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A signed graph is a graph whose edges are labelled positive or negative. A signed graph is said 
to be balanced if the set of negative edges form a cut. The balanced induced subgraph polytope 
P(G) of a graph G is the convex hull of the incidence vectors of all node sets that induce balanced 
subgraphs of G. In this paper we exhibit various (rank) facet defining inequalities. We describe 
several methods with which new facet defining inequalities of P(G) can be constructed from 
known ones. Finding a maximum weighted balanced induced subgraph of a series parallel graph 
is a polynomial problem. We show that for this class of graphs P(G) may have complicated facet 
defining inequalities. We derive analogous results for the polytope of acyclic induced subgraphs. 

Key words: Balanced subgraphs, acyclic subgraphs, facets of polyhedra. 

1. Introduction 

The graphs we consider  are finite, undirected,  wi thout  loops and  may have mult iple  

edges. A graph is denoted  by G = (V, E)  where V is the node set and  E is the edge 

set of G. An  edge e ~ E whose vertices are u and  v can also be denoted  by uv. If  

W___ V, then E (W)  denotes  the set of all edges of G with both  endnodes  in W. The 

graph H =  (W, E ( W ) )  is the subgraph of G induced by W. 

A signed graph G = ( V, E )  is a graph whose edges are label led positive or negative. 

Signed graphs have been  in t roduced by Harary  [6]. A signed graph is said to be 

balanced if  its set of  negative edges form a cut. In  other words, a s igned graph 

G =  (V, E)  is ba lanced  if the node set V can be par t i t ioned into U and  O in such 

a way that E ( U ) u  E ( O )  is the set of  positive edges, U (or U) may be empty. If  

W__C_ V and  H = ( W ,  E ( W ) )  is ba lanced ,  then  H is called a ba lanced  induced  

subgraph  of G (BIS for short). When  G =  (V, E )  is a s igned graph all of whose 

edges are label led negative,  a BIS of G is a bipart i te  induced  subgraph of G. Given  

a signed graph G = (V, E )  with node  weights c(v) for all v ~ V, the maximum BIS  
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problem consists of  finding a BIS (W,  E ( W ) )  of G such that c( W ) =  ~v~wC(V) is 
as large as possible. 

The maximum BIS problem is a generalization of the maximum stable set problem. 
In fact, if H = ( V, F)  is a graph then the maximum stable set problem in H can be 

reduced to a maximum BIS problem in the signed graph G = ( V, E)  that is obtained 

from H by replacing each edge in F by a positive and negative edge. This implies 
that the maximum BIS problem is NP-hard. 

I f  We_ V let x W ~ R  v where xW(u) = 1 if u c  W and xW(u) = 0  otherwise; x w is 

called the incidence vector of W. 
The convex hull of  the incidence vectors of  all BIS of G, denoted by P ( G ) ,  is 

called the B I S  polytope, i.e. 

P ( G )  = C o n v { x W  ~ N  v ] We_ V, (IV, E ( W ) )  is balanced}. 

Thus the maximum BIS problem in G may be stated as the following linear program 

max{cx, x c  P(G)}.  

In [2] we gave a polynomial  algorithm to solve the maximum BIS problem in 
series parallel graphs. The development of a polynomial  algorithm for combinatorial 

optimization problems has often been closely related to the characterization of a 
system of inequalities that defines the corresponding polytope. This is the case for 
the maximum stable set problem in series parallel graphs, where the stable set 
polytope is defined by the clique and the odd cycle inequalities, cf. [3]. I f  such a 
system of inequalities is known then linear programming duality can be used to 
prove optimality and to derive a max-min  relation. Our algorithm for the BIS 

problem does not provide an explicit description of the polytope. In this paper  we 
shall derive a partial description of those inequalities. We shall show that such a 
system is "less simple" than for the stable set polytope. 

A partial knowledge of the facets of  combinatorial polyhedra may have algorithmic 

use. Some instances of  NP-hard problems can be solved using linear programming 
techniques. The Travelling Salesman Problem [4], the Linear Ordering Problem [5] 
and the Max-Cut Problem [1] are examples of  this. 

