
Mathematical  Programming 36 (1986) 157-173 
North-Hol land 

O N  THE CUT POLYTOPE 

Francisco BARAHONA* 
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, 
Canada N2L 3G1 

Ali Ridha MAHJOUB 
Laboratoire ARTEMIS, lnstitut IMAG, Universit~ Scientifique et Medicale de Grenoble, France 

Received 21 July 1983 
Revised manuscript  received 7 September 1985 

The cut polytope Pc(G)  of a graph G = (V, E) is the convex hull of  the incidence vectors of  
all edge sets of  cuts of  (3. We show some classes of  facet-defining inequalities of  Pc(G). We 
describe three methods with which new facet-defining inequalities of  Pc(G) can be constructed 
from known ones. In particular, we show that inequalities associated with chordless cycles define 
facets of  this polytope; moreover, for these inequalities a polynomial algorithm to solve the 
separation problem is presented. We characterize the facet defining inequalities of  Pc(G)  if G is 
not contractible to K 5. We give a simple characterization of adjacency in Pc(G)  and prove that 
for complete graphs this polytope has diameter one and that Pc(G) has the Hirsch property. A 
relationship between Pc(G) and the convex hull of  incidence vectors of  balancing edge sets of  
a signed graph is studied. 

Key words: Max cut problem, facets of  polyhedra, polyhedral combinatorics. 

I. Introduction and notation 

The graphs we consider are finite, undirected, and without multiple edges. We 
denote a graph by G=(V,  E), where V is the node set and E the edge set of G. 
Given U_c V we denote by 3 (U)  the set of edges with exactly one extremity in U, 
and we call this set a cut. 

If F_c E the incidence vector of F, x F is defined by 

{10 i f e e F ,  
x r ( e )  = i f e e E \ F .  

We denote by Pc(G)  the convex hull of incidence vectors of cuts of G. Pc(G)  is 
called the cut polytope of G. 

We shall study the facial structure of Pc(G).  Our aim is to solve the following 
discrete quadratic problem 

n - - I  n 

rain H =  )~ ~ Jijsisj 
i = l  j ~ i + l  

(1.1) 
subject to s i e { - l , l }  f o r i = l  . . . .  ,n. 

* The research of  this author  was performed at the lnstitut fur Operations Research, Universit~it Bonn, 
West Germany,  and supported by the Alexander yon Humbold Stiftung. 
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This problem arises in statistical physics [1] and can be reduced to a maximum cut 

problem as follows. 
Let us define a graph G = (V, E), where 

V = { 1 , . . . , n }  and i j e E  if and only if JunO;  

the weight Ji~ is associated to the edge ij. Given a cut C the weight of C is Y~ij~c J~J. 

It is easy to see that problem (1.1) is equivalent to the problem of finding a 
maximum cut in G, cf. [1]. 

The problem of finding a maximum bipartite subgraph has been studied in [3], 

and if the weights are non-negative this is equivalent to the maximum cut problem. 

For general weights this is not true; thus we shall study the cut polytope here. 

We shall characterize a class of facet-defining inequalities of P c ( G )  where the 

separation problem can be solved in polynomial time. Therefore, we can optimize 

a linear function in polynomial time over the polytope defined by these inequalities. 
This is a way of getting lower bounds for quadratic discrete programming. 

The maximum cut problem is NP-hard [4] for general graphs and is polynomially 

solvable for graphs with no long odd cycles [6], planar graphs [7], and graphs not 

contractible to Ks [2]. 

We shall characterize Pc(G) for graphs not contractible to Ks,  we shall study 

adjacency in Pc(G),  and we shall use these results to study the polytope of balancing 

edges of a signed graph. 

If G = ( V, E) is a graph, the cardinality of V is called the order of G. If e E E is 

an edge with endnodes i and j, we also write ij to denote the edge e. If H = ( W, F) 

is a graph with W_c V and Fc_ E, then H is called a subgraph of G. 

If G = ( V ,  E) is a graph and Fc_ E, then V ( F )  denotes the set of nodes of V that 
occur at least once as an endnode of an edge in F. Similarly, for W c  V, E ( W )  

denotes the set of all edges of G with both endnodes in W. 

A graph G is called complete if every two different nodes of G are linked by an 

edge. The complete graph with n nodes is denoted by K,,. A graph is called bipartite 

if its node set can be partitioned into two nonempty, disjoint sets I/1 and V2 such 

that no two nodes in V~ and no two nodes in V, are linked by an edge. We call V~, 

V2 a bipartition of V. If ] Vt] = p, IV2] = q and G is a maximal bipartite graph, it is 
denoted by Kp, q. If We_ V, then 3 ( W )  is the set of edges with one endnode in W 

and the other in V\ W. The edge set 3(W) is called a cut. We write 8(v) instead of 

3({v}) for v 6 V and call ~5(v) the star of v. 

