ON THE POLYTOPE OF THE (1,2)-SURVIVABLE NETWORK DESIGN PROBLEM*

MOHAMED DIDI BIHA ${ }^{\dagger}$, HERVÉ KERIVIN \ddagger, AND A. RIDHA MAHJOUB ${ }^{\S}$

Abstract

This paper deals with the survivable network design problem where each node v has a connectivity type $r(v)$ equal to 1 or 2 , and the survivability conditions require the existence of at least $\min \{r(s), r(t)\}$ edge-disjoint paths for all distinct nodes s and t. We consider the polytope given by the trivial and cut inequalities together with the partition inequalities. More precisely, we study some structural properties of this polytope which leads us to give some sufficient conditions for this polytope to be integer in the class of series-parallel graphs. With both separation problems for the cut and partition inequalities being polynomially solvable, we then obtain a polynomial time algorithm for the (1,2)-survivable network design problem in a subclass of series-parallel graphs including the outerplanar graph class. We also introduce a new class of facet-defining inequalities for the polytope associated to the (1,2)-survivable network design problem.

Key words. survivable network, cut and partition inequalities, polytope, facet, series-parallel graphs

AMS subject classifications. $68 \mathrm{M} 10,90 \mathrm{C} 10,90 \mathrm{C} 57$

DOI. 10.1137/050639600

1. Introduction. In order to protect telecommunication networks from equipment failures, one must maintain the survivability of networks when links are severed or nodes fail. As failures are not very common, robust networks are designed to withstand a single network equipment failure. Moreover, in practice a node usually fails completely because of major incidents (e.g., power outages), and thus it is more frequent to encounter link interface failures or severed links than node failures. Therefore, one of the main concerns when designing telecommunication networks is to devise network topologies that provide protection against single-link failures. The network topology problem is usually the first stage of the overall network design optimization process, and the second one involves traffic and routing issues.

Furthermore, some network nodes may be more important than others because of their specific functions. This fact thus leads to considering two kinds of nodes: the specific nodes, also called terminals, for which a "high" degree of survivability has to be guaranteed, and the ordinary nodes, which simply have to be connected to the network. The network topology problem then consists of selecting links such that the sum of their cost is minimized and the failure of any single link does not disconnect any two terminal nodes.

[^0]More precisely, based on a model first introduced by Grötschel and Monma [8] (see also Stoer [19]), this problem can be stated as follows. Consider an undirected graph $G=(V, E)$ where V represents the node set and E represents the set of edges or potential links. The set V is partitioned into two subsets T and O corresponding, respectively, to the terminal and ordinary node sets. By associating to each node $u \in V$ a connectivity type $r(u)$ which is equal to 1 if u is an ordinary node and to 2 if u is a terminal, we have $O=\{u \in V: r(u)=1\}, T=\{u \in V: r(u)=2\}$, and $V=O \cup T$. A subgraph H of G fulfills the survivability conditions if there exist at least $\min \{r(s), r(t)\}$ edge-disjoint paths (i.e., paths sharing no edges) in H for any pair of nodes $s, t \in V$. Such a subgraph is then called survivable. Suppose that each edge $e \in E$ has a certain cost $c(e) \in \mathbb{R}_{+}$. Our network topology problem, called the (1,2)-survivable network design problem (SNDP), then consists of finding a survivable subgraph of G with minimum total cost. (The cost of a subgraph of G is equal to the sum of its edge costs.)

The optimization problem SNDP is NP-hard since it includes as a special case the 2-edge connected network problem (i.e., $r(u)=2$ for all $u \in V$), which has been extensively studied in the past. Some heuristics have thus been devised such as the one of Monma and Shallcross [18] which was used to obtain near optimal solutions to both real-world and randomly generated problems. The SNDP has also been proved to be polynomially solvable in special cases. Particularly, if $T=\emptyset$ (i.e., $r(u)=1$ for all $u \in V$, and r is then called a unit connectivity type vector), then the SNDP is nothing but the minimum-cost spanning tree problem which is well known to be polynomially solvable [15]. Furthermore, if the underlying graph G is series-parallel and $O=\emptyset$ (i.e., $r(u)=2$ for all $u \in V$), then we have a linear time algorithm for the SNDP devised by Winter [20]. Many survivability problems related to the SNDP have received particular attention and complete surveys over the existing approaches can be found in Grötschel, Monma, and Stoer [11], Stoer [19], and Kerivin and Mahjoub [13].

Grötschel, Monma, and Stoer [9] studied the general model related to the SNDP from a polyhedral point of view. (They consider $r(u) \in \mathbb{Z}_{+}$for all $u \in V$.) They introduced several families of valid inequalities for the polytope associated with this problem. They also derived some necessary and/or sufficient conditions under which these inequalities are facet-defining. Among all of the inequalities considered in [9], the so-called partition inequalities are of interest for solving the SNDP as pointed out in [10, 14]. Kerivin and Mahjoub [12] actually showed that the separation problem for the partition inequalities is polynomially solvable for the SNDP, even though this separation problem is NP-hard for general connectivity type vectors $r \in \mathbb{Z}_{+}^{V}$. Furthermore, Grötschel and Monma [8] showed that the partition inequalities together with the trivial lower-bound and upper-bound inequalities suffice to describe the polytope associated with the SNDP when $r(u)=1$ for all $u \in V$. When the underlying graph G is series-parallel, Mahjoub [17] described the polytope associated with the 2-edge connected network problem by the trivial inequalities and the cut ones, the latter being a special case of the partition inequalities.

Let $\operatorname{SNDP}(G, r)$ be the convex hull of incidence vectors of all survivable subgraphs. This polytope is called the survivable network polytope. In this paper, we are interested in the polytope $\operatorname{CPP}(G, r)$ given by the trivial lower-bound and upper-bound inequalities and the so-called partition inequalities for connectivity type vectors $r \in\{1,2\}^{V}$. This polytope is a strengthened linear relaxation of $\operatorname{SNDP}(G, r)$. Here, we give sufficient conditions for the $\operatorname{CPP}(G, r)$ to be an integer on series-parallel graphs. This
study leads us to give a polynomial-time algorithm for solving the (1,2)-survivable network design problem on a class of graphs including the outerplanar ones.

This paper is organized as follows. In the next section, we formulate the problem SNDP as an integer linear program and introduce its associated polytope $\operatorname{SNDP}(G, r)$ as well as the polytope $\operatorname{CPP}(G, r)$. Section 3 is devoted to the study of some structural properties of the polytope $\operatorname{CPP}(G, r)$. In section 4 , we consider the $\operatorname{CPP}(G, r)$ when G can be decomposed by one-node cutsets. We show in section 5 that the polytope $\operatorname{CPP}(G, r)$ may have noninteger extreme points even if the underlying graph G is series-parallel, and give sufficient conditions which make the $\operatorname{CPP}(G, r)$ integer on series-parallel graphs. In section 6 , we prove this last result. A new class of facetdefining inequalities for the $\operatorname{SNDP}(G, r)$ is introduced in section 7. Finally, some concluding remarks are given in section 8.

The rest of this section is devoted to more definitions and notation. Throughout this paper, the graphs are undirected, finite, loopless, and connected. We consider a graph $G=(V, E)$ and denote by n the number of nodes of G, that is, $n=|V|$. For $W \subseteq V$, let $\bar{W}=V \backslash W$, and for $F \subseteq E$, let $\bar{F}=E \backslash F$. Given two distinct nodes u and v of V, an edge between u and v is denoted by $u v$. For a nonempty node subset $W \subsetneq V$, the set of edges having exactly one endnode in W is called a cut and is denoted by $\delta_{G}(W)$. If $W=\{u\}$, we then write $\delta_{G}(u)$ for $\delta_{G}(\{u\})$. A partition of V is a collection of disjoint subsets of V with union V. The elements of the partition are called its classes. Given a partition $\left\{V_{1}, \ldots, V_{p}\right\}$ of the node set V, we denote by $\delta_{G}\left(V_{1}, \ldots, V_{p}\right)$ the set of edges with endnodes in two different classes. Given a collection $\left(W_{1}, \ldots, W_{q}\right)$ of node subsets, we write $\left[W_{1}, \ldots, W_{q}\right]_{G}$ for the set of edges with endnodes in two different subsets. We notice that if $\left(W_{1}, \ldots, W_{q}\right)$ is a partition of V, then we have $\left[W_{1}, \ldots, W_{q}\right]_{G}=\delta_{G}\left(W_{1}, \ldots, W_{q}\right)$. If u and v are two distinct nodes of V, we then write $[u, v]_{G}$ for $[\{u\},\{v\}]_{G}$. For all of our notation, we don't use the subscript G whenever the graph G can be deduced from the context. For $F \subseteq E$, we denote by $V(F)$ the set of nodes which are spanned by the edges in F. For $W \subseteq V$, we denote by $E(W)$ the set of edges with both endnodes in W, and $G(W)=(W, E(W))$ is called the subgraph induced by W. A maximal connected nonempty subgraph of G is called a connected component. (Here, "maximal" is taken with respect to inclusion.) A graph G is called 2-node-connected if for any node $u \in V$, the subgraph $G-u$ induced by $V \backslash\{u\}$ is connected. Given a ground set S, a set-function $f: 2^{S} \longrightarrow \mathbb{R} \cup\{\infty\}$ is called fully submodular if

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cap B)+f(A \cup B) \tag{1.1}
\end{equation*}
$$

for all $A, B \subseteq S$. A pair of subsets A and B of S is said to be crossing if none of $A \backslash B, B \backslash A, A \cap B, S \backslash(A \cup B)$ is empty. A set-function f is called submodular on crossing pairs if the inequality (1.1) is required only for crossing pairs. Moreover, if f satisfies the inequality (1.1) with equality for crossing pairs, then f is called modular on crossing pairs. For a vector $x \in \mathbb{R}^{S}$ and a subset $A \subseteq S$, we denote $\sum_{a \in A} x(a)$ by $x(A)$. For $F \subseteq S$, its incidence vector $x^{F} \in \mathbb{R}^{S}$ is defined by $x^{F}(e)=1$ if $e \in F$, and $x^{F}(e)=0$ if $e \in S \backslash F$. An integer vector is a vector with all entries integer. A polytope $P \subseteq \mathbb{R}^{S}$ is integer if and only if each extreme point of P is integer. An inequality $a^{t} x \geq \alpha$, where $a \in \mathbb{R}^{S}$ and $\alpha \in \mathbb{R}$, is tight for a point x^{*} if $a^{T} x^{*}=\alpha$. If $a^{T} x \geq \alpha$ is induced by a cut (respectively, a partition), we equivalently say that the cut (respectively, partition) is tight for x^{*}.
2. The (1,2)-survivable network design problem and some related polytopes. Let $G=(V, E)$ be an undirected graph and $r \in\{1,2\}^{V}$ be a connectiv-
ity type vector. Without loss of generality, we may assume throughout this paper that there exist at least two nodes having the largest connectivity type (i.e., $|T| \geq 2$). For a nonempty node subset $W \nsubseteq V$, let $r(W)=\max \{r(u): u \in W\}$ and $\operatorname{con}(W)=\min \{r(W), r(V \backslash W)\}$. Given an edge subset $F \subseteq E$, if (V, F) is a survivable subgraph of G, then its incidence vector x^{F} satisfies

$$
\begin{array}{ll}
x(e) \geq 0 & \text { for all } e \in E \\
x(e) \leq 1 & \text { for all } e \in E \\
x(\delta(W)) \geq \operatorname{con}(W) & \text { for all } \emptyset \neq W \nsubseteq V \\
x(e) \in\{0,1\} & \text { for all } e \in E \tag{2.4}
\end{array}
$$

The inequalities (2.1) and (2.2) are, respectively, called lower-bound and upper-bound trivial inequalities (or more generally trivial inequalities), and inequalities (2.3) are called cut inequalities.

For a class of inequalities, the separation problem is as follows: given a vector y, find a violated inequality in the class or prove that none exists. An algorithm for the separation problem associated with a class of inequalities is a key ingredient for being able to use those inequalities within a branch-and-cut algorithm. The separation problem for the cut inequalities (2.3) is polynomially solvable using a polynomialtime maximum flow algorithm (e.g., preflow-push algorithm of Goldberg and Tarjan [6] running in $O\left(n^{3}\right)$ time).

In [9], Grötschel, Monma, and Stoer introduced a class of valid inequalities for the polytope $\operatorname{SNDP}(G, r)$ which can be stated as follows. Let $\left\{V_{1}, \ldots, V_{p}\right\}, p \geq 2$, be a partition of V. Let $I_{2}=\left\{i: \operatorname{con}\left(V_{i}\right)=2, i=1, \ldots, p\right\}$ be the set of subscripts whose corresponding classes of the partition contain at least one terminal. The partition inequalities induced by $\left\{V_{1}, \ldots, V_{p}\right\}$ is

$$
x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right) \geq \begin{cases}p-1 & \text { if } I_{2}=\emptyset \tag{2.5}\\ p & \text { otherwise }\end{cases}
$$

The inequalities (2.5) are a generalization of the cut inequalities (2.3). (The latter correspond to the case where $p=2$.) Therefore, if we do not specify $p \geq 3$, then a partition inequality (2.5) may be a cut inequality (2.3). In the remainder of this paper, a partition of V with $I_{2}=\emptyset$ (respectively, $I_{2} \neq \emptyset$) will be called a partition of type 1 (respectively, partition of type 2), and the inequality (2.5) induced by it will be called a partition inequality of type 1 (respectively, a partition inequality of type 2). Grötschel, Monma, and Stoer [9] gave sufficient conditions and necessary conditions for the inequalities (2.5) to define facets of $\operatorname{SNDP}(G, r)$.

In [12], Kerivin and Mahjoub showed that the separation problem for the partition inequalities (2.5) reduces to minimizing a particular submodular function, and then is polynomially solvable. Later, Barahona and Kerivin [2] reduced the separation problem for those inequalities to a sequence of $O\left(n^{4}\right)$ minimum cut problem.

Let $\operatorname{CPP}(G, r)$ be the polytope given by the inequalities $(2.1),(2.2),(2.3)$, and (2.5). This polytope, called the cut and partition inequalities polytope, is the linear relaxation of $\operatorname{SNDP}(G, r)$ strengthened by the partition inequalities (2.5). As we mentioned above, the separation problems for both cut and partition inequalities are polynomially solvable, and then this implies by the ellipsoid method [7] that the (1,2)survivable network design problem can be solved in polynomial time on graphs for which $\operatorname{SNDP}(G, r)=\operatorname{CPP}(G, r)$.

The definition of the connectivity type of node subsets implies the following remarks.

Remark 2.1. The function $r: 2^{V} \longrightarrow\{1,2\}$ is nondecreasing, that is, r satisfies $r(A) \leq r(B)$ for all $A \subseteq B \subseteq V$.

Remark 2.2. Let $A \subseteq V$ such that $r(A)=1$. Then, we have
(a) $r(A \cup B)=r(B)$ for any $B \subseteq V$, and
(b) $\operatorname{con}(A \cup B)=\operatorname{con}(B)$ for any $B \subseteq V$ such that $A \cup B \neq V$.

Proposition 2.3. The function con $: 2^{V} \longrightarrow\{1,2\}$ is submodular on crossing pairs.

Proof. Let $A, B \subseteq V$ such that $A \cap B \neq \emptyset, A \backslash B \neq \emptyset, B \backslash A \neq \emptyset$, and $\overline{A \cup B} \neq \emptyset$. We must show that

$$
\begin{equation*}
\operatorname{con}(A)+\operatorname{con}(B) \geq \operatorname{con}(A \cap B)+\operatorname{con}(A \cup B) \tag{2.6}
\end{equation*}
$$

If $\operatorname{con}(A)+\operatorname{con}(B)=4$, then it is obvious that inequality (2.6) holds.
If $\operatorname{con}(A)=\operatorname{con}(B)=1$, then $\operatorname{con}(A \cap B)=\operatorname{con}(A \cup B)=1$ and hence, inequality (2.6) is satisfied.

Suppose now that $\operatorname{con}(A)+\operatorname{con}(B)=3$. Without loss of generality, we may assume that $\operatorname{con}(A)=1$ and $\operatorname{con}(B)=2$. Consider first the case $r(A)=1$. From Remark 2.1, we then have $r(A \cap B)=r(A)$. By the definition of the function con, we thus obtain $\operatorname{con}(A \cap B)=\operatorname{con}(A)=1$. From Remark 2.2(b), we have $\operatorname{con}(A \cup B)=$ $\operatorname{con}(B)$. Thus, inequality (2.6) holds. If $r(A)=2$, then $r(A \cap B)=r(A \backslash B)=2$ and $r(B \backslash A)=r(\overline{A \cup B})=1$ and hence, inequality (2.6) is satisfied.

