.6 1.0 0.0 28.0 9.8 5/5 1.80 0:00:00.88

10 15 40.8 1.2 0.2 38.8 5.4 5/5 0.92 0:00:01.03

10 20 50.6 1.6 0.2 46.8 2.6 5/5 0.32 0:00:01.35

10 30 66.0 2.4 0.0 62.6 7.0 5/5 1.39 0:00:02.61

15 10 185.4 2.4 0.0 71.8 15.0 5/5 1.11 0:00:05.06

15 15 176.6 3.0 0.2 86.2 11.8 5/5 2.13 0:00:08.63

15 20 158.0 3.6 0.2 90.0 10.6 5/5 1.25 0:00:10.33

15 30 124.2 9.2 0.0 198.0 43.8 5/5 3.43 0:00:51.39

20 10 194.8 2.0 0.2 216.6 45.8 5/5 1.57 0:00:41.08

20 15 271.8 5.8 0.0 300.8 99.0 5/5 2.82 0:02:03.77

20 20 230.2 10.0 0.2 885.6 294.2 5/5 3.69 0:08:58.00

20 30 264.2 16.2 0.2 1897.8 575.8 5/5 5.16 0:26:17.80

25 10 315.6 3.2 0.2 328.6 71.8 5/5 1.65 0:02:29.52

25 15 281.4 10.0 0.6 924.0 236.6 5/5 2.56 0:12:02.02

25 20 295.0 10.2 0.2 879.6 140.2 5/5 2.46 0:11:34.43

25 30 320.6 20.6 0.0 2338.4 792.2 5/5 4.86 0:59:55.25

30 10 419.4 2.4 0.0 364.8 27.0 5/5 0.58 0:02:22.14

30 15 485.4 5.4 0.2 750.2 1406.3 5/5 1.55 0:10:25.21

30 20 485.6 7.0 0.2 941.4 143.4 5/5 2.02 0:17:36.16

30 30 352.6 20.0 0.6 3259.2 654.07 4/5 – 1:48:30.62

35 10 473 4.2 0.2 787.4 79.8 5/5 1.22 0:13:48.24

35 15 492 10.0 1.0 2958.0 527.8 5/5 2.35 1:38:06.83

35 20 461.6 649.4 1.0 3042.8 491.0 4/5 – 2:55:06.68

35 30 398.8 396.8 0.0 3676.0 502.2 0/5 – 5:00:00.00

40 10 605.8 2.6 0.4 776.0 113.8 5/5 1.05 0:20:37.71

40 15 574.8 11.6 1.4 2102.4 382.6 4/5 – 1:37:53.85

40 20 511.4 22.4 2.4 3323.2 458.6 2/5 – 3:11:11.58

40 30 522.0 518.2 0.8 3070.4 257.4 0/5 – 5:00:00.00

45 10 562.6 5.8 0.4 1270.6 189.8 5/5 1.28 0:57:51.81

45 15 585.0 30.6 1.8 2830.8 333.8 2/5 – 3:31:00.00

45 20 498.4 132.2 0.4 3740.4 236.2 0/5 – 5:00:00.00

45 30 548.2 137.4 0.8 2504.2 129.8 0/5 – 5:00:00.00

The installation of an optical segment usually yields a fixed cost on each extremity of this

segment. Hence a first estimation of the optical cost ω( f ) is the sum of the fixed costs of

the optical segments on Pf . As these fixed costs can be considered the same in the optical

network, a good approach would be to consider a cost ω( f ) proportitional to the number of

the optical segments on Pf . So, a first natural function ω( f ) consists of the number of links

(hops) in the optical path between the switching nodes corresponding to the extremities of

f . Here we assume that there is a fixed cost associated with each optical link. This cost is

considered once the corresponding link is used. Then the cost c( f ) is given in this case by

c1( f ) = c + |Pf |
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Table 2 Results for real instances with the cost function c1(.)