If U, W are disjoint subsets of V, then [U : W] denotes the set of edges of G 

that have one endnode in U and the other endnode in W. We write [u : W] instead 
of [{u}: W] for ue  V. 

A path P in G = (V, E) is a sequence of edges el, e 2 , . . . ,  ek such that e~ = vov~, 

e2 = v ~ v 2 , . . . ,  ek = Vk-~Vk and such that v~# vj for i r  The nodes Vo and Vk are the 

endnodes of P and we say that P links vo and vk or goes from Vo to vk. If  P =  e~, 

e 2 , . . . ,  ek is a path linking Vo and Vk and ek+~ = VOVkC E, then the sequence e~, 

e2, � 9  ek, ek+~ is called a cycle. 
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If P is a cycle and uv an edge of E \ P  with u, v e  V(P),  then uv is called a chord 
of P. A cycle with three edges is called a triangle. 

If  v is a node of a graph G, then G \ v  denotes the subgraph of G obtained by 
removing node v and all edges incident to v from G. 

A graph G is contractible to G '  if G '  can be obtained from G by a sequence of 
elementary contractions, in which a pair of adjacent vertices is identified and all 
other adjacencies between vertices are preserved (multiple edges arising from the 
identification being replaced by single edges). 

A polyhedron Pc_ ~ "  is the intersection of finitely many halfspaces in R m. A 
polytope is a bounded polyhedron or equivalently the convex hull of finitely many 
points. The dimension of a polyhedron P, denoted by dim P, is the maximum number 
of  affinely independent points in P minus one. 

If  a e Rm\{0}, aoe R, then the inequality aVx<~ ao is said to be valid with respect 
to a polyhedron p c R " '  if pc_ {xe~" laZx<~ ao}. We say that a valid inequality 
a V x ~  ao supports P or defines a face of P if r P c~{xlaVx= a0} # P. A valid 
inequality aTx ~ ao defines a facet of P if it defines a face of P and if there exist 
dim P affinely independent points in P n { a Vx = ao}. 

If  P c_ [2" is a full dimensional polyhedron, i.e., dim P = m, a linear system Ax <~ b 
that defines P is minimal if and only if there is a bijection between the inequalities 
of  the system and the facets of P. Moreover, these facet-defining inequalities are 
unique up to positive multiples. 

Given b: E -~ ~, and F c E, b (F)  will denote Y"ec F b(e). The support of  b, Eb will 
be E , = { e [ b ( e ) # O } .  

The bipartite subgraph polytope PR(G) is the convex hull of  incidence vectors 
of  bipartite subgraphs of G. It is clear that Pc(G)_c Pa(G), but in general P c ( G ) #  
PB( G ). 

Barahona, Gr6tschel and Mahjoub [3] show that Pc(G) is full dimensional; 
moreover, some of the facet-defining inequalities of  PB(G) studied by them are also 
facet-defining inequalities of  Pc(G).  

If x is a real number, then rx] resp. [xJ denotes the smallest resp. largest integer 
not smaller resp. larger than x. 

2. Construction of  facets 

First, we will state three theorems that characterize some facet-defining inequalities 
of  Pc(G) .  We will omit the proofs because they are analogous to those that appear  
in [3]. 

Theorem 2 . | .  Lel G = ( V, E)  be a graph and let (W, F) be a complete subgraph of  
order p >- 3 of  G, Then 
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is a valid inequality with respect to Pc(G) .  Furthermore, (2.2) defines a facet o f  Pc(G)  

if  and only i f  p is odd. [] 

A graph is called a bicycle p-wheel if G consists o f  a cycle of  length p and two 

nodes that are adjacent to each other and to every node  in the cycle. 

Theorem 2.3. Let G = ( V ,  E) be a graph and let (W, F) be a bicycle (2k + l)-wheel, 

k >~ 1, contained in G. Then the inequality 

x(F)<~2(2k + l) 

defines a facet of  Pc(G).  [] 

Theorem 2.4. Let H = ( W, F) be a complete subgraph of order q where W =  

{1,2 . . . .  ,q}. Let positive integers t~ ( l<~i<~q) satisfy ~q=t t~= 2k + l, k >~ 3 and 

~,, > ~ t~ <~ k - 1. Set 

~ titj, l<~i<j<~q, 
aij : :  

(0 ,  { i , j } r  W. 

Then 
aTx <~ a := k (k  + 1) 

defines a facet of  Pc(G) .  

To simplify technical details in subsequent  proofs,  we first state a lemma. 

Lemma 2.5. Let bXx<~ ~ be a valid inequality with respect to Pc(G) .  Given adjacent 

nodes p and q, let S be a proper subset o f  V\{p,  q} and T = V \ ( S  u {p, q}). Suppose 

that the incidence vectors of  the edge sets 8(S),  8(T) ,  8(S  w {p}), 8(S w {q}) satisfy 

b T x ~ fl with equality. Then 

b~. =0 .  