From the proof of Proposition 2.3, we deduce the remark below.
Remark 2.4. The function con $: 2^{V} \longrightarrow\{1,2\}$ is modular on crossing pairs $A, B \subseteq V$ if one of the two following properties hold:
(a) $\operatorname{con}(A)+\operatorname{con}(B) \leq 3$, or
(b) $\operatorname{con}(A)=\operatorname{con}(B)=2$ and $r(A \cap B)=r(\overline{A \cup B})=2$.

To conclude this section, we define the connectivity type vectors associated with the subgraphs of G obtained by contractions or deletions of edges. For any subset F of E, deleting F gives rise to the graph $G-F=(V(\bar{F}), \bar{F})$. The connectivity type vector $r_{F}^{d} \in\{1,2\}^{V(\bar{F})}$ is then obviously the restriction of $r \in\{1,2\}^{V}$ on $V(\bar{F})$, that is,

$$
\begin{equation*}
r_{F}^{d}(u)=r(u) \quad \text { for all } u \in V(\bar{F}) . \tag{2.7}
\end{equation*}
$$

Given an edge $e=u v \in E$, contracting e means deleting e and identifying u and v. If $F \subseteq E$ induces a connected subgraph of G, then G / F denotes the graph obtained from G by contracting F, that is, by contracting all of the edges in F. Let w be the node that arises from the contraction of F. The connectivity type vector $r_{F}^{c} \in\{1,2\}^{V^{\prime}}$ associated with the node set $V^{\prime}=(V \backslash V(F)) \cup\{w\}$ is defined as follows:

$$
r_{F}^{c}(u)= \begin{cases}r(u) & \text { if } u \in V^{\prime} \backslash\{w\} \tag{2.8}\\ \operatorname{con}_{G}(V(F)) & \text { if } u=w\end{cases}
$$

A couple $\left(H, r_{H}\right)$ is called a minor of (G, r) if H arises from G by a series of deletions and contractions of edges. The vector r_{H} is the connectivity type vector associated with H, and it is obtained from r by applying at each deletion/contraction the corresponding $(2.7) /(2.8)$. This notion of minor will be important in section 5 . In the next section, we study some structural properties of the $\operatorname{CPP}(G, r)$ which will be also useful later on.
3. Structural properties of the polytope $\operatorname{CPP}(G, r)$. One way to solve the (1,2)-survivable network design problem is to use a branch-and-cut framework. In such an approach, one may first consider a linear program whose constraints are given by $\operatorname{CPP}(G, r)$ which is a relaxation of $\operatorname{SNDP}(G, r)$. This linear program provides a lower bound for the SNDP, and in some special cases an optimal solution. This linear program has an exponential number of constraints, and one needs to use a cuttingplane algorithm to solve it. The knowledge of structural properties of the points (especially the extreme points) of $\operatorname{CPP}(G, r)$ may provide useful information which is important in order to determine violated inequalities more efficiently. The structural properties established in this section may also be used to characterize the polytope $\operatorname{SNDP}(G, r)$ on certain classes of graphs (see section 5).

Let us consider a point \bar{x} of $\operatorname{CPP}(G, r)$.
Proposition 3.1. Let $F \subseteq E$ be an edge subset of E that induces a connected subgraph of G. Then $\bar{x}^{\prime} \in \mathbb{R}^{E \backslash F}$, the restriction of \bar{x} on $E \backslash F$, is a point of $C P P\left(G / F, r_{F}^{c}\right)$.

Proof. The result comes directly from the fact that any inequality of $\operatorname{CPP}\left(G / F, r_{F}^{c}\right)$ is also an inequality of $\operatorname{CPP}(G, r)$.

Let us denote by π a partition $\left\{V_{1}, \ldots, V_{p}\right\}$ of $V, p \geq 2$, which is tight for \bar{x}.
Proposition 3.2. Suppose $p \geq 3$. Consider i, $j \in\{1, \ldots, p\}$ such that $i<j$. Let $\pi^{\prime}=\left\{V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right\}$ be the partition defined below

$$
\begin{aligned}
& V_{t}^{\prime}=V_{t}, \\
& V_{i}^{\prime}=V_{i} \cup V_{j}, \\
& V_{t}^{\prime}=V_{t+1}, \\
& t=j, \ldots, p-1
\end{aligned}
$$

(a) If π is of type 1 , then $\bar{x}\left[V_{i}, V_{j}\right] \leq 1$.
(b) If π is of type 2 and π^{\prime} is of type 1 , then $\bar{x}\left[V_{i}, V_{j}\right] \leq 2$.
(c) If π and π^{\prime} are of type 2, then $\bar{x}\left[V_{i}, V_{j}\right] \leq 1$.

Moreover, if $\bar{x}\left[V_{i}, V_{j}\right]=1$ (cases (a) and (c)) or $\bar{x}\left[V_{i}, V_{j}\right]=2$ (case (b)), then the partition π^{\prime} is also tight for \bar{x}.

Proof. We are going to prove (a). (The proofs of (b) and (c) are similar.) Since π is of type 1 , then clearly π^{\prime} is also of type 1 . Hence, we have

$$
\bar{x}\left(\delta\left(V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right)\right) \geq p-2
$$

We thus obtain

$$
\begin{aligned}
\bar{x}\left[V_{i}, V_{j}\right] & =\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)-\bar{x}\left(\delta\left(V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right)\right) \\
& \leq p-1-(p-2) \\
& =1
\end{aligned}
$$

Moreover, if $\bar{x}\left[V_{i}, V_{j}\right]=1$, then the above inequalities are all satisfied as equalities, and we get $\bar{x}\left(\delta\left(V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right)\right)=p-2$.

Proposition 3.3. Consider a partition $\left\{V_{i}^{1}, V_{i}^{2}\right\}$ of V_{i} for some $i \in\{1, \ldots, p\}$. Let $\pi^{\prime}=\left\{V_{1}^{\prime}, \ldots, V_{p+1}^{\prime}\right\}$ be the partition of V given by

$$
\begin{array}{ll}
V_{j}^{\prime}=V_{j}, & j=1, \ldots, i-1, \\
V_{i}^{\prime}=V_{i}^{1}, & \\
V_{i+1}^{\prime}=V_{i}^{2}, & j=i+2, \ldots, p+1 \\
V_{j}^{\prime}=V_{j-1}, &
\end{array}
$$

(a) If π and π^{\prime} are of type 1 , then $\bar{x}\left[V_{i}^{1}, V_{i}^{2}\right] \geq 1$.
(b) If π is of type 1 and π^{\prime} is of type 2 , then $\bar{x}\left[V_{i}^{1}, V_{i}^{2}\right] \geq 2$.
(c) If π is of type 2 , then $\bar{x}\left[V_{i}^{1}, V_{i}^{2}\right] \geq 1$.

Moreover, if $\bar{x}\left[V_{i}^{1}, V_{i}^{2}\right]=1$ (cases (a) and (c)) or $\bar{x}\left[V_{i}^{1}, V_{i}^{2}\right]=2$ (case (b)), then the partition π^{\prime} is also tight for \bar{x}.

Proof. The proof is omitted because of its similarity with the one of Proposition 3.2.

An immediate consequence of Proposition 3.3 is the following.
Remark 3.4. The subgraphs $G\left(V_{i}\right)$ for $i=1, \ldots, p$ are all connected.
We notice that the two previous propositions could be generalized as described in the remark below.

Remark 3.5. In Proposition 3.2, we may consider a subscript subset $I \varsubsetneqq\{1, \ldots, p\}$ with $|I| \geq 2$ (instead of only two distinct subscripts i and j), and in Proposition 3.3, we may partition the node subset V_{i} into at least (rather than exactly) two subsets.

Proposition 3.6. Let $\delta\left(W_{1}\right)$ and $\delta\left(W_{2}\right)$ be two cuts tight for \bar{x} such that W_{1} and W_{2} are two crossing subsets of V. Then, $\delta\left(W_{1} \cap W_{2}\right)$ and $\delta\left(\overline{W_{1} \cup W_{2}}\right)$ are tight for \bar{x}, and $\bar{x}\left[W_{1} \backslash W_{2}, W_{2} \backslash W_{1}\right]=0$ if one of the two following properties holds:
(a) $\operatorname{con}\left(W_{1}\right)+\operatorname{con}\left(W_{2}\right) \leq 3$, or
(b) $\operatorname{con}\left(W_{1}\right)=\operatorname{con}\left(W_{2}\right)=2$ and $r\left(W_{1} \cap W_{2}\right)=r\left(\overline{W_{i} \cup W_{2}}\right)=2$.

Proof. We have

$$
\begin{aligned}
\bar{x}\left(\delta\left(W_{1}\right)\right)+\bar{x}\left(\delta\left(W_{2}\right)\right) & =\operatorname{con}\left(W_{1}\right)+\operatorname{con}\left(W_{2}\right) \\
& =\bar{x}\left(\delta\left(W_{1} \cap W_{2}\right)\right)+\bar{x}\left(\delta\left(\bar{W}_{1} \cup W_{2}\right)\right)+2 \bar{x}\left[W_{1} \backslash W_{2}, W_{2} \backslash W_{1}\right] \\
& \geq \operatorname{con}\left(W_{1} \cap W_{2}\right)+\operatorname{con}\left(\bar{W}_{1} \cup W_{2}\right)
\end{aligned}
$$

where the last inequality follows from $\bar{x} \in \operatorname{CPP}(G, r)$. Since one of the properties (a) and (b) holds and $\operatorname{con}\left(\bar{W}_{1} \cup W_{2}\right)=\operatorname{con}\left(W_{1} \cup W_{2}\right)$, by Remark 2.4 we have $\operatorname{con}\left(W_{1}\right)+$ $\operatorname{con}\left(W_{2}\right)=\operatorname{con}\left(W_{1} \cap W_{2}\right)+\operatorname{con}\left(\overline{W_{1} \cup W_{2}}\right)$. We then obtain the result.

Proposition 3.7. Let $\pi_{1}=\left\{V_{1}, \ldots, V_{p}\right\}$ and $\pi_{2}=\left\{W_{1}, \ldots, W_{q}\right\}, p \geq 2$ and $q \geq 2$, be two partitions of V which are tight for \bar{x}. Consider two distinct subscripts $i, j \in\{1, \ldots, p\}$.
(a) If π_{1} is of type 1 or π_{1} is of type 2 with $p \geq 3$ and $r\left(\overline{V_{i} \cup V_{j}}\right)=2$, then at most one class of π_{2} only intersects both V_{i} and V_{j}.
(b) If π_{1} is of type 2 with either $p=2$ or $r\left(\overline{V_{i} \cup V_{j}}\right)=1$, then at most two classes of π_{2} only intersect both V_{i} and V_{j}.
Proof. Assume that π_{1} is a partition of type 1. (The proofs for the other cases are similar.) Let $K \subseteq\{1, \ldots, q\},|K|>1$, be the set of subscripts such that $W_{k} \cap V_{i} \neq \emptyset$, $W_{k} \cap V_{j} \neq \emptyset$, and $W_{k}=\left(W_{k} \cap V_{i}\right) \cup\left(W_{k} \cap V_{j}\right)$ for all $k \in K$. From Proposition 3.3, we have

$$
\bar{x}\left[W_{k} \cap V_{i}, W_{k} \cap V_{j}\right] \geq 1 \quad \text { for all } k \in K
$$

These last inequalities together with Proposition 3.2(a) lead to

$$
\begin{aligned}
1 \geq \bar{x}\left[V_{i}, V_{j}\right] & \geq \sum_{k \in K} \bar{x}\left[W_{k} \cap V_{i}, W_{k} \cap V_{j}\right] \\
& \geq|K| \\
& >1
\end{aligned}
$$

a contradiction.

We remark that if we have $p=2$ in Proposition 3.7, then at most $\operatorname{con}\left(V_{1}\right)$ classes of the partition π_{2} intersect both V_{1} and V_{2}.

Proposition 3.8. Let $\pi_{1}=\left\{V_{1}, \ldots, V_{p}\right\}$ and $\pi_{2}=\left\{W_{1}, \ldots, W_{q}\right\}, p \geq 2$ and $q \geq 3$, be two partitions of V which are tight for \bar{x}. Given a subscript $i \in\{1, \ldots, p\}$, define $J=\left\{j_{1}, \ldots, j_{k}\right\}=\left\{j \in\{1, \ldots, q\} \mid V_{i} \cap W_{j} \neq \emptyset\right\}$. Assume $2 \leq k<q$. We then have
(a) $\bar{x}\left[V_{i} \cap W_{j_{1}}, \ldots, V_{i} \cap W_{j_{k}}\right]=\bar{x}\left[W_{j_{1}}, \ldots, W_{j_{k}}\right]=k-1$, if π_{1} is of type 1 , and one of the following conditions hold:
(a.1) π_{2} is of type 1 , or
(a.2) π_{2} is of type $2, r\left(V_{1}\right)=1$ and $r\left(V \backslash \bigcup_{j \in J} W_{j}\right)=2$.
(b) $\bar{x}\left[V_{i} \cap W_{j_{1}}, \ldots, V_{i} \cap W_{j_{k}}\right]=\bar{x}\left[W_{j_{1}}, \ldots, W_{j_{k}}\right]=k$, if π_{1} and π_{2} are of type 2 and $r\left(V_{i}\right)=2$.
Proof. We are going to prove the case (a.1). (The proofs for the other cases use similar arguments.) Without loss of generality, we suppose $J=\{1, \ldots, k\}$. Since $\left[V_{i} \cap W_{1}, \ldots, V_{i} \cap W_{k}\right] \subseteq\left[W_{1}, \ldots, W_{k}\right]$ and $\bar{x} \geq 0$, we have

$$
\begin{equation*}
\bar{x}\left[V_{i} \cap W_{1}, \ldots, V_{i} \cap W_{k}\right] \leq \bar{x}\left[W_{1}, \ldots, W_{k}\right] . \tag{3.1}
\end{equation*}
$$

From the definition of J and the fact that π_{2} is a partition of $V,\left\{V_{i} \cap W_{1}, \ldots, V_{i} \cap W_{k}\right\}$ is a partition of V_{i}. By Proposition 3.3(a) and Remark 3.5, we have

$$
\begin{equation*}
\bar{x}\left[V_{i} \cap W_{1}, \ldots, V_{i} \cap W_{k}\right] \geq k-1 \tag{3.2}
\end{equation*}
$$

Furthermore, as π_{2} is of type 1 , the partition $\left\{\bigcup_{j \in J} W_{j}, W_{k+1}, \ldots, W_{q}\right\}$ is also of type 1. From Proposition 3.2(a) and Remark 3.5, we have

$$
\bar{x}\left[W_{1}, \ldots, W_{k}\right] \leq k-1
$$

This last inequality combined with the inequalities (3.1) and (3.2) gives $\bar{x}\left[V_{i} \cap W_{1}, \ldots\right.$, $\left.V_{i} \cap W_{k}\right]=\bar{x}\left[W_{1}, \ldots, W_{k}\right]=k-1$.

We remark that in Proposition 3.8, if we do not fulfill the conditions (a) and (b), we still have $k-1 \leq \bar{x}\left[V_{i} \cap W_{j_{1}}, \ldots, V_{i} \cap W_{j_{k}}\right] \leq \bar{x}\left[W_{j_{1}}, \ldots, W_{j_{k}}\right] \leq k$.

Proposition 3.9. Let $\pi=\left\{V_{1}, \ldots, V_{p}\right\}, p \geq 2$, be a partition of V which is tight for \bar{x}. Consider two distinct subscripts $i, j \in\{1, \ldots, p\}$ such that $i<j,\left|V_{i}\right| \geq 2$, and $\left|V_{j}\right| \geq 2$. Given a nonempty node set $W \nsubseteq V_{i}$ and a partition $\left\{V_{j}^{1}, \ldots, V_{j}^{q}\right\}, q \geq 2$, of V_{j}, let $\pi^{\prime}=\left\{V_{1}^{\prime}, \ldots, V_{p^{\prime}}^{\prime}\right\}$ be the following partition of V :

$$
\begin{array}{ll}
V_{t}^{\prime}=V_{t}, & t=1, \ldots, i-1, \\
V_{i}^{\prime}=V_{i} \backslash W, & t=i+1, \ldots, j-1, \\
V_{t}^{\prime}=V_{t}, & \\
V_{j}^{\prime}=V_{j}^{1} \cup W, & t=1, \ldots, q-1, \\
V_{t+j}^{\prime}=V_{j}^{t+1}, & t=j+1, \ldots, p, \\
V_{t+q-1}^{\prime}=V_{t}, & t=1,
\end{array}
$$

where $p^{\prime}=p+q-1$.
(a) If π and π^{\prime} are of the same type, then $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right] \geq q-1+\bar{x}\left[W, V_{j}^{1}\right]-$ $\bar{x}\left[W, V_{i} \backslash W\right]$.
(b) If π is of type 1 and π^{\prime} is of type 2, then $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right] \geq q+\bar{x}\left[W, V_{j}^{1}\right]-$ $\bar{x}\left[W, V_{i} \backslash W\right]$.
(c) If π is of type 2 and π^{\prime} is of type 1 , then $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right] \geq q-2+\bar{x}\left[W, V_{j}^{1}\right]-$ $\bar{x}\left[W, V_{i} \backslash W\right]$.
Moreover, if $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right]=q-1+\bar{x}\left[W, V_{j}^{1}\right]-\bar{x}\left[W, V_{i} \backslash W\right]$ (case (a)), $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right]=$ $q+\bar{x}\left[W, V_{j}^{1}\right]-\bar{x}\left[W, V_{i} \backslash W\right]$ (case (b)) or $\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right]=q-2+\bar{x}\left[W, V_{j}^{1}\right]-\bar{x}\left[W, V_{i} \backslash W\right]$ (case (c)), then the partition π^{\prime} is also tight for \bar{x}.

