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COMPOSITIONS OF GRAPHS AND POLYHEDRA [:
BALANCED INDUCED SUBGRAPHS AND ACYCLIC SUBGRAPHS*

FRANCISCO BARAHONA' anp ALI RIDHA MAHJOUB?*

Abstract. Let P(() be the balanced induced subgraph polvtope of G. If G has a two-node cutset, then &
decomposes into &) and G,. It is shown that P(() can be obtained as a projection of a polytope defined by a
system of inequalities that decomposes into two pieces associated with G, and G,. The problem max ¢x, x ¢
P(() 1s decomposed in the same way. This is applied to series-parallel graphs to show that, in this case, P(G)
is a projection of a polytope defined by a system with O(n) inequalities and O(n) variables, where » is the
number of nodes in G. Also for this class of graphs, an algorithm is given that finds a maximum weighted
balanced induced subgraph in O(x log n) time. This approach is also used to obtain composition of facets of
P(G). Analogous results are presented for acvelic induced subgraphs.

Key words. polyhedral combinatorics, composition of polyhedra, balanced subgraphs, acyclic subgraphs,
compact systems

AMS subject classifications. 05C83, 90027

1. Introduction. Given a graph G, let P(G) be a polytope associated with (. If G
has a one- or two-node cutset, then G decomposes into () and G,. We study a technique
to derive P(G), provided that we know two polytopes related to &, and (5. We use the
same ideas to decompose the problem

Maximize cx,
X € P(G)

into two optimization problems related to G, and G,. Similar compositions of polyhedra
have been studied in [8], [3], [10], [51, and [9]. First, we study the polytopes of balanced
induced subgraphs and acvclic induced subgraphs. In a subsequent paper, we apply a
simplification of this technique to the stable set polytope.

The graphs we consider are finite, undirected, and may have multiple edges. We
denote a graph by G = (V, E), where V is the node set and £ is the edge set of G. If
W < V, then E(W) denotes the set of all edges of G with both endnodes in W, and the
graph H = (W, E(W)) is the subgraph of G induced by W,

A signed graph G = (V, E) is a graph whose edges are labeled positive or negative
[11]. A positive (negative) edge {, v is denoted by {u, v, +}, ({w, v, —}). A signed graph
1s said to be balanced if the set of negative edges form a cut, that is, if the node set I can
be partitioned into U and U in such a way that E(U) U E(U) is the set of positive edges.
Also, a signed graph is balanced if it does not contain a cycle with an odd number of
negative edges. Suppose that from a node i we send a signal 5;€ {—1, 1} to all the adjacent
nodes; if the edge {/, ;| is positive, then j receives the signal s, if {i, J} Is negative, then
J receives —s;. A signed graph is balanced if and only if, when we send a signal from a
ode, this node receives the same signal in return.

" Received by the editors June 4, 1990; accepted for publication (in revised form) May 20, 1993 This
research was supported in part by the Natural Sciences and Engineering Research Council, Canada.

"IBM T.J. Watson Research Center, Yorktown Heights, New York 10598.
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formatique de Brest (LIBr), Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, 29287 Brest Cedex.
France. This author was supported by C. P. Rail.
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If We Vand H = (W, E(W)) is balanced. then H is called a balanced induiced
subgraph (BIS) of G. If W < V, let x" € R", where x" () = 1 if u € W and where
x") = 0if ug W: x" is called the incidence vector of W.

The convex hull of incidence vectors of all balanced induced subgraphs of G is
denoted by P(G) and called the BIS polytope of G, i.e.,

P(G) = conv {x" e RV |(W, E(W)) is a BIS of G).

Given a signed graph G = (V, E) with node weights ¢(v) for all v € V, the maximuwmn
BIS problem is 1o find a BIS (W, E(W)) such that ¢(W) = 2 {c(v): v e W} is as large
as possible.

Every optimum basic solution of the linear program

max cx,
x € P(G)

1s the incidence vector of a maximum weighted BIS of G.

The edge problem of finding a maximum balanced spanning subgraph can be reduced
to a max-cut problem [4]. This problem is polynomially solvable for graphs not con-
tractible to K5 [3] and for toroidal graphs [2].

