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Abstract. In this paper we consider the Steirleedge survivable network problem. We discuss the polytope
associated with the solutions to that problem. We show that when the graph is series-paraiés @ven,

the polytope is completely described by the trivial constraints and the so called Steiner-cut constraints. This
generalizes recent work of Bai and MahjoubSIAM J. Discrete Mathematicsol. 10, pp. 505-514, 1997 for

the cas&k = 2. As a consequence, we obtain in this case a linear description of the polyhedron associated with
the problem when multiple copies of an edge are allowed.
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1. Introduction

With the trend in communication networks to the use of fiber optic technology, it has become
important to design networks with lower cost which are survivable. Survivable networks
must satisfy certain connectivity requirements. A typical survivability condition is that
between every pair of nodes of the network there are atkeadgie- (node-) disjoint paths.
In practice, there may exist specific nodes for which the survivability condition has to be
satisfied. Inthis paperwe discuss this problem. The problem of designing general communi-
cation survivable networks has been studied byt&atiel and Monma (1990) and@schel
etal. (1991, 1992a, b). Related work and applications can also be found in Bienstock et al.
(1990), Christofides and Whitlock (1981), Erickson et al. (1987), Monma et al. (1990),
Steiglitz et al. (1969), Voss (1990) and Winter (1985, 1986, 1987).

A graphG = (V, E) is calledk-edge connecte@vherek is a positive integer) if for any
pair of nodes, j € V, there are at leaktedge-disjoint paths fromto j. LetG = (V, E)
be a graph and a weight function orE that associates with an edges E, the weight
w(e) € R. Given a subset of distinguished nodesc V, calledterminals the Steiner
k-edge survivable network probliSkESNP) is the problem of finding a minimum weight
subgraph of5 spanningS such that between every two nodeg < S, there are at leagt
edge-disjoint paths.

Polyhedral combinatorics has been successfully applied to prove the polynomiality and
obtain efficient cutting plane algorithms for combinatorial optimization problems. In par-
ticular, if a polyhedral description of a combinatorial optimization problem is known and
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the associated separation problem (the problem that consists to determine whether or not
a given pointx satisfies all the inequalities describing the polyhedron and if not to find an
inequality which is violated by) is solvable in polynomial time, then the problem can

be solved in polynomial time. In this paper we discuss the polytope associated with the
solutions to the BESNP. We show that when the graph is series-parallelkaisdeven,

the polytope is completely described by the trivial constraints and the so-called Steiner-cut
constraints. This generalizes recent work ofdsénd Mahjoub (1997) for the cake= 2.

As a consequence, we obtain in this case a linear description of the polyhedron associated
with the problem when multiple copies of an edge are allowed. Both descriptions yield
polynomial time algorithms for solving these problems on series-parallel graphs.

The KESNP is NP-hard in general. Winter devised a linear time algorithm to solve
the S2ESNP in Halin graphs (Winter, 1985) and series-parallel graphs (Winter, 1986). He
mentioned in Winter (1987) that for Halin graphs he also found a linear algorithm to solve the
S3ESNP. The EESNP has been studied bydisthel and Monma (1990) anddschel et al.

(1991, 1992a, b) within the framework of a more general model. In particulats&rél

and Monma (1990) described several basic facets of the polytope associated with that model
and Gotschel et al. (1991, 1992a, b) studied further facets and polyhedral aspects of that
model, and devised cutting plane algorithms. They also presented experimental results for
both the low and high connectivity cases. A complete survey of that model can be found in
Stoer (1992).

Given a graptG = (V, E) and a node subs®&¥ C V of G, the set of edges having one
endnode iV and the other iV\W is called acutand denoted by(W). If W = {v} for
somev € V, then we writes (v) for §(W). If a cut containg edges, it is also callededge
cutset

Let G = (V, E) be a graph. Lek(e) be a variable associated with each edgd-or
an edge subsdt C E, the 0-1 vectox® € RE with xF(e) = 1ife e F andxF(e) = 0
if not, is called theincidence vectoof F. For any subset of edgés C E, we define
X(T) = Y 7 X(e). If W C V, then we denote bf (W), the set of edges having both
endnodes iW.