Proof. Using $\bar{x}\left(\delta\left(V_{1}^{\prime}, \ldots, V_{p^{\prime}}^{\prime}\right)\right)=\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)+\bar{x}\left[V_{j}^{1}, \ldots, V_{j}^{q}\right]-\bar{x}\left[W, V_{j}^{1}\right]+$ $\bar{x}\left[W, V_{i} \backslash W\right]$, the proof is similar to the one of Proposition 3.2, and thus it is omitted. $\quad \square$

In the remainder of this section, let us assume that \bar{x} is an extreme point of $\operatorname{CPP}(G, r)$. We denote by $E_{0}(\bar{x}), E_{1}(\bar{x})$ and $E_{f}(\bar{x})$ the set of edges $e \in E$ such that $\bar{x}(e)=0, \bar{x}(e)=1$ and $0<\bar{x}(e)<1$, respectively. Let $P_{1}(\bar{x})$ and $P_{2}(\bar{x})$ be the sets of partitions of type 1 and 2 , respectively, which are tight for \bar{x}.

Since \bar{x} is an extreme point of $\operatorname{CPP}(G, r)$, there exist $P_{1}^{*}(\bar{x}) \subseteq P_{1}(\bar{x})$ and $P_{2}^{*}(\bar{x}) \subseteq$ $P_{2}(\bar{x})$ such that \bar{x} is the unique solution of the system

$$
S(\bar{x}) \begin{cases}x(e)=0 & \text { for all } e \in E_{0}(\bar{x}) \\ x(e)=1 & \text { for all } e \in E_{1}(\bar{x}) \\ x\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)=p-1 & \text { for all }\left\{V_{1}, \ldots, V_{p}\right\} \in P_{1}^{*}(\bar{x}) \\ x\left(\delta\left(W_{1}, \ldots, W_{q}\right)\right)=q & \text { for all }\left\{W_{1}, \ldots, W_{q}\right\} \in P_{2}^{*}(\bar{x})\end{cases}
$$

where $\left|E_{0}(\bar{x})\right|+\left|E_{1}(\bar{x})\right|+\left|P_{1}^{*}(\bar{x})\right|+\left|P_{2}^{*}(\bar{x})\right|=|E|$. Since the system $S(\bar{x})$ is not unique, we give the following remarks which will be useful later.

Remark 3.10. From any system of equations, induced by inequalities of $\operatorname{CPP}(G, r)$ and whose unique solution is \bar{x}, we may extract a nonsingular subsystem having exactly $|E|$ equations.

Remark 3.11. For any $e \in E$, there exists at least one equation of $S(\bar{x})$ which contains $x(e)$ with a nonzero coefficient.

Proposition 3.12. If \bar{x} is fractional, then $\left|E_{f}(\bar{x})\right| \geq 2$.
Proof. Every equation of the system $S(\bar{x})$ has coefficients equal to 0 or 1 and an integer right-hand side. Since \bar{x} is fractional, Remark 3.11 then implies that \bar{x} must contain at least two fractional components.

Proposition 3.13. For any edge pair of $E_{f}(\bar{x})$, there exists at least one equation of $S(\bar{x})$ which contains exactly one of the two edges.

Proof. Suppose that there exist two edges $e_{1}, e_{2} \in E_{f}(\bar{x})$ such that any equation of $S(\bar{x})$ contains either both or none of them. Let $x^{\prime} \in \mathbb{R}^{E}$ be the point such that

$$
x^{\prime}(e)= \begin{cases}\bar{x}(e)+\epsilon & \text { if } e=e_{1} \\ \bar{x}(e)-\epsilon & \text { if } e=e_{2} \\ \bar{x}(e) & \text { if } e \in E \backslash\left\{e_{1}, e_{2}\right\}\end{cases}
$$

where $\epsilon \neq 0$. The point x^{\prime} is also a solution of $S(\bar{x})$, which contradicts the extremality of \bar{x}.

A direct consequence of the previous proposition is the following.
Remark 3.14. If u, v are two nodes of V, then $[u, v]$ contains at most one edge in $E_{f}(\bar{x})$.

Proposition 3.15. Let $W \mp V$ be a nonempty node subset such that $\bar{x}(\delta(W))=$ 1. We then have $\bar{x}(e) \in\{0,1\}$ for all $e \in \delta(W)$.

Proof. Suppose there exists $e \in \delta(W) \cap E_{f}(\bar{x})$. Since $\bar{x}(\delta(W))=1$, there must exist another edge $f \in \delta(W) \cap E_{f}(\bar{x})$. We are going to prove that the system $S(\bar{x})$ can
be chosen such that any of its equations contains either e and f or none of them. Let $\left\{V_{1}, \ldots, V_{p}\right\}$ be a partition of V inducing an equation of the system $S(\bar{x})$. Assume that there exist two distinct subscripts $i, j \in\{1, \ldots, p\}$ such that $V_{i} \cap W \neq \emptyset \neq V_{j} \cap W$. From Proposition 3.3, we obtain $\bar{x}\left[V_{i} \cap W, V_{i} \backslash W\right] \geq 1$ and $\bar{x}\left[V_{j} \cap W, V_{j} \backslash W\right] \geq 1$ which give $\bar{x}(\delta(W)) \geq \bar{x}\left[V_{i} \cap W, V_{i} \backslash W\right]+\bar{x}\left[V_{j} \cap W, V_{j} \backslash W\right] \geq 2$, a contradiction. Therefore, we have $W \subseteq V_{k}$ for some $k \in\{1, \ldots, p\}$. If $W \neq V_{k}$, then from Proposition 3.3 and $\bar{x}(\delta(W))=1$ we must have $\delta(W)=\left[W, V_{k} \backslash W\right]$. We thus conclude that any equation of $S(\bar{x})$ contains either e and f or none of them. But this contradicts Proposition 3.13.

Proposition 3.16. Let $W \varsubsetneqq V$ be a nonempty node subset such that $\operatorname{con}(W)=$ 2. If $\bar{x}(\delta(W))=2$, then the system $S(\bar{x})$ can be chosen such that $P_{1}^{*}(\bar{x})=\emptyset$.

Proof. Suppose there exists a partition $\left\{V_{1}, \ldots, V_{p}\right\} \in P_{1}^{*}(\bar{x})$. Without loss of generality, we suppose that V_{1} contains all the terminals. Since $\operatorname{con}(W)=2$, we obtain that $V_{1} \cap W \neq \emptyset \neq V_{1} \cap \bar{W}$. From Proposition 3.3(b), we have $\bar{x}\left[V_{1} \cap W, V_{1} \cap \bar{W}\right] \geq 2$ which implies $\delta(W)=\left[V_{1} \cap W, V_{1} \cap \bar{W}\right]$. Therefore by Proposition 3.2, we deduce that either W or \bar{W} is a subset of V_{1}. Without loss of generality, we assume that $W \subset V_{1}$. The partition $\left\{W, V_{1} \cap \bar{W}, V_{2}, \ldots, V_{p}\right\}$ is of type 2 , then since $\bar{x}\left[W, V_{1} \cap \bar{W}\right]=2$ Proposition 3.3 gives $\left\{W, V_{1} \cap \bar{W}, V_{2}, \ldots, V_{p}\right\} \in P_{2}^{*}(\bar{x})$.

We can thus replace in the system $S(\bar{x})$ the partition $\left\{V_{1}, \ldots, V_{p}\right\}$ by the partitions $\{W, \bar{W}\}$ and $\left\{W, V_{1} \cap \bar{W}, V_{2}, \ldots, V_{p}\right\}$. The obtained system may have more than $|E|$ equations, yet from Remark 3.10 we can choose $|E|$ equations of this system whose unique solution is \bar{x}.

Proposition 3.17. Let $W \mp V$ be a nonempty node subset such that $\operatorname{con}(W)=$ 2. If $\bar{x}(\delta(W))=2$, then the system $S(\bar{x})$ can be chosen such that at most one class of any partition of $P_{2}^{*}(\bar{x})$ intersects both W and \bar{W}.

Proof. From Proposition 3.7(b), any partition of $P_{2}^{*}(\bar{x})$ has at most two classes which intersect both W and \bar{W}. Suppose that there exists a partition $\left\{V_{1}, \ldots, V_{p}\right\}$ of $P_{2}^{*}(\bar{x})$ such that, without loss of generality, V_{1} and V_{2} intersect both W and \bar{W}. Proposition 3.3(c) then states that the partition $\left\{V_{1} \cap W, V_{1} \cap \bar{W}, V_{2} \cap W, V_{2} \cap \bar{W}, V_{3}, \ldots, V_{p}\right\}$ belongs to $P_{2}(\bar{x})$. We can thus replace in the system $S(\bar{x})$ the partition $\left\{V_{1}, \ldots, V_{p}\right\}$ by the partitions $\{W, \bar{W}\}$ and $\left\{V_{1} \cap W, V_{1} \cap \bar{W}, V_{2} \cap W, V_{2} \cap \bar{W}, V_{3}, \ldots, V_{p}\right\}$. The result thus follows from Remark 3.10.

Proposition 3.18. Let u, v be two distinct nodes such that $\bar{x}[u, v] \geq 1$. The system $S(\bar{x})$ can thus be chosen such that
(a) $\delta\left(V_{1}, \ldots, V_{p}\right) \cap[u, v]=\emptyset$, for all $\left\{V_{1}, \ldots, V_{p}\right\} \in P_{1}^{*}(\bar{x})$, and
(b) if $\left\{V_{1}, \ldots, V_{p}\right\} \in P_{2}^{*}(\bar{x})$ with $p \geq 3$ and $[u, v] \subseteq\left[V_{i}, V_{j}\right]$ for some distinct subscripts $i, j \in\{1, \ldots, p\}$, then $r\left(V \backslash\left(V_{i} \cup V_{j}\right)\right)=1$.
Proof. We will prove (a). (The proof of (b) uses similar arguments.) Let $\pi=$ $\left\{V_{1}, \ldots, V_{p}\right\}, p \geq 2$, be a partition of type 1 , tight for \bar{x} and such that without loss of generality, $[u, v] \subseteq\left[V_{1}, V_{2}\right]$. If $p=2$, then from Proposition 3.15 , we have $\bar{x}(e) \in\{0,1\}$ for all $e \in[u, v]$. The equation induced by π can thus be obtained from the equations $x(e)=0$ for all $e \in[u, v] \cap E_{0}(\bar{x})$, and $x(e)=1$ for all $e \in[u, v] \cap E_{1}(\bar{x})$.

Suppose now that $p \geq 3$. From Proposition 3.2, we have $\bar{x}\left[V_{1}, V_{2}\right] \leq 1$. Since $[u, v] \subseteq\left[V_{1}, V_{2}\right]$ and $\bar{x}[u, v] \geq 1$, we then obtain $\bar{x}[u, v]=1$. Therefore, the partition $\pi^{\prime}=\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$ is also tight for \bar{x}. Moreover, by Remark 3.14, $\bar{x}(e) \in\{0,1\}$ for all $e \in[u, v]$. The equation induced by π can thus be obtained from the one induced by π^{\prime} together with the equations $x(e)=0$ for all $e \in[u, v] \cap E_{0}(\bar{x})$ and $x(e)=1$ for all $e \in[u, v] \cap E_{1}(\bar{x})$.

Proposition 3.19. Let u be a node having exactly two neighbors, namely u_{1}
and u_{2}. The system $S(\bar{x})$ can then be chosen such that any partition $\left\{V_{1}, \ldots, V_{p}\right\} \in$ $P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ with $p \geq 3$ and $\left[u, u_{1}\right] \subset \delta\left(V_{1}, \ldots, V_{p}\right)$ has the following property:

$$
\left|V_{i} \cap\left\{u_{1}, u_{2}\right\}\right| \leq 1 \text { for all } i \in\{1, \ldots, p\}
$$

Moreover, if $\bar{x}\left[u, u_{2}\right]<1$, then we also have

$$
\left|V_{i} \cap\left\{u, u_{2}\right\}\right| \leq 1 \text { for all } i \in\{1, \ldots, p\}
$$

Proof. Let $\pi=\left\{V_{1}, \ldots, V_{p}\right\} \in P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ with $p \geq 3$ and $\left[u, u_{1}\right] \subset \delta\left(V_{1}, \ldots, V_{p}\right)$. Without loss of generality, we assume $u \in V_{1}$ and $u_{1} \in V_{2}$. Suppose $u_{2} \in V_{2}$. By Remark 3.4, we have $V_{1}=\{u\}$. If $\bar{x}(\delta(u))>r(u)$, by considering the partition $\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$, we then contradict Proposition 3.2. Hence, we have $\bar{x}(\delta(u))=r(u)$. Let π^{\prime} be the partition $\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$. If $r(u)=2$, then either $\bar{x}\left[u, u_{1}\right]$ or $\bar{x}\left[u, u_{2}\right]$ is greater than 1 , and by Proposition 3.18, we have $\pi \in P_{2}^{*}(\bar{x})$, $r\left(V \backslash\left(V_{1} \cup V_{2}\right)\right)=1$, and then $\pi^{\prime} \in P_{1}(\bar{x})$. If $r(u)=1$, then we clearly have $\pi^{\prime} \in P_{1}(\bar{x}) \cup P_{2}(\bar{x})$. We can thus replace in the system $S(\bar{x})$ the partition π by the partition π^{\prime} and the cut $\delta(u)$. The obtained system may have more than $|E|$ equations, yet from Remark 3.10 we can choose $|E|$ equations of this system whose unique solution is \bar{x}. Therefore, the system $S(\bar{x})$ can be chosen such that no partition has one class containing u and a different one containing both u_{1} and u_{2}.

We now suppose that $\bar{x}\left[u, u_{2}\right]<1$. If $u_{2} \in V_{1}$, we then have $\bar{x}\left[u, V_{1} \backslash\{u\}\right]=$ $\bar{x}\left[u, u_{2}\right]<1$, a contradiction with Proposition 3.3.

Proposition 3.20. Let u, v be two distinct nodes such that $\bar{x}[u, v] \geq 2$. We have the following:
(a) the system $S(\bar{x})$ can be chosen such that the variables $x(e)$, for all $e \in[u, v]$, only appear in equations induced by $E_{0}(\bar{x}) \cup E_{1}(\bar{x})$ with a nonzero coefficient, and
(b) $\bar{x}(e) \in\{0,1\}$ for all $e \in[u, v]$.

Proof. Using the same arguments as in the proof of Proposition 3.18, we get (a). Consequently, from Remark 3.11, we obtain $\bar{x}(e) \in\{0,1\}$ for all $e \in[u, v]$.
4. Composition of G by one-node cutset and the $\operatorname{CPP}(G, r)$. Given a graph $G=(V, E)$ and two subgraphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ of G, if $V=V_{1} \cup V_{2}$ and $\left|V_{1} \cap V_{2}\right|=1$, then $G=\left(V, E_{1} \cup E_{2}\right)$ is called the 1-sum of G_{1} and G_{2}. In that case, the singleton $V_{1} \cap V_{2}$ is called a one-node cutset of G.

LEMMA 4.1. Let $G=(V, E)$ be a graph and $r \in\{1,2\}^{V}$ be a connectivity type vector. Suppose that G is the 1-sum of the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Let u be the only node of $V_{1} \cap V_{2}$. For $i=1,2$, let $r_{i} \in\{1,2\}^{V_{i}}$ be the connectivity type vector such that $r_{i}(v)=r(v)$ if $v \in V_{i} \backslash\{u\}$ and $r_{i}(u)=\max \left\{r(u), r\left(V \backslash V_{i}\right)\right\}$. If \bar{x} is an extreme point of $\operatorname{CPP}(G, r)$, then the restriction \bar{x}_{i} of \bar{x} on G_{i} is also an extreme point of $\operatorname{CPP}\left(G_{i}, r_{i}\right)$ for $i=1,2$.