It H = (V, F)is a graph, then the maximum stable set problem in H can be reduced
to a maximum BIS problem in a signed graph G = (V, E) that is obtained by replacing
each edge in F by a positive edge and a negative edge. Thus the maximum BIS problem
can be viewed as a generalization of the maximum stable set problem. This shows that
the maximum BIS problem i1s NP-hard even for signed planar graphs. When all the edges
are negative, a BIS coincides with a bipartite induced subgraph.

The polytope P(G) 1s full-dimensional. This implies that (up to multiplication by a
positive constant) there i1s a unique nonredundant inequality system Ax = b such that
P(G) = {x|Ax = b}; moreover, there is a natural bijection among the facets of P(G) and
the inegualities of that system.

In §2 we show that, if G admits a two-vertex decomposition into G, and (>, then
P(G) is a projection of a polytope defined by a system of inequalities that decomposes
into pieces associated with G| and G;. In §3 the optimization problem is decomposed in
a similar way. In §4 we apply this technique to series-parallel graphs and we show that,
in this case, P(G) is a projection of a polytope defined by a system with O(#n) inequalities
and O(n) variables, where » is the number of nodes in G. Also for this class of graphs,
we give an algorithm that finds a maximum BIS in O(n log ») time. In §5 we use the
same approach for finding compositions of facets of P{(). Analogous results about acyclic
induced subgraphs are mentioned in §6.

2. Compositions of graphs. In this section, we derive a system of inequalities that
defines a polytope having P(G) as a projection, provided that G is a composition of two
graphs and such a system is known for each piece.

The next theorem 1s a generalization of a result of Chvatal [7] about the stable set
polytope.

THEOREM 2.1. Let G = (V, E) be a signed graph such that there exists node sets
Vi and V5 with the following properties:

@D V=V Uk,

) W=V,Nk+g,

(i) Between each pair {1, j} = W, there exists a positive edge and a negative edge
in E,

(iv) The induced subgraph (V\W, E{XV\W")) is disconnected.
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IfG, = (V\, EN)), Gy = (Va, E( V2)), then a system of inequalities that defines P(G)
Is obtained by the juxtaposition of such systems defining P(G,) and P(G,).

Proof. Let Ax < b be the system obtained by juxtaposing both systems. Let £ be a
point in the polyhedron defined by Ax < b, Let X; (X2) be the restriction of X to the set
of indices associated with nodes in Vi (V7). Since X, € P(G,), we can write

p
fl= Z }‘tyu
i=1
.
ANz20 forl<i<p 3 \=1,

i=]

where y, is an extreme point of P(G))fori=1,..., p. We can also write

,z0 forl<si<k X o=1,
i=1
where z; is an extreme point of P(Gy)fori=1,..., k
Let W= {w, ..., w}. Then

X(w,) = Z {}\;‘]J?f(‘*‘%f') =l;= E {ai|z(w) = 13, l=j<]

We can match a vector y; with yi{w;) = 1 with a vector z, with z{w)=1forl =
J = [ and we can match a vector yi with yi(w;) = 0 for | < j < / with a vector z, with
z(w;) = 0 for | <j </ We obtain an incidence vector of a balanced induced subgraph
of G. Thus x can be written as a convex combination of incidence vectors of balanced
induced subgraphs of G. O

Now we study graphs with a two-vertex cutset. Let G, = (V,, E|) and G, =
(V2, E>) be two graphs such that Vi Vy = {u, v} andlet G = (¥, E) be the union of
G, and Gy, ie., V=V, U Vo, E = E, U E,. We cover four cases.

Case 1. There is a positive edge and a negative edge between % and v in G.

Case 2. There is only a positive edge between u and v in G.

Case 3. There is only a negative edge between u and v in G.

Case 4. Nodes u and v are not adjacent in G.

