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Abstract. This paper deals with the survivable network design problem where each node v has
a connectivity type r(v) equal to 1 or 2, and the survivability conditions require the existence of at
least min{r(s), r(t)} edge-disjoint paths for all distinct nodes s and t. We consider the polytope given
by the trivial and cut inequalities together with the partition inequalities. More precisely, we study
some structural properties of this polytope which leads us to give some sufficient conditions for this
polytope to be integer in the class of series-parallel graphs. With both separation problems for the cut
and partition inequalities being polynomially solvable, we then obtain a polynomial time algorithm
for the (1,2)-survivable network design problem in a subclass of series-parallel graphs including the
outerplanar graph class. We also introduce a new class of facet-defining inequalities for the polytope
associated to the (1,2)-survivable network design problem.
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1. Introduction. In order to protect telecommunication networks from equip-
ment failures, one must maintain the survivability of networks when links are severed
or nodes fail. As failures are not very common, robust networks are designed to
withstand a single network equipment failure. Moreover, in practice a node usually
fails completely because of major incidents (e.g., power outages), and thus it is more
frequent to encounter link interface failures or severed links than node failures. There-
fore, one of the main concerns when designing telecommunication networks is to devise
network topologies that provide protection against single-link failures. The network
topology problem is usually the first stage of the overall network design optimization
process, and the second one involves traffic and routing issues.

Furthermore, some network nodes may be more important than others because
of their specific functions. This fact thus leads to considering two kinds of nodes: the
specific nodes, also called terminals, for which a “high” degree of survivability has
to be guaranteed, and the ordinary nodes, which simply have to be connected to the
network. The network topology problem then consists of selecting links such that the
sum of their cost is minimized and the failure of any single link does not disconnect
any two terminal nodes.
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More precisely, based on a model first introduced by Grötschel and Monma [8]
(see also Stoer [19]), this problem can be stated as follows. Consider an undirected
graph G = (V,E) where V represents the node set and E represents the set of edges
or potential links. The set V is partitioned into two subsets T and O corresponding,
respectively, to the terminal and ordinary node sets. By associating to each node
u ∈ V a connectivity type r(u) which is equal to 1 if u is an ordinary node and to 2
if u is a terminal, we have O = {u ∈ V : r(u) = 1}, T = {u ∈ V : r(u) = 2}, and
V = O ∪ T . A subgraph H of G fulfills the survivability conditions if there exist at
least min{r(s), r(t)} edge-disjoint paths (i.e., paths sharing no edges) in H for any
pair of nodes s, t ∈ V . Such a subgraph is then called survivable. Suppose that each
edge e ∈ E has a certain cost c(e) ∈ R+. Our network topology problem, called the
(1,2)-survivable network design problem (SNDP), then consists of finding a survivable
subgraph of G with minimum total cost. (The cost of a subgraph of G is equal to the
sum of its edge costs.)

The optimization problem SNDP is NP-hard since it includes as a special case
the 2-edge connected network problem (i.e., r(u) = 2 for all u ∈ V ), which has been
extensively studied in the past. Some heuristics have thus been devised such as the
one of Monma and Shallcross [18] which was used to obtain near optimal solutions to
both real-world and randomly generated problems. The SNDP has also been proved
to be polynomially solvable in special cases. Particularly, if T = ∅ (i.e., r(u) = 1
for all u ∈ V , and r is then called a unit connectivity type vector), then the SNDP
is nothing but the minimum-cost spanning tree problem which is well known to be
polynomially solvable [15]. Furthermore, if the underlying graph G is series-parallel
and O = ∅ (i.e., r(u) = 2 for all u ∈ V ), then we have a linear time algorithm for the
SNDP devised by Winter [20]. Many survivability problems related to the SNDP have
received particular attention and complete surveys over the existing approaches can
be found in Grötschel, Monma, and Stoer [11], Stoer [19], and Kerivin and Mahjoub
[13].

Grötschel, Monma, and Stoer [9] studied the general model related to the SNDP
from a polyhedral point of view. (They consider r(u) ∈ Z+ for all u ∈ V .) They
introduced several families of valid inequalities for the polytope associated with this
problem. They also derived some necessary and/or sufficient conditions under which
these inequalities are facet-defining. Among all of the inequalities considered in [9],
the so-called partition inequalities are of interest for solving the SNDP as pointed out
in [10, 14]. Kerivin and Mahjoub [12] actually showed that the separation problem
for the partition inequalities is polynomially solvable for the SNDP, even though this
separation problem is NP-hard for general connectivity type vectors r ∈ ZV

+. Further-
more, Grötschel and Monma [8] showed that the partition inequalities together with
the trivial lower-bound and upper-bound inequalities suffice to describe the polytope
associated with the SNDP when r(u) = 1 for all u ∈ V . When the underlying graph
G is series-parallel, Mahjoub [17] described the polytope associated with the 2-edge
connected network problem by the trivial inequalities and the cut ones, the latter
being a special case of the partition inequalities.

Let SNDP(G, r) be the convex hull of incidence vectors of all survivable subgraphs.
This polytope is called the survivable network polytope. In this paper, we are interested
in the polytope CPP(G, r) given by the trivial lower-bound and upper-bound inequal-
ities and the so-called partition inequalities for connectivity type vectors r ∈ {1, 2}V .
This polytope is a strengthened linear relaxation of SNDP(G, r). Here, we give suf-
ficient conditions for the CPP(G, r) to be an integer on series-parallel graphs. This
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study leads us to give a polynomial-time algorithm for solving the (1, 2)-survivable
network design problem on a class of graphs including the outerplanar ones.

This paper is organized as follows. In the next section, we formulate the problem
SNDP as an integer linear program and introduce its associated polytope SNDP(G, r)
as well as the polytope CPP(G, r). Section 3 is devoted to the study of some structural
properties of the polytope CPP(G, r). In section 4, we consider the CPP(G, r) when
G can be decomposed by one-node cutsets. We show in section 5 that the polytope
CPP(G, r) may have noninteger extreme points even if the underlying graph G is
series-parallel, and give sufficient conditions which make the CPP(G, r) integer on
series-parallel graphs. In section 6, we prove this last result. A new class of facet-
defining inequalities for the SNDP(G, r) is introduced in section 7. Finally, some
concluding remarks are given in section 8.

The rest of this section is devoted to more definitions and notation. Throughout
this paper, the graphs are undirected, finite, loopless, and connected. We consider
a graph G = (V,E) and denote by n the number of nodes of G, that is, n = |V |.
For W ⊆ V , let W = V \ W , and for F ⊆ E, let F = E \ F . Given two distinct
nodes u and v of V , an edge between u and v is denoted by uv. For a nonempty
node subset W � V , the set of edges having exactly one endnode in W is called a
cut and is denoted by δG(W ). If W = {u}, we then write δG(u) for δG({u}). A
partition of V is a collection of disjoint subsets of V with union V . The elements of
the partition are called its classes. Given a partition {V1, . . . , Vp} of the node set V ,
we denote by δG(V1, . . . , Vp) the set of edges with endnodes in two different classes.
Given a collection (W1, . . . ,Wq) of node subsets, we write [W1, . . . ,Wq]G for the set
of edges with endnodes in two different subsets. We notice that if (W1, . . . ,Wq) is a
partition of V , then we have [W1, . . . ,Wq]G = δG(W1, . . . ,Wq). If u and v are two
distinct nodes of V , we then write [u, v]G for [{u}, {v}]G. For all of our notation, we
don’t use the subscript G whenever the graph G can be deduced from the context.
For F ⊆ E, we denote by V (F ) the set of nodes which are spanned by the edges in
F . For W ⊆ V , we denote by E(W ) the set of edges with both endnodes in W , and
G(W ) = (W,E(W )) is called the subgraph induced by W . A maximal connected non-
empty subgraph of G is called a connected component. (Here, “maximal” is taken with
respect to inclusion.) A graph G is called 2-node-connected if for any node u ∈ V , the
subgraph G−u induced by V \{u} is connected. Given a ground set S, a set-function
f : 2S −→ R ∪ {∞} is called fully submodular if

(1.1) f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for all A,B ⊆ S. A pair of subsets A and B of S is said to be crossing if none of
A \B, B \A, A ∩B, S \ (A ∪B) is empty. A set-function f is called submodular on
crossing pairs if the inequality (1.1) is required only for crossing pairs. Moreover, if f
satisfies the inequality (1.1) with equality for crossing pairs, then f is called modular
on crossing pairs. For a vector x ∈ RS and a subset A ⊆ S, we denote

∑
a∈A x(a)

by x(A). For F ⊆ S, its incidence vector xF ∈ RS is defined by xF (e) = 1 if e ∈ F ,
and xF (e) = 0 if e ∈ S \ F . An integer vector is a vector with all entries integer.
A polytope P ⊆ RS is integer if and only if each extreme point of P is integer. An
inequality atx ≥ α, where a ∈ RS and α ∈ R, is tight for a point x∗ if aTx∗ = α. If
aTx ≥ α is induced by a cut (respectively, a partition), we equivalently say that the
cut (respectively, partition) is tight for x∗.

2. The (1,2)-survivable network design problem and some related poly-
topes. Let G = (V,E) be an undirected graph and r ∈ {1, 2}V be a connectiv-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE POLYTOPE OF THE (1,2)-SURVIVABLE NETWORK 1643

ity type vector. Without loss of generality, we may assume throughout this pa-
per that there exist at least two nodes having the largest connectivity type (i.e.,
|T | ≥ 2). For a nonempty node subset W � V , let r(W ) = max{r(u) : u ∈ W}
and con(W ) = min{r(W ), r(V \ W )}. Given an edge subset F ⊆ E, if (V, F ) is a
survivable subgraph of G, then its incidence vector xF satisfies

x(e) ≥ 0 for all e ∈ E,(2.1)

x(e) ≤ 1 for all e ∈ E,(2.2)

x(δ(W )) ≥ con(W ) for all ∅ �= W � V,(2.3)

x(e) ∈ {0, 1} for all e ∈ E.(2.4)

The inequalities (2.1) and (2.2) are, respectively, called lower-bound and upper-bound
trivial inequalities (or more generally trivial inequalities), and inequalities (2.3) are
called cut inequalities.

For a class of inequalities, the separation problem is as follows: given a vector y,
find a violated inequality in the class or prove that none exists. An algorithm for the
separation problem associated with a class of inequalities is a key ingredient for being
able to use those inequalities within a branch-and-cut algorithm. The separation
problem for the cut inequalities (2.3) is polynomially solvable using a polynomial-
time maximum flow algorithm (e.g., preflow-push algorithm of Goldberg and Tarjan
[6] running in O(n3) time).

In [9], Grötschel, Monma, and Stoer introduced a class of valid inequalities for the
polytope SNDP(G, r) which can be stated as follows. Let {V1, . . . , Vp}, p ≥ 2, be a
partition of V . Let I2 = {i : con(Vi) = 2, i = 1, . . . , p} be the set of subscripts whose
corresponding classes of the partition contain at least one terminal. The partition
inequalities induced by {V1, . . . , Vp} is

(2.5) x(δ(V1, . . . , Vp)) ≥
{

p− 1 if I2 = ∅,
p otherwise.

The inequalities (2.5) are a generalization of the cut inequalities (2.3). (The latter
correspond to the case where p = 2.) Therefore, if we do not specify p ≥ 3, then
a partition inequality (2.5) may be a cut inequality (2.3). In the remainder of this
paper, a partition of V with I2 = ∅ (respectively, I2 �= ∅) will be called a partition of
type 1 (respectively, partition of type 2), and the inequality (2.5) induced by it will be
called a partition inequality of type 1 (respectively, a partition inequality of type 2).
Grötschel, Monma, and Stoer [9] gave sufficient conditions and necessary conditions
for the inequalities (2.5) to define facets of SNDP(G, r).

