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The cut polytope P-(G) of a graph G =(V, E) is the convex hull of the incidence vectors of
all edge sets of cuts of G. We show some classes of facet-defining inequalities of P-(G). We
describe three methods with which new facet-defining inequalities of Po(G) can be constructed
from known ones. In particular, we show that inequalities associated with chordless cycles define
facets of this polytope; moreover, for these inequalities a polynomial algorithm to solve the
separation problem is presented. We characterize the facet defining inequalities of P.(G) if G is
not contractible to K. We give a simple characterization of adjacency in P.(G) and prove that
for complete graphs this polytope has diameter one and that P.(G) has the Hirsch property. A
relationship between P.(G) and the convex hull of incidence vectors of balancing edge sets of
a signed graph is studied.
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1. Introduction and notation

The graphs we consider are finite, undirected, and without multiple edges. We
denote a graph by G =(V, E), where V is the node set and E the edge set of G.
Given U< V we denote by 8(U) the set of edges with exactly one extremity in U,
and we call this set a cut.

If Fc E the incidence vector of F, x* is defined by

xF(e):{l ifec F,

0 ifecE\F
We denote by Pc(G) the convex hull of incidence vectors of cuts of G. Po(G) is
called the cut polytope of G.
We shall study the facial structure of Pc(G). Our aim is to solve the following
discrete quadratic problem
n—1 n
min H = Z Z J,ij,«Sj

i=1 j=it1

(1.1)

subjectto s;e{-1,1} fori=1,...,n

* The research of this author was performed at the Institut fur Operations Research, Universitit Bonn,
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This problem arises in statistical physics [1] and can be reduced to a maximum cut
problem as follows.
Let us define a graph G =(V, E), where

V={l,...,n} and ijeE ifandonlyif J;#0,

the weight J; is associated to the edge ij. Given a cut C the weight of C'is Y.~ J;.

It is easy to see that problem (1.1) is equivalent to the problem of finding a
maximum cut in G, cf. [1].

The problem of finding a maximum bipartite subgraph has been studied in [3],
and if the weights are non-negative this is equivalent to the maximum cut problem.
For general weights this is not true; thus we shall study the cut polytope here.

We shall characterize a class of facet-defining inequalities of P-(G) where the
separation problem can be solved in polynomial time. Therefore, we can optimize
a linear function in polynomial time over the polytope defined by these inequalities.
This is a way of getting lower bounds for quadratic discrete programming.

The maximum cut problem is NP-hard [4] for general graphs and is polynomially
solvable for graphs with no long odd cycles [6], planar graphs [7], and graphs not
contractible to K [2].

We shall characterize P-{G) for graphs not contractible to K, we shall study
adjacency in Po(G), and we shall use these results to study the polytope of balancing
edges of a signed graph.

If G=(V, E) is a graph, the cardinality of V is called the order of G. If e€ E is
an edge with endnodes i and j, we also write ij to denote the edge e. If H =(W, F)
is a graph with W< V and Fc E, then H is called a subgraph of G.

If G=(V, E)isagraph and F < E, then V(F) denotes the set of nodes of V that
occur at least once as an endnode of an edge in F. Similarly, for W< V, E(W)
denotes the set of all edges of G with both endnodes in W.

A graph G is called complete if every two different nodes of G are linked by an
edge. The complete graph with n nodes is denoted by K,,. A graph is called bipartite
if its node set can be partitioned into two nonempty, disjoint sets V, and V, such
that no two nodes in V| and no two nodes in V, are linked by an edge. We call V,,
V, a bipartition of V. If |V||=p, |V,|=q and G is a maximal bipartite graph, it is
denoted by K, ,. If Wc V, then §(W) is the set of edges with one endnode in W
and the other in V\ W. The edge set §( W) is called a cut. We write 8(v) instead of
8({v}) for ve V and call §(v) the star of v

If U, W are disjoint subsets of V, then [U: W] denotes the set of edges of G
that have one endnode in U and the other endnode in W. We write [u: W] instead
of [{u}: W] forueV.