Proof. First, when we write \bar{x}_{i}, we refer to one of the two restrictions \bar{x}_{1} and \bar{x}_{2}, and then the subscript i may be either 1 or 2 in the proof. From Proposition 3.1, $\bar{x}_{i} \in$ $\operatorname{CPP}\left(G_{i}, r_{i}\right)$. (We remark that the couples $\left(G_{1}, r_{1}\right)$ and $\left(G_{2}, r_{2}\right)$ are nothing but the couples $\left(G / E_{2}, r_{E_{2}}^{c}\right)$ and $\left(G / E_{1}, r_{E_{1}}^{c}\right)$, respectively.) To prove that \bar{x}_{i} is an extreme point of $\operatorname{CPP}\left(G_{i}, r_{i}\right)$, it suffices to show that we can choose the system $S(\bar{x})$ such that for any pair of edges $e_{1} \in E_{1}$ and $e_{2} \in E_{2}$, none of its equations involves both $x\left(e_{1}\right)$ and $x\left(e_{2}\right)$ with nonzero coefficients.

Let $\pi=\left\{W_{1}, \ldots, W_{p}\right\}$ be a partition which is tight for \bar{x}. Suppose $u \in W_{q}$ for some $q \in\{1, \ldots, p\}$. Since $\{u\}$ is a one-node cutset, by Remark 3.4 W_{q} is the only
class which may intersect both V_{1} and V_{2}. Without loss of generality, we can assume that $W_{j} \subseteq V_{1}$ for all $j \in\{1, \ldots, q-1\}$ and $W_{k} \subseteq V_{2}$ for all $k \in\{q+1, \ldots, p\}$.

Consider the two partitions $\pi_{1}=\left\{W_{1}, \ldots, W_{q-1}, W_{q}^{1}\right\}$ and $\pi_{2}=\left\{W_{q}^{2}, W_{q+1}, \ldots\right.$, $\left.W_{p}\right\}$ of V, where

$$
W_{q}^{1}=\bigcup_{j \geq q} W_{j} \quad \text { and } \quad W_{q}^{2}=\bigcup_{k \leq q} W_{k}
$$

We clearly have

$$
\begin{equation*}
\bar{x}\left(\delta\left(W_{1}, \ldots, W_{p}\right)\right)=\bar{x}\left(\delta\left(W_{1}, \ldots, W_{q-1}, W_{q}^{1}\right)\right)+\bar{x}\left(\delta\left(W_{q}^{2}, W_{q+1}, \ldots, W_{p}\right)\right) \tag{4.1}
\end{equation*}
$$

We remark that we cannot have both π_{1} and π_{2} of type 2 . The partition π would be of type 2 otherwise, and then (4.1) would give

$$
\begin{aligned}
p & =\bar{x}\left(\delta\left(W_{1}, \ldots, W_{p}\right)\right) \\
& \geq q+(p-q+1) \\
& =p+1,
\end{aligned}
$$

which is impossible.
Without loss of generality, we now suppose that π_{1} is of type 1 . We notice that, in this case, π and π_{2} have the same type. Assume that π_{2} is of type 2. (The case where π_{2} is of type 1 is similar.) The inequality (4.1) then gives

$$
\begin{aligned}
p & =\bar{x}\left(\delta\left(W_{1}, \ldots, W_{p}\right)\right) \\
& \geq(q-1)+(p-q+1) \\
& =p
\end{aligned}
$$

We thus have that both partitions π_{1} and π_{2} are tight for \bar{x}. Hence, we can replace in the system $S(\bar{x})$ the partition π by the two partitions π_{1} and π_{2}, and we then get a new system $S^{\prime}(\bar{x})$. By Remark 3.10, there is a nonsingular subsystem of $S^{\prime}(\bar{x})$ with exactly $|E|$ equations and whose solution is \bar{x}. Since $\delta\left(W_{1}, \ldots, W_{q-1}, W_{q}^{1}\right) \subseteq E_{1}$ and $\delta\left(W_{q}^{2}, W_{q+1}, \ldots, W_{p}\right) \subseteq E_{2}$, any equation of this subsystem only contains variables induced by edges from either E_{1} or E_{2}. The proof is thus complete.

Using the same notations as those introduced in Lemma 4.1, the following is an immediate consequence of this lemma.

Corollary 4.2. If $\operatorname{CPP}\left(G_{1}, r_{1}\right)$ and $\operatorname{CPP}\left(G_{2}, r_{2}\right)$ are integer, then so is $C P P(G, r)$.

Suppose that G is decomposable by one-node custsets into $G_{1}, G_{2}, \ldots, G_{t}$ with $t \geq 2$. Let $r_{i}, i=1, \ldots, t$, be the connectivity type vector associated to G_{i}, defined as in Lemma 4.1. A direct consequence of Corollary 4.2 is that if $\operatorname{CPP}\left(G_{i}, r_{i}\right)$ is integer for all $i \in\{1, \ldots, t\}$, then so is $\operatorname{CPP}(G, r)$.
5. The polytope $\operatorname{CPP}(G, r)$ on series-parallel graphs. In this section, we are interested in the cut and partition inequalities polytope $\operatorname{CPP}(G, r)$ on seriesparallel graphs. A graph is called series-parallel if and only if it does not contain K_{4} (i.e., the complete graph with 4 nodes) as a minor [4]. We are going to give sufficient conditions for this polytope to be an integer on this class of graphs, that is, sufficient conditions for the polytope $\operatorname{SNDP}(G, r)$ to be completely described by the trivial inequalities (2.1) and (2.2) together with the partition inequalities (2.5). (We recall that the cut inequalities (2.3) are partition inequalities induced by partitions having exactly two classes.)

We can remark that if the graph G contains at most one terminal (i.e., $|T| \leq 1$), then the SNDP is nothing but the spanning tree problem. In this case and for general graphs G, Fulkerson [5] completely described the polytope $\operatorname{SNDP}(G, r)$ by the trivial inequalities and the inequalities (2.5) induced by partitions of type 1. For general graphs G, we then have the following.

Theorem 5.1 (see [5]). If $|T| \leq 1$, then $C P P(G, r)$ is integer.
On the other hand, Mahjoub [17] showed that the polytope $\operatorname{SNDP}(G, r)$ is completely described by the trivial inequalities (2.1) and (2.2), and the cut inequalities (2.3) on series-parallel graphs when $r(u)=2$ for all $u \in V$. We notice that for such connectivity type vectors, the partition inequalities (2.5) are dominated by the cut inequalities (2.3). Therefore we have the following theorem.

Theorem 5.2 (see [17]). If G is series-parallel and $T=V$, then $\operatorname{CPP}(G, r)$ is integer.

In the remainder of this paper, we are going to restrict our attention to graphs G having at least one ordinary node and two terminals. We remark that according to the definition of the survivability conditions, the case with exactly one terminal can be trivially reduced to the one with $T=\emptyset$.

In view of Theorems 5.1 and 5.2 , one would have expected the integrality of the polytope $\operatorname{CPP}(G, r)$ if G is series-parallel and $r \in\{1,2\}^{V}$. Unfortunately, it turns out that this result does not hold. In fact, let us consider the two graphs $G_{p}^{1}=\left(V_{p}^{1}, E_{p}^{1}\right)$ and $G_{p}^{2}=\left(V_{p}^{2}, E_{p}^{2}\right)$ of Figure 5.1, where the terminals are represented by black circles. (G_{p}^{1} has three terminals $\left\{u_{1}, u_{2}, u_{3}\right\}$ and two ordinary nodes $\left\{v_{1}, v_{2}\right\}$, while G_{p}^{2} has four terminals $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and one ordinary node $\left\{v_{1}\right\}$.) These two graphs are clearly series-parallel. Moreover, the fractional solutions of $\frac{1}{2}$ for all of the dashed edges and 1 for all of the solid ones are extreme points of the corresponding polytopes $\operatorname{CPP}\left(G_{p}^{1}, r_{p}^{1}\right)$ and $\operatorname{CPP}\left(G_{p}^{2}, r_{p}^{2}\right)$, where $r_{p}^{1} \in\{1,2\}^{V_{p}^{1}}$ and $r_{p}^{2} \in\{1,2\}^{V_{p}^{2}}$ are the connectivity type vectors associated to G_{p}^{1} and G_{p}^{2}, respectively. This implies that the partition inequalities (2.5) together with the trivial ones (2.1) and (2.2) do not suffice to completely describe the survivable network design polytope $\operatorname{SNDP}(G, r)$ on series-parallel graphs.

Fig. 5.1. Fractional extreme points of $C P P\left(G_{p}^{1}, r_{p}^{1}\right)$ and $C P P\left(G_{p}^{2}, r_{p}^{2}\right)$.
Let us now consider the following inequalities:

$$
\begin{equation*}
x\left(E_{p}^{i}\right)+x\left(\delta\left(v_{1}\right)\right) \geq 8 \quad \text { for } i=1,2 \tag{5.1}
\end{equation*}
$$

It is not hard to see that the inequality (5.1) for $i=1$ (respectively, $i=2$) should be satisfied by any point of the polytope $\operatorname{SNDP}\left(G_{p}^{1}, r_{p}^{1}\right)$ (respectively, $\operatorname{SNDP}\left(G_{p}^{2}, r_{p}^{2}\right)$). Moreover, this inequality cuts off the fractional extreme point of $\operatorname{CPP}\left(G_{p}^{1}, r_{p}^{1}\right)$ (respectively, $\left.\operatorname{CPP}\left(G_{p}^{2}, r_{p}^{2}\right)\right)$ given above. We will see in section 7 that inequalities (5.1) are actually special cases of a more general class of facet-defining inequalities of $\operatorname{SNDP}(G, r)$.

In the next theorem, we give sufficient conditions based on both graphs $\left(G_{p}^{1}, r_{p}^{1}\right)$ and $\left(G_{p}^{2}, r_{p}^{2}\right)$ for the cut and partition inequalities polytope $\operatorname{CPP}(G, r)$ to be an integer on series-parallel graphs.

ThEOREM 5.3. Let $G=(V, E)$ be a series-parallel graph and $r \in\{1,2\}^{V}$ be its associated connectivity type vector. If (G, r) does not have either $\left(G_{p}^{1}, r_{p}^{1}\right)$ or $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor, then $\operatorname{CPP}(G, r)$ is integer.

Before giving the proof of the theorem, let us first note that its converse does not hold as shown by the following example. (The black circles still depict the terminal nodes.)

FIG. 5.2. Counterexample for the converse of Theorem 5.3.
Let $G_{0}=\left(V_{0}, E_{0}\right)$ be the graph given in Figure 5.2 and $r_{0} \in\{1,2\}^{V_{0}}$ its associated connectivity type vector. The polytope $\operatorname{CPP}\left(G_{0}, r_{0}\right)$ is integer. In fact it is reduced to the point with all components equal to 1 . The couple $\left(G_{0}, r_{0}\right)$ clearly has $\left(G_{p}^{1}, r_{p}^{1}\right)$ as a minor, proving that the converse of Theorem 5.3 is not true.

Proof of Theorem 5.3. The proof is by induction on the number of edges. It is not hard to see that the statement holds for any graph with no more than two edges. Suppose that for any series-parallel graph G having no more than m edges and any connectivity type vector $r \in\{1,2\}^{V}$ such that (G, r) has neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor, we have that $\operatorname{CPP}(G, r)$ is integer. Let us consider a series-parallel graph $G=(V, E)$ and a connectivity type vector $r \in\{1,2\}^{V}$ such that G has $m+1$ edges, (G, r) has neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor and $\operatorname{CPP}(G, r)$ is not integer. There thus exists a fractional extreme point \bar{x} of $\operatorname{CPP}(G, r)$. We can choose \bar{x} among all the fractional extreme points of $\operatorname{CPP}(G, r)$ such that $\left|E_{0}(\bar{x}) \cup E_{1}(\bar{x})\right|$ is maximum. (Associated with \bar{x}, we consider the system $S(\bar{x})$ as well as the sets $E_{0}(\bar{x}), E_{1}(\bar{x})$ and $E_{f}(\bar{x})$ as defined in section 3.)

If $r(v)=2$ for all $v \in V$, then from Theorem 5.2 the polytope $\operatorname{CPP}(G, r)$ is integer. Therefore, without loss of generality, we can also suppose that the cardinality of the terminal set T is maximum. It means that for any series-parallel graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and any connectivity type vector $r^{\prime} \in\{1,2\}^{V^{\prime}}$ such that $\left|E^{\prime}\right|=m+1,\left(G^{\prime}, r^{\prime}\right)$ has neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor and $\left|\left\{v \in V^{\prime}: r^{\prime}(v)=2\right\}\right|>|T|$, the polytope $\operatorname{CPP}\left(G^{\prime}, r^{\prime}\right)$ is integer.

From the induction hypothesis, it follows that

$$
\begin{equation*}
\bar{x}(e)>0 \quad \text { for all } e \in E \text {, } \tag{5.2}
\end{equation*}
$$

that is, $E_{0}(\bar{x})=\emptyset$.
Claim 1. Any variable $x(e), e \in E$, has a nonzero coefficient in at least two equations of $S(\bar{x})$.

Proof. Let us consider an edge $f=u v$ of E, and denote $F=[u, v]$. From Remark 3.11, there exists at least one equation of $S(\bar{x})$ which contains $x(f)$ with a nonzero coefficient. Assume that there is exactly one such equation. Let $S^{\prime}(\bar{x})$ be the system obtained from $S(\bar{x})$ by deleting all of the equations involving $x(e)$ for $e \in F$. We notice that the system $S^{\prime}(\bar{x})$ contains exactly $|E|-|F|$ equations. Let x^{\prime} be the restriction of \bar{x} on $E \backslash F$. By Proposition 3.1, $x^{\prime} \in \operatorname{CPP}\left(G / F, r_{F}\right)$. Furthermore, x^{\prime} is a solution of the system $S^{\prime}(\bar{x})$. Since $S^{\prime}(\bar{x})$ is nonsingular and its equations come from constraints of $\operatorname{CPP}\left(G / F, r_{F}\right)$, this implies that x^{\prime} is an extreme point of $\operatorname{CPP}\left(G / F, r_{F}\right)$. By Proposition 3.12 and Remark 3.14, the point x^{\prime} is fractional. As $\left(G / F, r_{F}\right)$ is a series-parallel graph having neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor, this contradicts the induction hypothesis.

Claim 2. The graph G is 2 -node connected.
Proof. Suppose the graph G is not 2 -node connected. There then exists a node $u \in V$ defining a one-node cutset of G. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be the two subgraphs of G such that $V_{1} \cap V_{2}=\{u\}$ and G is the 1 -sum of G_{1} and G_{2}. For $i=1,2$ we associate with G_{i} the connectivity type vector $r_{i} \in\{1,2\}^{V_{i}}$ such that $r_{i}(v)=r(v)$ if $v \in V_{i} \backslash\{u\}$, and $r_{i}(u)=\operatorname{con}_{G}\left(V \backslash V_{i}\right)$. Let \bar{x}_{1} and \bar{x}_{2} be the two restrictions of \bar{x} on E_{1} and E_{2}, respectively. From Lemma 4.1, both \bar{x}_{1} and \bar{x}_{2} are extreme points of $\operatorname{CPP}\left(G_{1}, r_{1}\right)$ and $\operatorname{CPP}\left(G_{2}, r_{2}\right)$, respectively. Since $E_{f}(\bar{x}) \neq \emptyset$, at least one among both restrictions is clearly fractional. Without loss of generality, we assume that \bar{x}_{1} is fractional. We point out that $\left(G_{1}, r_{1}\right)$ is nothing but the minor of (G, r) obtained by the contraction of E_{2}. Therefore, since the couple (G, r) has neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor, then neither does $\left(G_{1}, r_{1}\right)$. The latter combined with $\left|E_{1}\right|<|E|$ and \bar{x}_{1} fractional contradicts the induction hypothesis.

The proof now proceeds by successively establishing a sequence of claims which build on each other. Therefore, for the sake of clarity, we only mention the highlights of our argument, and the detailed sequences and proofs are deferred to section 6 .

Let $u \in V$ be a node having exactly two neighbors, say u_{1} and u_{2}. Since G is series-parallel, such a node u must exist [4]. Let us denote by F_{1} and F_{2} the set of edges between u and u_{1}, and u and u_{2}, respectively. Without loss of generality, we suppose

$$
\begin{equation*}
\bar{x}\left(F_{1}\right) \geq \bar{x}\left(F_{2}\right) . \tag{5.3}
\end{equation*}
$$

Suppose that $\bar{x}\left(F_{1}\right)<1$. From the inequality (5.3), we also have $\bar{x}\left(F_{2}\right)<1$, and then, by Remark 3.14, we obtain $F_{1}=\left\{f_{1}=u u_{1}\right\}$ and $F_{2}=\left\{f_{2}=u u_{2}\right\}$. From Proposition 3.13, there exists a partition $\left\{V_{1}, \ldots, V_{p}\right\}$ of $P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ such that $\left|\delta\left(V_{1}, \ldots, V_{p}\right) \cap\left\{f_{1}, f_{2}\right\}\right|=1$. Without loss of generality, assume that $f_{1} \in$ $\delta\left(V_{1}, \ldots, V_{p}\right)$, and then $\left\{u, u_{2}\right\} \subseteq V_{i}$ for some $i \in\{1, \ldots, p\}$. Hence, we obtain $\bar{x}\left[u, V_{i} \backslash\{u\}\right]=\bar{x}\left(f_{2}\right)<1$, which contradicts Proposition 3.3. Therefore, $\bar{x}\left(F_{1}\right) \geq 1$.