Proof. O = f l - f l = b T x ~ ( T ~ - b T x ~ S ~ P ) ) = b ( [ q : T ] ) - b ( [ q : S ] ) - b p q ,  and 0 =  
f l  - - / 3  = b V x  ~(s )  - b V x  a(s~{q}) = b([q : S]) - b([q : T]) - bpq. Thus, summing the two 

equations we obtain 

-2bpq = 0. []  

Now we shall describe three methods to construct  "facets from facets." 

Theorem 2.6. (a) (Node  splitting) Let G = ( V ,  E) be a graph and a T x ~ a  be a 

facet-defining inequality for Pc(G) .  Let E~ be the support of  a, and let v be a node in 
V(E,) .  Let W be a subset o f  V(E~) such that aTx ~Cw)= a and assume that v e  W. 

Choose any nonempty subset F c_ 6 ( v ) c~ E ( W )  such that ae > 0 for e e F, and construct 

a new graph G '= (V',  E') from G as follows. Split node v into two nodes v~, v2 such 
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that Vl is incident to all edges contained in F and v2 is incident to all edges in 6 ( v ) \ F .  

The edge vlv2 is added; in addition, any fur ther  edges vlu with u r  V(E~) may be 

added. The other parts o f  G remain unchanged. Set 

ai/:= aij for  all ij c E \ 6 ( v ) ,  

~,,~. := a~,, for  all vl u c E '  with wt c F, 

~ ,  := a~. for  all w_u ~ E '  with vu c (6(v)  c~ E . ) \ F ,  

a ..... := - a ( F ) ,  

aij "= 0 otherwise, 

a' := O/; 

then dXx<~ d~ defines a face t  o f  Pc( G').  
(b) (Contrac t ion o f  an edge) Let G ' =  (V' ,  E')  be a graph and dXx ~ d be an 

inequality defining a face t  o f  Pc( G'). Suppose that v~v2e Ea, that v~ and v2 have no 
common neighbor in ( V', E~), that d ..... >10 for  v,u e ~(Vl)\{VlV2} and that - 4  ...... = 

~ ( 6 ( v~ ) \ { v~ vz}) >/~(6(Vz)\{v~ v~}). Let G = ( V, E)  be the graph obtained f rom G'  by 
removing the nodes v~, v: and adding a new node v and the edges {vul6~,.  > O} 

{ vu [ v2u c E'}. Set 

auv :=  liuv 

avu := d ~ u  

Or := a ' ;  

then aXx ~ a defines a face t  4" Pc(G) .  

for all uv c E ca E' ,  

if ~ ..... > 0, 

if v2u c E '  unless av,, > 0, 

Proof.  The validity of  the new inequalities defined in (a) and (b) follows by 

elementary construction.  Then, let us assume that there is a facet-defining inequality 

bXx<<-/3 for P c ( G )  that has the following property.  I f  a vector x~  Pc (G)  satisfies 
~Tx = a, then x also satisfies bXx =/3. If  we can prove that d = pb for some p > 0, 
then we can conclude that dVx ~ a is equivalent to bTx ~</3, i.e., aVx <~ a defines a 

facet o f  Pc (G) .  

(a) First we will show that, for u ~ V(Ea),  b,,~, = 0. To prove this apply lemma 
(2.5) with S : =  ( W \ { v } ) • { v 2 } ,  p : =  vl, q :=  u. 

Since aXx <~ a defines a facet of  Pc(G) ,  there are m = [El cuts ~ ( U, ) . . . .  , 6  ( U,, ) 

E whose incidence vectors are affinely independent  and satisfy aVx ~c '~= a, i=  
1 , . . . , m .  Set 

:=~  U~, i f v ~  Ui, 

U~ [ ( U , \ { v } ) ~ l v , , v 2 } ,  i f v e U i .  

Since 5X x~U;)= a, then bVx a(c';l=/3, i =  1 , . . . ,  m. The vectors x ~(u;), i=  1 , . . . ,  m 

are affinely independent ,  thus we can conclude that b,,w = p~i .... for uw ~ v~v2. Let 
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W' be ( W \ { v } ) w  {vl, v2}, and  W " =  W'\{v~}.  Since ~iTx ~(w')= aXx~(W")= a, we have 

that  

then 

hence 

b T xS( w') = b Tx,S( w") = fl, 

O= bTx B(w') bTx ~(W')= - b v , ~ , . - b ( F ) ,  

b . . . .  = - b ( F ) = - p a ( F ) = p a  . . . .  . 

bTx ~ fl is va l id ,  thus p > 0. 