|V 1| |F | NC NCC NSP NP NT Copt Gap TT

18 31 70 5 5 31 1 111 0.00 0:00:11.72

25 39 32 3 1 39 1 150 0.00 0:00:24.83

25 40 44 5 17 68 11 154 0.00 0:01:12.98

28 45 311 15 5 762 1 168 0.00 0:05:24.17

28 46 176 10 13 189 3 171 0.00 0:01:45.34

30 55 176 14 18 220 1 185 0.00 0:02:43.25

31 46 133 0 0 46 1 188 0.00 0:00:29.93

32 56 180 17 39 1182 17 196 0.00 0:19:41.83

33 54 74 6 1 54 1 198 0.00 0:02:28.36

34 62 53 6 0 62 1 206 0.00 0:01:33.73

35 63 614 17 110 2678 705 223 3.14 5:00:00.00

36 68 581 15 9 68 1 218 0.00 0:07:19.62

38 65 303 19 13 249 11 229 0.00 0:15:57.94

40 76 432 24 40 1263 23 245 0.00 1:03:55.41

41 73 453 21 45 977 19 252 0.00 0:38:51.53

42 70 546 25 8 937 9 254 0.00 0:35:03.26

43 74 635 20 11 252 11 260 0.00 0:31:20.90

45 78 468 24 7 319 9 272 0.00 0:40:24.27

45 86 253 16 13 186 9 274 0.00 0:33:11.47

46 85 652 25 38 432 37 281 0.00 1:11:58.58

47 84 878 17 2 84 1 282 0.00 0:25:29.03

48 91 851 29 43 852 43 291 0.00 1:52:48.22

49 88 342 26 24 128 7 295 0.00 1:07:56.12

50 83 725 33 34 2539 67 304 0.33 2:53:14.94

50 95 419 20 27 191 7 304 0.33 0:56:53.31

55 95 768 34 14 2689 5 334 0.00 2:58:26.05

60 102 588 37 23 2335 17 – – 5:00:00.00

Table 2 gives results obtained when the cost of each edge f of the IP network is given

by c1( f ). We remark that all the instances have been solved to optimality except those with

35 and 60 nodes. For most of these instances, the gap is 0. However the algorithm needed to

branch for obtaining a feasible optimal solution.

All the instances with 38 nodes and less, except that of 35 nodes, have been solved to

optimality in less than 20 minutes. The rest of the instances, except that with 60 nodes, could

be solved in less than 3 hours.

For the instance on 35 nodes, a feasible solution of value 223 (given in italic) has been

obtained, yielding a relatively small gap of 3.14%. For the 60 nodes instance, we could not

obtain an upper bound (feasible solution) within the time limit. Network operators often

consider that the number of optical segments on a path is strongly related to the path lenght

in km’s. Therefore, they propose path cost models linearly dependent of the kilometric path

length. In this case, c( f ) can then be defined as

c2( f ) = c +
∑
e∈Pf

l(e),

where l(e) is the lenght of e. For our purpose, we consider l(e) as the real distance (in km’s)

between the extremities of e.
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Table 3 Results for real instances with the cost function c2(.)