Claim 3. $r(u)=2$.
Claim 4. $r\left(u_{2}\right)=1$.
Claim 5. There does not exist a node of degree 2 .
Claim 6. $1<\bar{x}\left(F_{1}\right)<2$.
Let $F_{1}=\left\{e_{1}, f_{1}\right\}$ with $\bar{x}\left(e_{1}\right)=1$ and $0<\bar{x}\left(f_{1}\right)<1$. From Claims 3, 4, 5, 6, we can make the following remarks.

Remark 5.4. If v is a terminal adjacent to exactly two nodes, then between v and one of its neighbors there are exactly two edges.

Remark 5.5. Given two nodes v_{1} and v_{2}, then any path P between v_{1} and v_{2}, whose internal nodes have exactly two neighbors in G, satisfies the following.
(a) All of the internal nodes of P are terminals.
(b) P has at most two internal nodes.

Since $G=(V, E)$ is series-parallel and 2-connected, there is a 2 -node cutset $\left\{v_{1}, v_{2}\right\}$ such that G decomposes with respect to $\left\{v_{1}, v_{2}\right\}$ into two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $\left\{v_{1}, v_{2}\right\}=V_{1} \cap V_{2}$ and G_{1} is a cycle, possibly with parallel edges (see Figure 5.3). Let L_{1} and L_{2} be the two walks of G_{1} having only v_{1} and v_{2} in common. (In our context, a walk is a path between v_{1} and v_{2}, possibly with parallel edges.) We remark that if $|V| \geq 3$, then there exists such a decomposition with $\left|V_{1}\right| \geq 3$.

FIG. 5.3. Decomposition of G by the 2 -node cutset $\left\{v_{1}, v_{2}\right\}$.
By Remark 5.5, all of the internal nodes of L_{1} and L_{2} are terminals and both L_{1} and L_{2} have each at most two internal nodes. Throughout the rest of the proof, we only consider the case where both L_{1} and L_{2} have each at most one internal node. The case of two internal nodes in L_{1} or L_{2} can be handled using the same arguments.

Without loss of generality, we can consider that L_{1} has an internal node, say v. Under the induction assumptions, we remark that the claims 3,4 , and 6 are the results of the fact that u has exactly two neighbors. From now on, we consider $u=v$, $u_{1}=v_{1}$, and $u_{2}=v_{2}$.

Claim 7. $\left|F_{2}\right|=1$
Let $F_{2}=\left\{f_{2}=u u_{2}\right\}$.
Claim 8. $\bar{x}\left(f_{2}\right)<1$
Claim 9. L_{2} contains an internal node.
Let $W=V \backslash\left\{u, u_{1}, u_{2}, u^{\prime}\right\}$, where u^{\prime} is an internal node in L_{2}. We can suppose, without loss of generality, that $|\delta(u)| \leq\left|\delta\left(u^{\prime}\right)\right|$. From Remark 5.5(a), we have $r\left(u^{\prime}\right)=$ 2. To finish the proof of our theorem, we give the following three claims.

Claim 10. $\left|\left[u^{\prime}, u_{1}\right]\right|>\left|\left[u^{\prime}, u_{2}\right]\right|$.
From Claims 6 and 7, we obtain $\left|\delta\left(u^{\prime}\right)\right|=|\delta(u)|=3$. Using similar arguments for u^{\prime} as those used for u, we have $F_{1}^{\prime}=\left\{e_{1}^{\prime}, f_{1}^{\prime}\right\}$ and $F_{2}^{\prime}=\left\{f_{2}^{\prime}\right\}$ with $\bar{x}\left(e_{1}^{\prime}\right)=1$, $0<\bar{x}\left(f_{1}^{\prime}\right)<1$, and $0<\bar{x}\left(f_{2}^{\prime}\right)<1$.

Claim 11. $\bar{x}\left(f_{1}\right)=\bar{x}\left(f_{2}\right)=\bar{x}\left(f_{1}^{\prime}\right)=\bar{x}\left(f_{2}^{\prime}\right)=\frac{1}{2}$.
Claim 12. The couple (G, r) has the following properties:
(a) $W \cap T \neq \emptyset$. (We recall that $T=\{u \in V: r(u)=2\}$.)
(b) $\left|\left[S, u_{1}\right]\right| \geq 2$ and $\left|\left[S, u_{2}\right]\right| \geq 1$ for every $S \subseteq W$ such that $G(S)$ is a connected component of $G(W)$ and $S \cap T \neq \emptyset$.
Among the series-parallel graphs, the class of outerplanar graphs has received particular attention (see, for instance, [3, 20]). A graph is called outerplanar if it can be embedded in the plane such that all nodes lie on the boundary of its exterior region. In order to give a complete linear description of the survivable network polytope on
outerplanar graphs, we give this second characterization devised from Kuratowski's theorem [16]. A graph is outerplanar if and only if it does not contain K_{4} or $K_{2,3}$ as a minor. (We recall that $K_{2,3}$ is the complete bipartite graph having its node set decomposed into V_{1} and V_{2} with $\left|V_{1}\right|=2,\left|V_{2}\right|=3$, and $E\left(V_{1}\right)=E\left(V_{2}\right)=\emptyset$.)

First of all, we remark that the graph G_{p} of Figure 5.1 contains $K_{2,3}$ as a minor. In fact, $K_{2,3}$ can be obtained from G_{p} by deleting the three solid edges. Therefore, from the second definition of outerplanar graphs and Theorems 5.1, 5.2, and 5.3, we can deduce the following result.

THEOREM 5.6. Let $G=(V, E)$ be an outerplanar graph and $r \in\{1,2\}^{V}$ be an associated connectivity type vector. The survivable network polytope $\operatorname{SNDP}(G, r)$ is then completely described by the trivial inequalities (2.1) and (2.2) together with the partition inequalities (2.5).

We notice that there exist some series-parallel graphs which are not outerplanar and for which the polytope $\operatorname{CPP}(G, r)$ is integer. For instance, from Theorem 5.3, we know that the cut and partition inequalities polytope is an integer for $K_{2,3}$ with exactly three terminals, and clearly, $K_{2,3}$ is not outerplanar. Therefore, the class of outerplanar graphs is strictly included in the subclass of series-parallel graphs implying an integer cut and partition inequalities polytope.

Since the separation problem for the partition inequalities (2.5) is polynomially solvable, a direct consequence of Theorem 5.6 is the following corollary.

Corollary 5.7. The (1,2)-survivable network design problem can be solved in polynomial time on outerplanar graphs.
6. Proof of Theorem 5.3. In order to allow a better understanding of the proof of Theorem 5.3, we have just presented its main ideas. This section is thus devoted to give the details of the proof.

Proof of Claim 3. Suppose that $r(u)=1$ and the system $S(\bar{x})$ satisfies Proposition 3.18. Consider a partition $\pi=\left\{V_{1}, \ldots, V_{p}\right\}$ of $P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ such that $F_{1} \subseteq \delta\left(V_{1}, \ldots, V_{p}\right)$. From Claim 1, we know that such a partition exists. Since $\bar{x}\left(F_{1}\right) \geq 1$, by Proposition 3.18(a), we have $\pi \in P_{2}^{*}(\bar{x})$. Without loss of generality, assume $u \in V_{1}$ and $u_{1} \in V_{2}$. From Proposition 3.18(b) and the assumption $r(u)=1$, we obtain $r\left(V_{1} \backslash\{u\}\right)=2$. We can then deduce from Remark 3.4 that $u_{2} \in V_{1}$. With π, we associate the partition $\pi_{a}=\left\{V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right\}$ which clearly is of type 2 . Since $\bar{x}\left(\delta\left(V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right)\right) \geq p$, we then obtain $\bar{x}\left(F_{2}\right) \geq \bar{x}\left(F_{1}\right)$. This last inequality combined with inequality (5.3) gives $\bar{x}\left(F_{2}\right)=\bar{x}\left(F_{1}\right)$, and thus, $\pi_{a} \in P_{2}(\bar{x})$.

Let $S_{F_{1}}(\bar{x})$ be the system arisen from $S(\bar{x})$ when we delete every equation induced by $e \in E_{1}(\bar{x}) \cap F_{1}$ and the ones induced by the partitions π containing F_{1}, and we add the equations induced by the associated partitions π_{a}. (We remark that π_{a} might already belong to $P_{2}^{*}(\bar{x})$.) From Proposition 3.1, the restriction $\bar{x}_{F_{1}}$ of \bar{x} on G / F_{1} belongs to $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$. Moreover, the couple $\left(G / F_{1}, r_{F_{1}}\right)$ clearly has neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor. Since G / F_{1} has less edges than G, by the induction hypothesis, the polytope $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$ is an integer. Therefore $\bar{x}_{F_{1}}$, which is clearly fractional, is not an extreme point of $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$. There must thus exist an extreme point $y \in \operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$ which is also a solution of $S_{F_{1}}(\bar{x})$. Let $\bar{y} \in \mathbb{R}^{E}$ be the unique point such that $\bar{y}(e)=y(e)$ if $e \in E \backslash F_{1}, \bar{y}(e)=1$ if $e \in E_{1}(\bar{x}) \cap F_{1}$, and $\bar{y}\left(F_{1}\right)=y\left(F_{2}\right)$. We clearly have $\bar{y} \neq \bar{x}$. Moreover, it is obvious that \bar{y} is also a solution of the system $S(\bar{x})$. This contradicts the fact that the system $S(\bar{x})$ is nonsingular.

Proof of Claim 4. Assume on the contrary that $r\left(u_{2}\right)=2$. Let us consider a partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{p}\right\}$ of $P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ such that $u \in V_{1}$ and $u_{1} \in V_{2}$.

From Claim 1, such a partition must exist and from Proposition 3.18, $\pi \in P_{2}^{*}(\bar{x})$. We claim that this partition exists providing $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{2}\right)$. In fact, suppose that $\bar{x}\left(F_{1}\right)>\bar{x}\left(F_{2}\right)$. Since $\bar{x}(\delta(u))=\bar{x}\left(F_{1}\right)+\bar{x}\left(F_{2}\right) \geq 2$, we clearly get $\bar{x}\left(F_{1}\right)>1$. If $u_{2} \notin V_{1} \cup V_{2}$, Remark 3.4 implies that the class V_{1} is then reduced to the single node u. The partition $\pi_{1}=\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$ is of type 2 because of $u \in V_{1} \cup V_{2}$, $r(u)=2, u_{2} \notin V_{1} \cup V_{2}$, and $r\left(u_{2}\right)=2$. We then have

$$
\begin{aligned}
\bar{x}\left(\delta\left(V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right)-\bar{x}\left(F_{1}\right) \\
& =p-\bar{x}\left(F_{1}\right) \\
& <p-1
\end{aligned}
$$

which contradicts $\bar{x} \in \operatorname{CPP}(G, r)$.
If $u_{2} \in V_{1}$, the partition $\pi_{2}=\left\{V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right\}$ is obviously of type
2. We then get

$$
\begin{aligned}
\bar{x}\left(\delta\left(V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right)-\bar{x}\left(F_{1}\right)+\bar{x}\left(F_{2}\right) \\
& =p-\bar{x}\left(F_{1}\right)+\bar{x}\left(F_{2}\right) \\
& <p,
\end{aligned}
$$

which contradicts $\bar{x} \in \operatorname{CPP}(G, r)$. We therefore deduce that the node u_{2} belongs to V_{2}, and thus $V_{1}=\{u\}$. From Proposition 3.19, we could have chosen the system $S(\bar{x})$ such that $p=2$, and thus partition π is nothing but the cut $\delta(u)$. Since $\bar{x}\left(F_{1}\right)>1$, $\bar{x}\left(F_{2}\right)>0$, and $\bar{x}(\delta(u))=2$, we clearly deduce that there exists $f_{1} \in F_{1} \cap E_{f}(\bar{x})$. This edge belongs to exactly one equation of $S(\bar{x})$, contradicting Claim 1. Therefore $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{2}\right)$.

We still consider the partition π introduced at the beginning of this proof. If $p=2$, then we have $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{2}\right)=1$ which implies that the equation induced by π is redundant with respect to $\bar{x}\left(e_{1}\right)=\bar{x}\left(e_{2}\right)=1$, where $F_{1}=\left\{e_{1}\right\}$ and $F_{2}=$ $\left\{e_{2}\right\}$. Hence, we can consider $p \geq 3$. From Proposition 3.19, we have either $u_{2} \notin$ $V_{1} \cup V_{2}$ or $u_{2} \in V_{1}$. If $u_{2} \notin V_{1} \cup V_{2}$ (respectively, $u_{2} \in V_{1}$), then by considering the partition π_{1} (respectively, π_{2}) previously defined, we obtain $\bar{x}\left(F_{1}\right)=1$ and $\pi_{1} \in P_{2}(\bar{x})$ (respectively, $\pi_{2} \in P_{2}(\bar{x})$). Using the same arguments as the ones of the proof of Claim 3 , we can exhibit a vector $\bar{y} \neq \bar{x}$ which is also a solution of $S(\bar{x})$. This contradiction completes our proof.

Proof of Claim 5. Suppose that the statement does not hold. Let v be a node of degree 2 adjacent to exactly two different nodes, say v_{1} and v_{2}. (Remark that the 2 -node connectivity of G implies the existence of v_{1} and v_{2}.) Without loss of generality, we may suppose that $\bar{x}\left(v v_{1}\right) \geq \bar{x}\left(v v_{2}\right)$. By Claims 3 and 4 , it then follows that $r(v)=2$ and $r\left(v_{2}\right)=1$. Let $r^{*} \in \mathbb{R}^{V}$ be the connectivity type vector such that $r^{*}(w)=r(w)$ if $w \neq v_{2}$, and $r^{*}(w)=2$ if $w=v_{2}$. We claim that $\left(G, r^{*}\right)$ contains neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor. In fact, suppose, on the contrary, that $\left(G, r^{*}\right)$ contains one of these minors, and let us denote that $\left(H, r_{H}\right)$ contains one of these minors. Let $\pi=\left(S_{1}, \ldots, S_{5}\right)$ be the partition of V that induces H, where S_{1} corresponds to the ordinary node of H of degree $3, S_{2}, S_{3}, S_{4}$ to the terminal nodes of H of degree 3 , and S_{5} to the node of H of degree 6 . As $r^{*}\left(v_{2}\right)=2, v_{2}$ belongs to a class S_{i} of connectivity type 2 , that is, $i \neq 1$. If S_{i} contains a node $w \neq v_{2}$ with $r^{*}(w)=2$, then $\left(H, r_{H}\right)$ would also be a minor of (G, r), a contradiction. Therefore $S_{i} \backslash\left\{v_{2}\right\}$ only contains nodes of connectivity type 1 with respect to r^{*}. In consequence, v belongs to S_{j} with $j \neq i$ and $j \neq 1$. Note that $v_{1} \in S_{j}$. Otherwise as $G\left(S_{j}\right)$ is
connected, one would have $S_{j}=\{v\}$, and thus, H would contain a node of degree 2 . Since neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ has a node of degree 2 , this is impossible.

If $i=5$, then $\left(H, r_{H}\right)$ is nothing but $\left(G_{p}^{2}, r_{p}^{2}\right)$. Since $r^{*}\left(S_{i}\right)=2$ and $r^{*}\left(S_{i} \backslash\left\{v_{2}\right\}\right)=$ 1, we have $r\left(S_{i}\right)=1$, and $\left(G_{p}^{1}, r_{p}^{1}\right)$ is a minor of (G, r). This contradicts our hypothesis on (G, r). Therefore $2 \leq i \leq 4$.

If $j=5$, let us consider the partition $\pi^{\prime}=\left(S_{1}^{\prime}, \ldots, S_{5}^{\prime}\right)$ such that

$$
\begin{aligned}
& S_{t}^{\prime}=S_{t} \quad t \in\{1, \ldots, 4\} \backslash\{i\}, \\
& S_{i}^{\prime}=S_{i} \cup\{v\}, \\
& S_{5}^{\prime}=S_{5} \backslash\{v\}
\end{aligned}
$$

We can easily see that the partition π^{\prime} induces either $\left(G_{p}^{1}, r_{p}^{1}\right)$ or $\left(G_{p}^{2}, r_{p}^{2}\right)$ with respect to r. This yields to a contradiction, and then $2 \leq j \leq 4$.

Since $i \neq j, v \in S_{j}$, and $v_{2} \in S_{i}$, we have $\left[S_{i}, S_{j}\right] \neq \emptyset$. Therefore, G is not series-parallel.