In [12], Kerivin and Mahjoub showed that the separation problem for the partition
inequalities (2.5) reduces to minimizing a particular submodular function, and then
is polynomially solvable. Later, Barahona and Kerivin [2] reduced the separation
problem for those inequalities to a sequence of O(n4) minimum cut problem.

Let CPP(G, r) be the polytope given by the inequalities (2.1), (2.2), (2.3), and
(2.5). This polytope, called the cut and partition inequalities polytope, is the linear
relaxation of SNDP(G, r) strengthened by the partition inequalities (2.5). As we
mentioned above, the separation problems for both cut and partition inequalities are
polynomially solvable, and then this implies by the ellipsoid method [7] that the (1,2)-
survivable network design problem can be solved in polynomial time on graphs for
which SNDP(G, r) = CPP(G, r).
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The definition of the connectivity type of node subsets implies the following re-
marks.

Remark 2.1. The function r : 2V −→ {1, 2} is nondecreasing, that is, r satisfies
r(A) ≤ r(B) for all A ⊆ B ⊆ V .

Remark 2.2. Let A ⊆ V such that r(A) = 1. Then, we have
(a) r(A ∪B) = r(B) for any B ⊆ V , and
(b) con(A ∪B) = con(B) for any B ⊆ V such that A ∪B �= V .
Proposition 2.3. The function con : 2V −→ {1, 2} is submodular on crossing

pairs.
Proof. Let A,B ⊆ V such that A∩B �= ∅, A \B �= ∅, B \A �= ∅, and A ∪B �= ∅.

We must show that

(2.6) con(A) + con(B) ≥ con(A ∩B) + con(A ∪B).

If con(A) + con(B) = 4, then it is obvious that inequality (2.6) holds.
If con(A) = con(B) = 1, then con(A∩B) = con(A∪B) = 1 and hence, inequality

(2.6) is satisfied.
Suppose now that con(A) + con(B) = 3. Without loss of generality, we may

assume that con(A) = 1 and con(B) = 2. Consider first the case r(A) = 1. From
Remark 2.1, we then have r(A∩B) = r(A). By the definition of the function con, we
thus obtain con(A ∩ B) = con(A) = 1. From Remark 2.2(b), we have con(A ∪ B) =
con(B). Thus, inequality (2.6) holds. If r(A) = 2, then r(A∩B) = r(A \B) = 2 and
r(B \A) = r(A ∪B) = 1 and hence, inequality (2.6) is satisfied.

From the proof of Proposition 2.3, we deduce the remark below.
Remark 2.4. The function con : 2V −→ {1, 2} is modular on crossing pairs

A,B ⊆ V if one of the two following properties hold:
(a) con(A) + con(B) ≤ 3, or
(b) con(A) = con(B) = 2 and r(A ∩B) = r(A ∪B) = 2.
To conclude this section, we define the connectivity type vectors associated with

the subgraphs of G obtained by contractions or deletions of edges. For any subset F
of E, deleting F gives rise to the graph G − F = (V (F ), F ). The connectivity type

vector rdF ∈ {1, 2}V (F ) is then obviously the restriction of r ∈ {1, 2}V on V (F ), that
is,

(2.7) rdF (u) = r(u) for all u ∈ V (F ).

Given an edge e = uv ∈ E, contracting e means deleting e and identifying u and v.
If F ⊆ E induces a connected subgraph of G, then G/F denotes the graph obtained
from G by contracting F , that is, by contracting all of the edges in F . Let w be the
node that arises from the contraction of F . The connectivity type vector rcF ∈ {1, 2}V ′

associated with the node set V ′ = (V \ V (F )) ∪ {w} is defined as follows:

(2.8) rcF (u) =

{
r(u) if u ∈ V ′ \ {w},
conG(V (F )) if u = w.

A couple (H, rH) is called a minor of (G, r) if H arises from G by a series of deletions
and contractions of edges. The vector rH is the connectivity type vector associated
with H, and it is obtained from r by applying at each deletion/contraction the cor-
responding (2.7)/(2.8). This notion of minor will be important in section 5. In the
next section, we study some structural properties of the CPP(G,r) which will be also
useful later on.
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3. Structural properties of the polytope CPP(G, r). One way to solve
the (1,2)-survivable network design problem is to use a branch-and-cut framework. In
such an approach, one may first consider a linear program whose constraints are given
by CPP(G, r) which is a relaxation of SNDP(G, r). This linear program provides a
lower bound for the SNDP, and in some special cases an optimal solution. This linear
program has an exponential number of constraints, and one needs to use a cutting-
plane algorithm to solve it. The knowledge of structural properties of the points
(especially the extreme points) of CPP(G, r) may provide useful information which is
important in order to determine violated inequalities more efficiently. The structural
properties established in this section may also be used to characterize the polytope
SNDP(G, r) on certain classes of graphs (see section 5).

Let us consider a point x of CPP(G, r).
Proposition 3.1. Let F ⊆ E be an edge subset of E that induces a con-

nected subgraph of G. Then x′ ∈ RE\F , the restriction of x on E \ F , is a point
of CPP(G/F, rcF ).

Proof. The result comes directly from the fact that any inequality of CPP(G/F, rcF )
is also an inequality of CPP(G, r).

Let us denote by π a partition {V1, . . . , Vp} of V , p ≥ 2, which is tight for x.
Proposition 3.2. Suppose p ≥ 3. Consider i, j ∈ {1, . . . , p} such that i < j.

Let π′ = {V ′
1 , . . . , V

′
p−1} be the partition defined below

V ′
t = Vt, t = 1, . . . , i− 1, i + 1, . . . , j − 1,

V ′
i = Vi ∪ Vj ,

V ′
t = Vt+1, t = j, . . . , p− 1.

(a) If π is of type 1, then x[Vi, Vj ] ≤ 1.
(b) If π is of type 2 and π′ is of type 1, then x[Vi, Vj ] ≤ 2.
(c) If π and π′ are of type 2, then x[Vi, Vj ] ≤ 1.

Moreover, if x[Vi, Vj ] = 1 (cases (a) and (c)) or x[Vi, Vj ] = 2 (case (b)), then the
partition π′ is also tight for x.

Proof. We are going to prove (a). (The proofs of (b) and (c) are similar.) Since
π is of type 1, then clearly π′ is also of type 1. Hence, we have

x(δ(V ′
1 , . . . , V

′
p−1)) ≥ p− 2.

We thus obtain

x[Vi, Vj ] = x(δ(V1, . . . , Vp)) − x(δ(V ′
1 , . . . , V

′
p−1))

≤ p− 1 − (p− 2)

= 1.

Moreover, if x[Vi, Vj ] = 1, then the above inequalities are all satisfied as equalities,
and we get x(δ(V ′

1 , . . . , V
′
p−1)) = p− 2.

Proposition 3.3. Consider a partition {V 1
i , V

2
i } of Vi for some i ∈ {1, . . . , p}.

Let π′ = {V ′
1 , . . . , V

′
p+1} be the partition of V given by

V ′
j = Vj , j = 1, . . . , i− 1,

V ′
i = V 1

i ,

V ′
i+1 = V 2

i ,

V ′
j = Vj−1, j = i + 2, . . . , p + 1.
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(a) If π and π′ are of type 1, then x[V 1
i , V

2
i ] ≥ 1.

(b) If π is of type 1 and π′ is of type 2, then x[V 1
i , V

2
i ] ≥ 2.

(c) If π is of type 2, then x[V 1
i , V

2
i ] ≥ 1.

Moreover, if x[V 1
i , V

2
i ] = 1 (cases (a) and (c)) or x[V 1

i , V
2
i ] = 2 (case (b)), then the

partition π′ is also tight for x.
Proof. The proof is omitted because of its similarity with the one of Proposition

3.2.
An immediate consequence of Proposition 3.3 is the following.
Remark 3.4. The subgraphs G(Vi) for i = 1, . . . , p are all connected.
We notice that the two previous propositions could be generalized as described

in the remark below.
Remark 3.5. In Proposition 3.2, we may consider a subscript subset I � {1, . . . , p}

with |I| ≥ 2 (instead of only two distinct subscripts i and j), and in Proposition 3.3,
we may partition the node subset Vi into at least (rather than exactly) two subsets.

Proposition 3.6. Let δ(W1) and δ(W2) be two cuts tight for x such that W1

and W2 are two crossing subsets of V . Then, δ(W1 ∩W2) and δ(W1 ∪W2) are tight
for x, and x[W1 \W2,W2 \W1] = 0 if one of the two following properties holds:

(a) con(W1) + con(W2) ≤ 3, or
(b) con(W1) = con(W2) = 2 and r(W1 ∩W2) = r(Wi ∪W2) = 2.
Proof. We have

x(δ(W1)) + x(δ(W2)) = con(W1) + con(W2)

= x(δ(W1 ∩W2)) + x(δ(W1 ∪W 2)) + 2x[W1 \W2,W2 \W1]

≥ con(W1 ∩W2) + con(W1 ∪W 2),

where the last inequality follows from x ∈ CPP(G, r). Since one of the properties (a)
and (b) holds and con(W1 ∪W 2) = con(W1∪W2), by Remark 2.4 we have con(W1)+
con(W2) = con(W1 ∩W2) + con(W1 ∪W2). We then obtain the result.

Proposition 3.7. Let π1 = {V1, . . . , Vp} and π2 = {W1, . . . ,Wq}, p ≥ 2 and
q ≥ 2, be two partitions of V which are tight for x. Consider two distinct subscripts
i, j ∈ {1, . . . , p}.

(a) If π1 is of type 1 or π1 is of type 2 with p ≥ 3 and r(Vi ∪ Vj) = 2, then at
most one class of π2 only intersects both Vi and Vj.

(b) If π1 is of type 2 with either p = 2 or r(Vi ∪ Vj) = 1, then at most two classes
of π2 only intersect both Vi and Vj.

Proof. Assume that π1 is a partition of type 1. (The proofs for the other cases are
similar.) Let K ⊆ {1, . . . , q}, |K| > 1, be the set of subscripts such that Wk ∩ Vi �= ∅,
Wk ∩ Vj �= ∅, and Wk = (Wk ∩ Vi) ∪ (Wk ∩ Vj) for all k ∈ K. From Proposition 3.3,
we have

x[Wk ∩ Vi,Wk ∩ Vj ] ≥ 1 for all k ∈ K.

These last inequalities together with Proposition 3.2(a) lead to

1 ≥ x[Vi, Vj ] ≥
∑
k∈K

x[Wk ∩ Vi,Wk ∩ Vj ]

≥ |K|
> 1,

a contradiction.
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We remark that if we have p = 2 in Proposition 3.7, then at most con(V1) classes
of the partition π2 intersect both V1 and V2.

Proposition 3.8. Let π1 = {V1, . . . , Vp} and π2 = {W1, . . . ,Wq}, p ≥ 2 and
q ≥ 3, be two partitions of V which are tight for x. Given a subscript i ∈ {1, . . . , p},
define J = {j1, . . . , jk} = {j ∈ {1, . . . , q} | Vi ∩ Wj �= ∅}. Assume 2 ≤ k < q. We
then have

(a) x[Vi ∩Wj1 , . . . , Vi ∩Wjk ] = x[Wj1 , . . . ,Wjk ] = k − 1, if π1 is of type 1, and
one of the following conditions hold:

(a.1) π2 is of type 1, or
(a.2) π2 is of type 2, r(V1) = 1 and r(V \

⋃
j∈J Wj) = 2.

(b) x[Vi ∩Wj1 , . . . , Vi ∩Wjk ] = x[Wj1 , . . . ,Wjk ] = k, if π1 and π2 are of type 2
and r(Vi) = 2.

Proof. We are going to prove the case (a.1). (The proofs for the other cases use
similar arguments.) Without loss of generality, we suppose J = {1, . . . , k}. Since
[Vi ∩W1, . . . , Vi ∩Wk] ⊆ [W1, . . . ,Wk] and x ≥ 0, we have

(3.1) x[Vi ∩W1, . . . , Vi ∩Wk] ≤ x[W1, . . . ,Wk].