|V 1| |F | NC NCC NSP NP NT Copt Gap TT

18 31 84 5 4 28 101 14999.70 3.13 0:00:51.46

25 39 82 5 0 0 1 8968.24 0.00 0:00:14.73

25 40 127 6 18 0 19 17538.70 0.03 0:01:10.05

28 45 113 8 3 71 3 10764.60 0.05 0:01:02.66

28 46 425 12 37 218 163 18035.50 2.57 0:12:57.25

30 55 25 5 14 0 1 19554.30 0.00 0:00:45.30

31 46 103 3 6 0 1 5775.00 0.00 0:00:30.62

32 56 236 15 60 977 405 19406.60 2.83 1:17:58.67

33 54 200 9 2 85 3 12472.80 0.04 0:01:36.00

34 62 386 11 18 151 9 18466.90 0.71 0:09:00.50

35 63 62 9 34 0 25 20574.30 0.10 0:07:47.10

36 68 128 5 6 0 1 18061.30 0.00 0:01:30.68

38 65 226 16 5 258 13 14778.90 0.06 0:08:52.99

40 76 377 11 31 294 45 21048.10 1.38 0:41:04.27

41 73 283 8 10 0 1 21137.80 0.00 0:04:16.04

42 70 335 22 34 368 21 6164.22 0.51 0:29:58.31

43 74 324 16 7 327 1 16536.30 0.00 0:13:46.26

45 78 412 16 10 245 1 16768.20 0.00 0:17:00.81

45 86 101 1 0 0 1 1152.79 0.00 0:01:15.16

46 85 484 10 26 4 15 22028.80 0.53 0:20:34.91

47 84 656 21 4 294 1 16762.20 0.00 0:21:34.26

48 91 510 9 22 4 15 20811.20 0.56 0:28:01.64

49 88 667 22 4 88 1 17115.50 0.00 0:20:18.75

50 83 573 14 29 620 103 6699.38 0.40 1:58:09.95

50 95 485 8 6 333 9 21847.50 0.05 0:21:47.15

55 95 227 18 24 95 23 6975.36 0.06 1:24:12.13

60 102 785 31 22 846 87 – – 5:00:00.00

Table 3 reports the results for the real instances with the cost function c2(.). We note that

all the instances, except the instance with 60 nodes, have been solved to optimality and in

less than two hours. Some of the instances with less than 40 nodes have even been solved

in less than 10 minutes. We can also see that the gap does not exceed 1.5% for most of the

instances.

The last cost function used for the real instances is defined as follows. Let f = uv be an

edge of G1. Let u′ and v′ be the nodes of G2 corresponding to u and v, respectively. Let

c3( f ) =
{

c2( f )
|Fe | if e = u′v′ ∈ E2,

c2( f ) if not.

The cost function c3(.) depends on the number (|Fe|) of the routing paths that use e = u′v′

in the optical network, if e ∈ E2. The motivation to consider this is that when |Fe| is high,

the link f could be essential in the IP network. For this, c3( f ) gets small, and hence one may

hope that f appears in the optimal solution. The results obtained using this cost function

are presented in Table 4. Here it seems that the problem is much easier to solve. In fact, all

the instances have been solved to optimality in less than 10 minutes and the resolution of

all the instances except that with 28 nodes and |F | = 46 have been achieved in the cutting

plane phase. We may also remark that no partition and no star-partition inequalities have
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Table 4 Results for real instances with the cost function c3(.)

|V 1| |F | NC NCC NSP NP NT Copt Gap TT

18 31 33 0 0 0 1 1573.180 0.00 0:00:00.60

25 39 5 0 0 0 1 584.670 0.00 0:00:02.73

25 40 0 0 0 0 1 1518.800 0.00 0:00:01.15

28 45 50 0 0 0 1 791.918 0.00 0:00:03.59

28 46 148 2 0 1 3 1111.630 0.27 0:00:26.68

30 55 11 0 0 0 1 1701.370 0.00 0:00:07.54

31 46 6 0 0 0 1 526.308 0.00 0:00:08.19

32 56 12 0 0 0 1 1027.510 0.00 0:00:09.58

33 54 62 1 0 0 1 1293.830 0.00 0:00:14.49

34 62 85 1 0 0 1 1055.990 0.00 0:00:32.75

35 63 8 0 0 0 1 1590.780 0.00 0:00:22.67

36 68 6 0 0 0 1 1053.930 0.00 0:00:13.64

38 65 69 3 0 0 1 1300.670 0.00 0:00:45.73

40 76 0 0 0 0 1 1077.520 0.00 0:00:08.29

41 73 23 1 0 0 1 1455.400 0.00 0:01:16.68

42 70 13 3 0 0 1 184.324 0.00 0:01:00.03

43 74 130 5 0 0 1 1600.370 0.00 0:03:18.41

45 78 185 7 0 0 1 1522.030 0.00 0:03:24.01

45 86 101 1 0 0 1 1152.790 0.00 0:01:15.16

46 85 12 0 0 0 1 1029.461 0.00 0:00:45.42

47 84 546 10 0 0 1 1545.770 0.00 0:05:08.76

48 91 15 0 0 0 1 701.019 0.00 0:01:21.16

49 88 326 4 0 0 1 971.864 0.00 0:05:24.76

50 83 100 2 0 0 1 186.281 0.00 0:03:05.83

50 95 0 0 0 0 1 716.747 0.00 0:00:24.12

55 95 0 1 0 0 1 185.075 0.00 0:01:39.83

60 102 140 6 0 0 1 166.458 0.00 0:10:08.39

been generated for all of the instances except that of 28 nodes. For this last instance, we got

a very small gap of 0.27%.