The KESNP can be formulated as the following integer linear program

Min  wx
Subjectto x(e) > 0, forallee E, (1.2)
x(e) <1, foralle € E, (1.2)
X((W)) >k forall WcCV,S#£WNS#HY, 1.3)
x(e) € {0,1}, foralleec E. (1.4)

Inequalities (1.1), (1.2) are calladvial constraintsand inequalities (1.3) are called
Steiner-cut constraints

Let KESNRG, S) = con{x € RE | x satisfies (1.1)—(1.4)e the polytope associated
with the KESNP.

The KESNRG, S) has been extensively investigated & V andk < 2. It has been
described fok = 1 for general graphs and fér= 2 for some classes of graphs. Using
Edmonds’ characterization of matroid polytopes (Edmonds, 1970, 197&)schel and
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Monma (1990) (see also Corgjpls et al., 1985) showed that the so-called partition in-
equalities together with the trivial inequalities suffice to describe the S1IESNH for

S = V. In Mahjoub (1994), Mahjoub gives a complete description of the S2ZEGNS)
when the graph is series-parallel aBe- V.

In Chopra (1994), Chopra considers a relaxation of tkeSNRG, S), namely when
multiple copies of an edge are allowed. The problem here consists of determining an
integer vectox € NE such that i) the graphl = (V, E(x)) is Steinerk-edge connected
and i) Y ..g w(e)x(e) is minimum. HereE(x) is the set of edges obtained by replacing
each edges = ij of E by x(e) parallel edges betwednand j. This relaxation of the
SKESNP is important because it may provide a lower cost solution than the case where at
most one copy of an edge may be used. He studies the polyh&Ji¢@G) S) associated
with the solutions to that problem, that is

P«(G, S) = conx € NE | (V, E(x)) is k-edge connectdd

He gives a complete descriptionBf(G, S) whenG is outerplanarsS = V andk is odd. (A
graphis outerplanar if it is planar and it can be embedded on the plane so that all nodes lie on
the outermost face). The polyhedrBr(G, S) has been previously studied by Coejuis

et al. (1985). They showed that when the graph is series-par@ltel,V andk is even,

P«(G, S) is completely described by the nonnegativity and the cut inequalities.

In Didi Biha and Mahjoub (1996), Didi Biha and Mahjoub discuss thESNP when

S = V. They describe, in this case, theESNRG, S) for all k whenG is series-parallel.

In Barahona and Mahjoub (1995), Barahona and Mahjoub describe the S2GSS8)Hor

Halin graphs whers = V. In Baiou and Mahjoub (1997), Bail and Mahjoub discuss

the S2ESNP and show that when the graph is series-parallel, SZESSPis given by

the trivial and the Steiner-cut constraints. The purpose of this paper is to extend this to
evenk.

Related work can also be found in Coullard et al. (1991a, b), Fonlupt and Naddef (1992),
Fonlupt and Mahjoub (1999), Margot et al. (1994) and Steiglitz et al. (1969). In Fonlupt
and Naddef (1992), Fonlupt and Naddef characterize the class of graphs for which the
system given by the nonnegativity constraints and the cut constraints,Svkevi, defines
the convex hull of the incidence vectors of the tour€of(A tour is a cycle going at least
once through each node). In Coullard et al. (1991a, b), Coullard et al. discuss the Steiner
2-node connected subgraph polytope. In Coullard etal. (1991a), they describe that polytope
for series-parallel graphs, and in Coullard et al. (1991b), they describe the dominant of that
polytope for the graphs noncontractiblewd (the wheel on 5 nodes).