In this paper  we shall exhibit various classes of  (rank) facet defining inequalities 
of  P ( G ) .  We describe several methods to derive "facets from facets", examples of  
these methods are subdivision of edges and addition of nodes. 

We shall give a method to derive facets of  P ( G )  from facets of  the Stable Set 
Polytope. Using these constructions we exhibit complicated facet defining 
inequalities of  P ( G ) .  Analogous results for the acyclic induced subgraph polytope 
will also be presented. 

Now we shall introduce some notation. 

A path P in G = (V, E)  is a sequence of edges el, e 2 , . . . ,  ek such that e 1 = U0Vl, 

e2 = V l V 2 , . . . ,  ek = Vk-lVk and such that vi # vj for i # j .  The nodes Vo and Vk are 
the endnodes of P and we say that P links v0 and Vk and that V l , . . . ,  vk 1 
are the internal nodes of P. The number  k of  edges of  P is called the length of P. 
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I f  P = el, e = , . . . ,  ek is a path linking Vo and vk, and ek+~ = York C E, then the sequence 
e~, e = , . . . ,  ek, ek+~ is called a cycle of length k + 1. We say that a path is odd (even) 
if it contains an odd (even) number of  negative edges. I f  uv is an edge then G \ u v  

denotes the graph obtained by deleting uv. A clique is a maximal complete subgraph. 

A negative graph is a signed graph all of  whose edges are negative. 
A polyhedron P c  R" is the intersection of finitely many halfspaces in R ' .  A 

polytope is a bounded polyhedron or equivalently the convex hull of  finitely many 
points. The dimension of a polyhedron P, denoted by dim P, is the maximum number  
of  affinely independent points in P minus one. 

I f  a c Rm\{0}, ao c R, then the inequality ax <~ ao is said to be valid with respect 

to a polyhedron P ~ Em if P ~_ {x c R '~ [ax <~ ao}. We say that a valid inequality 
ax <~ ao supports P or define a face of P i f0  # P c~ {x]ax  = ao} # P. A valid inequality 
ax <~ ao defines a facet  o f  P if it defines a face of  P and if there exist dim P affinely 

independent points in P n {x I ax = ao}. 
For every facet F of  a full-dimensional polyhedron P c Em, i.e. dim P = m, there 

exists a unique (up to multiplication by a positive constant) valid inequality ax <- ao 

such that F = {x c P Iax = ao}. This implies that (up to multiplication by a positive 
constant) there is a unique minimal system A x  <~ b such that P = {x c E "  lAx  <~ b}. 

2. Facets o f  P(G) 

Given a signed graph G =  (V, E)  let 

/ 3 (G)={Wc_  V I ( W  , E ( W ) )  is balanced} 

denote the family of  node sets of  balanced induced subgraphs. Clearly,/3 (G)  is an 

independence system on V, i.e., 0 c / 3 ( G )  and W ' c  W c ~ ( G ) ~ W ' c f i ( G ) .  So if 
ax<~a defines a facet of  P ( G )  with c~>0, then a~>0. 

For every set Y _  V the number 

r ( Y ) = m a x { I W l :  W ~  Y, W~/3(G)}  

is called the rank of Y. 

I f  Y c V then the 0/1-inequality 

x ( Y ) =  E x ( u ) < ~ r ( Y )  (2.1) 
u c Y  

is a supporting inequality of P ( G ) .  The inequalities of  type (2.1) will be called rank 
inequalities. 

In this section we shall introduce some classes of  facet defining rank inequalities, 
further such inequalities will be derived in the next section. 

Given a signed graph G = (V, E),  a cycle of  G will be called frustrated if it 

contains an odd number  of  negative edges. I f  W is the node set of a frustrated cycle 
a BIS contains at most I w I -  1 elements of  W. 
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An integer vector x c ~ v  is the incident vector of  a BIS if and only if it satisfies 

- x ( u )  <~ 0 for all u c V, (2.2) 

x(u)~<l for a l l u ~ V ,  (2.3) 

x (W)  ~< I W I -  1 for all W ~  V such that ( IV, E ( W ) )  is a frustrated cycle. 
(2.4) 

Constraints (2.2) and (2.3) will be called trivial. It is easy to see that (2.2) defines 
facets for P(G).  This is not necessarily the case for (2.3) and (2.4). In what follows 
we shall study when those inequalities define facets. 