A path P in G=(V, E) is a sequence of edges e, e,, ..., e such that e, =v,v,,
€;=10,0,,..., € = U;_, U and such that v; # v, for i+ j. The nodes v, and v, are the
endnodes of P and we say that P links v, and v, or goes from v, to v,. If P=¢,,
e,,...,e is a path linking v, and v, and e.,, = vyu, € E, then the sequence e,,
e,..., e, e is called a cycle.
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If Pis acycle and uv an edge of E\P with u, ve V(P), then uv is called a chord
of P. A cycle with three edges is called a triangle.

If v is a node of a graph G, then G\v denotes the subgraph of G obtained by
removing node v and all edges incident to v from G.

A graph G is contractible to G’ if G’ can be obtained from G by a sequence of
elementary contractions, in which a pair of adjacent vertices is identified and all
other adjacencies between vertices are preserved (multiple edges arising from the
identification being replaced by single edges).

A polyhedron P<=R™ is the intersection of finitely many halfspaces in R™. A
polytope is a bounded polyhedron or equivalently the convex hull of finitely many
points. The dimension of a polyhedron P, denoted by dim P, is the maximum number
of affinely independent points in P minus one.

If ae R™\{0}, a,€R, then the inequality a'x < a, is said to be valid with respect
to a polyhedron P<R™ if Pc{xeR"|a'x<a,}. We say that a valid inequality
a'x=<a, supports P or defines a face of P if §# Pr{x|a"x=a,}# P. A valid
inequality a'x = a, defines a facet of P if it defines a face of P and if there exist
dim P affinely independent points in P~ {a'x = a,}.

If P R™ is a full dimensional polyhedron, i.e., dim P = m, a linear system Ax<b
that defines P is minimal if and only if there is a bijection between the inequalities
of the system and the facets of P. Moreover, these facet-defining inequalities are
unique up to positive multiples.

Given b: E~>R, and F < E, b(F) will denote }__ b(e). The support of b, E, will
be E,={e|b(e)#0}.

The bipartite subgraph polytope Pgs(G) is the convex hull of incidence vectors
of bipartite subgraphs of G. It is clear that P~(G) < Pg(G), but in general P-(G) #
Py(G).

Barahona, Grotschel and Mahjoub [3] show that P.(G) is full dimensional;
moreover, some of the facet-defining inequalities of Py(G) studied by them are also
facet-defining inequalities of P-(G).

If x is a real number, then [x] resp. | x| denotes the smallest resp. largest integer
not smaller resp. larger than x.

2. Construction of facets

First, we will state three theorems that characterize some facet-defining inequalities
of P.(G). We will omit the proofs because they are analogous to those that appear
in [3].

Theorem 2.1. Let G=(V, E) be a graph and let (W, F) be a complete subgraph of
order p=3 of G. Then

x(F)< [é’] B] (2.2)
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is a valid inequality with respect to Po(G). Furthermore, (2.2) defines a facet of P-(G)
ifand only if p is odd. O

A graph is called a bicycle p-wheel if G consists of a cycle of length p and two
nodes that are adjacent to each other and to every node in the cycle.

Theorem 2.3. Let G=(V, E) be a graph and let (W, F) be a bicycle (2k +1)-wheel,
k=1, contained in G. Then the inequality

x(F)=s2(2k+1)
defines a facet of P-(G). U

Theorem 2.4. Let H=(W, F) be a complete subgraph of order q where W=
{1,2,...,q}. Let positive integers t, (1<i<gq) satisfy Y!_ ,=2k+1, k=3 and
Yoo isk—1. Set

{titja 1SI<J$Qs
a; = ..
03 {laj}¢ W‘
Then

a'x<a=kk+1)

defines a facet of Po(G).
To simplify technical details in subsequent proofs, we first state a lemma.