The problem S1ESNP is closely related to the well known Steiner tree problem in graphs.
In Chopra and Rao (1994), Chopra and Rao describe several classes of the Steiner tree
polytope in both the directed and undirected cases. In Margot et al. (1994), Margot et al.
(see also Goemans, 1994) give an extended formulation for the Steiner tree problem and
show that it is a complete linear description of the associated polytope when the graph
is a 2-tree (a maximal series-parallel graph). In Goemans (1994), Goemans discusses an
extended formulation of the Steiner tree problem and describes the associated polytope
when the underlying graph is series-parallel. He also describes some classes of facets for
the Steiner tree polytope.
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In the next section, we give a complete description of the polytdESSIR G, S) when
the graph is series-parallel akds even. In Section 3 we describe the polyhed®(i, S)
in that class of graphs whdanis even. In Section 4 we give some concluding remarks.

The remainder of this section is devoted to more definitions and notations. The graphs
we consider are finite, undirected, connected and may have multiple edges.ali edge
between two nodesand j, then we writee = ij. If G = (V, E) is a graph an& < E,
thenG — e will denote the graph obtained fro@ by removinge. ForW C V, we let
G(W) denote the induced subgraph®fon W. GivenW;, W, two disjoint subsets of/,
[W1, Wo] will denote the set of edges & having one node ifV; and the other one ii,.
If W C V, thenW denotesV\W. Given a constrainax > «, a € RE, and a solution*,
we will say thatax > « is tight for x* if ax* = «a.

2. The KESNP@G, S) of a series-parallel graph

A homeomorplof K4 (the complete graph on 4 nodes) is a graph obtained farwhen

its edges are subdivided into paths by inserting new nodes of degree two. A graph is called
series-parallelf it contains no homeomorph ¢f, as a subgraph. Connected series-parallel
graphs have the following property.

Lemma 2.1. If G = (V, E) is a connected series-parallel graph witi| > 3, then G
contains a node that is adjacent to exactly two nodes.

Let G = (V, E) be agraph an® C V a set of terminals. We will suppose th& > 2
(if |S| = 1, then the polytopelESNR G, S) would be given by the trivial constraints). Let
Qx(G, ) be the polytope given by inequalities (1.1)—(1.3). (Recallkhata fixed positive
integer). In what follows we shall show that@ is series-parallel anll is even, then
Qk(G, S) = SKESNRG, S). Since the minimum cut problem can be solved in polynomial
time (see Nagamochi and Ibaraki, 1992; Stoer and Wagner, 1994), a consequence of our
result is that the EESNP is solvable in polynomial time in these graphs using the ellipsoid
method (Gotschel et al., 1981).

We have the following lemma, its proof is omitted because it is similar to that of a similar
result in Badbu and Mahjoub (1997).

Lemma 2.2. Let x be a solution of QG, S). If §(W;) and§(W,) are two Steiner cuts
tight for x with(WiNW5)N'S #£ dand(Wy U W) NS # @ thens (W NWs) ands (Wh U Wh)
are two Steiner-cuts tight for,>and x([W;\W,, W>o\W;]) = 0.

If x is an extreme point o)y (G, S), then there exist two edge subsEts E; € E and a

family of Steiner-cut$s(W,),i = 1, ..., r} such thak is the unique solution of the system
x(e) =0, forall e € Eq,
x(e) =1, foralle e Ey, (2.1)

XEMWH) =k, fori=1,...,r,

where|Ep| + |E1| +T = |E]|.



STEINERK-EDGE CONNECTED SUBGRAPH POLYHEDRA 135

Lemma2.3. Letd(W) be a Steiner-cut of systef@.1). Then syster2.1) can be chosen
so that either W< W or W; € Wi forall j € {1,...,r}\{i}.

Proof: The proof uses some ideas developed by Cejola’et al. (1985) for a similar
result. W.l.o.g. we may suppose that= 1. Suppose for instance thdt) N W, # @,
Wy ¢ Wo, Wo ¢ Wy andW, UWs # V. W.L.o.g. we may suppose thal; " W,) NS # (.
SinceW, N S+ ¢, at least one of the seW;\W» andW; U W, intersectsS.