From the definition of J and the fact that π2 is a partition of V , {Vi∩W1, . . . , Vi∩Wk}
is a partition of Vi. By Proposition 3.3(a) and Remark 3.5, we have

(3.2) x[Vi ∩W1, . . . , Vi ∩Wk] ≥ k − 1.

Furthermore, as π2 is of type 1, the partition {
⋃

j∈J Wj ,Wk+1, . . . ,Wq} is also of type
1. From Proposition 3.2(a) and Remark 3.5, we have

x[W1, . . . ,Wk] ≤ k − 1.

This last inequality combined with the inequalities (3.1) and (3.2) gives x[Vi∩W1, . . . ,
Vi ∩Wk] = x[W1, . . . ,Wk] = k − 1.

We remark that in Proposition 3.8, if we do not fulfill the conditions (a) and (b),
we still have k − 1 ≤ x[Vi ∩Wj1 , . . . , Vi ∩Wjk ] ≤ x[Wj1 , . . . ,Wjk ] ≤ k.

Proposition 3.9. Let π = {V1, . . . , Vp}, p ≥ 2, be a partition of V which is tight
for x. Consider two distinct subscripts i, j ∈ {1, . . . , p} such that i < j, |Vi| ≥ 2, and
|Vj | ≥ 2. Given a nonempty node set W � Vi and a partition {V 1

j , . . . , V
q
j }, q ≥ 2, of

Vj, let π′ = {V ′
1 , . . . , V

′
p′} be the following partition of V :

V ′
t = Vt, t = 1, . . . , i− 1,

V ′
i = Vi \W,

V ′
t = Vt, t = i + 1, . . . , j − 1,

V ′
j = V 1

j ∪W,

V ′
t+j = V t+1

j , t = 1, . . . , q − 1,

V ′
t+q−1 = Vt, t = j + 1, . . . , p,

where p′ = p + q − 1.
(a) If π and π′ are of the same type, then x[V 1

j , . . . , V
q
j ] ≥ q − 1 + x[W,V 1

j ] −
x[W,Vi \W ].

(b) If π is of type 1 and π′ is of type 2, then x[V 1
j , . . . , V

q
j ] ≥ q + x[W,V 1

j ] −
x[W,Vi \W ].
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(c) If π is of type 2 and π′ is of type 1, then x[V 1
j , . . . , V

q
j ] ≥ q − 2 + x[W,V 1

j ] −
x[W,Vi \W ].

Moreover, if x[V 1
j , . . . , V

q
j ] = q−1+x[W,V 1

j ]−x[W,Vi\W ] (case (a)), x[V 1
j , . . . , V

q
j ] =

q+x[W,V 1
j ]−x[W,Vi\W ] (case (b)) or x[V 1

j , . . . , V
q
j ] = q−2+x[W,V 1

j ]−x[W,Vi\W ]
(case (c)), then the partition π′ is also tight for x.

Proof. Using x(δ(V ′
1 , . . . , V

′
p′)) = x(δ(V1, . . . , Vp)) + x[V 1

j , . . . , V
q
j ] − x[W,V 1

j ] +
x[W,Vi \W ], the proof is similar to the one of Proposition 3.2, and thus it is omit-
ted.

In the remainder of this section, let us assume that x is an extreme point of
CPP(G, r). We denote by E0(x), E1(x) and Ef (x) the set of edges e ∈ E such that
x(e) = 0, x(e) = 1 and 0 < x(e) < 1, respectively. Let P1(x) and P2(x) be the sets of
partitions of type 1 and 2, respectively, which are tight for x.

Since x is an extreme point of CPP(G, r), there exist P ∗
1 (x) ⊆ P1(x) and P ∗

2 (x) ⊆
P2(x) such that x is the unique solution of the system

S(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(e) = 0 for all e ∈ E0(x),

x(e) = 1 for all e ∈ E1(x),

x(δ(V1, . . . , Vp)) = p− 1 for all {V1, . . . , Vp} ∈ P ∗
1 (x),

x(δ(W1, . . . ,Wq)) = q for all {W1, . . . ,Wq} ∈ P ∗
2 (x),

where |E0(x)|+|E1(x)|+|P ∗
1 (x)|+|P ∗

2 (x)| = |E|. Since the system S(x) is not unique,
we give the following remarks which will be useful later.

Remark 3.10. From any system of equations, induced by inequalities of CPP(G, r)
and whose unique solution is x, we may extract a nonsingular subsystem having
exactly |E| equations.

Remark 3.11. For any e ∈ E, there exists at least one equation of S(x) which
contains x(e) with a nonzero coefficient.

Proposition 3.12. If x is fractional, then |Ef (x)| ≥ 2.
Proof. Every equation of the system S(x) has coefficients equal to 0 or 1 and an

integer right-hand side. Since x is fractional, Remark 3.11 then implies that x must
contain at least two fractional components.

Proposition 3.13. For any edge pair of Ef (x), there exists at least one equation
of S(x) which contains exactly one of the two edges.

Proof. Suppose that there exist two edges e1, e2 ∈ Ef (x) such that any equation
of S(x) contains either both or none of them. Let x′ ∈ RE be the point such that

x′(e) =

⎧⎪⎨
⎪⎩

x(e) + ε if e = e1,

x(e) − ε if e = e2,

x(e) if e ∈ E \ {e1, e2},

where ε �= 0. The point x′ is also a solution of S(x), which contradicts the extremality
of x.

A direct consequence of the previous proposition is the following.
Remark 3.14. If u, v are two nodes of V , then [u, v] contains at most one edge

in Ef (x).
Proposition 3.15. Let W � V be a nonempty node subset such that x(δ(W )) =

1. We then have x(e) ∈ {0, 1} for all e ∈ δ(W ).
Proof. Suppose there exists e ∈ δ(W ) ∩ Ef (x). Since x(δ(W )) = 1, there must

exist another edge f ∈ δ(W )∩Ef (x). We are going to prove that the system S(x) can
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be chosen such that any of its equations contains either e and f or none of them. Let
{V1, . . . , Vp} be a partition of V inducing an equation of the system S(x). Assume that
there exist two distinct subscripts i, j ∈ {1, . . . , p} such that Vi ∩W �= ∅ �= Vj ∩W .
From Proposition 3.3, we obtain x[Vi∩W,Vi \W ] ≥ 1 and x[Vj∩W,Vj \W ] ≥ 1 which
give x(δ(W )) ≥ x[Vi ∩W,Vi \W ] +x[Vj ∩W,Vj \W ] ≥ 2, a contradiction. Therefore,
we have W ⊆ Vk for some k ∈ {1, . . . , p}. If W �= Vk, then from Proposition 3.3 and
x(δ(W )) = 1 we must have δ(W ) = [W,Vk \W ]. We thus conclude that any equation
of S(x) contains either e and f or none of them. But this contradicts Proposition
3.13.

Proposition 3.16. Let W � V be a nonempty node subset such that con(W ) =
2. If x(δ(W )) = 2, then the system S(x) can be chosen such that P ∗

1 (x) = ∅.
Proof. Suppose there exists a partition {V1, . . . , Vp} ∈ P ∗

1 (x). Without loss of
generality, we suppose that V1 contains all the terminals. Since con(W ) = 2, we obtain
that V1 ∩W �= ∅ �= V1 ∩W . From Proposition 3.3(b), we have x[V1 ∩W,V1 ∩W ] ≥ 2
which implies δ(W ) = [V1∩W,V1∩W ]. Therefore by Proposition 3.2, we deduce that
either W or W is a subset of V1. Without loss of generality, we assume that W ⊂ V1.
The partition {W,V1 ∩ W,V2, . . . , Vp} is of type 2, then since x[W,V1 ∩ W ] = 2
Proposition 3.3 gives {W,V1 ∩W,V2, . . . , Vp} ∈ P ∗

2 (x).

We can thus replace in the system S(x) the partition {V1, . . . , Vp} by the partitions
{W,W} and {W,V1 ∩W,V2, . . . , Vp}. The obtained system may have more than |E|
equations, yet from Remark 3.10 we can choose |E| equations of this system whose
unique solution is x.

Proposition 3.17. Let W � V be a nonempty node subset such that con(W ) =
2. If x(δ(W )) = 2, then the system S(x) can be chosen such that at most one class
of any partition of P ∗

2 (x) intersects both W and W .

Proof. From Proposition 3.7(b), any partition of P ∗
2 (x) has at most two classes

which intersect both W and W . Suppose that there exists a partition {V1, . . . , Vp} of
P ∗

2 (x) such that, without loss of generality, V1 and V2 intersect both W and W . Propo-
sition 3.3(c) then states that the partition {V1∩W,V1∩W,V2∩W,V2∩W,V3, . . . , Vp}
belongs to P2(x). We can thus replace in the system S(x) the partition {V1, . . . , Vp}
by the partitions {W,W} and {V1∩W,V1∩W,V2∩W,V2∩W,V3, . . . , Vp}. The result
thus follows from Remark 3.10.

Proposition 3.18. Let u, v be two distinct nodes such that x[u, v] ≥ 1. The
system S(x) can thus be chosen such that

(a) δ(V1, . . . , Vp) ∩ [u, v] = ∅, for all {V1, . . . , Vp} ∈ P ∗
1 (x), and

(b) if {V1, . . . , Vp} ∈ P ∗
2 (x) with p ≥ 3 and [u, v] ⊆ [Vi, Vj ] for some distinct

subscripts i, j ∈ {1, . . . , p}, then r(V \ (Vi ∪ Vj)) = 1.

Proof. We will prove (a). (The proof of (b) uses similar arguments.) Let π =
{V1, . . . , Vp}, p ≥ 2, be a partition of type 1, tight for x and such that without loss of
generality, [u, v] ⊆ [V1, V2]. If p = 2, then from Proposition 3.15, we have x(e) ∈ {0, 1}
for all e ∈ [u, v]. The equation induced by π can thus be obtained from the equations
x(e) = 0 for all e ∈ [u, v] ∩ E0(x), and x(e) = 1 for all e ∈ [u, v] ∩ E1(x).

Suppose now that p ≥ 3. From Proposition 3.2, we have x[V1, V2] ≤ 1. Since
[u, v] ⊆ [V1, V2] and x[u, v] ≥ 1, we then obtain x[u, v] = 1. Therefore, the partition
π′ = {V1 ∪V2, V3, . . . , Vp} is also tight for x. Moreover, by Remark 3.14, x(e) ∈ {0, 1}
for all e ∈ [u, v]. The equation induced by π can thus be obtained from the one
induced by π′ together with the equations x(e) = 0 for all e ∈ [u, v] ∩ E0(x) and
x(e) = 1 for all e ∈ [u, v] ∩ E1(x).

Proposition 3.19. Let u be a node having exactly two neighbors, namely u1
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and u2. The system S(x) can then be chosen such that any partition {V1, . . . , Vp} ∈
P ∗

1 (x) ∪ P ∗
2 (x) with p ≥ 3 and [u, u1] ⊂ δ(V1, . . . , Vp) has the following property:

|Vi ∩ {u1, u2}| ≤ 1 for all i ∈ {1, . . . , p}.

Moreover, if x[u, u2] < 1, then we also have

|Vi ∩ {u, u2}| ≤ 1 for all i ∈ {1, . . . , p}.

Proof. Let π = {V1, . . . , Vp} ∈ P ∗
1 (x)∪P ∗

2 (x) with p ≥ 3 and [u, u1] ⊂ δ(V1, . . . , Vp).
Without loss of generality, we assume u ∈ V1 and u1 ∈ V2. Suppose u2 ∈ V2.
By Remark 3.4, we have V1 = {u}. If x(δ(u)) > r(u), by considering the par-
tition {V1 ∪ V2, V3, . . . , Vp}, we then contradict Proposition 3.2. Hence, we have
x(δ(u)) = r(u). Let π′ be the partition {V1 ∪ V2, V3, . . . , Vp}. If r(u) = 2, then either
x[u, u1] or x[u, u2] is greater than 1, and by Proposition 3.18, we have π ∈ P ∗

2 (x),
r(V \ (V1 ∪ V2)) = 1, and then π′ ∈ P1(x). If r(u) = 1, then we clearly have
π′ ∈ P1(x) ∪ P2(x). We can thus replace in the system S(x) the partition π by the
partition π′ and the cut δ(u). The obtained system may have more than |E| equa-
tions, yet from Remark 3.10 we can choose |E| equations of this system whose unique
solution is x. Therefore, the system S(x) can be chosen such that no partition has
one class containing u and a different one containing both u1 and u2.