Consequently, $\left(G, r^{*}\right)$ contains neither $\left(G_{p}^{1}, r_{p}^{1}\right)$ nor $\left(G_{p}^{2}, r_{p}^{2}\right)$ as a minor. Let us now prove that \bar{x} is an extreme point of $\operatorname{CPP}\left(\underset{G}{G}, r^{*}\right)$. We first show that \bar{x} belongs to $\operatorname{CPP}\left(G, r^{*}\right)$. Let $\pi=\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ be a partition of V. It is obvious that if v and v_{2} are in the same class of π or if π is of type 2 with respect to r, then the type of π doesn't change by considering r^{*} instead of r. The inequality induced by π with respect to r^{*} is then satisfied by \bar{x}. Therefore, we only have to focus on the case where π is a partition of type 1 with respect to r and $e_{2} \in \delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)$. Without loss of generality, suppose that $v \in V_{1}$ and $v_{2} \in V_{2}$. Since π is of type 1 with respect to r, all of the nodes u with $r(u)=2$ belong to V_{1}. (We recall that (G, r) has at least two terminals which implies that $\left|V_{1}\right| \geq 2$.) The partition $\left(\{v\}, V_{1} \backslash\{v\}, V_{2}, \ldots, V_{p}\right)$ is of type 2 with respect to r, and hence, we have

$$
\begin{aligned}
\bar{x}\left(\delta\left(\{v\}, V_{1} \backslash\{v\}, V_{2}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right)+\bar{x}\left[\{v\}, V_{1} \backslash\{v\}\right] \\
& \geq p+1
\end{aligned}
$$

Since $\bar{x}\left[\{v\}, V_{1} \backslash\{v\}\right] \leq 1$, we obtain $\bar{x}\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right) \geq p$. Therefore, \bar{x} belongs to $\operatorname{CPP}\left(G, r^{*}\right)$. Using similar arguments, we can prove that $S(\bar{x})$ is a system of tight inequalities of $\operatorname{CPP}\left(G, r^{*}\right)$. Thus, \bar{x} is an extreme point of $\operatorname{CPP}\left(G, r^{*}\right)$. As $\left(G, r^{*}\right)$ has more terminals than (G, r), this contradicts the maximality of T.

Proof of Claim 6. From Claim 5, we have $\bar{x}\left(F_{1}\right)>1$. If $\bar{x}\left(F_{1}\right) \geq 2$, then by Proposition 3.20(a), the variable $x(e)$ belongs to exactly one equation of the system $S(\bar{x})$ with a nonzero coefficient, for all $e \in F_{1}$. Yet, this contradicts Claim 1.

Since by Claim 6, $1<\bar{x}\left(F_{1}\right)<2$, it follows from Remark 3.14 that there exist two edges $e_{1}, f_{1} \in E$ such that $F_{1}=\left\{e_{1}, f_{1}\right\}, e_{1} \in E_{1}(\bar{x})$, and $f_{1} \in E_{f}(\bar{x})$, that is, $\bar{x}\left(e_{1}\right)=1$ and $0<\bar{x}\left(f_{1}\right)<1$.

Proof of Claim 7. Suppose that $\left|F_{2}\right|=2$. We then have $F_{2}=\left\{e_{2}, f_{2}\right\}$ with $\bar{x}\left(e_{2}\right)=1$ and $0<\bar{x}\left(f_{2}\right)<1$. A consequence of Proposition 3.18(b) is that F_{1} and F_{2} cannot belong to a same partition inducing an equation of $S(\bar{x})$. Let $F_{0}=\left[u_{1}, u_{2}\right]$. We are going to consider two cases. We first consider $F_{0} \neq \emptyset$. Using Proposition $3.2(\mathrm{~b})$ and the previous remark about F_{1} and F_{2}, we obtain $\bar{x}\left(F_{0}\right)<1$. We then have $F_{0}=\left\{f_{0}=u_{1} u_{2}\right\}$. Let $y \in \mathbb{R}^{E}$ be the point defined as follows:

$$
y(e)= \begin{cases}\bar{x}(e) & \text { if } e \in E \backslash\left\{f_{0}, f_{1}, f_{2}\right\} \\ \bar{x}\left(f_{0}\right)-\epsilon & \text { if } e=f_{0} \\ \bar{x}\left(f_{1}\right)+\epsilon & \text { if } e=f_{1} \\ \bar{x}\left(f_{2}\right)+\epsilon & \text { if } e=f_{2}\end{cases}
$$

where ϵ is any arbitrary scalar. The point y is also a solution of $S(\bar{x})$. In fact, any partition inducing an equation of $S(\bar{x})$ contains either none of the edges in $\left\{f_{0}, f_{1}, f_{2}\right\}$, or f_{0} and exactly one among f_{1} and f_{2}. Since $y \neq \bar{x}$, this contradicts the extremality of \bar{x}.

We now suppose that $F_{0}=\emptyset$. Let us denote by u^{*} the internal node in L_{2}. Without loss of generality, we can suppose that $|\delta(u)| \leq\left|\delta\left(u^{*}\right)\right|$, which makes us deduce that $\left|\left[u^{*}, u_{1}\right]\right|=\left|\left[u^{*}, u_{2}\right]\right|=2$. Proposition 3.2(b) then implies that there is no partition of $P_{1}(\bar{x}) \cup P_{2}(\bar{x})$ containing an edge in $\delta(u)$. This is a contradiction with Claim 1.

Proof of Claim 8. Let us suppose that $\bar{x}\left(f_{2}\right)=1$. From Proposition 3.2(b) and $\bar{x}\left(F_{1}\right)>1$, the system $S(\bar{x})$ can be chosen such that any of its equations containing $x\left(f_{1}\right)$ with a nonzero coefficient does not contain $x\left(f_{2}\right)$. In fact, suppose that there is a partition $\pi=\left\{V_{1}, \ldots, V_{p}\right\}$ of $S(\bar{x})$ such that $\delta(u) \subset \delta\left(V_{1}, \ldots, V_{p}\right)$. Thus, π is of type 2 . Since $\bar{x}(\delta(u))>2$, we have $p \geq 3$. Without loss of generality, suppose that $V_{1}=\{u\}$. If u_{1} and u_{2} are both in the same class of π, say V_{2}, then $\bar{x}\left(\delta\left(V_{1} \cup V 2, V_{3}, \ldots, V_{p}\right)\right)=$ $p-\bar{x}(\delta(u))<p-2$, which is a contradiction. Now suppose, without loss of generality, that $u_{1} \in V_{2}$ and $u_{2} \in V_{3}$. Since $\bar{x}\left[V_{1}, V_{2}\right]>1$, then by Proposition 3.2 , the partition $\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$ is of type 1. Thus, the partition $\pi^{\prime}=\left\{V_{1} \cup V_{3}, V_{4}, \ldots, V_{p}\right\}$ is of type 1. Moreover, π^{\prime} is tight for \bar{x}. We can thus replace in the system $S(\bar{x})$ the partition π by the partition π^{\prime} and the equation $x\left(f_{2}\right)=1$.

Let $\pi^{1}=\left\{V_{1}, V_{2}, \ldots, V_{p}\right\}$ be a partition of $S(\bar{x})$ such that $F_{1} \subseteq \delta\left(V_{1}, \ldots, V_{p}\right)$. We thus have $f_{2} \notin \delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)$. By Proposition 3.18 , we have $\pi^{1} \in P_{2}^{*}(\bar{x})$. Without loss of generality, we suppose $\left\{u, u_{2}\right\} \subseteq V_{1}$ and $u_{1} \in V_{2}$.

From Claim 1, there also exists a partition $\pi^{2}=\left\{W_{1}, \ldots, W_{q}\right\}$ inducing an equation of $S(\bar{x})$ such that $f_{2} \in \delta\left(W_{1}, \ldots, W_{q}\right)$. We are going to prove that the system $S(\bar{x})$ can be chosen such that $q \geq 3$. From above, we clearly have $F_{1} \cap \delta\left(W_{1}, \ldots, W_{q}\right)=\emptyset$. Suppose that $q=2$. Without loss of generality, we assume that $u_{2} \in W_{1}$. We then have $\left\{u, u_{1}\right\} \subseteq W_{2}$. From $\bar{x}\left(f_{2}\right)=1$, it is obvious that $\operatorname{con}\left(W_{1}\right)=2$. Proposition 3.17 then implies that at most one class of the partition π^{1} intersects both W_{1} and W_{2}. From the definition of π^{1}, we have $V_{1} \cap W_{1} \neq \emptyset$ and $V_{1} \cap W_{2} \neq \emptyset$. We then obtain $V_{2} \subseteq W_{2}$. Since $r\left(V \backslash\left(V_{1} \cup V_{2}\right)\right)=1$ and $\operatorname{con}\left(W_{1}\right)=2$, we get $r\left(V_{1} \backslash\{u\}\right)=2$. Thus, the partition $\left\{V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right\}$ is clearly of type 2 , and from Claim 7, we have

$$
\begin{aligned}
\bar{x}\left(\delta\left(V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)-\bar{x}\left(F_{1}\right)+\bar{x}\left(f_{2}\right) \\
& =p-\bar{x}\left(F_{1}\right)+\bar{x}\left(f_{2}\right) \\
& <p
\end{aligned}
$$

a contradiction.
Without loss of generality, we suppose $\left\{u, u_{1}\right\} \subseteq W_{1}$ and $u_{2} \in W_{2}$. Since $\bar{x}\left(f_{2}\right)=$ 1, Proposition 3.18 implies that $\pi^{2} \in P_{2}^{*}(\bar{x})$ and $r\left(V \backslash\left(W_{1} \cup W_{2}\right)\right)=1$. Without loss of generality, let us assume that $W_{i} \cap V_{2} \neq \emptyset$ for $i=1, \ldots, k$, and $W_{i} \cap V_{2}=\emptyset$ for $i=k+1, \ldots, q$. In fact, we have $u_{1} \in W_{1}$ and $u_{1} \in V_{2}$. Moreover, since $\bar{x}\left(f_{2}\right)<\bar{x}\left(F_{1}\right)$ by Claim 7 , the partition $\left\{V_{1} \backslash\{u\}, V_{2} \cup\{u\}, V_{3}, \ldots, V_{p}\right\}$ must be of type 1 , and then $r\left(V_{1} \backslash\{u\}\right)=1$. As $\pi^{2} \in P_{2}^{*}(\bar{x})$ and $r\left(V \backslash\left(W_{1} \cup W_{2}\right)\right)=1$, we have $r\left(W_{2}\right)=2$, which, combined with $r\left(V \backslash\left(V_{1} \cup V_{2}\right)\right)=1$ and $u \notin W_{2}$, implies that $W_{2} \cap V_{2} \neq \emptyset$. Let $\left\{U_{1}, \ldots, U_{k}\right\}$ be the partition of V_{2} such that $U_{i}=W_{i} \cap V_{2}$ for $i=1, \ldots, k$. It comes directly from the previous argument that $r\left(U_{1}\right)=r\left(U_{2}\right)=2$. Therefore, by Proposition 3.9 (a), we have $\bar{x}\left[U_{1}, \ldots, U_{k}\right] \geq k-1+\bar{x}\left(F_{1}\right)-\bar{x}\left(f_{2}\right)$. Since
$\bar{x}\left(F_{1}\right)=\bar{x}\left(e_{1}\right)+\bar{x}\left(f_{1}\right)=1+\bar{x}\left(f_{1}\right)$, we obtain

$$
\begin{equation*}
\bar{x}\left[U_{1}, \ldots, U_{k}\right] \geq k+\bar{x}\left(f_{1}\right)-\bar{x}\left(f_{2}\right) \tag{6.1}
\end{equation*}
$$

Furthermore, we notice that $F_{2} \cap\left[U_{1}, \ldots, U_{k}\right]=\emptyset$. Hence, from (5.2), we have

$$
\begin{equation*}
\bar{x}\left[U_{1}, \ldots, U_{k}\right] \leq \bar{x}\left(\delta\left(W_{1}, \ldots, W_{q}\right)\right)-\bar{x}\left(f_{2}\right) \tag{6.2}
\end{equation*}
$$

If $k=q$, by the inequalities (6.1) and (6.2), we then obtain $k+\bar{x}\left(f_{1}\right)-\bar{x}\left(f_{2}\right) \leq$ $k-\bar{x}\left(f_{2}\right)$. This implies that $\bar{x}\left(f_{1}\right) \leq 0$ which contradicts (5.2). Suppose now that $k<q$. Since $r\left(V \backslash\left(W_{1} \cup W_{2}\right)\right)=1$ and $k \geq 2$, it is straightforward that the partition $\left\{Z_{1}, \ldots, Z_{q-k+1}\right\}$ defined as

$$
\begin{aligned}
Z_{1} & =\bigcup_{i=1}^{k} W_{i} \\
Z_{i} & =W_{i+k-1}, \quad i=2, \ldots, q-k+1
\end{aligned}
$$

is of type 1 . We then have

$$
\begin{aligned}
\bar{x}\left(\delta\left(W_{1}, \ldots, W_{q}\right)\right)-\bar{x}\left[U_{1}, \ldots, U_{k}\right]-\bar{x}\left(f_{2}\right) & \geq \bar{x}\left(\delta\left(Z_{1}, \ldots, Z_{q-k+1}\right)\right) \\
& \geq q-k+1-1 \\
& =q-k
\end{aligned}
$$

Thus, we obtain $\bar{x}\left[U_{1}, \ldots, U_{k}\right]+\bar{x}\left(f_{2}\right) \leq k$. From this last inequality combined with (6.1), we then get $\bar{x}\left(f_{1}\right) \leq 0$. This contradicts (5.2). Consequently, we obtain $\bar{x}\left(f_{2}\right)<$ 1.

Proof of Claim 9. Suppose that $F_{0}=\left[u_{1}, u_{2}\right] \neq \emptyset$. Suppose that $\bar{x}\left(F_{0}\right) \geq 1$. Let be $\pi=\left\{V_{1}, \ldots, V_{p}\right\} \in S(\bar{x})$ such that $F_{1} \in \delta\left(V_{1}, \ldots, V_{p}\right)$. Since $\bar{x}\left(F_{1}\right)=\bar{x}\left[u, u_{1}\right]>1$, by Proposition 3.18(a), π is of type 2. Since $\bar{x}\left(F_{0}\right) \geq 1$, by Proposition 3.18(b), u and u_{2} are in the same class of π, say V_{1}. Suppose, without loss of generality, that $u_{1} \in V_{2}$. Since $F_{0} \cup F_{1} \in \delta\left(V_{1}, \ldots, V_{p}\right)$ and $\bar{x}\left(F_{0} \cup F_{1}\right)>2$, we then have $p \geq 3$ and $\bar{x}\left(\delta\left(V_{1} \cup V 2, V_{3}, \ldots, V_{p}\right)\right)=p-\bar{x}(\delta(u))<p-2$, a contradiction. We therefore obtain $\bar{x}\left(F_{0}\right)<1$. Let $F_{0}=\left\{f_{0}=u_{1} u_{2}\right\}$. Let $y \in \mathbb{R}^{E}$ be the point defined as follows:

$$
y(e)= \begin{cases}\bar{x}(e) & \text { if } e \in E \backslash\left\{f_{0}, f_{2}\right\} \\ \bar{x}\left(f_{0}\right)-\epsilon & \text { if } e=f_{0} \\ \bar{x}\left(f_{2}\right)+\epsilon & \text { if } e=f_{2}\end{cases}
$$

where $\epsilon=\min \left\{\bar{x}\left(f_{0}\right), 1-\bar{x}\left(f_{2}\right)\right\}$. We first remark that any partition of $P_{1}(\bar{x}) \cup P_{2}(\bar{x})$, different from $\{\{u\}, V \backslash\{u\}\}$, contains either both f_{0} and f_{2} or none of them. If the partition $\{\{u\}, V \backslash\{u\}\}$ doesn't belong to $P_{2}(\bar{x})$, then the point y is a solution of $S(\bar{x})$ which is different to \bar{x}. This is a contradiction with the extremality of \bar{x}.

We suppose now that $\{\{u\}, V \backslash\{u\}\}$ belongs to $P_{2}(\bar{x})$. We first show that y is a point of $\operatorname{CPP}(G, r)$. To obtain that, we only need to prove that for any partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{p}\right\}$ with $f_{0} \in \delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ and $f_{2} \notin \delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)$, we have $y\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right) \geq t$, where $t=p-1$ if π is of type 1 and $t=p$ otherwise. Without loss of generality, we suppose that $u \in V_{1}$. Let us consider the partition $\left\{\{u\}, V_{1} \backslash\right.$ $\left.\{u\}, V_{2}, \ldots, V_{p}\right\}$. Note that this partition is of the same type as $\left\{V_{1}, V_{2}, \ldots, V_{p}\right\}$.