Case 1. WL UW,) NS @. As (WL NW,) NS #£ ¢, it follows that boths (W N W,) and
8(W1 U Ws) are Steiner cuts. By Lemma 2.2 we then have

X(B(W1 NWa)) = x(8(Wy U Wa)) =K,
X([W1\W2, Wi\W5]) = 0.

This together withx (5§ (W)) = k implies thatx(§ (W,)) = k. Hencex(§(W»)) = k can
be replaced in the system (2.1) bog6 (W1 N W5)) = k andx(§(Wy U W,)) = k, the new
system still hax as a unique solution.

Case2. (W, UWo)NS=¢. AsWy NS+ @ #WonNS, it follows that(Wo\Wy) NS # @
and(W;\W>) N S # @. Hence by considering(W;) instead ofs (W), by Lemma 2.2
we obtain that (W;\W,) and§(W,\W;) are two Steiner cuts tight for andx (Wi N
W,, W; UW,]) = 0. Moreover, as we did in Case 1, if we repladg (W.)) = k by
X( (W1 \W5)) = k andx(§(W>\W;)) = k we obtain a system still havingas a unique
solution.

So any equatior(§(W;)) =k, j € {2,...,r}, can be replaced by equations of the form
X(§(W)) = k where§(W) is a Steiner cut with eithev < Wj or W, € W (8(W) and
8(Wj) may be the same). Létbe the system thus obtained. Andlétbe the system given
by the trivial inequalities of system (2.1) amd@s(W,;)) = k. Note that the constraints of
M belong toL.. As x is the unique solution df andM is a nonsingular system, there must
exist|E| — (|Eo| + |E1] + 1) equations oL different from those oM that form withM a
nonsingular system havingas a unique solution. This new system is as required. O

Now we can state our main result.

Theorem 2.4. Let G= (V, E) be a series-parallel graph and 8 V a set of terminals.
If k is even then SKESNE&, S) = Qk(G, S).

Proof: The proofis by induction ofE| + |V |. The statement is trivially true {& consists

of two nodes (terminals) joined by edges. So suppose that it is true for any series-
parallel graph with no more than edges and suppose thatcontainsm + 1 edges. Also
suppose that, under this hypothe$&,is maximum. That is, for any series-parallel graph
G = (V/, E') with |[E’| = m+ 1 and a set of terminalS' such thaiS| > |S|, we have
SKESNRG’, S) = Qk(G’, S). Note that such assumption can be made since, as shown in
Didi Biha and Mahjoub (1996),K ESNRG’, V) = Qx(G’, V) holds if G is series-parallel.
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Now suppose that, on the contrarkESNR G, S) # Qk(G, S) and letx be a fractional
extreme point oQy (G, S). We assume that is the unique solution of system (2.1). O

Claim1. x(e) > Oforalle € E.

Proof: If f is an edge such that(f) = 0, then letx* € RE" be the solution given by
x*(e) = x(e) for alle € E* whereE* = E\{f}. Obviouslyx’ € Qx(G— f, S). Moreover
x* is an extreme point dQy (G — f, S). Sincex* is fractional, this contradicts the induction
hypothesis.

Claim 2. Each variable Xe) has a nonzero coefficient in at least two equations of the
system(2.1) defining x.

Proof: Itisclearthai(e) must have anonzero coefficientin atleast one of the equations of
(2.1). Otherwisex(e) would be fractional and the solutiéne R suchthak(e) = x(e)+¢
andXx(e) = x(¢) if € € E\{e} wheree € R, would be a solution of system (2.1). Since
X # X this is impossible. Now suppose that for an edge- uv € E, x(f) has a nonzero
coefficient in exactly one equation of (2.1). And(2t1)’ be the system obtained from (2.1)
by deleting this equation. Obviousk§2.1)’ is a nonsingular system. L&' = (V’/, E’) be
the graph obtained by contractirig LetS = (S\{u, v}) U{w} if SN{u, v} # PandS = S

if not, wherew is the node arising from the contractionfof Letx’ be the restriction o on

E’. Clearly,x’ € Qx(G’, S). Also note that the equations of systél)’ all correspond
to constraints ofQ (G’, S). This implies thai’ is an extreme point oQx(G’, S). Since
G' is series-parallel anfE’| < |E|, this contradicts the induction hypothesis. O

From Claims 1 and 2 we have the following.