A signed graph is called bicomplete if every two different nodes are linked by a 

positive and a negative edge. A biclique of a graph G is a maximal bicomplete 
subgraph of G. 

Theorem 2.5. Let G = ( V, E)  be a signed graph and H = ( W, E ( W ) )  be a bicomplete 
subgraph of G. Then 

x ( w )  ~< 1 (2.6) 

defines a facet of P(G)  if and only if  H is a biclique of G. 

Proof. It is clear that (2.6) is valid for P ( G ) .  Suppose that W = {v~ , . . . ,  Vk}, k ~> 1, 
and that H = (W, E ( W ) )  is a biclique of  G, then for every node v c V\ W there 
exists at least one node in W, say vi, such that W, = {v, vi}c fl(G). Now consider 

the sets 

Wv={v} if v o W ,  

W~=W~ i f v ~ V k W .  

Then Wv c/3 (G)  for all v c V. Moreover, the incidence vectors x w, v c V, are linearly 
independent and satisfy (2.6) with equation. This implies that (2.6) defines a facet. 
Conversely, if (2.6) defines a facet of  P(G)  then W must be the node set of  a 
bicomplete subgraph of G. Assume that this subgraph is not a biclique then there 
exists a node Vo~ V \ W  such that W w  {vo} induces a bicomplete subgraph of G. 
Thus every node set Y _  V, such that Y c / 3 ( G )  and its incidence vector x Y satisfies 

(2.6) with equality, cannot contain v0, a contradiction. [] 

Theorem 2.5 implies that a constraint x, <~ 1 for u ~ V defines a facet for P(G)  
if and only if u is not linked to another node in V by a positive edge and a negative 
edge. 

Theorem 2.7. A constraint of type (2.4) defines a facet i f  and only if  
(i) (W, E ( W ) )  is a chordless cycle, 

(ii) for each node v c V \  W the subgraph induced by W w  {v} contains at most two 
frustrated cycles. 
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Proof. Let W = { w l , . . . ,  wp}. 
Suppose that an inequality (2.4) defines a facet. 

I f  there exists a chord WlWk then the subgraph induced by W ' =  {w~, . . . ,  wk} or 

W'= {wk, Wk+~,..., Wl} has a frustrated cycle. The inequality 

x( W') ~ l w ' l - 1  (2.8) 

is valid for P(G).  
Inequality (2.4) can be obtained by summing (2.8) and x(v)  <~ 1, for v c W \  W', 

a contradiction. 

If  there is a nodes Vo such that the subgraph induced by W u  {vo} contains more 

than two frustrated cycles then it contains at least four. This implies that the subgraph 

induced by (Ww{vo}) \ {v}  has a frustrated cycle, for any vc  W. In this case the 

inequality 

x ( W )  + X(Vo) <~ I W I -  1 (2.9) 

is valid for P(G).  Inequalities (2.9) and -X(Vo)<~0 imply (2.4). 

Conversely, suppose that (i) and (ii) hold. We shall exhibit a set of IV I linearly 

independent vectors that satisfy (2.4) as equation. 

For j =  1 , . . . ,  k set Wj = W\{wj}. 

Let V \ W = { W k + I , . . . ,  Wn}. 
For j = k + 1 , . . . ,  n there are two cases. 

Case 1. (Ww{wj} ,  E ( W u { w j } ) )  contains only one frustrated cycle. We set Wj = 

( w\(Wl})  u {wj}. 
Case 2. (Ww{wj} ,  E ( W ~ { w j } ) )  contains two frustrated cycles. Let wjwl, 
wtwl+l, . . . ,  wrwj be the frustrated cycle that contains wj. We set Wj = (W\{wl}) u {wj}. 