Hence we have

$$
\begin{aligned}
\bar{x}\left(\delta\left(\{u\}, V_{1} \backslash\{u\}, V_{2}, \ldots, V_{p}\right)\right) & =y\left(\delta\left(\{u\}, V_{1} \backslash\{u\}, V_{2}, \ldots, V_{p}\right)\right) \\
& =y\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right)+y\left(f_{2}\right) \\
& =y\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right)+\bar{x}\left(f_{2}\right)+\epsilon \\
& \geq t+1
\end{aligned}
$$

This implies that

$$
\begin{aligned}
y\left(\delta\left(V_{1}, V_{2}, \ldots, V_{p}\right)\right) & \geq t+1-\left(\bar{x}\left(f_{2}\right)+\epsilon\right) \\
& \geq t+1-1=t
\end{aligned}
$$

From the definition of ϵ, we clearly have $0 \leq y\left(f_{0}\right) \leq 1$ and $0 \leq y\left(f_{2}\right) \leq 1$. Therefore, y belongs to $\operatorname{CPP}(G, r)$.

We remark that $\left|E_{f}(y)\right|<\left|E_{f}(\bar{x})\right|$ since at least one variable among $y\left(f_{0}\right)$ and $y\left(f_{2}\right)$ is an integer. Moreover, as $0<y\left(f_{1}\right)<1, y$ is fractional. By the induction hypothesis, y isn't an extreme point of $\operatorname{CPP}(G, r)$. Hence, there exist $t \geq 2$ extreme points y^{1}, \ldots, y^{t} of $\operatorname{CPP}(G, r)$ and t scalars $0<\alpha_{i}<1, i=1, \ldots, t$, such that

$$
y=\sum_{i=1}^{t} \alpha_{i} y^{i} \quad \text { and } \quad \sum_{i=1}^{t} \alpha_{i}=1
$$

It is clear that $\left|E_{f}\left(y^{i}\right)\right|<\left|E_{f}(\bar{x})\right|$ for $i=1, \ldots, t$. From the extremality of the y^{i} and the induction hypothesis on \bar{x}, we obtain that the points y^{i} are integer. All of the constraints that are tight for y are also tight for y^{i}. Moreover, since $y(\delta(u))=2+\epsilon<3$, there exists $i_{0} \in\{1, \ldots, t\}$ such that $y^{i_{0}}(\delta(u))<3$. The integrality of $y^{i_{0}}$ then implies that $y^{i_{0}}(\delta(u))=2$. Therefore, the point $y^{i_{0}}$ is also a solution of $S(\bar{x})$ which contradicts the extremality of \bar{x}. We then conclude that $F_{0}=\emptyset$.

Proof of Claim 10. Denote $F_{1}^{\prime}=\left[u^{\prime}, u_{1}\right]$ and $F_{2}^{\prime}=\left[u^{\prime}, u_{2}\right]$. Suppose that $\left|F_{2}^{\prime}\right| \geq 2$. From (5.2) and Remark 3.14, we have $\bar{x}\left(F_{2}^{\prime}\right)>1$. Let $\pi=\left\{V_{1}, \ldots, V_{p}\right\}$ be a partition of $P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ different from $\{\{u\}, V \backslash\{u\}\}$. By Claim 1, such a partition exists. Moreover, Claim 8 together with Proposition 3.3 implies that $p \geq 3$. From Proposition 3.19, u, u_{1}, and u_{2} belong to three different classes of π. Without loss of generality, suppose that $u \in V_{1}, u_{1} \in V_{2}$, and $u_{2} \in V_{3}$. We remark that $V_{1}=\{u\}$. Using Proposition 3.18, we obtain that $u^{\prime} \in V_{3}$. Therefore, π is a partition of type 2 . The partition $\pi^{\prime}=\left\{V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right\}$ is of type 2 , and is such that

$$
\begin{aligned}
\bar{x}\left(\delta\left(V_{1} \cup V_{2}, V_{3}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)-\bar{x}\left(F_{1}\right) \\
& <p-1
\end{aligned}
$$

The last inequality comes from $\bar{x}\left(F_{1}\right)>1$. We then get a contradiction. We conclude that $\left|F_{2}^{\prime}\right|=1$. By Claims 5 and 6 , we have $\left|F_{1}^{\prime}\right|=2$.

To make the proofs of the next two claims clearer and shorter, we introduce additional notation. Given an edge subset $F \subseteq E$, we denote by $P(\bar{x}, F)$ the subset of partitions $\pi=\left\{V_{1}, \ldots, V_{p}\right\} \in P_{1}^{*}(\bar{x}) \cup P_{2}^{*}(\bar{x})$ such that $p \geq 3$ and $F \subseteq \delta\left(V_{1}, \ldots, V_{p}\right)$.

Proof of Claim 11. In order to prove the result, it is enough to prove that $\bar{x}\left(F_{1}\right)=$ $\bar{x}\left(F_{1}^{\prime}\right), \bar{x}(\delta(u))=\bar{x}\left(\delta\left(u^{\prime}\right)\right)=2$, and $\bar{x}\left(f_{2}\right)+\bar{x}\left(f_{2}^{\prime}\right)=1$.

We first prove that $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{1}^{\prime}\right)$. Without loss of generality, we suppose $\bar{x}\left(F_{1}\right) \geq$ $\bar{x}\left(F_{1}^{\prime}\right)$. Since $0<\bar{x}\left(f_{1}\right)<1$, by Claim 1 , there must exist a partition $\pi=\left\{V_{1}, \ldots, V_{p}\right\}$ such that $\pi \in P\left(\bar{x}, F_{1}\right)$. By Proposition 3.18(a), $\pi \in P_{2}^{*}(\bar{x})$. Without loss of generality,
assume $u \in V_{1}$ and $u_{1} \in V_{2}$. From $\bar{x}\left(F_{2}\right)<1$ and Proposition 3.3(c), we obtain $V_{1}=\{u\}$. Since $\bar{x}\left[u, u_{1}\right]>1$, by Proposition 3.18(b), we have $r\left(V \backslash\left(V_{1} \cup V_{2}\right)\right)=1$, and then $u^{\prime} \in V_{2}$. Consider then the partition $\left\{\left\{u^{\prime}\right\},\left(V_{2} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}, V_{3}, \ldots, V_{p}\right\}$. It clearly is a partition of type 2 , and then we have

$$
\begin{aligned}
\bar{x}\left(\delta\left(\left\{u^{\prime}\right\},\left(V_{2} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}, V_{3}, \ldots, V_{p}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)+\bar{x}\left(F_{1}^{\prime}\right)-\bar{x}\left(F_{1}\right) \\
& =p+\bar{x}\left(F_{1}^{\prime}\right)-\bar{x}\left(F_{1}\right) \\
& \geq p
\end{aligned}
$$

We get $\bar{x}\left(F_{1}\right) \leq \bar{x}\left(F_{1}^{\prime}\right)$, and consequently $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{1}^{\prime}\right)$.
Now we are going to prove that $\bar{x}(\delta(u))=\bar{x}\left(\delta\left(u^{\prime}\right)\right)=2$. Since $0<\bar{x}\left(f_{1}\right)<1$, as we have shown in the proof of Claim 10, the system $S(\bar{x})$ can be chosen such that there exists a partition $\pi^{0}=\left\{V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right\} \in P\left(\bar{x}, F_{1}\right)$ such that u, u_{1}, and u_{2} belong to three different classes of π_{0}. Without loss of generality, suppose that $V_{1}^{0}=\{u\}$, $u_{1} \in V_{2}^{0}$, and $u_{2} \in V_{3}^{0}$. Since $r\left(u^{\prime}\right)=2$, Proposition 3.18(b) implies $u^{\prime} \in V_{2}^{0}$. Let $\pi_{0}^{\prime}=\left\{V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{0}, \ldots, V_{p_{0}}^{0}\right\}$, where $V_{1}^{\prime}=\left\{u^{\prime}\right\}$ and $V_{2}^{\prime}=\left(V_{2}^{0} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}$. This partition clearly is of type 2 , and since $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{1}^{\prime}\right)$, we get

$$
\begin{aligned}
\bar{x}\left(\delta\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{0}, \ldots, V_{p_{0}}^{0}\right)\right) & =\bar{x}\left(\delta\left(V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right)\right)+\bar{x}\left(F_{1}^{\prime}\right)-\bar{x}\left(F_{1}\right) \\
& =p_{0}+\bar{x}\left(F_{1}^{\prime}\right)-\bar{x}\left(F_{1}\right) \\
& =p_{0}
\end{aligned}
$$

Let π be any partition of $P\left(\bar{x}, F_{1}\right) \backslash\left\{\pi_{0}\right\}$. The partition π^{\prime} obtained from π by switching u and u^{\prime}, as π_{0}^{\prime} was obtained above from π_{0}, belongs to $P_{2}(\bar{x})$. Consider the system $S^{\prime}(\bar{x})$ obtained from $S(\bar{x})$ by adding the equation induced by π_{0}^{\prime} and replacing those induced by $\pi \in P\left(\bar{x}, F_{1}\right) \backslash\left\{\pi_{0}\right\}$ by the ones induced by π^{\prime}. This system is nonsingular, and \bar{x} is its unique solution. The system $S(\bar{x})$ can then be chosen such that $P\left(\bar{x}, F_{1}\right)=\left\{\pi_{0}\right\}$. Since $0<\bar{x}\left(f_{1}\right)<1$, Claim 1 implies $\bar{x}(\delta(u))=2$, and thus, $\bar{x}\left(\delta\left(u^{\prime}\right)\right)=2$. Moreover, we have $\bar{x}\left(F_{1}\right)=\bar{x}\left(F_{1}^{\prime}\right)$, and we then get $\bar{x}\left(f_{2}\right)=\bar{x}\left(f_{2}^{\prime}\right)$.

Finally, we prove that $\bar{x}\left(f_{2}\right)+\bar{x}\left(f_{2}^{\prime}\right)=1$. Suppose that $\bar{x}\left(f_{2}\right)+\bar{x}\left(f_{2}^{\prime}\right)>1$. (The case $\bar{x}\left(f_{2}\right)+\bar{x}\left(f_{2}^{\prime}\right)<1$ is similar.) Let $S_{F_{1}}(\bar{x})$ be the system obtained from $S(\bar{x})$ by removing the equations $x\left(e_{1}\right)=1, x(\delta(u))=2$, and the one induced by π_{0}. Let \bar{x}_{1} be the restriction of \bar{x} on G / F_{1}. By the induction hypothesis, the polytope $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$ is an integer. Since \bar{x}_{1} is fractional, it is not an extreme point of $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$. Hence, there exist $k \geq 2$ extreme points y^{1}, \ldots, y^{k} of $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$ and k scalars $0<\alpha_{i}<1, i=1, \ldots, k$, such that

$$
\bar{x}_{1}=\sum_{i=1}^{k} \alpha_{i} y^{i} \quad \text { and } \quad \sum_{i=1}^{k} \alpha_{i}=1 .
$$

By the integrality of $\operatorname{CPP}\left(G / F_{1}, r_{F_{1}}\right)$, the points $y^{i}, i=1, \ldots, k$, are integer. Since \bar{x} is a solution of $S_{F_{1}}\left(\bar{x}_{1}\right)$ and is a convex combination of the points $y^{i}, i=1, \ldots, k$, it is clear that y^{i} is also a solution of $S_{F_{1}}\left(\bar{x}_{1}\right)$ for all $i \in\{1, \ldots, k\}$. There must then exist some $j \in\{1, \ldots, k\}$ such that $y^{j}\left(f_{2}\right)+y^{j}\left(f_{2}^{\prime}\right)>1$. Since y^{j} is integer, we have $y^{j}\left(f_{2}\right)+y^{j}\left(f_{2}^{\prime}\right) \geq 2$, which gives $y^{j}\left(f_{2}\right)=y^{j}\left(f_{2}^{\prime}\right)=1$. Let $\bar{y} \in \mathbb{R}^{E}$ be the point defined below

$$
\bar{y}(e)= \begin{cases}y^{j}(e) & \text { if } e \in E \backslash F_{1} \\ 1 & \text { if } e=e_{1} \\ 0 & \text { if } e=f_{1}\end{cases}
$$

This point is also a solution of $S(\bar{x})$. In fact, additionally, to be a solution of $S_{F_{1}}(\bar{x})$, y^{j} clearly satisfies the equations $x\left(e_{1}\right)=1, x(\delta(u))=2$, and $x\left(\delta\left(V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right)\right)=p_{0}$, which are the only three equations removed from $S(\bar{x})$ to get $S_{F_{1}}(\bar{x})$. Since $\bar{y} \neq \bar{x}$, this contradicts the fact that \bar{x} is an extreme point of $\operatorname{CPP}(G, r)$.

Proof of Claim 12. We first prove (a), that is, $W \cap T \neq \emptyset$. From Claim 4 we know that $u_{2} \notin T$. Suppose now that $T \subseteq\left\{u, u^{\prime}, u_{1}\right\}$. Let $G^{*}=\left(V^{*}, E^{*}\right)$ be the graph obtained from G by contracting F_{1} and F_{1}^{\prime}, and deleting f_{2} as well. Let $w \in V^{*}$ be the node arising from the contraction, that is, $V^{*} \backslash V=\{w\}$. We have $r(v)=1$ for all $v \in V \backslash\left\{u, u^{\prime}, u_{1}\right\}$ and therefore, the connectivity type vector r^{*} associated with V^{*} can be defined such that $r^{*}(v)=1$ for all $v \in V^{*}$. Let x^{*} be the restriction of \bar{x} on E^{*}.

We are going to show that $x^{*} \in \operatorname{CPP}\left(G^{*}, r^{*}\right)$. Consider a partition $\pi^{*}=\left\{V_{1}^{*}, \ldots\right.$, $\left.V_{p}^{*}\right\}, p \geq 2$, of V^{*}. (We remark that any partition of V^{*} is obviously of type 1 with respect to r^{*}.) Without loss of generality, we suppose $w \in V_{1}^{*}$. Let $\left\{U_{1}, \ldots, U_{p}\right\}$ be the partition of V such that $U_{1}=\left(V_{1}^{*} \backslash\{w\}\right) \cup\left\{u, u^{\prime}, u_{1}\right\}$ and $U_{i}=V_{i}^{*}$ for all $i=2, \ldots, p$. This partition clearly is of type 1 with respect to r. If $f_{2}^{\prime} \notin \delta\left(V_{1}^{*}, \ldots, V_{p}^{*}\right)$, then we get

$$
\begin{aligned}
x^{*}\left(\delta\left(V_{1}^{*}, \ldots, V_{p}^{*}\right)\right) & =\bar{x}\left(\delta\left(U_{1}, \ldots, U_{p}\right)\right) \\
& \geq p-1
\end{aligned}
$$

If $f_{2}^{\prime} \in \delta\left(V_{1}^{*}, \ldots, V_{p}^{*}\right)$, we suppose, without loss of generality, that $u_{2} \in V_{2}^{*}$. By considering the partition $\left\{\{u\}, U_{1} \backslash\{u\}, U_{2}, \ldots, U_{p}\right\}$ of V which is of type 2 with respect to r, we then have

$$
\begin{aligned}
x^{*}\left(\delta\left(V_{1}^{*}, \ldots, V_{p}^{*}\right)\right) & =\bar{x}\left(\delta\left(\{u\}, U_{1} \backslash\{u\}, U_{2}, \ldots, U_{p}\right)\right)-\bar{x}(\delta(u)) \\
& \geq p+1-2 \\
& =p-1
\end{aligned}
$$

Therefore, we conclude that $x^{*} \in \operatorname{CPP}\left(G^{*}, r^{*}\right)$.
Proposition 3.16 and $\bar{x}(\delta(u))=2$ imply that the system $S(\bar{x})$ can be chosen such that $P_{1}^{*}(\bar{x})=\emptyset$. Let $\pi_{0}^{*}=\left\{U_{1}^{0}, \ldots, U_{p_{0}-1}^{0}\right\}$ be the partition of V^{*} such that $U_{1}^{0}=$ $\left(V_{2}^{0} \backslash\left\{u^{\prime}, u_{1}\right\}\right) \cup\{w\}$ and $U_{i}^{0}=V_{i+1}^{0}$ for all $i=2, \ldots, p_{0}-1$, where $\pi^{0}=\left\{V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right\}$ is the unique partition in $P\left(\bar{x}, F_{1}\right)$. (See the proof of Claim 11 for the definition of π^{0}.) We then get

$$
\begin{aligned}
x^{*}\left(\delta\left(U_{1}^{0}, \ldots, U_{p_{0}-1}^{0}\right)\right) & =\bar{x}\left(\delta\left(V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right)\right)-\bar{x}(\delta(u)) \\
& =p_{0}-2 .
\end{aligned}
$$