Claim 3. Each variable Xe) has a nonzero coefficient in at least one Steiner-cut constraint
of system2.1).

SinceG is series-parallel, by Lemma 2.1, there exists a nodehich is adjacent to
exactly two nodess, vo. Let F; (F,) be the set of edges betweerandv; (v2). W.l.0.g.
we may suppose thiF| > |F,| and if |[F1| = |F2|, X(F1) > X(F2).

Claim 4. The set k (F,) contains at most one edge e with< x(e) < 1.

Proof: Suppose that there are two edgese, € F1 with 0 < x(e;) < x(&) < 1. Let
x" € RE be the solution such that
X +e ife=ey,
x'(e) ={x(e) —e ife=e,
x(e) if e € E\{ey, &}

Since every cug (W) either contains both edges ande, or does not contain any one of
these edges/’ is a solution of system (2.1). As # X, this is a contradiction. O
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Claim 5. System(2.1) can be chosen so that [¥V;| > 2, then(W\{v}) N S # @, for
ief{l....r}.

Proof: The claim is trivially true if eithen ¢ W, N Sor |W; N S| > 2. Now, suppose that
forsomei € {1,...,r}, W N S= {v} and|W;| > 2. By Lemma 2.3, we may suppose that
system (2.1) is such tha¥; € W, or W; ¢ W for j € {1,...,r}\{i}. W.l.o.g. we may
suppose thaVi | is minimum with respect to this assumption. We have #(atw)) > k

for everyW c V with v; € W andW N S # @. In fact, this is clear iW N S # @. So
suppose thaiV N S = . Asv € S, we have thab € W and, consequentlys; < §(W).
Furthermores(W U {v}) is a Steiner-cut. Ifv, € W thenx(8(W)) > x(8(v)) > k. If

vy € W, thens(W U {v}) = (§(W)\F1) U Fo. Asx(F1) > x(F2) andx(§(W U {v})) > k, it
follows thatx (6 (W)) > k. Now, we claim thab, € S. Indeed, if this is not the case, then let
S = SU{v1}. Asx(8(W)) > k for every cuts (W) with v; € W andW N 'S + ¢, it follows
thatx is at the same time an extreme point of the polyt@h&G, S). As |S| > |S| and

X is fractional, this contradicts the maximality [8|. So, asW, N S = {v}, it follows that

v € W andv, € Wi. By Claim 3, the edges df, must belong to at least one Steiner-cut
3(T) of the system (2.1). A3 € W, andx(e) > O, it follows thatT = {v} and, by the
minimality of W;, §(T) is the only tight cut of the system (2.1) wheFeC W;. By Claim

2 it follows thatx(e) = 1 for alle € F,. As x(§(v)) = k and by Claim 4F; can contain
at most one edge with fractional value, this implies th@) = 1 for all e € F;. Moreover,
we haveF, = E(W). If for instance there isf € E(W)\F,, then by the minimality
of W;, f cannot belong to any tight cut of system (2.1), contradicting Claim 3. Thus we
have

Wi = {v, v},
X(8(v)) =K,
x(e) =1, foralle € §(v).