We now suppose that x[u, u2] < 1. If u2 ∈ V1, we then have x[u, V1 \ {u}] =
x[u, u2] < 1, a contradiction with Proposition 3.3.

Proposition 3.20. Let u, v be two distinct nodes such that x[u, v] ≥ 2. We
have the following:

(a) the system S(x) can be chosen such that the variables x(e), for all e ∈ [u, v],
only appear in equations induced by E0(x)∪E1(x) with a nonzero coefficient,
and

(b) x(e) ∈ {0, 1} for all e ∈ [u, v].
Proof. Using the same arguments as in the proof of Proposition 3.18, we get (a).

Consequently, from Remark 3.11, we obtain x(e) ∈ {0, 1} for all e ∈ [u, v].

4. Composition of G by one-node cutset and the CPP(G, r). Given a
graph G = (V,E) and two subgraphs G1 = (V1, E1) and G2 = (V2, E2) of G, if
V = V1 ∪ V2 and |V1 ∩ V2| = 1, then G = (V,E1 ∪ E2) is called the 1-sum of G1 and
G2. In that case, the singleton V1 ∩ V2 is called a one-node cutset of G.

Lemma 4.1. Let G = (V,E) be a graph and r ∈ {1, 2}V be a connectivity type
vector. Suppose that G is the 1-sum of the graphs G1 = (V1, E1) and G2 = (V2, E2).
Let u be the only node of V1 ∩ V2. For i = 1, 2, let ri ∈ {1, 2}Vi be the connectivity
type vector such that ri(v) = r(v) if v ∈ Vi \ {u} and ri(u) = max{r(u), r(V \ Vi)}.
If x is an extreme point of CPP(G, r), then the restriction xi of x on Gi is also an
extreme point of CPP(Gi, ri) for i = 1, 2.

Proof. First, when we write xi, we refer to one of the two restrictions x1 and x2,
and then the subscript i may be either 1 or 2 in the proof. From Proposition 3.1, xi ∈
CPP(Gi, ri). (We remark that the couples (G1, r1) and (G2, r2) are nothing but the
couples (G/E2, r

c
E2

) and (G/E1, r
c
E1

), respectively.) To prove that xi is an extreme
point of CPP(Gi, ri), it suffices to show that we can choose the system S(x) such that
for any pair of edges e1 ∈ E1 and e2 ∈ E2, none of its equations involves both x(e1)
and x(e2) with nonzero coefficients.

Let π = {W1, . . . ,Wp} be a partition which is tight for x. Suppose u ∈ Wq for
some q ∈ {1, . . . , p}. Since {u} is a one-node cutset, by Remark 3.4 Wq is the only
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class which may intersect both V1 and V2. Without loss of generality, we can assume
that Wj ⊆ V1 for all j ∈ {1, . . . , q − 1} and Wk ⊆ V2 for all k ∈ {q + 1, . . . , p}.

Consider the two partitions π1 = {W1, . . . ,Wq−1,W
1
q } and π2 = {W 2

q ,Wq+1, . . . ,
Wp} of V , where

W 1
q =

⋃
j≥q

Wj and W 2
q =

⋃
k≤q

Wk.

We clearly have

(4.1) x(δ(W1, . . . ,Wp)) = x(δ(W1, . . . ,Wq−1,W
1
q )) + x(δ(W 2

q ,Wq+1, . . . ,Wp)).

We remark that we cannot have both π1 and π2 of type 2. The partition π would be
of type 2 otherwise, and then (4.1) would give

p = x(δ(W1, . . . ,Wp))

≥ q + (p− q + 1)

= p + 1,

which is impossible.
Without loss of generality, we now suppose that π1 is of type 1. We notice that,

in this case, π and π2 have the same type. Assume that π2 is of type 2. (The case
where π2 is of type 1 is similar.) The inequality (4.1) then gives

p = x(δ(W1, . . . ,Wp))

≥ (q − 1) + (p− q + 1)

= p.

We thus have that both partitions π1 and π2 are tight for x. Hence, we can replace
in the system S(x) the partition π by the two partitions π1 and π2, and we then get
a new system S′(x). By Remark 3.10, there is a nonsingular subsystem of S′(x) with
exactly |E| equations and whose solution is x. Since δ(W1, . . . ,Wq−1,W

1
q ) ⊆ E1 and

δ(W 2
q ,Wq+1, . . . ,Wp) ⊆ E2, any equation of this subsystem only contains variables

induced by edges from either E1 or E2. The proof is thus complete.
Using the same notations as those introduced in Lemma 4.1, the following is an

immediate consequence of this lemma.
Corollary 4.2. If CPP(G1, r1) and CPP(G2, r2) are integer, then so is

CPP(G, r).
Suppose that G is decomposable by one-node custsets into G1, G2, . . . , Gt with

t ≥ 2. Let ri, i = 1, . . . , t, be the connectivity type vector associated to Gi, defined as
in Lemma 4.1. A direct consequence of Corollary 4.2 is that if CPP(Gi, ri) is integer
for all i ∈ {1, . . . , t}, then so is CPP(G, r).

5. The polytope CPP(G, r) on series-parallel graphs. In this section, we
are interested in the cut and partition inequalities polytope CPP(G, r) on series-
parallel graphs. A graph is called series-parallel if and only if it does not contain
K4 (i.e., the complete graph with 4 nodes) as a minor [4]. We are going to give
sufficient conditions for this polytope to be an integer on this class of graphs, that is,
sufficient conditions for the polytope SNDP(G, r) to be completely described by the
trivial inequalities (2.1) and (2.2) together with the partition inequalities (2.5). (We
recall that the cut inequalities (2.3) are partition inequalities induced by partitions
having exactly two classes.)
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We can remark that if the graph G contains at most one terminal (i.e., |T | ≤ 1),
then the SNDP is nothing but the spanning tree problem. In this case and for general
graphs G, Fulkerson [5] completely described the polytope SNDP(G, r) by the trivial
inequalities and the inequalities (2.5) induced by partitions of type 1. For general
graphs G, we then have the following.

Theorem 5.1 (see [5]). If |T | ≤ 1, then CPP(G, r) is integer.
On the other hand, Mahjoub [17] showed that the polytope SNDP(G, r) is com-

pletely described by the trivial inequalities (2.1) and (2.2), and the cut inequalities
(2.3) on series-parallel graphs when r(u) = 2 for all u ∈ V . We notice that for such
connectivity type vectors, the partition inequalities (2.5) are dominated by the cut
inequalities (2.3). Therefore we have the following theorem.

Theorem 5.2 (see [17]). If G is series-parallel and T = V , then CPP(G, r) is
integer.

In the remainder of this paper, we are going to restrict our attention to graphs G
having at least one ordinary node and two terminals. We remark that according to
the definition of the survivability conditions, the case with exactly one terminal can
be trivially reduced to the one with T = ∅.

In view of Theorems 5.1 and 5.2, one would have expected the integrality of
the polytope CPP(G, r) if G is series-parallel and r ∈ {1, 2}V . Unfortunately, it
turns out that this result does not hold. In fact, let us consider the two graphs
G1

p = (V 1
p , E

1
p) and G2

p = (V 2
p , E

2
p) of Figure 5.1, where the terminals are represented

by black circles. (G1
p has three terminals {u1, u2, u3} and two ordinary nodes {v1, v2},

while G2
p has four terminals {u1, u2, u3, u4} and one ordinary node {v1}.) These two

graphs are clearly series-parallel. Moreover, the fractional solutions of 1
2 for all of the

dashed edges and 1 for all of the solid ones are extreme points of the corresponding

polytopes CPP(G1
p, r

1
p) and CPP(G2

p, r
2
p), where r1

p ∈ {1, 2}V 1
p and r2

p ∈ {1, 2}V 2
p are

the connectivity type vectors associated to G1
p and G2

p, respectively. This implies that
the partition inequalities (2.5) together with the trivial ones (2.1) and (2.2) do not
suffice to completely describe the survivable network design polytope SNDP(G, r) on
series-parallel graphs.

v 1 v 1

u2 u2

u1u3u1

v 2 u4

u3

Fig. 5.1. Fractional extreme points of CPP(G1
p, r

1
p) and CPP(G2

p, r
2
p).

Let us now consider the following inequalities:

x(Ei
p) + x(δ(v1)) ≥ 8 for i = 1, 2.(5.1)

It is not hard to see that the inequality (5.1) for i = 1 (respectively, i = 2) should
be satisfied by any point of the polytope SNDP(G1

p, r
1
p) (respectively, SNDP(G2

p, r
2
p)).

Moreover, this inequality cuts off the fractional extreme point of CPP(G1
p, r

1
p) (respec-

tively, CPP(G2
p, r

2
p)) given above. We will see in section 7 that inequalities (5.1) are ac-

tually special cases of a more general class of facet-defining inequalities of SNDP(G, r).
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In the next theorem, we give sufficient conditions based on both graphs (G1
p, r

1
p)

and (G2
p, r

2
p) for the cut and partition inequalities polytope CPP(G, r) to be an integer

on series-parallel graphs.
Theorem 5.3. Let G = (V,E) be a series-parallel graph and r ∈ {1, 2}V be its

associated connectivity type vector. If (G, r) does not have either (G1
p, r

1
p) or (G2

p, r
2
p)

as a minor, then CPP(G, r) is integer.
Before giving the proof of the theorem, let us first note that its converse does not

hold as shown by the following example. (The black circles still depict the terminal
nodes.)

Fig. 5.2. Counterexample for the converse of Theorem 5.3.

Let G0 = (V0, E0) be the graph given in Figure 5.2 and r0 ∈ {1, 2}V0 its associated
connectivity type vector. The polytope CPP(G0, r0) is integer. In fact it is reduced
to the point with all components equal to 1. The couple (G0, r0) clearly has (G1

p, r
1
p)

as a minor, proving that the converse of Theorem 5.3 is not true.
Proof of Theorem 5.3. The proof is by induction on the number of edges. It is

not hard to see that the statement holds for any graph with no more than two edges.
Suppose that for any series-parallel graph G having no more than m edges and any
connectivity type vector r ∈ {1, 2}V such that (G, r) has neither (G1

p, r
1
p) nor (G2

p, r
2
p)

as a minor, we have that CPP(G, r) is integer. Let us consider a series-parallel graph
G = (V,E) and a connectivity type vector r ∈ {1, 2}V such that G has m+1 edges,
(G, r) has neither (G1

p, r
1
p) nor (G2

p, r
2
p) as a minor and CPP(G, r) is not integer. There

thus exists a fractional extreme point x of CPP(G, r). We can choose x among all
the fractional extreme points of CPP(G, r) such that |E0(x) ∪ E1(x)| is maximum.
(Associated with x, we consider the system S(x) as well as the sets E0(x), E1(x) and
Ef (x) as defined in section 3.)