(b) By a s sumpt ion  BTx~< ~ defines a facet o f  P c ( G ) ,  so there are m := [E'I edge 

sets 6 (U ' l ) ,  �9 �9 �9 6 ( U ' , )  whose  inc idence  vectors are  affinely i n d e p e n d e n t  and satisfy 

~TxS(V"I= 5, i =  I , . . . ,  m. We may assume that  N~_ V' is the set of  ne ighbors  of  vl 

in (V' ,  E~) different  f rom v2, and  that  k : = ] N ] .  

Now let M be the ( m , m ) - m a t r i x  whose  rows are the inc idence  vectors 

x ~ v i ~ ' , . . . ,  x ~(v,;). We may assume that the last k +  I co lumns  co r re spond  to the 

edges v li, i ~ N and vj v2. Moreover ,  we assume that  the set 6( U ' ~ ) , . . . ,  3 (U',,,) are 

ordered  in such a way that  only  the sets 6( U ' , ) , . . . ,  6(U' , )  conta in  the edge v.v2, 

and that  v2~ UI, i =  I , . . . ,  m. 

Note that  the a s sumpt ions  of  the theorem imply  that  if  U~ does  not  conta in  v~ 

then it necessar i ly  conta ins  all nodes  i~  N ;  otherwise ,  U " =  U'~ w {v,} would  define 

a cut 6 (U" )  such that  ~Tx~(U')> a. Thus,  our  matr ix  M looks as follows: 

m - t - k  t - 1  k 1 

M1 Me M3 

M4 M5 M6 

1 
r 

1 

0 lm_r 
O '  

where M3 conta ins  only ones and co lumns  s, m -  k -  t < s < m -  k, co r r e spond  to 

edges in 6 ( v l ) \ E "  and  v2u c E'  for which ti~,u > 0. N o w  we t ransform the sets U'~ c V' 

into sets U~ c V, i = 1 . . . . .  rn as follows. 

u,  = ( u ~ \ { v , ,  v2}) ~ {v}. 

This t r ans fo rma t ion  co r re sponds  to cont rac t ing  the edge vtv2. It fol lows from our  

remarks  above  that  a r x  '~(u,) = a for i = 1 , . . . ,  m. I f A  is the (m, m - l ) - m a t r i x  whose  
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rows are the  inc idence  vectors x ~(U,) i = 1 , . . . ,  m, then A looks as fol lows:  

163 

A1 A~ [ 
A3 A~ 

where  

AL = MI, A 3  = M4, A4 = M6, 

and A2 con ta ins  zeros  only.  

To ob ta in  A we can pe r fo rm the fo l lowing opera t ions  on M. Subtract  the  last 

co lumn f rom the co lumns  m - k , . . . ,  m - 1. Then delete  the last co lumn and columns 

s such that  m - k - t < s < m - k. It is c lear  that  the rows o f  this matr ix  have affine 

rank  m -  t, and  our  p r o o f  is complete .  []  

Theorem 2.7 (Rep lac ing  a node  by a t r iangle) .  Let G = ( V, E) be a graph and arx  <~ a 

be a facet-defining inequality for P c ( G ) .  Let v be a node in V(E~) such that ae >!0 

jo t  each e c  6(v). Let F~, F2, F 3 be a partition of  ~5(v) and assume that there exist 

W1, W2, W3c_ V such that a-rxa(W,)=a and F i c E ( W i )  for i = 1 ,  2, 3. (W/ may 

coincide with W i for i # j.) Construct a new graph G' = ( V', E') from G as .follows. 
Replace v by v~, v2, v3 such that v~ is incident to all edges contained in F/, i = 1, 2, 3. 

Add edges vlv2, vlv3 and v2v3, in addition any further edge viu, i= 1, 2, 3, with 
u ~ V(E~) may be added. The other parts of  G remain unchanged. Set 

aq := aq 

a~2iU ~ atl u 

- a (  FO - a( F2) + a(F3)  
dv ~ '22 : ~ 2 ' 

at,, ~,~ :-- - a (  F,) - a( F3) + a( F2) 
2 

- a (  F2) - a( FO + a( Fi) 

av2,,, := 2 ' 

aij  := O, 

then aV x ~ #e defines a facet q f  Pc( G'). 

for  all qcE,~ \6(v ) ,  

for all viu c E' with viu c G,  i = 1, 2, 3, 

o therwise ,  

[ ]  

The p r o o f  o f  this theorem is ana logous  to the p r o o f  of  Theorem 2.6(a). We leave 

it to the reader .  

To i l lus t ra te  these cons t ruc t ions  we will give some examples  of  facet -def in ing 

inequal i t i es  o f  P c ( G )  that  are not  val id  for  Pu(G). 
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Let G = ( V ,  E) be the complete graph K7, then X(E)<~12 defines a facet of  
Pc(G) ,  by Theorem 2.1. Choosing F = {71, 72, 73} we split the node 7 into vl and 
v2 and we obtain a graph G ' = ( V ' ,  E') (cf. Figure 2.1). 

vi 

I ) 
Fig. 2.1. 