LetG’ = (V’, E’) be the graph obtained fro@ by contracting~,. Letx’ be the restriction

ofxonE’. LetS = (S\{v}) U {w} wherew is the node that arises from the contraction of

F,. Clearly,x’ € Qx(G’, S). Furthermore, it is not hard to see thats an extreme point

of Qu(G/, S). As|E’| < |E| andx’ is fractional, this contradicts the induction hypothesis.
O

For the rest of the proof we suppose that W, fori = 1,...,r. Now, by Claim 2,
there must exist a cUtv, i € {1,...,r}, such thatF; c §(W,). Let us suppose that
W | is maximum. We claim that| > 2. Indeed, suppose th#¥ = {v}. Thus by the
maximality of [W; |, (W) is the only Steiner-cut containirfg,. By Claim 2 it follows that
x(e) = 1 for alle € F;. In consequence we have

x(e) =1 forallee §(W),

implying thatx(§(v)) = Xx(8(W)) = k is redundant in system (2.1), a contradiction.
ConsequenthyyW; | > 2 andv, v; € W;. Also by Claim 4, we may assume thati \{v}) N
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S# ¢ (and(W U {v}) N S+# @). Thus

k < x(6(Wi\{v})) = x(6(W)) + x(F2) — x(Fy)
=k 4+ x(F2) — x(Fy)
< k.

This implies that the inequalities above are all satisfied with equality. Hence,

X@Wi\{vh) =k,
X(F2) = x(Fy), (2.2)
[F1l = [F4l.

The last equation is obtained using Claim 4 and the factxiBt) = x(F1). Now,
suppose thai(v) is tight for x. If there is an edge; € F; with 0 < x(e;) < 1, then by
(2.2) together with Claim 4 there must exist an edgef F, such thatx(e,) = x(e;). Let
| = |F1| = |F2|. We have

X(8(v)) = x(Fp) + x(F2)
=(l-D+xE)+1-1D+x(e)
=2( — 1) + 2x(ey)
=k.

However the last equation cannot hold sikds even and O< x(e;) < 1. Thusx(e) = 1
for all e € F;. Similary we havex(e) = 1 for all e € F,. Hencex(8(v)) = k is redundant
with respect to system (2.1). And in consequence, one may assum&iha) = k does
not belong to system (2.1). Let

Fl={eeF |x(@® =1, ie{l2.

Let J be the set of indiceg < {1,...,r} such thatF, C §(W;). Let WJ-/ = Wj\{v}
for j € J. Clearly, by Claim 55(ij) is a Steiner cut foj € J. As x(8(v)) = k and
X(F1) = x(Fp) we havex((S(Wj’) =kfor j € J.

Now, consider the systeif2.1)’ obtained from system (2.1) by replacing the equations
X(8(W))) = kbyx(S(Wj/)) = kfor j € J, and deleting the equationge) = 1, fore € F}.
Let G’ = (V/, E') be the graph obtained by contractifrg. Let S = (S\{v, v1}) U {vo}
if {v,v1}N S=# @andS = Sif not, whereug is the node arising from the contraction of
F1. Letx’ be the restriction ok on E’. Clearly,x’ € Qx(G’, S) andx’ satisfies system
(2.1). As|E'| < |E]|, by the induction hypothesi®y(G’, S) is integral. And, since’ is
fractional, there must exist an integral extreme pgintf Qx(G’, S) which is a solution
of (2.1)’. We distinguish two cases.
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Case 1. B C Fy. ThusF} C F,. And there are two edgess € F; ande; € F, with
0 < x(ey) = x(&) < 1. Lety e RE be the solution given by

y( ifee E\Fy,
ye =1{1 ifee Ff,
y(e) ife=e.

Itis not hard to see thatis a solution of system (2.1). Asis integral and hence # X,
this contradicts the extremality af
Case 2. B = F;. ThusF} = F,. Lety e RF be defined as

y'(e) if ee E\Fy,

e) =

YO=11  fecr.

AsinCase 1, itis easy to see tlyds a solution of system (2.1). Butthisis a contradiction,
which finishes the proof of our theorem. O

An immediate consequence of Theorem 2.4 is the following.

Corollary2.5. The SKESNP is solvable in polynomial time on series-parallel graphs when
k is even.

3. The polyhedronPy(G, S) of a series-parallel graph

In this section we shall discusk (G, S), the polyhedron associated with theESNP when
multiple copies of an edge are allowed. Using Theorem 2.4 we will show that inequalities
(1.1) and (1.3) are sufficient to descriBg(G, S) whenG is series-parallel anklis even.