If r(v) = 2 for all v ∈ V , then from Theorem 5.2 the polytope CPP(G, r) is integer.
Therefore, without loss of generality, we can also suppose that the cardinality of the
terminal set T is maximum. It means that for any series-parallel graph G′ = (V ′, E′)
and any connectivity type vector r′ ∈ {1, 2}V ′

such that |E′| = m + 1, (G′, r′) has
neither (G1

p, r
1
p) nor (G2

p, r
2
p) as a minor and |{v ∈ V ′ : r′(v) = 2}| > |T |, the polytope

CPP(G′, r′) is integer.
From the induction hypothesis, it follows that

(5.2) x(e) > 0 for all e ∈ E,

that is, E0(x) = ∅.
Claim 1. Any variable x(e), e ∈ E, has a nonzero coefficient in at least two

equations of S(x).
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Proof. Let us consider an edge f = uv of E, and denote F = [u, v]. From Remark
3.11, there exists at least one equation of S(x) which contains x(f) with a nonzero
coefficient. Assume that there is exactly one such equation. Let S′(x) be the system
obtained from S(x) by deleting all of the equations involving x(e) for e ∈ F . We
notice that the system S′(x) contains exactly |E| − |F | equations. Let x′ be the
restriction of x on E \ F . By Proposition 3.1, x′ ∈ CPP(G/F, rF ). Furthermore,
x′ is a solution of the system S′(x). Since S′(x) is nonsingular and its equations
come from constraints of CPP(G/F, rF ), this implies that x′ is an extreme point of
CPP(G/F, rF ). By Proposition 3.12 and Remark 3.14, the point x′ is fractional. As
(G/F, rF ) is a series-parallel graph having neither (G1

p, r
1
p) nor (G2

p, r
2
p) as a minor,

this contradicts the induction hypothesis.
Claim 2. The graph G is 2-node connected.
Proof. Suppose the graph G is not 2-node connected. There then exists a node

u ∈ V defining a one-node cutset of G. Let G1 = (V1, E1) and G2 = (V2, E2) be
the two subgraphs of G such that V1 ∩ V2 = {u} and G is the 1-sum of G1 and G2.
For i = 1, 2 we associate with Gi the connectivity type vector ri ∈ {1, 2}Vi such that
ri(v) = r(v) if v ∈ Vi \ {u}, and ri(u) = conG(V \ Vi). Let x1 and x2 be the two
restrictions of x on E1 and E2, respectively. From Lemma 4.1, both x1 and x2 are
extreme points of CPP(G1, r1) and CPP(G2, r2), respectively. Since Ef (x) �= ∅, at
least one among both restrictions is clearly fractional. Without loss of generality, we
assume that x1 is fractional. We point out that (G1, r1) is nothing but the minor of
(G, r) obtained by the contraction of E2. Therefore, since the couple (G, r) has neither
(G1

p, r
1
p) nor (G2

p, r
2
p) as a minor, then neither does (G1, r1). The latter combined with

|E1| < |E| and x1 fractional contradicts the induction hypothesis.
The proof now proceeds by successively establishing a sequence of claims which

build on each other. Therefore, for the sake of clarity, we only mention the highlights
of our argument, and the detailed sequences and proofs are deferred to section 6.

Let u ∈ V be a node having exactly two neighbors, say u1 and u2. Since G is
series-parallel, such a node u must exist [4]. Let us denote by F1 and F2 the set of
edges between u and u1, and u and u2, respectively. Without loss of generality, we
suppose

(5.3) x(F1) ≥ x(F2).

Suppose that x(F1) < 1. From the inequality (5.3), we also have x(F2) < 1,
and then, by Remark 3.14, we obtain F1 = {f1 = uu1} and F2 = {f2 = uu2}.
From Proposition 3.13, there exists a partition {V1, . . . , Vp} of P ∗

1 (x) ∪ P ∗
2 (x) such

that |δ(V1, . . . , Vp) ∩ {f1, f2}| = 1. Without loss of generality, assume that f1 ∈
δ(V1, . . . , Vp), and then {u, u2} ⊆ Vi for some i ∈ {1, . . . , p}. Hence, we obtain
x[u, Vi \ {u}] = x(f2) < 1, which contradicts Proposition 3.3. Therefore, x(F1) ≥ 1.

Claim 3. r(u) = 2.
Claim 4. r(u2) = 1.
Claim 5. There does not exist a node of degree 2.
Claim 6. 1 < x(F1) < 2.
Let F1 = {e1, f1} with x(e1) = 1 and 0 < x(f1) < 1. From Claims 3, 4, 5, 6, we

can make the following remarks.
Remark 5.4. If v is a terminal adjacent to exactly two nodes, then between v and

one of its neighbors there are exactly two edges.
Remark 5.5. Given two nodes v1 and v2, then any path P between v1 and v2,

whose internal nodes have exactly two neighbors in G, satisfies the following.
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(a) All of the internal nodes of P are terminals.
(b) P has at most two internal nodes.
Since G = (V,E) is series-parallel and 2-connected, there is a 2-node cutset

{v1, v2} such that G decomposes with respect to {v1, v2} into two graphs G1 = (V1, E1)
and G2 = (V2, E2), where {v1, v2} = V1 ∩ V2 and G1 is a cycle, possibly with parallel
edges (see Figure 5.3). Let L1 and L2 be the two walks of G1 having only v1 and
v2 in common. (In our context, a walk is a path between v1 and v2, possibly with
parallel edges.) We remark that if |V | ≥ 3, then there exists such a decomposition
with |V1| ≥ 3.

v1 v2

Fig. 5.3. Decomposition of G by the 2-node cutset {v1, v2}.

By Remark 5.5, all of the internal nodes of L1 and L2 are terminals and both L1

and L2 have each at most two internal nodes. Throughout the rest of the proof, we
only consider the case where both L1 and L2 have each at most one internal node.
The case of two internal nodes in L1 or L2 can be handled using the same arguments.

Without loss of generality, we can consider that L1 has an internal node, say
v. Under the induction assumptions, we remark that the claims 3, 4, and 6 are the
results of the fact that u has exactly two neighbors. From now on, we consider u = v,
u1 = v1, and u2 = v2.

Claim 7. |F2| = 1
Let F2 = {f2 = uu2}.
Claim 8. x(f2) < 1
Claim 9. L2 contains an internal node.
Let W = V \ {u, u1, u2, u

′}, where u′ is an internal node in L2. We can suppose,
without loss of generality, that |δ(u)| ≤ |δ(u′)|. From Remark 5.5(a), we have r(u′) =
2. To finish the proof of our theorem, we give the following three claims.

Claim 10. |[u′, u1]| > |[u′, u2]|.
From Claims 6 and 7, we obtain |δ(u′)| = |δ(u)| = 3. Using similar arguments

for u′ as those used for u, we have F ′
1 = {e′1, f ′

1} and F ′
2 = {f ′

2} with x(e′1) = 1,
0 < x(f ′

1) < 1, and 0 < x(f ′
2) < 1.

Claim 11. x(f1) = x(f2) = x(f ′
1) = x(f ′

2) = 1
2 .

Claim 12. The couple (G, r) has the following properties:
(a) W ∩ T �= ∅. (We recall that T = {u ∈ V : r(u) = 2}.)
(b) |[S, u1]| ≥ 2 and |[S, u2]| ≥ 1 for every S ⊆ W such that G(S) is a connected

component of G(W ) and S ∩ T �= ∅.
Among the series-parallel graphs, the class of outerplanar graphs has received

particular attention (see, for instance, [3, 20]). A graph is called outerplanar if it can
be embedded in the plane such that all nodes lie on the boundary of its exterior region.
In order to give a complete linear description of the survivable network polytope on
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outerplanar graphs, we give this second characterization devised from Kuratowski’s
theorem [16]. A graph is outerplanar if and only if it does not contain K4 or K2,3

as a minor. (We recall that K2,3 is the complete bipartite graph having its node set
decomposed into V1 and V2 with |V1| = 2, |V2| = 3, and E(V1) = E(V2) = ∅.)

First of all, we remark that the graph Gp of Figure 5.1 contains K2,3 as a minor.
In fact, K2,3 can be obtained from Gp by deleting the three solid edges. Therefore,
from the second definition of outerplanar graphs and Theorems 5.1, 5.2, and 5.3, we
can deduce the following result.

Theorem 5.6. Let G = (V,E) be an outerplanar graph and r ∈ {1, 2}V be an
associated connectivity type vector. The survivable network polytope SNDP(G, r) is
then completely described by the trivial inequalities (2.1) and (2.2) together with the
partition inequalities (2.5).

We notice that there exist some series-parallel graphs which are not outerplanar
and for which the polytope CPP(G, r) is integer. For instance, from Theorem 5.3,
we know that the cut and partition inequalities polytope is an integer for K2,3 with
exactly three terminals, and clearly, K2,3 is not outerplanar. Therefore, the class of
outerplanar graphs is strictly included in the subclass of series-parallel graphs implying
an integer cut and partition inequalities polytope.

Since the separation problem for the partition inequalities (2.5) is polynomially
solvable, a direct consequence of Theorem 5.6 is the following corollary.

Corollary 5.7. The (1, 2)-survivable network design problem can be solved in
polynomial time on outerplanar graphs.

6. Proof of Theorem 5.3. In order to allow a better understanding of the proof
of Theorem 5.3, we have just presented its main ideas. This section is thus devoted
to give the details of the proof.

Proof of Claim 3. Suppose that r(u) = 1 and the system S(x) satisfies Propo-
sition 3.18. Consider a partition π = {V1, . . . , Vp} of P ∗

1 (x) ∪ P ∗
2 (x) such that

F1 ⊆ δ(V1, . . . , Vp). From Claim 1, we know that such a partition exists. Since
x(F1) ≥ 1, by Proposition 3.18(a), we have π ∈ P ∗

2 (x). Without loss of generality,
assume u ∈ V1 and u1 ∈ V2. From Proposition 3.18(b) and the assumption r(u) = 1,
we obtain r(V1 \ {u}) = 2. We can then deduce from Remark 3.4 that u2 ∈ V1. With
π, we associate the partition πa = {V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp} which clearly is of
type 2. Since x(δ(V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp)) ≥ p, we then obtain x(F2) ≥ x(F1).
This last inequality combined with inequality (5.3) gives x(F2) = x(F1), and thus,
πa ∈ P2(x).

Let SF1(x) be the system arisen from S(x) when we delete every equation induced
by e ∈ E1(x) ∩ F1 and the ones induced by the partitions π containing F1, and we
add the equations induced by the associated partitions πa. (We remark that πa might
already belong to P ∗

2 (x).) From Proposition 3.1, the restriction xF1
of x on G/F1

belongs to CPP(G/F1, rF1
). Moreover, the couple (G/F1, rF1

) clearly has neither
(G1

p, r
1
p) nor (G2

p, r
2
p) as a minor. Since G/F1 has less edges than G, by the induction

hypothesis, the polytope CPP(G/F1, rF1) is an integer. Therefore xF1 , which is clearly
fractional, is not an extreme point of CPP(G/F1, rF1). There must thus exist an
extreme point y ∈ CPP(G/F1, rF1) which is also a solution of SF1(x). Let y ∈ RE

be the unique point such that y(e) = y(e) if e ∈ E \ F1, y(e) = 1 if e ∈ E1(x) ∩ F1,
and y(F1) = y(F2). We clearly have y �= x. Moreover, it is obvious that y is also
a solution of the system S(x). This contradicts the fact that the system S(x) is
nonsingular.

Proof of Claim 4. Assume on the contrary that r(u2) = 2. Let us consider
a partition π = {V1, V2, . . . , Vp} of P ∗

1 (x) ∪ P ∗
2 (x) such that u ∈ V1 and u1 ∈ V2.
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From Claim 1, such a partition must exist and from Proposition 3.18, π ∈ P ∗
2 (x).