Let $\pi_{1}=\left\{V_{1}, \ldots, V_{p}\right\}$ be a partition in $P\left(\bar{x}, F_{1}^{\prime}\right)$ and then, in $P_{2}^{*}(\bar{x})$ too. We suppose, without loss of generality, that $\left\{u, u_{1}\right\} \subseteq V_{1}$ and $V_{2}=\left\{u^{\prime}\right\}$. Let $\pi_{1}^{*}=\left\{V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right\}$ be the partition of V^{*} such that $V_{1}^{\prime}=\left(V_{1} \backslash\left\{u, u_{1}\right\}\right) \cup\{w\}$ and $V_{i}^{\prime}=V_{i+1}$ for all $i=2, \ldots, p-1$. This partition clearly is of type 1 with respect to r^{*}, and then

$$
\begin{aligned}
x^{*}\left(\delta\left(V_{1}^{\prime}, \ldots, V_{p-1}^{\prime}\right)\right) & =\bar{x}\left(\delta\left(V_{1}, \ldots, V_{p}\right)\right)-\left(\bar{x}\left(f_{2}\right)+\bar{x}\left(F_{1}^{\prime}\right)\right) \\
& =p-\left(\frac{1}{2}+\frac{3}{2}\right) \\
& =p-2 .
\end{aligned}
$$

Let $Q^{*}\left(F_{1}^{\prime}\right)=\left\{\pi_{1}^{*}: \pi_{1} \in P\left(\bar{x}, F_{1}^{\prime}\right)\right\}$ be the set of partitions of V^{*} obtained from the partitions in $P\left(\bar{x}, F_{1}^{\prime}\right)$ as described above. The point x^{*} is a solution of the following
system:

$$
S\left(x^{*}\right) \begin{cases}x(e)=1 & \text { for all } e \in E_{1}(\bar{x}) \backslash\left\{e_{1}, e_{1}^{\prime}\right\} \\ x\left(\delta\left(U_{1}^{0}, \ldots, U_{p_{0}-1}^{0}\right)\right)=p_{0}-2, \\ x\left(\delta\left(V_{1}^{*}, \ldots, V_{p}^{*}\right)\right)=p-2 & \text { for all }\left\{V_{1}^{*}, \ldots, V_{p}^{*}\right\} \in Q^{*}\left(F_{1}^{\prime}\right)\end{cases}
$$

Since x^{*} is fractional, from Theorem 5.1, it cannot be an extreme point of $\operatorname{CPP}\left(G^{*}, r^{*}\right)$. There must then exist an extreme point y^{*} of $\operatorname{CPP}\left(G^{*}, r^{*}\right)$ such that y^{*} is a solution of $S\left(x^{*}\right)$ and $y^{*}\left(f_{2}^{*}\right)>0$. By Theorem 5.1, y^{*} is an integer, and thus, $y^{*}\left(f_{2}^{\prime}\right)=1$. Let $\bar{y} \in \mathbb{R}^{E}$ be the point defined as

$$
\bar{y}(e)= \begin{cases}y^{*}(e) & \text { if } e \notin \delta(u) \cup F_{1}^{\prime} \\ 1 & \text { if } e \in\left\{e_{1}, e_{1}^{\prime}, f_{2}\right\} \\ 0 & \text { if } e \in\left\{f_{1}, f_{1}^{\prime}\right\}\end{cases}
$$

The point \bar{y} clearly satisfies the two equations $x(\delta(u))=2$ and $x\left(\delta\left(u^{\prime}\right)\right)=2$. Therefore, since $P_{2}^{*}(\bar{x})=P\left(\bar{x}, F_{1}\right) \cup P\left(\bar{x}, F_{1}^{\prime}\right)$ and y^{*} is a solution of $S\left(x^{*}\right)$, the point \bar{y} is also a solution of $S(\bar{x})$. This leads to a contradiction, and we conclude that $W \cap T \neq \emptyset$.

To prove (b), we consider a node subset $S \subseteq W$ such that $G(S)$ is a connected component of $G(W)$ and $S \cap T \neq \emptyset$. Suppose that $\left[S, u_{1}\right]=\emptyset$. (The proof for the case $\left[S, u_{2}\right]=\emptyset$ is similar.) The node u_{2} then defines a one-node cutset of G which contradicts Claim 2. Therefore $\left|\left[S, u_{1}\right]\right| \geq 1$.

Suppose that $\left|\left[S, u_{1}\right]\right|=1$. From Proposition 3.18(b), we have $r\left(V \backslash\left(V_{1}^{0} \cup V_{2}^{0}\right)\right)=1$, where $\pi_{0}=\left\{V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right\}$ is the only partition in $P\left(\bar{x}, F_{1}\right)$ as previously defined. We then have $(W \cap T) \subset V_{2}^{0}$. Thus, $S \cap T \subset V_{2}^{0}$. Let $S^{0}=S \cap V_{2}^{0}$. We obviously have $r\left(S^{0}\right)=2$. Since $\left|\left[S, u_{1}\right]\right|=1$, we get $\bar{x}\left[S^{0}, u_{1}\right] \leq 1$. By considering the partition $\left\{S^{0},\left(V_{2}^{0} \backslash S^{0}\right) \cup\{u\}, V_{3}^{0}, \ldots, V_{p_{0}}^{0}\right\}$ which is of type 2 , we have

$$
\begin{aligned}
\bar{x}\left(\delta\left(S^{0},\left(V_{2}^{0} \backslash S^{0}\right) \cup\{u\}, V_{3}^{0}, \ldots, V_{p_{0}}^{0}\right)\right) & =\bar{x}\left(\delta\left(V_{1}^{0}, \ldots, V_{p_{0}}^{0}\right)\right)-\bar{x}\left(F_{1}\right)+\bar{x}\left[S^{0}, u_{1}\right] \\
& \leq p_{0}-\frac{3}{2}+1 \\
& =p_{0}-\frac{1}{2}
\end{aligned}
$$

This leads to a contradiction with $\bar{x} \in \operatorname{CPP}(G, r)$. Consequently, we have $\left|\left[S, u_{1}\right]\right| \geq$ 2.
7. New facet-defining inequalities for the polytope $\operatorname{SNDP}(G, r)$. In this section, we introduce a new family of facet-defining inequalities of the polytope $\operatorname{SNDP}(G, r)$. Given a graph $G=(V, E)$, not necessarily series-parallel, and a connectivity type vector $r \in\{1,2\}^{V}$, let $\left\{V_{0}, V_{1}, \ldots, V_{t}, V_{t+1}\right\}$ be a partition of V such that $t \geq 2$ and
(a) $r\left(V_{0}\right)=1$,
(b) $r\left(V_{i}\right)=2$ for $i=1,2, \ldots, t$,
(c) $\left[V_{i}, V_{j}\right]=\emptyset$ for $i=1,2, \ldots, t-1$ and $j=i+1, \ldots, t$.

Consider the inequality

$$
\begin{equation*}
x\left(\delta\left(V_{0}, V_{1}, \ldots, V_{t}, V_{t+1}\right)\right)+x\left(\delta\left(V_{0}\right)\right) \geq 2 t+2 \tag{7.1}
\end{equation*}
$$

THEOREM 7.1. Inequality (7.1) is valid for the polytope $\operatorname{SNDP}(G, r)$.

Proof. Let $H=(V, F)$ be a survivable subgraph of G. Let $F^{\prime}=F \cap \delta\left(V_{0}, V_{1}, \ldots, V_{t}\right.$, $\left.V_{t+1}\right)$. It suffices to prove that $\left|F^{\prime}\right|+\left|F^{\prime} \cap \delta\left(V_{0}\right)\right| \geq 2 t+2$. Since $r\left(V_{0}\right)=1$, we have $\left|F^{\prime} \cap \delta\left(V_{0}\right)\right| \geq 1$. If $\left|F^{\prime} \cap \delta\left(V_{0}\right)\right|=1$, let $i_{0} \in\{1, \ldots, t\}$ such that $F^{\prime} \cap \delta\left(V_{0}\right)=\left[V_{0}, V_{i_{0}}\right]$. Since H is survivable, we have $\left|F^{\prime} \cap \delta\left(V_{0} \cup V_{i_{0}}\right)\right| \geq 2$ and $\left|F^{\prime} \cap \delta\left(V_{i}\right)\right| \geq 2$ for all $i \in\{1, \ldots, t\} \backslash\left\{i_{0}\right\}$. We then obtain that $\left|F^{\prime} \backslash \delta\left(V_{0}\right)\right| \geq 2 t$. From $\left|F^{\prime} \backslash \delta\left(V_{0}\right)\right|+2 \mid F^{\prime} \cap$ $\delta\left(V_{0}\right)\left|=\left|F^{\prime}\right|+\left|F^{\prime} \cap \delta\left(V_{0}\right)\right|\right.$, we get $| F^{\prime}\left|+\left|F^{\prime} \cap \delta\left(V_{0}\right)\right| \geq 2 t+2\right.$. If $| F^{\prime} \cap \delta\left(V_{0}\right) \mid \geq 2$, by summing up the $t+1$ inequalities $\left|F^{\prime} \cap \delta\left(V_{i}\right)\right| \geq 2$ for all $i \in\{0,1, \ldots, t\}$, we obtain $\left|F^{\prime}\right|+\left|F^{\prime} \cap \delta\left(V_{0}\right)\right| \geq 2 t+2$.

We call inequalities of type (7.1) spinning-top inequalities. In the next theorem, we give necessary and sufficient conditions for spinning-top inequalities to define facets of $\operatorname{SNDP}(G, r)$ when $G\left(V_{t+1}\right)$ is 2 -edge connected. We denote by \mathcal{F} the face of $\operatorname{SNDP}(G, r)$ induced by a spinning-top inequality. From the proof of Theorem 7.1, we give the following remark which is useful to prove the theorem.

Remark 7.2. Let (V, F) be a survivable subgraph of G. If $\left|F \cap \delta\left(V_{0}\right)\right| \geq 3$ or $\left|F \cap \delta\left(V_{0}\right)\right| \geq 4$ for some $i \in\{1, \ldots, t\}$, then $x^{F} \notin \mathcal{F}$.

THEOREM 7.3. Suppose that $G\left(V_{t+1}\right)$ is 2-edge connected. Inequality (7.1) then defines a facet of the polytope $\operatorname{SNDP}(G, r)$ if and only if the following holds:
(a) $G\left(V_{i}\right)$ is 2-edge connected for $i=0,1, \ldots, t$,
(b) $\left|\left[V_{0}, V_{i}\right]\right| \geq 1$ for $i=1, \ldots, t$, and
(c) $\left|\left[V_{i}, V_{t+1}\right]\right| \geq 2$ for $i=1, \ldots, t$.

Proof. The proof uses Remark 7.2 and standard polyhedral techniques.
A direct consequence of Theorem 7.3 is that for a general couple (G, r), inequality (7.1) must be considered to obtain a complete linear description of the polytope $\operatorname{SNDP}(G, r)$. The previous statement remains true even when G is a series-parallel graph, as we showed in section 5 .
8. Final remarks. In this paper, we studied the polytope $\operatorname{CPP}(G, r)$ given by the trivial inequalities and the partition ones. We first gave some structural properties of the extreme points of $\operatorname{CPP}(G, r)$. Using these, we proved that the polytope $\operatorname{CPP}(G, r)$ is an integer on a nontrivial subclass of series-parallel graphs, which includes the outerplanar graph class. This result leads to a polynomial-time algorithm, based on the ellipsoid method, for solving the (1,2)-survivable network design problem in that class of graphs. To the best of our knowledge, the complete linear description of $\operatorname{SNDP}(G, r)$ given in this paper is the first one which combines even and odd connectivity types for an important class of graphs. We also introduced a new family of facet-defining inequalities for the polytope $\operatorname{SNDP}(G, r)$, called the spinning-top inequalities. This class of inequalities must be considered in linear descriptions of the survivable network polytope $\operatorname{SNDP}(G, r)$.

From Theorem 5.3, we can deduce that $\operatorname{CPP}(G, r)$ is an integer when G is a series-parallel graph and $|T| \leq 2$. (We remind that T is the set of terminal nodes, that is, nodes u such that $r(u)=2$.) For a general graph G and $|T| \leq 1$, we know that $\operatorname{SNDP}(G, r)=\operatorname{CPP}(G, r)$ [5]. Moreover, for a general graph G, a positive cost function, and $|T|=2$, the survivable network design problem can be solved in polynomial time, since Arkin and Hassin [1] have shown that this special case of the SNDP can be reduced to the matroid intersection problem. In view of the previous discussion, we give the following conjecture.

Conjecture 8.1. Let $G=(V, E)$ be a graph and $r \in\{1,2\}^{V}$ its connectivity type vector such that $|\{u \in V: r(u)=2\}|=2$. The polytope $\operatorname{SNDP}(G, r)$ is then completely described by both the trivial and the partition inequalities (i.e., $C P P(G, r)$ is an integer).

An important problem which deserves to be addressed is to study the separation problem of the spinning-top inequalities. We think that this problem is polynomial on series-parallel graphs and NP-hard in general.

Our work has started with the objective of giving a linear description of the polytope $\operatorname{SNDP}(G, r)$ on series-parallel graphs. Our study then leads us to give the following conjecture.

Conjecture 8.2. Let $G=(V, E)$ be a series-parallel graph and $r \in\{1,2\}^{V}$ its connectivity type vector. The polytope $\operatorname{SNDP}(G, r)$ is then completely described by the trivial, partition, and spinning-top inequalities.

REFERENCES

[1] E. Arkin and R. Hassin, The k-path tree matroid and its application to survivable network design, J. Combin. Optim., 5 (2008), pp. 314-322.
[2] F. Barahona and H. Kerivin, Separation of partition inequalities with terminals, Discrete Optim., 1 (2004), pp. 129-140.
[3] S. Chopra, The k-edge-connected spanning subgraph polyhedron, SIAM J. Discrete Math., 7 (1994), pp. 245-259.
[4] R. J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl., 10 (1965), pp. 303318.
[5] D. R. Fulkerson, Blocking polyhedra, in Graph Theory and its Applications (Proc. Adv. Sem., University of Wisconsin, Madison, WI, 1969; B. Harris, ed.), Academic Press, New York, 1970, pp. 93-112.
[6] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. Assoc. Comput. Mach., 35 (1988), pp. 921-940.
[7] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1 (1981), pp. 169-197.
[8] M. Grötschel and C. L. Monma, Integer polyhedra arising from certain network design problems with connectivity constraints, SIAM J. Discrete Math., 3 (1990), pp. 502-523.
[9] M. Grötschel, C. L. Monma, and M. Stoer, Facets for polyhedra arising in the design of communication networks with low-connectivity constraints, SIAM J. Optim., 2 (1992), pp. 474-504.
[10] M. Grötschel, C. L. Monma, and M. Stoer, Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints, Oper. Res., 40 (1992), pp. 309-330.
[11] M. Grötschel, C. L. Monma, and M. Stoer, Design of survivable networks, Handbook Oper. Res. Management Sci. 7, M. O. Ball et al., eds., North-Holland, Amsterdam, 1995, pp. 617-671.
[12] H. Kerivin and A. R. Mahjoub, Separation of partition inequalities for the (1, 2)-survivable network design problem, Oper. Res. Lett., 30 (2002), pp. 265-268.
[13] H. Kerivin and A. R. Mahjoub, Design of Survivable Networks: A Survey, Networks, 46 (2005), pp. 1-21.
[14] H. Kerivin, C. NocQ, and A. R. Mahjoub, (1, 2)-survivable networks: Facets and branch-andcut, in The Sharpest Cut, M. Grötschel, ed., MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2004, pp. 121-152.
[15] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), pp. 48-50.
[16] C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math., 15 (1930), pp. 271-283.
[17] A. R. Mahjoub, Two-edge connected spanning subgraphs and polyhedra, Math. Programming, 64 (1994), pp. 199-208.
[18] C. L. Monma and D. F. Shallcross, Methods for designing communication networks with certain two-connected survivability constraints, Oper. Res., 37 (1989), pp. 531-541.
[19] M. Stoer, Design of Survivable Networks, Lecture Notes in Math. 1531, Springer-Verlag, Berlin, 1992.
[20] P. Winter, Generalized Steiner problem in outerplanar networks, BIT, 25 (1985), pp. 485-496.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[^0]: *Received by the editors September 6, 2005; accepted for publication (in revised form) June 2, 2008; published electronically October 17, 2008.
 http://www.siam.org/journals/sidma/22-4/63960.html
 ${ }^{\dagger}$ Laboratoire d'Analyse Non Linéaire et Géométrie, Université d'Avignon, 339 chemin des Meinajaries, 84911 Avignon, France (mohamed.didi-biha@univ-avignon.fr).
 \ddagger Institute for Mathematics and its Applications, University of Minnesota, 357 Lind Hall, 207 Church Street S.E., Minneapolis, MN 55455. Current address: Laboratoire LIMOS, CNRS UMR 6158, Université Blaise Pascal, Clermont-Ferrand II, Complexe Scientifique des Cézeaux, 63177 Aubière Cedex, France (kerivin@math.univ-bpclermont.fr).
 ${ }^{\S}$ Laboratoire LIMOS, CNRS UMR 6158, Université Blaise Pascal, Clermont-Ferrand II, Complexe Scientifique des Cézeaux, 63177 Aubière Cedex, France. Current address: Laboratoire LAMSADE, CNRS UMR 7024, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France (mahjoub@lamsade.dauphine.fr).