The inequality 

x(E'\{vlv2}) - 3 x ( v ,  v2) <~ 12 

defines a facet of Pc(G).  
By splitting some nodes of a bicycle 5-wheel as it is shown in Figure 2.2, we 

obtain the graph of Figure 2.3. 

Fig. 2.2. 

Fig. 2.3. 
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Let G = (V, E) be this graph and E ' =  { e ~ , . . . ,  es}; then the inequality 

x ( E \ E ' ) -  2x(E ' )  ~ < 10 

defines a facet of  Pc(G) .  

Let G = (V, E) be the complete graph KT. Replacing the node 7 by a triangle we 
can obtain the graph G ' =  (V', E ' )  in Figure 2.4. 

i 
Fig. 2.4. 

Since x ( E )  <~ 12 defines a facet of  Pc(G) ,  by Theorem 2.7, the inequality 

x ( E ' \ { v t v 2 ,  v2v3, v, v3})-x({v~v2, v2v3, v,v3})<-- 12 

defines a facet of  Pc(G') .  

The third method for obtaining "facets from facets" is the following. 

Theorem 2.8 (Changing the signs of  a star). Let G = ( V, E)  be a graph and aVx <~ a 

be a facet-defining inequality for  Pc'(G). For any v ~ V the inequality 

- ,.v aex ( e )+  Y a e x ( e ) < ~ a - a ( 8 ( v ) )  (2.8) 
eeli(v) e~8(v)  

defines a facet  for  Pc'(O). 

Proof. Let us denote inequality (2.8) by t/Zx ~< ~. This is valid for Pc(G);  otherwise, 
there exists U c V with v E U such that 

dTx~C U) > ~. 

But this implies that, for U ' =  U\{v}, 

aTxS(c,) > o~. 

Since aTx<~a defines a facet, there are m =]E] sets Ui, i =  1 , . . . ,  m, such that 
aT~(f(U _ , . . . ,X'SfU ) 

. ' - -ce ,  v e U i ,  i ~ l , . . . , m ,  and the vectors x ~lU,; " are affinely 
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independent .  Set U'i = U~\{v}; then 

xa~U;)(e)=~x~(U,)(e), if e ~ 8 ( v ) ,  

[ l - x a ( t 4 ~ ( e ) ,  i f e e S ( v ) .  

Thus the vectors x a( u ; ) , . . . ,  x a(U;,) are affinely independent  and satisfy CSTX <~ 8 with 

equality. []  

Theorems  2.6 and 2.8 can be combined  to give new procedures  of  construct ion 
of facet-defining inequalities. The following corollaries illustrate this fact. 

Corollary 2.9. Let G = ( V, E)  be a graph and arx  <~ a be a facet-defining inequality 

for  Pc(G) .  Let W c V, and set 

a o : = a  q f o r i j ~ E k 6 ( W ) ,  

~io:= -a~; for O'c 8 ( W ) ,  

~ = ~ - a ( a ( w ) ) ;  

then a*x<~ 6~ defines a facet  o f  Pc(G) .  

Proof. Using Theorem 2.8 we change the signs of  the coefficients associated with 
6(v)  for each v e  W. []  

Corol lary 2.10. (a) (Subdivision of  an edge) Let G = ( V, E)  be a graph and a Vx ~ oe 

be a face t -de fn ing  inequality .for Pc (G) .  Let i jc  E be an edge with a**#O. Let 

G ' =  (V' ,  E ' )  be a graph obtained from G in the following way. Nodes i , , . . . ,  i k a re  

added. The edge set P =  ii,, ili2, . . . , i k_ l ik ,  ik j  is added. Any  further edge ilu with 

u ~ V( E~) may be added. The edge ij is removed. Let P+, P define a partition o f  P 

with [P+] odd i f  ao>O , and [P-] even i f  aij<O. Let a 6 ~  E' be defined as follows 

Then 

d,,o = a,,~ for all uv r E c~ E ' ,  

d,,~ = aq for all uv r P+, 

&,,, = - a i j  for  all uv e P ,  

du~ = 0 otherwise.  

~Tx<<-a+(lP+]-- l )aq if a o > O  , 

EtTx<~a--]P-laij  if a q < O ,  

defnes  a face t  o f  Vc( G').  
(b) (Replac ing a pa th  by an edge) Let G'  = ( V', E ' )  be a graph and aVx ~ d be a 

facet -defning inequality for  Pc (G ' ) .  Let Ea be the support o f  aVx<~ & Suppose that 
Ea contains a path P = {ill, ifi3,. . . ,  i~j} such that 

(i) ir has degree two in Ea, for  l = 1 , . . . ,  k. 