Theorem 3.1. Let G = (V, E) be a series-parallel graph and § V a set of terminals.
If k is even then RG, S) is completely described by inequalitiels1) and (1.3).

Proof: Let RJ(G, S) be the polyhedron described by inequalities (1.1) and (1.3). Itis
clear that inequalities (1.1) and (1.3) are valid Ru(G, S). ThusP(G, S) € B} (G, S).

To show thatP (G, S) € P«(G, 9) it suffices to show that the extreme pointsRif(G, S)

are integral. Suppose, on the contrary, that there exists a fractional extreme pditit of
Pi(G, S). LetG’ = (V, E’) be the graph obtained frof@ by replacing each edge= ij

of E such thaix(e) > 0 by [x(e)] edgesey, .. ., exe between andj. Letx’ RE be

the solution given by

xX'(e)=1 fori =1,...,[x@©] -1,
x'(&) =x(e) — [x(€ —11 fori = [x(e)],
x'(e)=0 if not.

} if x(e) #0,
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It is easily seen that’ satisfies inequalities (1.1) and (1.3). Moreowéris an extreme
pointof Qx(G’, S). Infact, itis clear thax’ satisfies inequalities (1.2). Now if the statement
does not hold, as, by Theorem 2@, (G’, S) is integral, there must exisinteger solutions
(t>2)y,...,y; of Qu(G',S) andAq, ..., A € R* such thatx’ = th:lkjy] and
>j—14j =1. Nowlety, ..., y € R® be the solutions such that

x(e1
yi©= > ¥,
j=1

fore e Eandi = 1,...,t. Itis clear thatys, ...,y € BJ(G,S). Moreover we have
thatx = th _1AjYj. Butthis contradicts the fact thatis an extreme point oP; (G, S).
Consequentlyx’ is an extreme point oQ«(G’, S). Sincex’ is fractional anda’ is series-
parallel, this contradicts Theorem 2.4. O

4. Concluding remarks

We have studied the Steinleedge survivable network problem and have given a complete
linear description of the associated polytope when the underlying graph is series-parallel
andk is even. We have shown that in this case, the trivial and the Steiner-cut inequalities
suffice to describe the polytope. As a consequence we obtained that the nonnegativity
inequalities together with the Steiner-cut inequalities characterize the polyhedron in this
case, when multiple copies of an edge are allowed. Both characterizations yield polynomial
time algorithms for the corresponding optimization problems on series-parallel graphs.
The trivial inequalities and the Steiner-cut inequalities do not suffice to describe the
polytope &NSRG, S) on series-parallel graphs wheris odd. In fact, as shown by Didi
Biha and Mahjoub (1996), fd8 = V andk odd, a further class of constraints calksties-
parallel partition inequalitiess needed to have a complete description when the graph is
series-parallel. This class generalizes the cut inequalities, and may be extended to the case
whenS C V as follows:
Let G = (V, E) be a series-parallel graph afe a set of terminals. Lat, ..., V,
be a partition oV such that

i) G(V;)isconnectedfor=1,..., p,and
i)y VinS#£¢@fori=1,...,p.

Then the inequality

k
X8V, ..., Vp) > ’75—‘ p—1

is valid for KESNRG, S). Hered (V4, ..., V,) denotes the set of edges between the mem-
bers of the partition. The trivial inequalities and the series-parallel partition inequalities do
not, unfortunately, suffice to describe the polytog&SSR G, S) on series-parallel graphs
even fork = 1 (see Chopra and Rao, 1994, Didi Biha et al., to appear; Goemans, 1994).
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k=3 k=4

Figure L Graphs of".

It would be interesting to characterize the class of graghsuch thatQy(G, S) =
SKESNRG, S). The problem BESNP can be solved in polynomial time in that class of
graphs. Theorem 2.4 shows that that class contains for instance the class of series-parallel
graphs, ifk is even. In what follows we describe further classes for wighiG, S) =
SKESNRG, S) whenS =V, for the proofs see Didi Biha (1998).