The vectors x w~, . . . ,  x % form a matrix M with the following structure: 

.] 
where I denotes an identity matrix and A denotes a matrix like 

0 1 . .  . [] 

1 1 . . .  

Corollary 2.10. I f  G is series parallel then chordless frustrated cycles induce facets of  
P( G). [] 

Theorem 2.11. Let G= (V, E)  be a negative graph and Wc_ V a set of nodes. The 
inequality 

x(W) ~< 2 (2.12) 

defines a facet of P(G) if and only if  IWI>~3 and W induees a clique of G. [] 
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Fig. 1. 

The proof  of  this is analogous to the proof  of  Theorem 2.5. 

Corollary 2.13. I f  G = (V, E )  is a negative graph, then every facet  defining inequality 

ax<~ a o f  P(  G ) not o f  type (2.3), with integral coefficients and a = 2  is o f  type (2.12). 

Proof. First of  all, it is clear that a~/> 0 for v c V. I f  a~0 = 2 then this is the inequality 

2X(Vo) ~< 2, 

hence av<~ 1 for all v e  V. [] 

This is not true for all signed graphs. In fact, consider the graph G =  (V, E)  in 

Fig. 1, where the dashed lines correspond to positive edges. 
The inequality 

x(1) + x(2) + x(3) + 2x(4) ~< 2 

defines a facet of P ( G ) .  

3. Construction of facets 

In this section we shall derive facet defining inequalities using transformations of  
the graph. We first state a standard lifting theorem. 

Theorem 3.1. Let G = ( V, E )  be a signed graph and ax <~ c~ be a non trivial facet  

defining inequality for  P(  G).  Let  uv be a negative (positive) edge o f  G such that 

au, a~ > O, set 7 = max{ax w: W c fl ( G \  uv)}. Let  G ' =  ( V', E ' )  be the graph obtained 

f rom G as follows: The edge uv is deleted; a new node Vo is added; the path UVo, roy 

is added; the edges UVo, roy are labelled in such a way that this path is odd (even). Set 

au = au for  all u c V c~ V', ~o = 7 - a, ~ = 7, 

then 

~x ~ ci (3.2) 

defines a facet  o f  P(  G').  [] 
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Corollary 3.3. (Replacing a negative (positive) edge by an even (odd) path.) Let  

G = (V, E )  be a signed graph and ax<~ a be a nontr iv ia l face t  defining inequality o f  

P(  G).  Le t  uv c E be a negative (positive) edge such that au, a~ > 0 and u is o f  degree 

two. Let  G'  = ( V', E ' )  be the graph obtained f rom  G in the fol lowing way. A set o f  

new nodes {Vl, v 2 , . . . ,  Vk} is added. The edges set P = { u v l ,  v l v 2 , . . . ,  vkv} is added 

(i.e. a path is added).  The new edges are signed in such a way that P is odd (even).  

The edge uv is removed. Le t  ~ c ~v '  be defined as follows: 

aw = aw fo r  all w ~ V c~ V', ~ ,  = a~, ~ = ka~ - a, 

then dx <~ ~ defines a face t  o f  P(  G'). 

Proof.  Without  loss o f  generality we can suppose that path P is o f  size two (i.e. 

k = 1). Since ax <~ a defines a nontrivial facet, there must  exist a node  set Wo ~- V \ { u }  

such that Wo ~ fl (G)  and ax w° = a. Since u is o f  degree two it is clear that Wow {u} c 
~ ( G \ u v )  and thus a + a u = m a x { a T x W :  W ~ f i ( G \ u v ) } .  So f rom Theorem 3.1 it 
follows that dx ~< 6 defines a facet of  P ( G ' ) .  

Now we present a different lifting procedure  that can be visualized as adding 

nodes  to the graph. 