Lemma 2.5. Let b"x < 8 be a valid inequality with respect to Po(G). Given adjacent
nodes p and q, let S be a proper subset of V\{p, q} and T=V\(Su{p, q}). Suppose
that the incidence vectors of the edge sets 6(8), 8(T), 8(Su{p}), 8(Suiq}l) satisfy
b x < with equality. Then

by, =0.

Proof. 0=8-B=b"x*T—p"x? P =p([q: T])-b([q:S])-b,;, and 0=
B-B=b"x"®—p x> =p([q:8])-b([q: T]) — b,,. Thus, summing the two
equations we obtain

~2b,,=0. O

Now we shall describe three methods to construct “facets from facets.”

Theorem 2.6. (a) (Node splitting) Let G=(V, E) be a graph and a'x<a be a
facet-defining inequality for Pc(G). Let E, be the support of a, and let v be a node in
V(E,). Let W be a subset of V(E,) such that a"x*®’ = « and assume that ve W.
Choose any nonempty subset F < §(v) n E( W) such that a,> 0 for e € F, and construct
a new graph G'=(V', E') from G as follows. Split node v into two nodes v,, v, such
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that v, is incident to all edges contained in F and v, is incident to all edges in §(v)\ F.
The edge v v, is added; in addition, any further edges v,u with ug V(E,) may be
added. The other parts of G remain unchanged. Set

a;; = a; Sor all ijje E\&(v),

Ay = Ay for all vjue E’ with vue F,

Ay = Aou for all v,ue E' with vue (8(v) n E,\F,
a_ulvw a(F),

a;=0 otherwise,

&= o,

s

then @"x < a defines a facet of P.(G').

(b) (Contraction of an edge) Let G'=(V', E') be a graph and a'x=< @& be an
inequality defining a facet of P-(G'). Suppose that v,v,€ E;, that v, and v, have no
common neighbor in (V', E;), that a,, >0 for v,ue 8(v,)\{v,v,} and that -a,,,,=
a(s(v)\{v,v,}) = a(8(v,)\{v,0,}). Let G=(V, E) be the graph obtained from G' by
removing the nodes v,, v, and adding a new node v and the edges {vu|d, > 0}u
{vu|v,ue E'}. Set

Ay = Ay for all uwve EnE’,

Ay = Ay ifa, >0,

A= yyu if vue E"unless a,, >0,
a=a,

then a'x < « defines a facet of P-(G).

Proof. The validity of the new inequalities defined in (a) and (b) follows by
elementary construction. Then, let us assume that there is a facet-defining inequality
b"x<p for P-(G) that has the following property. If a vector x € P-(G) satisfies
a'x = a, then x also satisfies b"x = 8. If we can prove that @ = pb for some p >0,
then we can conclude that @a'x < « is equivalent to b'x< B, i.e., a'x < a defines a
facet of P.(G).

(a) First we will show that, for ug V(E;), b,,, =0. To prove this apply lemma
(2.5) with S:==(W\{oh)u{wv.}, p=v,, g=u

Since a"x < « defines a facet of P.(G), there are m = |E| cuts 8(U,), ..., 8(U,,) <
E whose incidence vectors are affinely independent and satisfy a'x* %' =q, i=
1,...,m Set

,._{Ui ifog U,
Tl UNDY) Uiy, v, if e U

Since @' x*Y?=gq, then b"x*"? =8, i=1,..., m. The vectors x*V? i=1,..., m
are affinely independent, thus we can conclude that b,, = pa,., for uw # v,v,. Let
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W be (W\{v}) U {v;, v}, and W’= W'\{v,}. Since a"x*"? = a"x*"" = a, we have
that

HTxXP W) = pTxo W g
then

0=b"x*""'—p"x*"'=—b, —b(F),
hence

Buyr = —b(F) = —pa(F) = pa.,.

b"x =< B is valid, thus p>0.