(ii) ij ~ Ea. 
(iii) &., -- a'  for  uv ~ P+ c_ p, &,,., = - a '  for  uv c P -  = P \ P + .  with IV+l odd i f  a ' >  0 

and ]P-t even / f a ' < 0 .  
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Let G = (V, E )  be the graph obtained f rom G'  by removing the nodes i~ , . . . , ik and 

adding the edge ij. Let a ~ R z be defined as follows: 

a,,L, = ~,~ for  all uv c E c~ E',  

aij = ot'. 

Then 

aTx~ ~ - ( I P + l - 1 ) a '  

a T x ~  O: +lP-[ce' 

defines a face t  o f  Pc(G) .  [] 

i f  or'> O, 

i f a ' < O ,  

Proof. (a) If  aij > 0 we apply Theorem 2.6(a) and Theorem 2.8 repeatedly. If  a o < 0 
we first change the signs of  6(i)  using Theorem 2.8, then we apply Theorem 2.6(a) 
and Theorem 2.8, and finally we change the signs of  6(i)  again. 

(b) I f  a ' >  0 we apply Theorem 2.6(b) and Theorem 2.8 repeatedly. I f  a '  < 0 we 
first change the signs of  6(i)  by Theorem 2.8, then we apply Theorem 2.6(b) and 
Theorem 2.8, and we change the signs of 6(i) again. [J 

Let IAJ denote ( l \ J ) w  ( J \ l ) ,  the symmetric difference of I and J. Note that if 
I and J are cuts then IAJ is a cut. 

Corollary 2.11. For any pair o f  cuts, C and 19, there is a one-to-one correspondence 

between the facets  adjacent to x c and to x ~ 

Proof. Let ax<~a be a facet-defining inequality such that ax c =  c~. I f  we apply 

Corollary 2.9 with 6(W) = CAD, we obtain a facet-defining inequality bx <~ fl, such 
that bx ~  ~. [] 

Let us define 

C O N E ( P c ( G ) )  = { y l y = A x ,  x ~  Pc(G) ,  A oR+}. 

I f  P c ( G ) = { x l A x > ~ b ,  Ex>~O}, b < 0 ,  then C O N E ( P c ( G ) ) = { x l E x > ~ O } .  

Corollary 2.11 shows that a set of  inequalities defining Pc(G)  can be obtained 
from a set of  inequalities defining the facets adjacent to one extreme point of Pc(G) .  

Hence, getting a characterization of C O N E ( P c ( G ) )  is as hard as getting a charac- 
terization of Pc(G) .  

3. Facets associated with edges and cycles 

Given a graph G = (V, E),  an incidence vector x must verify the inequalities 

0<~x(e)~< 1 for e c  E. (3.1) 
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Moreover, if x is an incidence vector of  a cut, then for each cycle C, x ( C )  is an 
even number. These conditions imply the inequalities 

x(  F ) -  x(  C \  F) <~ IF] -  I for each cycle (2, F c C , [ F  Iodd.  (3.2) 

In what follows we shall study when the above inequalities define facets of Pc(G).  

Theorem 3.3. Inequality (3.2) defines a facet  o f  P c ( G )  if  and only (['C is a chordless 

cycle. 

ProoL If  C is a chordless cycle, inequality (3.2) can be obtained from an inequality 
associated with a triangle (Theorem 2.1), by applying Theorems 2.6 and 2.8 

repeatedly as in Corollary 2.10. 
If C = { vl v2, v2v3 . . . . .  vkvl} has a chord, say vt v~, it is easy to see that an inequality 

(3.2) associated with C can be obtained by summing inequalities (3.2) associated 
to Cl = {vlv2, v=v3, . . . , vl_~vl, vtvl} and C= = {v~vl . . . .  , vk irk, VkV~}. This completes 
our proof. [] 

Theorem 3.4. Inequality (3.1) defines a facet i f  and only i f  e does not belong to a triangle. 

Proof. Let us suppose that e does not belong to a triangle and let us study the 

inequality 

x(e)>-O. (3.5) 

Let us assume that there is a facet-defining inequality bZx >1 ~ such that 

S = { x e  P c ( a ) l x ( e )  =0}_c {xe Pc(G)I  bmx = t3}. 