We claim that this partition exists providing x(F1) = x(F2). In fact, suppose that
x(F1) > x(F2). Since x(δ(u)) = x(F1) + x(F2) ≥ 2, we clearly get x(F1) > 1. If
u2 �∈ V1 ∪ V2, Remark 3.4 implies that the class V1 is then reduced to the single node
u. The partition π1 = {V1 ∪ V2, V3, . . . , Vp} is of type 2 because of u ∈ V1 ∪ V2,
r(u) = 2, u2 �∈ V1 ∪ V2, and r(u2) = 2. We then have

x(δ(V1 ∪ V2, V3, . . . , Vp)) = x(δ(V1, V2, . . . , Vp)) − x(F1)

= p− x(F1)

< p− 1,

which contradicts x ∈ CPP(G, r).
If u2 ∈ V1, the partition π2 = {V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp} is obviously of type

2. We then get

x(δ(V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp)) = x(δ(V1, V2, . . . , Vp)) − x(F1) + x(F2)

= p− x(F1) + x(F2)

< p,

which contradicts x ∈ CPP(G, r). We therefore deduce that the node u2 belongs to
V2, and thus V1 = {u}. From Proposition 3.19, we could have chosen the system S(x)
such that p = 2, and thus partition π is nothing but the cut δ(u). Since x(F1) > 1,
x(F2) > 0, and x(δ(u)) = 2, we clearly deduce that there exists f1 ∈ F1 ∩ Ef (x).
This edge belongs to exactly one equation of S(x), contradicting Claim 1. Therefore
x(F1) = x(F2).

We still consider the partition π introduced at the beginning of this proof. If
p = 2, then we have x(F1) = x(F2) = 1 which implies that the equation induced
by π is redundant with respect to x(e1) = x(e2) = 1, where F1 = {e1} and F2 =
{e2}. Hence, we can consider p ≥ 3. From Proposition 3.19, we have either u2 �∈
V1 ∪ V2 or u2 ∈ V1. If u2 �∈ V1 ∪ V2 (respectively, u2 ∈ V1), then by considering the
partition π1 (respectively, π2) previously defined, we obtain x(F1) = 1 and π1 ∈ P2(x)
(respectively, π2 ∈ P2(x)). Using the same arguments as the ones of the proof of Claim
3, we can exhibit a vector y �= x which is also a solution of S(x). This contradiction
completes our proof.

Proof of Claim 5. Suppose that the statement does not hold. Let v be a node
of degree 2 adjacent to exactly two different nodes, say v1 and v2. (Remark that
the 2-node connectivity of G implies the existence of v1 and v2.) Without loss of
generality, we may suppose that x(vv1) ≥ x(vv2). By Claims 3 and 4, it then follows
that r(v) = 2 and r(v2) = 1. Let r∗ ∈ RV be the connectivity type vector such
that r∗(w) = r(w) if w �= v2, and r∗(w) = 2 if w = v2. We claim that (G, r∗)
contains neither (G1

p, r
1
p) nor (G2

p, r
2
p) as a minor. In fact, suppose, on the contrary,

that (G, r∗) contains one of these minors, and let us denote that (H, rH) contains one
of these minors. Let π = (S1, . . . , S5) be the partition of V that induces H, where S1

corresponds to the ordinary node of H of degree 3, S2, S3, S4 to the terminal nodes
of H of degree 3, and S5 to the node of H of degree 6. As r∗(v2) = 2, v2 belongs to
a class Si of connectivity type 2, that is, i �= 1. If Si contains a node w �= v2 with
r∗(w) = 2, then (H, rH) would also be a minor of (G, r), a contradiction. Therefore
Si\{v2} only contains nodes of connectivity type 1 with respect to r∗. In consequence,
v belongs to Sj with j �= i and j �= 1. Note that v1 ∈ Sj . Otherwise as G(Sj) is
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connected, one would have Sj = {v}, and thus, H would contain a node of degree 2.
Since neither (G1

p, r
1
p) nor (G2

p, r
2
p) has a node of degree 2, this is impossible.

If i = 5, then (H, rH) is nothing but (G2
p, r

2
p). Since r∗(Si) = 2 and r∗(Si\{v2}) =

1, we have r(Si) = 1, and (G1
p, r

1
p) is a minor of (G, r). This contradicts our hypothesis

on (G, r). Therefore 2 ≤ i ≤ 4.
If j = 5, let us consider the partition π′ = (S′

1, . . . , S
′
5) such that

S′
t = St t ∈ {1, . . . , 4} \ {i},

S′
i = Si ∪ {v},

S′
5 = S5 \ {v}.

We can easily see that the partition π′ induces either (G1
p, r

1
p) or (G2

p, r
2
p) with respect

to r. This yields to a contradiction, and then 2 ≤ j ≤ 4.
Since i �= j, v ∈ Sj , and v2 ∈ Si, we have [Si, Sj ] �= ∅. Therefore, G is not

series-parallel.
Consequently, (G, r∗) contains neither (G1

p, r
1
p) nor (G2

p, r
2
p) as a minor. Let us

now prove that x is an extreme point of CPP(G, r∗). We first show that x belongs to
CPP(G, r∗). Let π = (V1, V2, . . . , Vp) be a partition of V . It is obvious that if v and
v2 are in the same class of π or if π is of type 2 with respect to r, then the type of
π doesn’t change by considering r∗ instead of r. The inequality induced by π with
respect to r∗ is then satisfied by x. Therefore, we only have to focus on the case where
π is a partition of type 1 with respect to r and e2 ∈ δ(V1, V2, . . . , Vp). Without loss
of generality, suppose that v ∈ V1 and v2 ∈ V2. Since π is of type 1 with respect to r,
all of the nodes u with r(u) = 2 belong to V1. (We recall that (G, r) has at least two
terminals which implies that |V1| ≥ 2.) The partition ({v}, V1 \ {v}, V2, . . . , Vp) is of
type 2 with respect to r, and hence, we have

x(δ({v}, V1 \ {v}, V2, . . . , Vp)) = x(δ(V1, V2, . . . , Vp)) + x[{v}, V1 \ {v}]
≥ p + 1.

Since x[{v}, V1 \ {v}] ≤ 1, we obtain x(δ(V1, V2, . . . , Vp)) ≥ p. Therefore, x belongs
to CPP(G, r∗). Using similar arguments, we can prove that S(x) is a system of tight
inequalities of CPP(G, r∗). Thus, x is an extreme point of CPP(G, r∗). As (G, r∗)
has more terminals than (G, r), this contradicts the maximality of T .

Proof of Claim 6. From Claim 5, we have x(F1) > 1. If x(F1) ≥ 2, then by
Proposition 3.20(a), the variable x(e) belongs to exactly one equation of the system
S(x) with a nonzero coefficient, for all e ∈ F1. Yet, this contradicts Claim 1.

Since by Claim 6, 1 < x(F1) < 2, it follows from Remark 3.14 that there exist
two edges e1, f1 ∈ E such that F1 = {e1, f1}, e1 ∈ E1(x), and f1 ∈ Ef (x), that is,
x(e1) = 1 and 0 < x(f1) < 1.

Proof of Claim 7. Suppose that |F2| = 2. We then have F2 = {e2, f2} with
x(e2) = 1 and 0 < x(f2) < 1. A consequence of Proposition 3.18(b) is that F1 and F2

cannot belong to a same partition inducing an equation of S(x). Let F0 = [u1, u2].
We are going to consider two cases. We first consider F0 �= ∅. Using Proposition
3.2(b) and the previous remark about F1 and F2, we obtain x(F0) < 1. We then have
F0 = {f0 = u1u2}. Let y ∈ RE be the point defined as follows:

y(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(e) if e ∈ E \ {f0, f1, f2},
x(f0) − ε if e = f0,

x(f1) + ε if e = f1,

x(f2) + ε if e = f2,
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where ε is any arbitrary scalar. The point y is also a solution of S(x). In fact, any
partition inducing an equation of S(x) contains either none of the edges in {f0, f1, f2},
or f0 and exactly one among f1 and f2. Since y �= x, this contradicts the extremality
of x.

We now suppose that F0 = ∅. Let us denote by u∗ the internal node in L2.
Without loss of generality, we can suppose that |δ(u)| ≤ |δ(u∗)|, which makes us
deduce that |[u∗, u1]| = |[u∗, u2]| = 2. Proposition 3.2(b) then implies that there is
no partition of P1(x)∪P2(x) containing an edge in δ(u). This is a contradiction with
Claim 1.

Proof of Claim 8. Let us suppose that x(f2) = 1. From Proposition 3.2(b) and
x(F1) > 1, the system S(x) can be chosen such that any of its equations containing
x(f1) with a nonzero coefficient does not contain x(f2). In fact, suppose that there is a
partition π = {V1, . . . , Vp} of S(x) such that δ(u) ⊂ δ(V1, . . . , Vp). Thus, π is of type 2.
Since x(δ(u)) > 2, we have p ≥ 3. Without loss of generality, suppose that V1 = {u}.
If u1 and u2 are both in the same class of π, say V2, then x(δ(V1 ∪ V 2, V3, . . . , Vp)) =
p−x(δ(u)) < p−2, which is a contradiction. Now suppose, without loss of generality,
that u1 ∈ V2 and u2 ∈ V3. Since x[V1, V2] > 1, then by Proposition 3.2 , the partition
{V1 ∪ V2, V3, . . . , Vp} is of type 1. Thus, the partition π′ = {V1 ∪ V3, V4, . . . , Vp} is
of type 1. Moreover, π′ is tight for x. We can thus replace in the system S(x) the
partition π by the partition π′ and the equation x(f2) = 1.

Let π1 = {V1, V2, . . . , Vp} be a partition of S(x) such that F1 ⊆ δ(V1, . . . , Vp). We
thus have f2 �∈ δ(V1, V2, . . . , Vp). By Proposition 3.18, we have π1 ∈ P ∗

2 (x). Without
loss of generality, we suppose {u, u2} ⊆ V1 and u1 ∈ V2.

From Claim 1, there also exists a partition π2 = {W1, . . . ,Wq} inducing an equa-
tion of S(x) such that f2 ∈ δ(W1, . . . ,Wq). We are going to prove that the system S(x)
can be chosen such that q ≥ 3. From above, we clearly have F1 ∩ δ(W1, . . . ,Wq) = ∅.
Suppose that q = 2. Without loss of generality, we assume that u2 ∈ W1. We then
have {u, u1} ⊆ W2. From x(f2) = 1, it is obvious that con(W1) = 2. Proposition 3.17
then implies that at most one class of the partition π1 intersects both W1 and W2.
From the definition of π1, we have V1 ∩ W1 �= ∅ and V1 ∩ W2 �= ∅. We then obtain
V2 ⊆ W2. Since r(V \ (V1 ∪ V2)) = 1 and con(W1) = 2, we get r(V1 \ {u}) = 2. Thus,
the partition {V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp} is clearly of type 2, and from Claim 7,
we have

x(δ(V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp)) = x(δ(V1, . . . , Vp)) − x(F1) + x(f2)

= p− x(F1) + x(f2)

< p,

a contradiction.

Without loss of generality, we suppose {u, u1} ⊆ W1 and u2 ∈ W2. Since x(f2) =
1, Proposition 3.18 implies that π2 ∈ P ∗

2 (x) and r(V \ (W1 ∪ W2)) = 1. Without
loss of generality, let us assume that Wi ∩ V2 �= ∅ for i = 1, . . . , k, and Wi ∩ V2 = ∅
for i = k + 1, . . . , q. In fact, we have u1 ∈ W1 and u1 ∈ V2. Moreover, since
x(f2) < x(F1) by Claim 7, the partition {V1 \ {u}, V2 ∪ {u}, V3, . . . , Vp} must be of
type 1, and then r(V1 \ {u}) = 1. As π2 ∈ P ∗

2 (x) and r(V \ (W1 ∪ W2)) = 1, we
have r(W2) = 2, which, combined with r(V \ (V1 ∪ V2)) = 1 and u /∈ W2, implies that
W2 ∩ V2 �= ∅. Let {U1, . . . , Uk} be the partition of V2 such that Ui = Wi ∩ V2 for
i = 1, . . . , k. It comes directly from the previous argument that r(U1) = r(U2) = 2.
Therefore, by Proposition 3.9(a), we have x[U1, . . . , Uk] ≥ k−1+x(F1)−x(f2). Since
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x(F1) = x(e1) + x(f1) = 1 + x(f1), we obtain

(6.1) x[U1, . . . , Uk] ≥ k + x(f1) − x(f2).