(b) By assumption a'x < @ defines a facet of Po(G), so there are m=|E'| edge
sets 8( UL, ..., 8(UL,) whose incidence vectors are affinely independent and satisfy
a'x®Y?=ga i=1,..., m. We may assume that N < V' is the set of neighbors of v,
in (V', E,) different from v,, and that k:=|N|.

Now let M be the (m, m)-matrix whose rows are the incidence vectors
xP0 0 x® s We may assume that the last k+1 columns correspond to the
edges v,i, ie N and v,v,. Moreover, we assume that the set 6(U"),..., 8(U},) are
ordered in such a way that only the sets 6(U1),..., 8(U;) contain the edge v,v,,
and that v,e U, i=1,...,m

Note that the assumptions of the theorem imply that if U] does not contain v,
then it necessarily contains all nodes i € N; otherwise, U"= Uju{v,} would define

a cut 8{U") such that a'x*""?> a. Thus, our matrix M looks as follows:

m—t—k 1—1 k 1

—_————— A~

1

Ml Mz M3 1

M, M, | M, | o0
m-—r
0

where M, contains only ones and columns s, m —k—t<s<m -k, correspond to
edges in 8(v,)\ E; and v,u € E' for which a,, > 0. Now we transform the sets Ui < V'
into sets U, c V, i=1,..., m as follows.

U, =(U\ oy, va})u{v}.

This transformation corresponds to contracting the edge v,v,. It follows from our
remarks above that a"x*“) = fori=1,..., m. If Ais the (m, m — 1)-matrix whose
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8(U) 1

rows are the incidence vectors x ,...,m, then A looks as follows:

A, | A,

A, | A,

where
A =M, As;=M,, A, =M,

and A, contains zeros only.

To obtain A we can perform the following operations on M. Subtract the last
column from the columns m —k, ..., m — 1. Then delete the last column and columns
s such that m —k—1<s<m—k. It is clear that the rows of this matrix have affine
rank m —t, and our proof is complete. [J

Theorem 2.7 (Replacing a node by a triangle). Let G=(V, E) beagraphanda”x < «
be a facet-defining inequality for P.(G). Let v be a node in V(E,) such that a,=0
for each ec §(v). Let F,, F,, F; be a partition of §(v) and assume that there exist
W,, W,, Wic V such that a"x*"’=a and F.c E(W,) for i=1, 2, 3. (W, may
coincide with W, for i # j.) Construct a new graph G'=(V', E') from G as follows.
Replace v by vy, vy, vy such that v; is incident to all edges contained in F;, i=1, 2, 3.
Add edges v,v,, v,v, and v,vy, in addition any further edge vu, i=1, 2, 3, with
u¢ V(E,) may be added. The other parts of G remain unchanged. Set

a;=a; for all ije E,\8(v),
Ty = Ay for all vue E' with vueF, i=1,2,3,
_—a(F)—a(FR)ta(F)
vy 2 >
. _~alF)-a(F)+a(F)
vy " 2 >
_—a(F) —a(F)+a(F)
vyt " 2 )
a;=0, otherwise,
a =,

then a'x < a defines a facet of P-(G'). (1

The proof of this theorem is analogous to the proof of Theorem 2.6(a). We leave
it to the reader.

To illustrate these constructions we will give some examples of facet-defining
inequalities of P-((G) that are not valid for Py(G).
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Let G={V, E) be the complete graph K;; then X{(E)=<12 defines a facet of
P(G), by Theorem 2.1. Choosing F={71, 72,73} we split the node 7 into v, and
v, and we obtain a graph G'=(V’, E') (cf. Figure 2.1).

Fig. 2.1.
The inequality
x(E"\{p,v2}) = 3x(v,0,) <12

defines a facet of Pc(G).
By splitting some nodes of a bicycle 5-wheel as it is shown in Figure 2.2, we
obtain the graph of Figure 2.3.

b0

Fig. 2.2.