Theorem 3.4. Let  G = (V, E )  be a signed graph and ax <~ a a nontrivial face t  defining 

inequality o f  P(  G).  Le t  p and q be two nodes such that 0<~ ap <~ aq. Suppose that every 

max imal  B I S  o f  G intersects {p, q}. Consider the graph G '= ( V', E' )  obtained f rom  

G in the following way: add three new nodes v l , v 2 ,  v3 and the edges 

{pVl, pV2, qv2, qv3, UlV2, U2V3}, labelled negative. See Fig. 2. 

Set  

au = a~ fo r  all u c V, a~ = av2 = d~ = ap, ~ = a + 2ap. 

Then ~x <~ ff defines a face t  f o r  P(  G'). 

Proof. First, we show that ax<~ a is valid for  P ( G ' ) .  

2) 

Fig. 2. 
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I f  W'_c V' induces a BIS then the node  set 

W ~- ( W ' \{Vl ,  v2,/-)3}) ~ V 

induces a BIS of  G. So if {p, q} c~ W ¢ 0 then ]{vl, v2, v3} n W' I ~< 2 and thus dx w,<~ ft. 

I f{p ,  q}c~ W = 0  we can extend W to a node  set W1 c _ V such that W I ~ / 3 ( G )  and 
{p, q} n W1 ¢ 0. Hence ax w <~ e¢ - ap which implies that ~x w' ~< ft. 

Now let us assume that  

{x l f ix=6~}c~ R (  G')c_ { x [ b x =  y},  

where bx <~ 3' is a facet defining inequality o f  P ( G ' ) .  

Since ax<~ ~ defines a facet of  P ( G )  there are n = IV[ nodes sets W~ . . . .  , W, in 

/3(G) whose incidence vectors are linearly independent  and satisfy ax w' = a for 

i = l , . . . , n .  

Set Wi-'- W~u{vl ,  %}, for i =  1 , . . . ,  n. It is clear that W i' . . . .  , W ' c / 3 ( G ' )  and 

gtx w;= d, i = 1 , . . . ,  n. Then bx w;= 3", for i = 1 , . . . ,  n. We can conclude that bu =pdu  

for u • V'k { v, , v2, V3}. 
Since ax <~ a is a nontrivial  inequality and from our  hypothesis  we can conclude 

that  among  sets W ~ , . . . ,  W,, there are two sets, say W~ and Wz, such that {p, q} c~ 

Wa = {p} and {p, q} c~ W2 = {q}. 

Let " -  " =  W1 - W i u { v 2 ,  v3} and W2 W2u {vl, v 2 } , t h e n a x W ; = ~ x W ; = 6 ,  w e h a v e t h a t  

0 = bx w; _ bx ~'  = b~ - b~,  0 = bx w; _ bx w,~ = b~: - b~, 

thus b~ = b~ = b~3. 
Now consider  the set WJ = (W~\{p}) u {Vl, %, v3}, it is clear that W'3' c / 3 ( G ' )  and 

gtx w; = & Then 

O= bxWT-  bx W;= b p -  b~,  

which implies that p~p = bp = b~2 , then b = p& 

Since bx ~ 3" is a nontrivial  inequality, we have that p > 0. []  

We say that a pair o f  nodes  (u, v) satisfy the proper ty  7r if u has degree two and 

they are linked by a path all of  whose internal nodes are o f  degree two. 

Note that  if (u, v) satisfy the proper ty  ~r then 

W c / 3 ( G )  and u , v ~ W  ~ W w { u } c / 3 ( G ) .  

Corollary 3.5. Let  G = ( V, E )  be a signed graph and ax <~ a a nontrivial face t  defining 

inequality o f  P ( G ) .  Le t  p and q be two nodes o f  G such that ap, aq ~ 0 and (p, q) 

satisfies the property 7r. Le t  G'  and dx <~ d be defined as in Theorem 3.4. The inequality 

ax <~ ~ defines a face t  o f  P(  G').  

Proof. Since (p, q) satisfies the proper ty  ~r, every maximal  BIS of  G intersects {p, q}. 