Furthermore, we notice that F2 ∩ [U1, . . . , Uk] = ∅. Hence, from (5.2), we have

(6.2) x[U1, . . . , Uk] ≤ x(δ(W1, . . . ,Wq)) − x(f2).

If k = q, by the inequalities (6.1) and (6.2), we then obtain k + x(f1) − x(f2) ≤
k − x(f2). This implies that x(f1) ≤ 0 which contradicts (5.2). Suppose now that
k < q. Since r(V \ (W1 ∪W2)) = 1 and k ≥ 2, it is straightforward that the partition
{Z1, . . . , Zq−k+1} defined as

Z1 =

k⋃
i=1

Wi,

Zi = Wi+k−1, i = 2, . . . , q − k + 1,

is of type 1. We then have

x(δ(W1, . . . ,Wq)) − x[U1, . . . , Uk] − x(f2) ≥ x(δ(Z1, . . . , Zq−k+1))

≥ q − k + 1 − 1

= q − k.

Thus, we obtain x[U1, . . . , Uk] + x(f2) ≤ k. From this last inequality combined with
(6.1), we then get x(f1) ≤ 0. This contradicts (5.2). Consequently, we obtain x(f2) <
1.

Proof of Claim 9. Suppose that F0 = [u1, u2] �= ∅. Suppose that x(F0) ≥ 1. Let
be π = {V1, . . . , Vp} ∈ S(x) such that F1 ∈ δ(V1, . . . , Vp). Since x(F1) = x[u, u1] > 1,
by Proposition 3.18(a), π is of type 2. Since x(F0) ≥ 1, by Proposition 3.18(b), u
and u2 are in the same class of π, say V1. Suppose, without loss of generality, that
u1 ∈ V2. Since F0 ∪ F1 ∈ δ(V1, . . . , Vp) and x(F0 ∪ F1) > 2, we then have p ≥ 3 and
x(δ(V1 ∪ V 2, V3, . . . , Vp)) = p− x(δ(u)) < p− 2, a contradiction. We therefore obtain
x(F0) < 1. Let F0 = {f0 = u1u2}. Let y ∈ RE be the point defined as follows:

y(e) =

⎧⎪⎨
⎪⎩

x(e) if e ∈ E \ {f0, f2},
x(f0) − ε if e = f0,

x(f2) + ε if e = f2,

where ε = min{x(f0), 1−x(f2)}. We first remark that any partition of P1(x)∪P2(x),
different from {{u}, V \ {u}}, contains either both f0 and f2 or none of them. If the
partition {{u}, V \{u}} doesn’t belong to P2(x), then the point y is a solution of S(x)
which is different to x. This is a contradiction with the extremality of x.

We suppose now that {{u}, V \ {u}} belongs to P2(x). We first show that y is
a point of CPP(G, r). To obtain that, we only need to prove that for any partition
π = {V1, V2, . . . , Vp} with f0 ∈ δ(V1, V2, . . . , Vp) and f2 �∈ δ(V1, V2, . . . , Vp), we have
y(δ(V1, V2, . . . , Vp)) ≥ t, where t = p−1 if π is of type 1 and t = p otherwise. Without
loss of generality, we suppose that u ∈ V1. Let us consider the partition {{u}, V1 \
{u}, V2, . . . , Vp}. Note that this partition is of the same type as {V1, V2, . . . , Vp}.
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Hence we have

x(δ({u}, V1 \ {u}, V2, . . . , Vp)) = y(δ({u}, V1 \ {u}, V2, . . . , Vp))

= y(δ(V1, V2, . . . , Vp)) + y(f2)

= y(δ(V1, V2, . . . , Vp)) + x(f2) + ε

≥ t + 1.

This implies that

y(δ(V1, V2, . . . , Vp)) ≥ t + 1 − (x(f2) + ε)

≥ t + 1 − 1 = t.

From the definition of ε, we clearly have 0 ≤ y(f0) ≤ 1 and 0 ≤ y(f2) ≤ 1. Therefore,
y belongs to CPP(G, r).

We remark that |Ef (y)| < |Ef (x)| since at least one variable among y(f0) and
y(f2) is an integer. Moreover, as 0 < y(f1) < 1, y is fractional. By the induction
hypothesis, y isn’t an extreme point of CPP(G, r). Hence, there exist t ≥ 2 extreme
points y1, . . . , yt of CPP(G, r) and t scalars 0 < αi < 1, i = 1, . . . , t, such that

y =

t∑
i=1

αiy
i and

t∑
i=1

αi = 1.

It is clear that |Ef (yi)| < |Ef (x)| for i = 1, . . . , t. From the extremality of the yi and
the induction hypothesis on x, we obtain that the points yi are integer. All of the
constraints that are tight for y are also tight for yi. Moreover, since y(δ(u)) = 2+ε < 3,
there exists i0 ∈ {1, . . . , t} such that yi0(δ(u)) < 3. The integrality of yi0 then implies
that yi0(δ(u)) = 2. Therefore, the point yi0 is also a solution of S(x) which contradicts
the extremality of x. We then conclude that F0 = ∅.

Proof of Claim 10. Denote F ′
1 = [u′, u1] and F ′

2 = [u′, u2]. Suppose that |F ′
2| ≥ 2.

From (5.2) and Remark 3.14, we have x(F ′
2) > 1. Let π = {V1, . . . , Vp} be a partition

of P ∗
1 (x) ∪ P ∗

2 (x) different from {{u}, V \ {u}}. By Claim 1, such a partition exists.
Moreover, Claim 8 together with Proposition 3.3 implies that p ≥ 3. From Proposition
3.19, u, u1, and u2 belong to three different classes of π. Without loss of generality,
suppose that u ∈ V1, u1 ∈ V2, and u2 ∈ V3. We remark that V1 = {u}. Using
Proposition 3.18, we obtain that u′ ∈ V3. Therefore, π is a partition of type 2. The
partition π′ = {V1 ∪ V2, V3, . . . , Vp} is of type 2, and is such that

x(δ(V1 ∪ V2, V3, . . . , Vp)) = x(δ(V1, . . . , Vp)) − x(F1)

< p− 1.

The last inequality comes from x(F1) > 1. We then get a contradiction. We conclude
that |F ′

2| = 1. By Claims 5 and 6, we have |F ′
1| = 2.

To make the proofs of the next two claims clearer and shorter, we introduce
additional notation. Given an edge subset F ⊆ E, we denote by P (x, F ) the subset of
partitions π = {V1, . . . , Vp} ∈ P ∗

1 (x) ∪ P ∗
2 (x) such that p ≥ 3 and F ⊆ δ(V1, . . . , Vp).

Proof of Claim 11. In order to prove the result, it is enough to prove that x(F1) =
x(F ′

1), x(δ(u)) = x(δ(u′)) = 2, and x(f2) + x(f ′
2) = 1.

We first prove that x(F1) = x(F ′
1). Without loss of generality, we suppose x(F1) ≥

x(F ′
1). Since 0 < x(f1) < 1, by Claim 1, there must exist a partition π = {V1, . . . , Vp}

such that π ∈ P (x, F1). By Proposition 3.18(a), π ∈ P ∗
2 (x). Without loss of generality,
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assume u ∈ V1 and u1 ∈ V2. From x(F2) < 1 and Proposition 3.3(c), we obtain
V1 = {u}. Since x[u, u1] > 1, by Proposition 3.18(b), we have r(V \ (V1 ∪ V2)) = 1,
and then u′ ∈ V2. Consider then the partition {{u′}, (V2 \ {u′})∪ {u}, V3, . . . , Vp}. It
clearly is a partition of type 2, and then we have

x(δ({u′}, (V2 \ {u′}) ∪ {u}, V3, . . . , Vp)) = x(δ(V1, . . . , Vp)) + x(F ′
1) − x(F1)

= p + x(F ′
1) − x(F1)

≥ p.

We get x(F1) ≤ x(F ′
1), and consequently x(F1) = x(F ′

1).
Now we are going to prove that x(δ(u)) = x(δ(u′)) = 2. Since 0 < x(f1) < 1,

as we have shown in the proof of Claim 10, the system S(x) can be chosen such that
there exists a partition π0 = {V 0

1 , . . . , V
0
p0
} ∈ P (x, F1) such that u, u1, and u2 belong

to three different classes of π0. Without loss of generality, suppose that V 0
1 = {u},

u1 ∈ V 0
2 , and u2 ∈ V 0

3 . Since r(u′) = 2, Proposition 3.18(b) implies u′ ∈ V 0
2 . Let

π′
0 = {V ′

1 , V
′
2 , V

0
3 , . . . , V

0
p0
}, where V ′

1 = {u′} and V ′
2 = (V 0

2 \{u′})∪{u}. This partition
clearly is of type 2, and since x(F1) = x(F ′

1), we get

x(δ(V ′
1 , V

′
2 , V

0
3 , . . . , V

0
p0

)) = x(δ(V 0
1 , . . . , V

0
p0

)) + x(F ′
1) − x(F1)

= p0 + x(F ′
1) − x(F1)

= p0.

Let π be any partition of P (x, F1) \ {π0}. The partition π′ obtained from π by
switching u and u′, as π′

0 was obtained above from π0, belongs to P2(x). Consider the
system S′(x) obtained from S(x) by adding the equation induced by π′

0 and replacing
those induced by π ∈ P (x, F1) \ {π0} by the ones induced by π′. This system is
nonsingular, and x is its unique solution. The system S(x) can then be chosen such
that P (x, F1) = {π0}. Since 0 < x(f1) < 1, Claim 1 implies x(δ(u)) = 2, and thus,
x(δ(u′)) = 2. Moreover, we have x(F1) = x(F ′

1), and we then get x(f2) = x(f ′
2).

Finally, we prove that x(f2) + x(f ′
2) = 1. Suppose that x(f2) + x(f ′

2) > 1. (The
case x(f2)+x(f ′

2) < 1 is similar.) Let SF1
(x) be the system obtained from S(x) by re-

moving the equations x(e1) = 1, x(δ(u)) = 2, and the one induced by π0. Let x1 be the
restriction of x on G/F1. By the induction hypothesis, the polytope CPP(G/F1, rF1)
is an integer. Since x1 is fractional, it is not an extreme point of CPP(G/F1, rF1

).
Hence, there exist k ≥ 2 extreme points y1, . . . , yk of CPP(G/F1, rF1) and k scalars
0 < αi < 1, i = 1, . . . , k, such that

x1 =

k∑
i=1

αiy
i and

k∑
i=1

αi = 1.

By the integrality of CPP(G/F1, rF1), the points yi, i = 1, . . . , k, are integer. Since
x is a solution of SF1(x1) and is a convex combination of the points yi, i = 1, . . . , k,
it is clear that yi is also a solution of SF1(x1) for all i ∈ {1, . . . , k}. There must then
exist some j ∈ {1, . . . , k} such that yj(f2) + yj(f ′

2) > 1. Since yj is integer, we have
yj(f2)+yj(f ′

2) ≥ 2, which gives yj(f2) = yj(f ′
2) = 1. Let y ∈ RE be the point defined

below

y(e) =

⎧⎪⎨
⎪⎩

yj(e) if e ∈ E \ F1,

1 if e = e1,

0 if e = f1.
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This point is also a solution of S(x). In fact, additionally, to be a solution of SF1
(x),

yj clearly satisfies the equations x(e1) = 1, x(δ(u)) = 2, and x(δ(V 0
1 , . . . , V

0
p0

)) = p0,
which are the only three equations removed from S(x) to get SF1

(x). Since y �= x,
this contradicts the fact that x is an extreme point of CPP(G, r).