Fig. 2.3.
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Let G=(V, E) be this graph and E’'={e,, ..., es}; then the inequality
x(E\E")-2x(E"Y=<10

defines a facet of P(G).
Let G=(V, E) be the complete graph K,. Replacing the node 7 by a triangle we
can obtain the graph G'=(V’, E') in Figure 2.4.

Fig. 2.4.

Since x(E) =12 defines a facet of P-(G}), by Theorem 2.7, the inequality

x(E"\{v,v,, 0,05, 0,03}) —x({0,0;, 1,05, V,13}) <12

defines a facet of P-(G').
The third method for obtaining “facets from facets” is the following.

Theorem 2.8 (Changing the signs of a star). Let G=(V, E) be a graph and a"'x< a
be a facet-defining inequality for Po(G). For any ve V the inequakity

- Y ax(e)+ Y ax(e)sa—a(s(v)) (2.8)

eed(v) eg8{v)

defines a facet for P-(G).

Proof. Let us denote inequality (2.8) by @"x < a. This is valid for Po(G); otherwise,
there exists U< V with ve U such that

deé(U)> a.

But this implies that, for U'= U\{v},

aTxé(U')> o
Since a"x < a defines a facet, there are m = |E| sets U;, i=1,..., m, such that

T 6 . J
a'x®%=a, velU, i=1,...,m, and the vectors x>V . . x*W) are affinely
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independent. Set U!= U,\{v}; then

U g) {XE(U‘)(e), if e 8(v),
x? V() = ,
1-x°YUle), ifeed(v).
Thus the vectors x* Y ... x®“+ are affinely independent and satisfy @"x < & with
equality. 0O

Theorems 2.6 and 2.8 can be combined to give new procedures of construction
of facet-defining inequalities. The following corollaries illustrate this fact.

Corollary 2.9. Let G=(V, E) be a graph and a"x < a be a facet-defining inequality
for P-(G). Let W< V, and set
= Ay for ije E\6(W),
i for ije (W),
a=a—a(8(W));
then a"x < & defines a facet of P-(G).

[N]

a; = _a;j

Proof. Using Theorem 2.8 we change the signs of the coefficients associated with
&(v) for each ve W. O

Corollary 2.10. (a) (Subdivision of an edge) Let G=(V, E) be a graph and a’x < «
be a facei-defining inequality for P-(G). Let ije E be an edge with a;#0. Let
G'=(V’, E') be a graph obtained from G in the following way. Nodes i,, ..., i are
added. The edge set P=ii,, i\is,..., 4 _ i, ij is added. Any further edge iu with
u ¢ V(E,) may be added. The edge ij is removed. Let P*, P~ define a partition of P
with |P*| odd if a;> 0, and |P”| even if a;<0. Let acR” be defined as follows

d,=a,, foralluwe EnE’,

Ay = a;; for all uve P”,
a,,=-—a; foralluveP",
a,,=0 otherwise.

Then
a'x<a+(|P|-1a; if a;>0,
a'x<a—|P|ay; if a; <0,

defines a facet of P-(G").

(b) (Replacing a path by an edge) Let G'= (V' E’) be a graph and a'x < d be a
facet-defining inequality for P-(G’). Let E; be the support of a'x < &. Suppose that
E; contains a path P ={ii, i»i5,..., iij} such that

(i) i, has degree two in E;, forl=1,..., k

(ii) ije E;.

(iii) d,=a'foruve P'c P, a,,=—a' foruve P~ =P\P*, with |P*| odd if a'> 0
and |P7| even if @' < 0.
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Let G=(V, E) be the graph obtained from G’ by removing the nodes i,, . . . , i, and
adding the edge ij. Let a € R® be defined as follows:

a,.,=4a,, foraluve EnE’,
a;=o'

Then
a'x<a—(|P*|-1)a’ ifa’>0,
a'x<a+|P|a’ ifa'<0,

defines a facet of Pc(G). O

Proof. (a) If a; >0 we apply Theorem 2.6(a) and Theorem 2.8 repeatedly. If a;; <0
we first change the signs of §(i) using Theorem 2.8, then we apply Theorem 2.6(a)
and Theorem 2.8, and finally we change the signs of §(i) again.