LetI" be the class of grapt@ = (V, E) such that

1) V=ViUV,, Vi NV, =0,

2) |V1| = 3 andE(V,) = 4,

3) |Vs| > 3and if[Vo| = 3, thenE(Vy) = 4,

4 |[v1, v]| < | %] for all nodesvy, v, such thaw; € Vy andv; € Vs.

Figure 1 shows some graphslof Note that graphs df can be recognized in polynomial
time and may be non series-parallel.
The following theorem generalizes a result of Mahjoub (1997kfer 2.

Theorem 4.1. If G is a graph ofT", then Q«(G, V) = SKESNRFG, V).

In Didi Biha (1998) it is also shown that® = (V;, U V,, E) is a bipartite graph without
parallel edges such that eithdf, U V| < 4k — 1 or [V1] < k+ 1, thenQy(G, V) =
SKESNRG, V).

In Fonlupt and Mahjoub (1999), Fonlupt and Mahjoub characterize the graphs for which
Q2(G, V) = S2ESNRG, V). In Didi Biha (1998), Didi Biha gives sufficient conditions
under whichQy (G, V) = SKESNRG, V).

In Mahjoub (1994), Mahjoub introduces a class of facet defining inequalities for the
S2ESNRG, S) whenS = V, calledodd wheel inequalitiesWheels with 2 + 2 nodes
(where the exterior cycle of the wheel contaims£2 1 nodes, anah > 1) are examples of
graphs producing odd wheel inequalities.

A Halin graphG = (V, T U C) consists of a tred that has no degree-two nodes,
together with a simple cycl€ whose nodes are pendant nodesTofthe graph should
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be embeddable in the plane withas the exterior face. These are examples of minimally
3-connected graphs given by Halin (1971). In Barahona and Mahjoub (1995), Barahona and
Mahjoub show that ifS is a Halin graph then S2ESNB, S) with S=V, is given by the

trivial, cut and odd wheel inequalities. In Didi Biha (1998) Didi Biha gives a generalization

of that result as follows. Lek(y be the class of graphs such thatG can be obtained from

a Halin graph by replacing each edgeof T by k — 1 parallel edges betweémndj. Note

that graphs irt{x are minimallyk + 1-connected.

In Didi Biha (1998), Didi Biha describes a class of inequalities that generalises the
odd wheel inequalities for graphs ®fy and arbitraryk, and shows that these inequalities
together with the trivial and the cut inequalities describe thRESNRG, S) for S = V
whenG is a graph ofHy.

The KESNP can be seen as a relaxation of the following problem calle&tiieer
k-edge connected subgraph problé8kECSP) introduced by Monma et al. (1990). Given
a graphG = (V, E) with weights on its edges and a set of termirals V, the problem is
to find a minimumk-edge connected subgraph®f spanningS. Note that if the weights
are positive, the two problems are equivalent. This problem has been studiedloyaBd
Mahjoub (1997) and by Bau (1997) forkk = 2. In Badu and Mahjoub (1997) it is shown
that the associated polytop&SCSRG, S) on series-parallel graphs is given by the trivial
inequalities, Steiner-cut inequalities and the inequalities

X(@B(W)) —2x(e) >0 forall WcCV,SCW,eg E(W).

A natural question that may arise here is whether or not this result can be extended to
the case wherk is even. Our study of that question motivates us to give the following
conjecture.

Conjecture 4.2. If G is series-parallel with a set of terminals &nd k is eventhen
SKECSIG, S) is given by the trivial inequalitiesthe Steiner-cut inequalities and the
inequalities

X(§(W)) —kx(e) >0 forall WcCV,SCW,ed E(W).

In Baiou (to appear), Bau gives a complete description of the dominant of the
SKECSRG, 9) in the class of graphs for whichkkECSRG, S) coincides with its linear
relaxation. This class contains series-parallel graphs as a subclass.
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