Proof of Claim 12. We first prove (a), that is, W ∩T �= ∅. From Claim 4 we know
that u2 �∈ T . Suppose now that T ⊆ {u, u′, u1}. Let G∗ = (V ∗, E∗) be the graph
obtained from G by contracting F1 and F ′

1, and deleting f2 as well. Let w ∈ V ∗ be
the node arising from the contraction, that is, V ∗ \ V = {w}. We have r(v) = 1 for
all v ∈ V \ {u, u′, u1} and therefore, the connectivity type vector r∗ associated with
V ∗ can be defined such that r∗(v) = 1 for all v ∈ V ∗. Let x∗ be the restriction of x
on E∗.

We are going to show that x∗ ∈ CPP(G∗, r∗). Consider a partition π∗ = {V ∗
1 , . . . ,

V ∗
p }, p ≥ 2, of V ∗. (We remark that any partition of V ∗ is obviously of type 1 with

respect to r∗.) Without loss of generality, we suppose w ∈ V ∗
1 . Let {U1, . . . , Up}

be the partition of V such that U1 = (V ∗
1 \ {w}) ∪ {u, u′, u1} and Ui = V ∗

i for all
i = 2, . . . , p. This partition clearly is of type 1 with respect to r. If f ′

2 �∈ δ(V ∗
1 , . . . , V

∗
p ),

then we get

x∗(δ(V ∗
1 , . . . , V

∗
p )) = x(δ(U1, . . . , Up))

≥ p− 1.

If f ′
2 ∈ δ(V ∗

1 , . . . , V
∗
p ), we suppose, without loss of generality, that u2 ∈ V ∗

2 . By
considering the partition {{u}, U1 \ {u}, U2, . . . , Up} of V which is of type 2 with
respect to r, we then have

x∗(δ(V ∗
1 , . . . , V

∗
p )) = x(δ({u}, U1 \ {u}, U2, . . . , Up)) − x(δ(u))

≥ p + 1 − 2

= p− 1.

Therefore, we conclude that x∗ ∈ CPP(G∗, r∗).
Proposition 3.16 and x(δ(u)) = 2 imply that the system S(x) can be chosen such

that P ∗
1 (x) = ∅. Let π∗

0 = {U0
1 , . . . , U

0
p0−1} be the partition of V ∗ such that U0

1 =
(V 0

2 \{u′, u1})∪{w} and U0
i = V 0

i+1 for all i = 2, . . . , p0−1, where π0 = {V 0
1 , . . . , V

0
p0
}

is the unique partition in P (x, F1). (See the proof of Claim 11 for the definition of
π0.) We then get

x∗(δ(U0
1 , . . . , U

0
p0−1)) = x(δ(V 0

1 , . . . , V
0
p0

)) − x(δ(u))

= p0 − 2.

Let π1 = {V1, . . . , Vp} be a partition in P (x, F ′
1) and then, in P ∗

2 (x) too. We suppose,
without loss of generality, that {u, u1} ⊆ V1 and V2 = {u′}. Let π∗

1 = {V ′
1 , . . . , V

′
p−1}

be the partition of V ∗ such that V ′
1 = (V1 \ {u, u1}) ∪ {w} and V ′

i = Vi+1 for all
i = 2, . . . , p− 1. This partition clearly is of type 1 with respect to r∗, and then

x∗(δ(V ′
1 , . . . , V

′
p−1)) = x(δ(V1, . . . , Vp)) − (x(f2) + x(F ′

1))

= p−
(

1

2
+

3

2

)
= p− 2.

Let Q∗(F ′
1) = {π∗

1 : π1 ∈ P (x, F ′
1)} be the set of partitions of V ∗ obtained from the

partitions in P (x, F ′
1) as described above. The point x∗ is a solution of the following
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system:

S(x∗)

⎧⎪⎨
⎪⎩

x(e) = 1 for all e ∈ E1(x) \ {e1, e′1},
x(δ(U0

1 , . . . , U
0
p0−1)) = p0 − 2,

x(δ(V ∗
1 , . . . , V

∗
p )) = p− 2 for all {V ∗

1 , . . . , V
∗
p } ∈ Q∗(F ′

1).

Since x∗ is fractional, from Theorem 5.1, it cannot be an extreme point of CPP(G∗, r∗).
There must then exist an extreme point y∗ of CPP(G∗, r∗) such that y∗ is a solution
of S(x∗) and y∗(f∗

2 ) > 0. By Theorem 5.1, y∗ is an integer, and thus, y∗(f ′
2) = 1. Let

y ∈ RE be the point defined as

y(e) =

⎧⎪⎨
⎪⎩

y∗(e) if e �∈ δ(u) ∪ F ′
1,

1 if e ∈ {e1, e
′
1, f2},

0 if e ∈ {f1, f
′
1}.

The point y clearly satisfies the two equations x(δ(u)) = 2 and x(δ(u′)) = 2. There-
fore, since P ∗

2 (x) = P (x, F1)∪P (x, F ′
1) and y∗ is a solution of S(x∗), the point y is also

a solution of S(x). This leads to a contradiction, and we conclude that W ∩ T �= ∅.
To prove (b), we consider a node subset S ⊆ W such that G(S) is a connected

component of G(W ) and S ∩ T �= ∅. Suppose that [S, u1] = ∅. (The proof for the
case [S, u2] = ∅ is similar.) The node u2 then defines a one-node cutset of G which
contradicts Claim 2. Therefore |[S, u1]| ≥ 1.

Suppose that |[S, u1]| = 1. From Proposition 3.18(b), we have r(V \(V 0
1 ∪V 0

2 )) = 1,
where π0 = {V 0

1 , . . . , V
0
p0
} is the only partition in P (x, F1) as previously defined. We

then have (W ∩ T ) ⊂ V 0
2 . Thus, S ∩ T ⊂ V 0

2 . Let S0 = S ∩ V 0
2 . We obviously have

r(S0) = 2. Since |[S, u1]| = 1, we get x[S0, u1] ≤ 1. By considering the partition
{S0, (V 0

2 \ S0) ∪ {u}, V 0
3 , . . . , V

0
p0
} which is of type 2, we have

x(δ(S0, (V 0
2 \ S0) ∪ {u}, V 0

3 , . . . , V
0
p0

)) = x(δ(V 0
1 , . . . , V

0
p0

)) − x(F1) + x[S0, u1]

≤ p0 −
3

2
+ 1

= p0 −
1

2
.

This leads to a contradiction with x ∈ CPP(G, r). Consequently, we have |[S, u1]| ≥
2.

7. New facet-defining inequalities for the polytope SNDP(G, r). In this
section, we introduce a new family of facet-defining inequalities of the polytope
SNDP(G, r). Given a graph G = (V,E), not necessarily series-parallel, and a connec-
tivity type vector r ∈ {1, 2}V , let {V0, V1, . . . , Vt, Vt+1} be a partition of V such that
t ≥ 2 and

(a) r(V0) = 1,
(b) r(Vi) = 2 for i = 1, 2, . . . , t,
(c) [Vi, Vj ] = ∅ for i = 1, 2, . . . , t−1 and j = i+1, . . . , t.

Consider the inequality

(7.1) x(δ(V0, V1, . . . , Vt, Vt+1)) + x(δ(V0)) ≥ 2t + 2

Theorem 7.1. Inequality (7.1) is valid for the polytope SNDP(G, r).
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Proof. Let H = (V, F ) be a survivable subgraph of G. Let F ′ = F∩δ(V0, V1, . . . , Vt,
Vt+1). It suffices to prove that |F ′| + |F ′ ∩ δ(V0)| ≥ 2t + 2. Since r(V0) = 1, we have
|F ′∩ δ(V0)| ≥ 1. If |F ′∩ δ(V0)| = 1, let i0 ∈ {1, . . . , t} such that F ′∩ δ(V0) = [V0, Vi0 ].
Since H is survivable, we have |F ′ ∩ δ(V0 ∪ Vi0)| ≥ 2 and |F ′ ∩ δ(Vi)| ≥ 2 for all
i ∈ {1, . . . , t} \ {i0}. We then obtain that |F ′ \ δ(V0)| ≥ 2t. From |F ′ \ δ(V0)|+ 2|F ′ ∩
δ(V0)| = |F ′|+ |F ′ ∩ δ(V0)|, we get |F ′|+ |F ′ ∩ δ(V0)| ≥ 2t+ 2. If |F ′ ∩ δ(V0)| ≥ 2, by
summing up the t + 1 inequalities |F ′ ∩ δ(Vi)| ≥ 2 for all i ∈ {0, 1, . . . , t}, we obtain
|F ′| + |F ′ ∩ δ(V0)| ≥ 2t + 2.

We call inequalities of type (7.1) spinning-top inequalities. In the next theo-
rem, we give necessary and sufficient conditions for spinning-top inequalities to define
facets of SNDP(G, r) when G(Vt+1) is 2-edge connected. We denote by F the face
of SNDP(G, r) induced by a spinning-top inequality. From the proof of Theorem 7.1,
we give the following remark which is useful to prove the theorem.

Remark 7.2. Let (V, F ) be a survivable subgraph of G. If |F ∩ δ(V0)| ≥ 3 or
|F ∩ δ(V0)| ≥ 4 for some i ∈ {1, . . . , t}, then xF �∈ F .

Theorem 7.3. Suppose that G(Vt+1) is 2-edge connected. Inequality (7.1) then
defines a facet of the polytope SNDP(G, r) if and only if the following holds:

(a) G(Vi) is 2-edge connected for i = 0, 1, . . . , t,
(b) |[V0, Vi]| ≥ 1 for i = 1, . . . , t, and
(c) |[Vi, Vt+1]| ≥ 2 for i = 1, . . . , t.
Proof. The proof uses Remark 7.2 and standard polyhedral techniques.
A direct consequence of Theorem 7.3 is that for a general couple (G, r), inequality

(7.1) must be considered to obtain a complete linear description of the polytope
SNDP(G, r). The previous statement remains true even when G is a series-parallel
graph, as we showed in section 5.

8. Final remarks. In this paper, we studied the polytope CPP(G, r) given by
the trivial inequalities and the partition ones. We first gave some structural proper-
ties of the extreme points of CPP(G, r). Using these, we proved that the polytope
CPP(G, r) is an integer on a nontrivial subclass of series-parallel graphs, which in-
cludes the outerplanar graph class. This result leads to a polynomial-time algorithm,
based on the ellipsoid method, for solving the (1, 2)-survivable network design problem
in that class of graphs. To the best of our knowledge, the complete linear descrip-
tion of SNDP(G, r) given in this paper is the first one which combines even and odd
connectivity types for an important class of graphs. We also introduced a new fam-
ily of facet-defining inequalities for the polytope SNDP(G, r), called the spinning-top
inequalities. This class of inequalities must be considered in linear descriptions of the
survivable network polytope SNDP(G, r).

From Theorem 5.3, we can deduce that CPP(G, r) is an integer when G is a
series-parallel graph and |T | ≤ 2. (We remind that T is the set of terminal nodes,
that is, nodes u such that r(u) = 2.) For a general graph G and |T | ≤ 1, we
know that SNDP(G, r) = CPP(G, r) [5]. Moreover, for a general graph G, a positive
cost function, and |T | = 2, the survivable network design problem can be solved in
polynomial time, since Arkin and Hassin [1] have shown that this special case of the
SNDP can be reduced to the matroid intersection problem. In view of the previous
discussion, we give the following conjecture.

Conjecture 8.1. Let G = (V,E) be a graph and r ∈ {1, 2}V its connectivity
type vector such that |{u ∈ V : r(u) = 2}| = 2. The polytope SNDP(G, r) is then
completely described by both the trivial and the partition inequalities (i.e., CPP(G, r)
is an integer).
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An important problem which deserves to be addressed is to study the separation
problem of the spinning-top inequalities. We think that this problem is polynomial
on series-parallel graphs and NP-hard in general.

Our work has started with the objective of giving a linear description of the
polytope SNDP(G, r) on series-parallel graphs. Our study then leads us to give the
following conjecture.

Conjecture 8.2. Let G = (V,E) be a series-parallel graph and r ∈ {1, 2}V its
connectivity type vector. The polytope SNDP(G, r) is then completely described by the
trivial, partition, and spinning-top inequalities.
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