(b) If a’'>0 we apply Theorem 2.6(b) and Theorem 2.8 repeatedly. If a’'<0 we
first change the signs of 8(i) by Theorem 2.8, then we apply Theorem 2.6(b) and
Theorem 2.8, and we change the signs of (i) again. [

Let TAJ denote (I\J)u (J\1), the symmetric difference of I and J. Note that if
I and J are cuts then IAJ is a cut.

Corollary 2.11. For any pair of cuts, C and D, there is a one-to-one correspondence
between the facets adjacent to x¢ and to x®.

Proof. Let ax<a be a facet-defining inequality such that ax< = a. If we apply
Corollary 2.9 with 8§( W) = CAD, we obtain a facet-defining inequality bx < g, such
that bx®=8. O

Let us define

CONE(P-(G)y={y|y=Ax, xe Pc(G), A R, }.

If P(G)={x|Ax=b, Ex=0}, b<0, then CONE(P-(G))={x| Ex=0}.

Corollary 2.11 shows that a set of inequalities defining P-((G) can be obtained
from a set of inequalities defining the facets adjacent to one extreme point of P-(G).
Hence, getting a characterization of CONE(P-(G)) is as hard as getting a charac-
terization of P-(G).

3. Facets associated with edges and cycles

Given a graph G =(V, F), an incidence vector x must verify the inequalities

O0<x(e)<1 forecE. (3.1)
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Moreover, if x is an incidence vector of a cut, then for each cycle C, x(C) is an
even number. These conditions imply the inequalities
x(F)—x(C\F)<|F|—1 for each cycle C, F< C |F] odd. (3.2)

In what follows we shall study when the above inequalities define facets of Po(G).

Theorem 3.3. Inequality (3.2) defines a facet of P-(G) if and only if C is a chordless
cycle.

Proof. If C is a chordless cycle, inequality (3.2) can be obtained from an inequality
associated with a triangle (Theorem 2.1), by applying Theorems 2.6 and 2.8
repeatedly as in Corollary 2.10.

If C={v,v,, 1505, ..., vs0} has a chord, say v, v, it is easy to see that an inequality
(3.2) associated with C can be obtained by summing inequalities (3.2} associated
to C, ={v,0,, 0205, ..., v 0, vy and Co={vv,, ..., Ux_ Uk, U, }. This completes

our proof. O
Theorem 3.4. Inequality (3.1) defines a facet if and only if e does not belong to a triangle.

Proof. Let us suppose that e does not belong to a triangle and let us study the
inequality

x(e)=0. (3.5)
Let us assume that there is a facet-defining inequality b'x = 8 such that
S={xe Pc(G)|x(e)=0}c{xe P(G)|b"x=pB}.

S is the cut polytope of the graph G’ obtained by contracting e. Since e does not
belong to a triangle, then G’ does not contain multiple edges and thus P-(G) is
full dimensional. We can conclude that b, =0 for f € E\{e}. The inequality b'™x=8
is valid; hence b, > 0. Now we can conciude that

x(e)=1

defines a facet by applying Theorem 2.8 to inequality (3.5). This completes the first
part of the proof.

Let us suppose that e belongs to a triangle, say {e, f, g}. By Theorem 3.3 we have
the following facet-defining inequalities.

x(e)+x(f)+x(g)=<2, (3.6)
x(e)—x(f)~x(g)=0, (3.7)
—x(e)+x(f)—x(g)=0, (3.8)
—x(e)—x(f)+x(g)=<0. (3.9)

Summing (3.6) and (3.7) we obtain
2x(e)s2,
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and (3.8) plus (3.9) gives
2x(e)=0.