S is the cut polytope of the graph G '  obtained by contracting e. Since e does not 
belong to a triangle, then G'  does not contain multiple edges and thus Pc(G)  is 
full dimensional. We can conclude that b I = 0 f o r f e  E\{e} .  The inequality bmx >i 

is valid; hence be > 0. Now we can conclude that 

x(e)~< 1 

defines a facet by applying Theorem 2.8 to inequality (3.5). This completes the first 

part of the proof. 
Let us suppose that e belongs to a triangle, say {e,f,  g}. By Theorem 3.3 we have 

the following facet-defining inequalities. 

x(  e) + x ( f )  + x ( g )  ~< 2, (3.6) 

x(  e) - x ( f )  - x ( g )  <~ O, (3.7) 

- x ( e )  + x ( f )  - x ( g )  <~ O, (3.8) 

- x (  e) - x ( f )  + x ( g )  <~ O. (3.9) 

Summing (3.6) and (3.7) we obtain 

2x(e)<~2, 
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and (3.8) plus (3.9) gives 

2x(e) ~>0. 

Hence, in this case (3.1) does not define a facet. [] 
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Grhtschel, Lov~isz and Schrijver [5] have shown that there exists a polynomially 
bounded algorithm for a linear optimization problem over a polyhedron if and only 
if there is a polynomially bounded algorithm for the associated separation problem: 
given a point x, either verify that it belongs to the polyhedron or else find a hyperplane 
that separates it from the polyhedron. 

The knowledge of an efficient method to solve the separation problem gives an 
answer to some theoretical and practical questions. It proves that a problem is 
polynomially solvable, and it permits the design of linear programming based cutting 
plane algorithms. 

In what follows we shall give a polynomial algorithm to solve the separation 
problem for inequalities (3.2). Let us write these inequalities as 

x(e )+ ~ ( 1 - x ( e ) ) ~ > l  f o r a c y c l e C ,  Fc_C, ]Flodd. 
e e C \ F  e e F  

Given x, we are looking for a minimum weighted cycle, where some edges have the 
weight x( .  ), and an odd number of edges have weight 1 - x( .  ). 

From the given graph G we form a new graph G' with two nodes i' and i", for 
every node i of G. For every edge ij of G we put edges i 'j '  and i"j" with weight 
x(ij) ,  and edges i'j" and i"j' with weight 1 -x ( ! ] ) .  Now, for node i of G we find a 
shortest path from i' to i". The minimum over the nodes of the lengths of the 
corresponding shortest path is the weight of the required cycle. As the computation 
of a shortest path takes O(n 2) calculations, this procedure has a time complexity 
of O(n3). 

The existence of a good algorithm for the separation problem associated with 
inequalities (3.1) and (3.2) leads us to ask which are the graphs such that these 
inequalities suffice to define Pc(G). In what follows we shall see that those are the 
graphs not contractible to Ks. 

Corollary 2.11 implies that Pc(G)  is defined by the inequalities associated to 
cycles and to edges if and only if CONE(Pc(G) )  is defined by: 

x ( f ) < ~ x ( C \ { f } ) ,  C a cycle, . fc  C, 

x(e)>~O, e c E .  

This is called the "sum of circuits" property by Seymour 1-9]. Actually, he proved 
that the "sum of circuits" property holds if and only if G is not contractible to Ks. 

We can state the following: 

Corollary 3.10. A graph G is not contractible to K5 if and only if Pc(G) is defined by: 

0 <-x(e)<~ 1, for each edge e that does not belong to a triangle, 

x( F ) -  x( C \  F) <~ IFI - 1  , for each chordless cycle C, F ~ C, IFI odd. 
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4. Adjacency in P c ( G )  

In this section we will give a simple characterization of  adjacency in Pc(G) ,  and 

we will derive a bound  for the diameter o f  Pc(G) .  

Theorem 4.1. Le t  G = ( V, E) ,  be a graph. Let  x ~, x j be ex t reme  points  o f  P c ( G ) ;  let 

I, J be the corresponding cuts. Le t  F = E \ (  IzIJ) .  Then x I and  x J are adjacent  in P c ( G )  

i f  and onb, i f  H = ( V, F )  has two connected components .  

Proof. We shall use the fact that x ~ and x j are adjacent in P c ( G )  if and only if 

there is a vector c =  (c~: e c  E) such that x ~ and x J are the only two extreme points 
that maximize cx over Pc(G) .  

(i) Let us suppose that G~ = ( V~, E~), i = 1, 2 are the connected components  o f  
H. Let T~ be a spanning tree o f  G~, i = 1, 2. Set 

Then 

C e -~ 

1 i f e c T ~ c ~ ( l c ~ J ) ,  i = 1 , 2 ,  

- 1  i f  e e  T~ \ ( l  c~J) ,  i = 1 , 2 ,  

0 otherwise. 

c x ~  T ~ r ~ ( l  c ~ J ) l + l T 2 c ~ ( I  ~ J ) l  

for all x~  Pc(G) .  The equality holds for an extreme point  x if and only if x = x  ~ 
o r  x = x  J. 