Since axW<~a is nontrivial,  there is a set, W c  V \ { p }  such that W ~ / 3 ( G )  and 

ax w = c~. Since ap, aq > O, we have that q c W. Let W ' ( W \ { q } )  u {p}. It is clear that 

W ' c / 3 ( G ) ,  then a v ~< aq. The result follows from Theorem 3.4. []  
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4. P(G) and the stable set polytope 

29 

Given a graph  G = ( V ,  E) ,  a stable set S is a set o f  nodes such that no edge has 

both endnodes  in it. The stable set po ly tope  S ( G )  is the convex hull o f  incidence 

vectors o f  the stable sets o f  G. Several classes o f  facet defining inequalities have 

been characterized for this polytope.  We shall present a procedure  to derive facets 

o f  P ( G )  f rom facets o f  the stable set polytope.  
I f  ax<~ ~ defines a facet o f  S ( G ) ,  we denote  by Va the set 

V a = { u e  V[a~#O} .  

Theorem 4.1. Let G = ( V, E )  be a graph and ax <~ a a face t  defining inequality different 

f rom x(u)>~O, u c  V. Let  E = { U l V l , . . . ,  UmVm}, suppose that for  every edge uivie 

E ( Va) there exists a stable set S*i such that S~ ~ {ui, vi} ~ 0, say ui e S~, S*i \ { ui} c_ 
V \  { w ~ V[ viw e E} and ax s7 = c~. Let  G'  = ( V', E' )  be the signed graph obtained f rom 

G by adding m new nodes w l , . . . ,  Wm and the edges {wiui, wivi; i = 1, 2 , . . . ,  m}. Al l  

the edges o f  G'  are labelled negative. Set 

au=au  f o r u e V ,  

aw, = min{au,, a~,} for  i=  1 , . . . ,  m, 

f f = a + ~  aw,. 
i - - 1  

The inequality ~x <~ ~ defines a face t  o f  P ( G ' ) .  

Proof.  First we show that this inequali ty is valid for P(G ' ) .  Let W ' _  V' be a node  

set that  induces a BIS. Set 

where 

W=(W'  c~ Vo)\{nilw,~ W', 14 i<-m}, 

ui i f a u  <~av, 
n i= , , l < ~ i ~ m .  

V i otherwise, 

It is easy to see that W defines a stable set o f  G. So ax w << a and then ax w' ~< 4. 

N o w  let us assume that 

{x e P(  G ' ) l a x =  4}c_ {x e P(  G ' ) l b x =  7}, 

where b x ~  3' defines a facet o f  P(G ' ) .  

Since ax <~ a defines a facet o f  S (G) ,  there are n = [ V[ stable sets $1, .  • •, S, whose 
incidence vectors are linearly independent  and satisfy ax s' = a, i = 1 , . . . ,  n. 

S e t W l =  S i U { W l , . . . ,  win}, for i =  1 , . . . ,  n. 
It is clear that W ~ c f l ( G ' )  and d x W ' = 5  for i = l , . . . , n .  Then b x W ; = 7  for 

i = 1 , . . . ,  n. Since these vectors are l inearly independent ,  we can conclude  that 

au=pbu for  u c  V. 
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Now for i =  1 , . . . ,  m set 

wT=s*u{w, , . . . ,  win}, 

lYC'i = S * u  {wj,  l <~j <~ rn, j ¢ i } w  {vi}. 

Thus W*, ~ c/3 (G ' )  and ~x wT = ~ix if* = ~ for i = 1 , . . . ,  m. 

Hence 

0 = bx  ~ - bx w7 = b~ - b~,; 

this implies that 

1 
by = bw - -  ti~. 

Since ~i and 6 are non negative we have that p > O. [] 

5. Some examples 

Consider an odd cycle C = ( U ,  T)  where U = { u l , . . . ,  U2k+l} , k~>l, and T =  

{Ul, u2 , . . .  U2kU2k+l, U2k+~Ul}. The constraint 

x(U)~k  

defines a facet of the stable set polytope of C. Consider the signed graph G = ( V, E) 
obtained from C by replacing each edges uv by a frustrated cycle whose nodes 
different from u and v are of  degree two. Then the inequality 

x( V)<~lv l - (k  + l) 

defines a facet of P ( G ) .  