Hence, in this case (3.1) does not define a facet. [

Grotschel, Lovasz and Schrijver [5] have shown that there exists a polynomially
bounded algorithm for a linear optimization problem over a polyhedron if and only
if there is a polynomially bounded algorithm for the associated separation problem:
given a point x, either verify that it belongs to the polyhedron or else find a hyperplane
that separates it from the polyhedron.

The knowledge of an efficient method to solve the separation problem gives an
answer to some theoretical and practical questions. It proves that a problem is
polynomially solvable, and it permits the design of linear programming based cutting
plane algorithms.

In what follows we shall give a polynomial algorithm to solve the separation
problem for inequalities (3.2). Let us write these inequalities as

Y x(e)+ ¥ (1—x(e))=1 foracycle C, Fc C, |F| odd.
ec C\F ec F
Given x, we are looking for a minimum weighted cycle, where some edges have the
weight x(-), and an odd number of edges have weight 1 —x().
From the given graph G we form a new graph G’ with two nodes i’ and ", for

S 1t

every node i of G. For every edge ij of G we put edges i’j’ and i"j” with weight
x(ij), and edges i'j” and i"j' with weight 1 — x(ij). Now, for node i of G we find a
shortest path from i’ to i". The minimum over the nodes of the lengths of the
corresponding shortest path is the weight of the required cycle. As the computation
of a shortest path takes O(n”) calculations, this procedure has a time complexity
of O(n?).

The existence of a good algorithm for the separation problem associated with
inequalities (3.1) and (3.2) leads us to ask which are the graphs such that these
inequalities suffice to define P.(G). In what follows we shall see that those are the
graphs not contractible to K.

Corollary 2.11 implies that P-(G) is defined by the inequalities associated to
cycles and to edges if and only if CONE(P(G)) is defined by:

x(f)=x(C\{f}), Cacycle, feC,
x(e)=0, ecE.
This is called the “sum of circuits” property by Seymour [9]. Actually, he proved
that the ““sum of circuits” property holds if and only if G is not contractible to K.
We can state the following:
Corollary 3.10. A graph G is not contractible to K if and only if P-(G) is defined by:

O0<x(e)=<1, for each edge e that does not belong to a triangle,

x(F)=x(C\F)=<|F|—-1, for each chordless cycle C, F< C, |F| odd.
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4. Adjacency in P(G)

In this section we will give a simple characterization of adjacency in P-(G), and
we will derive a bound for the diameter of P-(G).

Theorem 4.1. Let G=(V, E), be a graph. Let x', x’ be extreme points of P-(G); let
I, J be the corresponding cuts. Let F = E\(IAJ). Then x' and x” are adjacent in Pc(G)
if and only if H=(V, F) has two connected components.

Proof. We shall use the fact that x’ and x”’ are adjacent in P.(G) if and only if
there is a vector ¢ = (c,: e € E) such that x’ and x” are the only two extreme points
that maximize cx over P-(G).

(i) Let us suppose that G;=(V,, E;), i=1, 2 are the connected components of
H. Let T, be a spanning tree of G, i=1, 2. Set

1 ifeeT,n(InJ), i=1,2,
c.,=<—-1 ifee T\(InJ), i=1,2,
0 otherwise.

Then
exs|Tin(U |+ Ty ()

for all x € P-(G). The equality holds for an extreme point x if and only if x = x'
or x=x".

(1) Let us suppose that G;=(V,, E;), i=1,...,k, k=3, are the connected com-
ponents of H. Assume that there is a vector ¢ with the desired properties. Setting

1-x(e)!, ifecd(V,),
a(e)={

x(e), otherwise,

t—x(e), ifeecd(V)),
b(e) = ; .
x(e)’, otherwise,

a and b belong to Po(G), and a+b=x"+x", s0 ex’ + cx’ = ca+ cb. Consequently,
max{ca, cb}= cx' = cx’, which is a contradiction as both a and b are extreme points
of Pc(G). This completes the proof. [

The graph of a polyhedron is the graph whose nodes correspond to the extreme
points of this polyhedron and that has an edge joining each pair of nodes for which
the corresponding extreme points are adjacent.