(ii) Let us suppose that G~ = ( V~, Ei), i = 1 , . . . ,  k, k I> 3, are the connected com- 

ponents  of  H. Assume that there is a vector c with the desired properties. Setting 

a ( e ) = ~ l - x ( e ) I ,  i f e c 6 ( V l ) ,  

L x (  e ) I, otherwise, 

~ l - x ( e )  J, i f e ~ 6 ( V 1 ) ,  

b ( e )  = L x ( e ) j  ' otherwise, 

a and b belong to Pc ' (G) ,  and a + b = x t + x j, so cx I + cx J = ca + cb. Consequent ly ,  

max{ca, c b } ~  cx ~ = cx J, which is a contradict ion as both a and b are extreme points 

o f  P c ( G ) .  This completes the proof.  []  

The graph of  a po lyhedron  is the graph whose nodes correspond to the extreme 

points o f  this po lyhedron  and that has an edge joining each pair of  nodes for which 

the corresponding extreme points are adjacent. 

Given two cuts I and J, let i and j be the corresponding nodes o f  the graph of  

Pc(G) .  The distance from I to J, d ( l ,  J )  is the number  of  edges in the shortest path 
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from i to j. The diameter of  Pc(G)  is 

max{d(/ ,  J ) : / ,  J are cuts of G}. 

Theorem 4.1 implies the following: 
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Corollary 4.2. I f  G is.a complete graph, then Pc(G)  has diameter one. [] 

I f  G is connected and C is a cut, let us define T(C) as the graph obtained by 
contracting edges not in C and replacing multiple edges by single edges. Let re(C) 
be the number  of  edges of  T(C). 

Theorem 4.3. I f  I and J are cuts of G, then 

d(l ,J)<~m(IAJ).  

Proof. Let P be a minimal cut included in IAJ. 
Set L = lAP. L is a cut and x L is adjacent to x ~. Furthermore, m(LAJ) < m(IAJ), 

and the theorem follows by induction on m(IAJ). [] 

The bound in Theorem 4.3 may be realized. For instance, if G = (V, E) is the 
graph K~.p, I =(3 and J = E, then d(l, J) =p. 

Corollary 4.4. The diameter of Pc(G) is at most 

max{re(C):  C is a cut}. [] 

Again, the graph K1, p shows that the bound of the corollary may be realized. 
A d-dimensional polyhedron P with k facets has the Hirsch property if the 

diameter  of  P is at most k - d .  

Theorem 4.5. Pc(G) has the Hirsch property. 

Proof. Pc(G) has dimension IE]. Let us partition E into E~ and 172, where El 
contains the edges that belong to a triangle. Let T ~ , . . . ,  Tr be the triangles of G. 

By Theorems 3.3 and 3.4, Pc (G)  has at least 4r+2[E2] facets. Since r>~[El[/3, 
4r + 21E21- [El t> IEd/3+IE2I. 

On the other hand, if C is a cut 

re(C)  ~ lEvi/3 + IE21, 

and our proof  is complete. [] 
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5. Signed graphs 
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A signed graph is a graph G =  (V, E) where E is partitioned into E and E+. 
Elements of  E_ (E~) are called negative (positive). For instance, if this structure 
represents a social group, we can think of positive and negative relationships between 
the members of  the group. 

A signed graph is called balanced if there exists U _c V such that E_ = 8(U) .  A 
graph is balanced if and only if each of its cycles includes an even number  of  
negative edges (cf. Harary [8]). 

A balancing set is an edge set So_ E such that when the signs of the elements of  
S are changed the resulting graph is balanced. 

It is easy to see that S is a balancing set if and only if there exists U c V, such 
t h a t S ~ E + = S c ~ 8 ( U ) = E , ~ 8 ( U ) a n d S ~ E  = S m( E\fi( U))= E_c~( E\8( U)). 
Then y is the incidence vector of a balancing set if and only if there exists an 
incidence vector of a cut x, such that 

Ix(e) i f e e  E . ,  (5.1) 
Y(e)=[1-x(e)  i fe~E_.  

Thus, a minimum weighted balancing set can be found by solving a minimum 
(maximum) cut problem. 

Let us call PBs(G) the convex hull of incidence vectors of balancing sets of  a 
signed graph G. Facet-defining inequalities of Pros(G) can be obtained from facet- 
defining inequalities of Pc(G) by using relation (5.1). In particular, Theorem 3.5 
can be stated as 

Remark 5.2. A signed graph G is not contractible to K5 if and only if PBs(G) is 
defined by 

x ( C \ F ) - x ( F ) ~  > 1 -]F],  for each chordless cycle C, Fc_ C, 

IC c~ E_l+lF[ odd, 

0 <-x(e) <~ 1, for each edge e that does not belong to a triangle. 

Again relation (5.1) enables us to translate adjacency results in Pc(G) into 
adjacency results in P~s(G). For instance, Corollary 4.2 gives us 

Remark 5.3. If  G is a complete signed graph, then Pl~s(G) has diameter one. 
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