Case 1 is covered by Theorem 2.1; thus we restrict ourselves to the three other cases.
In Case 2, we define G, = (V,, E,), i = 1, 2 as follows; see Fig. I:

V=796 {wi, wa, w3, Wy},
' E—I = EI' U {{H'rla U, _}, {wly v, +}) {WZ! U, —}9 {WJ-) U, _}9

{W3, v, _}7 {w43 v, _}3 {W}, Wy, _}y {W3, Wa, _'}}

In Case 3 (Vi, E), i = 1, 2 are defined as in Case 2, but {w,, v} is labeled negative.
In Case 4, G, = (V,, E,), i = 1, 2 are defined as follows:

771 = Pl {Wl, Wi, W3, Wy, Ws},
E_r' = Ef U {{W], U, _}1 {WZ’ i, _—}} {W3, U, —}.* {W4, U, _}3

{H”l! v! _}! {WZ! v, +}7 {v$ Wy, __.},{v, Wj, _‘}’ {W3’ W¢, —}.’ {W4, WS. _-}}

and {’
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Our aim is to derive a system of inequalities for P(G) from systems defining P(G )
and P(G,). Let G = (V, E) be the graph obtained as union of G; and G, ie., V = v, U
Vo, E= E; U.E,.

In Cases 2 and 3, the inequality

(2.1) 2 x(wy) + x(uw) + x(v) < 4

i=1

defines a facet F(G,) of P(G,), i = 1, 2 and a facet F(G) of P(G). In Case 4, the inequality

2.2) S xitwy) + %) + x(v) < 5

i=1

plays the same role.

The polytope P(G) is the projection of F(G) along the variables {x(w;)}. The next
theorem gives us a system defining F(G).

THEOREM 2.2. The juxtaposition of a system that defines F(G,) and a system that
defines F(G,) gives a system that defines F(G).

Proof. Let Ax = b be such a system and let X be a vector that satisfies it. Let X, (X,)
be the restriction of X to the set of indices associated with nodes in ¥, (¥3). Since X; €
F(G)), we have that

o
X Z KI.]"H

=1

P
Nz0 forO=<i=<p 2 M=

i=1]

where y, is an extreme point of F(G,)fori=1,...,p.



We can also write

k
X = 2 ez,
i=1
=
a;20 forO0=i=<k 2 a=1

i=]

]

where z, is an extreme point of F(G,) fori=1,..., k.

Let us study Case 2. For a vector x € F{G), let us assume that its last six components
are x(w;), i = 1, ...,4, x(u), and x(v). Then, for each vector Vi, 118 last six components
form one column of the matrix

0 1L 1 1 1 17
I 1 1 0 1 1
O 1 1 1 0 0
M=11 1011 1
1 0 0 1 0 1
| 101 0 1 .0
Set 8, = Z {\, |, is associated with the jth column of M }. The vector £ satisfies
x(wy)
JMﬁ = f(Wa)
x(u)
x(v)

In the same way, we can associate the vectors {z,} with the columns of M.
We can define v, = 2 {e; |z is associated with the jth column of M 1, since 7 satisfies

f(‘:"’i)

My = | %(ws)
x(u)
x(v)

and M is nonsingular; we have that 8 = . Hence vectors {yi} can be matched with
vectors {z;} in such a way that X can be written as a convex combination of extreme
points of F(G).

Cases 3 and 4 are analogous. O

3. Algorithmic aspects of the compesitions. In this section, we use the compositions
of §2 to obtain a maximum weighted BIS, provided that we have an algorithm to solve
the problem in each piece.

Let G = (V, E) be a signed graph and ¢ : V" — R, a weight function.

First, let us assume that & is the graph of Theorem 2.1, let W= {w,, ... w,}, and
let 3; be the maximum weight of a BIS of G, that contains w; for 1 =i </ Let 8, be the
maximum weight of a BIS of G, that does not contain any node of W. Let us redefine
the weights in (7, as follows:

cluw)y=clu) ifuegw,

c(w;)) =max {0,8,— Bo} forl=ix<l
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Let & be the maximum weight of a BIS of Gy; then the maximum weight of a BIS of G
18 a + fy. _ _
Now let us study Cases 2—4 of §2. Set W= ¥V, N V, and let

(3.1) 2 x(u) = r(W)

we W

be inequality (2.1) or (2.2). If X is the incidence vector of a BIS of G, we can always
complete it to an incidence vector of a BIS of G that satisfies (3. 1).