This can be proved by replacing each edge of C by a positive and a negative 
edge and then applying Theorem 3.1 repeatedly. 

Let us denote by G the class of signed graphs defined in this way. The graph of 
Fig. 3 belongs to G. Dashed lines correspond to positive edges. 

) 0 ( 
Fig. 3. 
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Let H be the class of graphs that consist of two frustrated cycles with one node 
in common. If F is a signed graph, adding H c H to F means that we identify two 
nodes p, q in different frustrated cycles of H with two nodes p', q' in F such that 
(p', q') satisfies property It. 

Let G = ( V, E)  a graph obtained by adding graphs H ~ H to a graph F c G. Then 
the inequality 

x(V) < r(V) 

defines a facet of P(G). 
This can be proved by applying Theorems 3.4 and 3.1 repeatedly. The graph of 

Fig. 4 has been obtained by adding graphs H c H to the graph of Fig. 3. 
Let us remark that all the graphs obtained in this way are series parallel. 

( 

( 

( 

Fig. 4. 

6. Acyclic induced subgraphs 

Let D =  (V, A) be a directed graph, the induced subgraph (W, A(W)) is called 
acyclic if it does not contain a directed cycle. We say that ( W, A(W))  is an AIS. 

Let Q(D) be the acyclic induced subgraph (AIS) polytope of D, i.e., 

Q(D) = Conv{xW ] ( W, A(W)) is acyclic}. 

All our results about facets of the BIS polytope can be translated into characteri- 
zations of facets of the AIS polytope. 

Inequalities of type (2.2) also define facets of Q(D). The analogue of Theorem 
2.5 holds for Q(D) where bicomplete subgraph should be replaced by bidirected 
subgraph. A bidirected graph D = ( V, A) is a graph such that for each pair of nodes 
i and j the arcs (i,j) and (L i) belong to A. 

The analogue of Theorem 2.7 holds for Q(D) where frustrated cycle should be 
replaced by directed cycle. 
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Let A ( D ) = { W _  V [ ( W ,  A ( W ) )  is acyclic}, the analogue of  Theorem 3.1 is the 

following. 

Theorem 6.1. Let D = ( V, A )  be a directed graph and ax <~ a a nontrivial facet  defining 

inequality for  Q ( D ) .  Let  (u, v) be an arc such that a,,  a ~ > 0 ,  set y =  

max{axW:  W 6 A ( D \ ( u ,  v))}. Let  D ' = ( V ' , A ' )  be the graph obtained f rom D as 

follows: The arc (u, v) is deleted; a new node Vo is added; the path (u, Vo), (Vo, v) 
is added. Set 

du = a~ for  u c V c~ V', a~o = Y - a, 6~ = % 

then 

defines a facet  o f  Q( D') .  [] 

The analogue of  Corol lary  3.3 also holds. 

The analogue of  Theorem 3.4 is the following. 

Theorem 6.2. Let D = ( V, A )  be a directed graph and ax <~ c~ a non trivial facet  defining 

inequality o f  Q( D ). Let  p and q be two nodes such that 0 <~ ap <~ aq. Suppose that every 

maximal  A I S  o l D  intersects {p, q}. Consider the directed graph D '  = ( V', A')  obtained 

f rom D as follows: add three nodes vl, v2, v3 and arcs in such a way that {p, vl, v2} 
and {q, v2, vs} induce two directed cycles. Set  

du=au  f o r u c  Vc~ V', 

~v~ : ~v2 : Clvs : ap , 

6z = a + 2ap. 

Then ax<~d defines a facet  o f  Q(D ' ) .  [] 

The analogue of  Corol lary  3.5 also holds. 

The analogue of  Theorem 4.1 also holds. Let G '  and {ui, vi, wi}, 1 ~< i~< m, be 

defined as in Theorem 4.1. D '  is obtained by  giving an orientation to G '  in such a 

way that {u~, v~, wi} induces a directed cycle for i = 1 , . . . ,  m. 

Examples  analogous to those of  Section 5 can also be derived. 
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