Given two cuts I and J, let i and j be the corresponding nodes of the graph of
P-(G). The distance from I to J, d([I, J) is the number of edges in the shortest path
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from i to j. The diameter of P-(G) is
max{d(I, J): I, J are cuts of G}.

Theorem 4.1 implies the following:
Corollary 4.2. If G is-a complete graph, then P-(G) has diameter one. O

If G is connected and C is a cut, let us define T(C) as the graph obtained by
contracting edges not in C and replacing multiple edges by single edges. Let m(C)
be the number of edges of T(C).

Theorem 4.3. If I and J are cuts of G, then

d(I,J)sm(IAT).

Proof. Let P be a minimal cut included in IAJ.
Set L=[AP. L is a cut and x" is adjacent to x'. Furthermore, m(LAJ) < m(IAJ),
and the theorem follows by induction on m(IAJ). O

The bound in Theorem 4.3 may be realized. For instance, if G=(V, E) is the
graph K, ,, I =0 and J = E, then d(I,J)=p.

Corollary 4.4, The diameter of P-(G) is at most
max{m(C): C is a cut}. a

Again, the graph K, , shows that the bound of the corollary may be realized.
A d-dimensional polyhedron P with k facets has the Hirsch property if the
diameter of P is at most k —d.

Theorem 4.5. P-(G) has the Hirsch property.

Proof. P-(G) has dimension |E|. Let us partition E into E; and E,, where E,
contains the edges that belong to a triangle. Let T,,..., T, be the triangles of G.
By Theorems 3.3 and 3.4, P-(G) has at least 4r+2|E,| facets. Since r=|E|/3,
4r+2|E,|—|E|=|E\|/3+|E,|

On the other hand, if C is a cut

m(C)$|E||/3+|Ez|,

and our proof is complete. [
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5. Signed graphs

A signed graph is a graph G =(V, E) where E is partitioned into E_ and E,.
Elements of E_ (E,) are called negative (positive). For instance, if this structure
represents a social group, we can think of positive and negative relationships between
the members of the group.

A signed graph is called balanced if there exists U < V such that E_=5§(U). A
graph is balanced if and only if each of its cycles includes an even number of
negative edges (cf. Harary [8]).

A balancing set is an edge set S < E such that when the signs of the elements of
S are changed the resulting graph is balanced.

It is easy to see that S is a balancing set if and only if there exists U < V, such
that SN E, =Sné8(U)=E.nd(U)and SN E_=Sn{E\S8(U))=E_n{E\8(U)).
Then y is the incidence vector of a balancing set if and only if there exists an
incidence vector of a cut x, such that

y(e):{x(e) ifecE,, 5.0)

1-x(e) ifecE_.

Thus, a minimum weighted balancing set can be found by solving a minimum
(maximum) cut problem.

Let us call Pyg(G) the convex hull of incidence vectors of balancing sets of a
signed graph G. Facet-defining inequalities of Pr4(G) can be obtained from facet-
defining inequalities of P-(G) by using relation (5.1). In particular, Theorem 3.5
can be stated as

Remark 3.2. A signed graph G is not contractible to K if and only if Prs(G) is
defined by

x(C\F)—x(F)=1—|F|, for each chordless cycle C, F< C,
|C ~E_|+]|F|odd,

0=x(e)=<1, for each edge e that does not belong to a triangle.

Again relation (5.1) enables us to translate adjacency results in P.(G) into
adjacency results in Pge(G). For instance, Corollary 4.2 gives us

Remark 5.3. If G is a complete signed graph, then Pys(G) has diameter one.
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