From these three tables that the difficulty to solve the real instances heavily depends on

the cost function associated with the IP network. It seems that, as far as this function becomes

uniform, the problem gets degenerate and hence harder to solve. This is what may explain

the difference between the results of the tables.

For the cost functions c1(.) and c2(.), a significant number of cut-cycle and star-partition

inequalities have been generated. In order to evaluate the impact of these inequalities as well

as the reduction operations θ1, . . . , θ4 on the performance of the algorithm, we report in

Table 5 results obtained for real instances without using neither these inequalities nore the

reduction operations.

For the cost function c1(.), five instances in Table 5 could not be solved in the time limit of

5 hours. By using the reduction operations and adding the cut-cycle and star-partition inequal-

ities, four over the five instances have been solved in less than 2 hours. And for the remaining

one, as indicated in Table 2, we could get a feasible solution. Also for instance with 30 nodes,

33 nodes have been generated in the Branch-and-Bound tree, whereas the resolution of this

instance, in Table 2, has been achieved in the cutting plane phase. For the second set of in-

stances in Table 5, which use the cost function c2(.), the problem tests, that have been solved

to optimality using the cut-cycle and the star-partition inequalities, are also solved to optimal-
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Table 5 Results for real instances without cut-cycle and star-partition inequalities

Cost functions |V 1| |F | NC NP NT Copt Gap TT

c1(.) 30 55 229 1133 33 185 0.54 0:09:42.13

c1(.) 35 63 213 6404 127 – – 5:00:00.00

c1(.) 41 73 231 397 17 – – 5:00:00.00

c1(.) 46 85 305 6942 43 – – 5:00:00.00

c1(.) 48 91 307 5248 65 – – 5:00:00.00

c1(.) 50 95 297 3305 143 – – 5:00:00.00

c2(.) 30 55 128 204 37 19554.3 0.05 0:03:36.32

c2(.) 31 46 148 130 15 5775.0 0.09 0:01:58.04

c2(.) 35 63 196 706 295 20574.3 0.41 0:47:31.20

c2(.) 41 73 267 765 39 21137.8 0.18 0:25:31.08

c2(.) 48 91 229 330 47 20811.2 0.71 0:47:23.91

c2(.) 50 95 285 1870 71 21847.5 1.34 2:07:04.73

c3(.) 28 46 69 23 7 1111.6 1.15 0:00:37.50

c3(.) 41 73 24 0 5 1455.4 0.02 0:02:13.68

ity without using these inequalities, but the computing time more than doubled. For instance,

the problem with 50 nodes which is solved in less than 22 minutes, with the cut-cycle and the

star-partition inequalities, needed more than 2 hours without these inequalities. Also we can

note that the size of the Branch-and-Bound tree has been significantly increased for all the in-

stances. Observe that the instances with 30, 31 and 41 nodes are solved in Table 3 without any

branching.

The two last problems of Table 5 correspond to the cost function c3(.). We can also remark

that the cut-cycle inequalities have been useful for solving these problems.

Finally, let us note that many of the partition, cut-cycle and star-partition inequalities,

that cut off fractional solutions in the experiments, were facet defining in G ′ and also in G
because of the application of the reduction operations.

8. Concluding remarks

In this paper we have considered a multilayer survivable network design problem that may

have applications to the design of reliable IP-over-optical network. We have proposed an

integer programming formulation for the problem and studied a cutting plane approach for

solving it. We have identified some valid inequalities, and describe necessary conditions and

sufficent conditions for these inequalities to define facets. We have also discussed separation

routines and introduced some reduction operations defined with respect to a fractional solution

of the linear relaxation. Using these results we have described a Branch-and-Cut algorithm

for the problem. Our computational results have shown that the reduction operations play

a central role for accelerating the separation process, and the cut-cycle and star-partition

inequalities are very effective for the problem.

In addition to the survivability aspect, one can consider the capacity dimensioning of the

network. These issues have been treated simultaneously in the literature from different point

of views, in both the monolayer case (Magnanti, Mirchandani, and Vachani, 1993, 1995;

Stoer and Dahl, 1994; Wessäly, 2000) and the multilayer one (Gouveia et al., 2003; Ricciato

et al., 2002). An interesting question would be to extend the study developed in this paper to

the more general capacitated multilayer model.
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