Let W= {v, ..., v, . There are p BIS of (W, E{ W)) whose incidence vectors satisfy
(3.1); moreover, they are linearly independent. Let U, . . . , U, be the node sets of them.
Let 8, be the maximum weight of a BIS of G> whose node set contains U, for | < i < 2
The weights for nodes of W\ V, are zero. Let [v1+ - *¥,] be the solution of the system of
equations

[ross ol <x%] = 8+ 4 8,].
Let us redefine the weights in G 1 as follows:
c'(u) =clu) ifueV\W,
cw)=vy+M forl <ix<p,

where M is a big number (M = 2., ¢(u)). Let « be the maximum weight of a BIS of
G,. Then the maximum weight of a BIS of G is a — r(W)AM.

4. Application to series-parallel graphs. These decomposition techniques are useful
for classes of graphs that can be decomposed by two-node cutsets. For series-parallel
graphs, Hassin and Tamir [12] proved the following result.

THEOREM 4.1, Let G = (V, E ) be a series-parallel graph. There exist two nodes u,
v € Vand two subsets V|, V, < V, such that

1) Vil <3|V|+2,i=12,
(i) VinNv, = {u v},

Qi) V=Tl ¥, B=B005) @ E(15).

Furthermore, the vertices u, v and the sets Vi and V; can be found in linear time.

To find a maximum weighted BIS. we should recursively decompose the graph. We
might have to add five nodes to each piece so we do not decompose if the pieces are not
smaller than the graph; i.e., we want $|V| + 7 = | V|. Thus we stop when each piece
has at most 21 nodes. Figure 2 shows an example of a graph that cannot be further
decomposed. If the graph has 21 nodes or less, we solve the problem by enumeration.
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Let 7{(n) be the number of operations to solve the problem in a graph with # nodes.
Then

T(n) < cn + T(m) + T(ny),

where n; < $n+ 2,i= 1,2 and n, + n, = n + 2. Therefore I(n) = O(n log n). We can
state the following result.

THEOREM 4.2. A maximum weighted BIS in a series-parallel graph with n nodes
can be found in O(n log n) time.

In [6] we showed that, even for series-parallel graphs, P{G) may have facet-defining
inequalities that are not simple to describe. However, the theorem below shows that. by
allowing some extra variables, we obtain P((G) as a projection of a polytope that is much
easier to represent.

THEOREM 4.3. If G is series-parallel and has n nodes, then P(G) is a projection of
a polytope defined by a system with O(n) inequalities and O(n) variables.

Proof. Applying Theorems 2.1 and 2.2 to the decomposition of the graph, we obtain
a polytope Q such that P(G) is a projection of Q. If G has n nodes, then the number of
variables in the system that defines Q is O(n), and the number of inequalities is Oo(n).
For this, it is sufficient to know a characterization of P(G) for series-parallel graphs with
at most 21 nodes. O

5. Compositions of facets. Now we see that, in Cases 2 and 3 of §2, we obtain a
complete description of the facets of P(G) from the facets coming from the pieces. We
must first study the structure of these inequalities.

Let ax < « be an inequality that defines a nontrivial facet of P(G); i.e., & contains
at least two nonzero components. It is easy to see that ¢ = 0 and « > 0. Also, if @ has
exactly two nonzero components, then it corresponds to x(u) + x(v) < 1. This can only
be the case when u and v are linked by a positive edge and a negative edge. We denote
by V, the set

Ve = {v]a, > 0}.
The graph G, = (V,, E(V,)) is called a facet-inducing graph. We denote by A(G) the set
B(G) = {W < V|(W, E(W)) is balanced },
and 8, is the set
B.= {Wec V|WeB(G) and ax¥ = a}.

Given a path u, u;, 4, ..., , U between u and v, the nodes u, ..., u; are called
internal nodes. Now we present several lemmas about the inequality ax < a.

LEMMA 5.1. The graph G, is connected.

Proof. Suppose that G, is the union of two disjoint graphs G| = (V,, E;)and G, =
(Vy, E3). Let a, (respectively, a;) be the row obtained from a by setting to zero all the
components associated with nodes in G, (respectively, G). Letting

o; = max 4g;Xx, XePG), i=1,2,

we have that @ = a; + a2 and @ = g, + az; thus ax < a can be obtained as the sum of
two valid inequalities. This is not possible because it defines a facet. O

LEMMA 5.2. If G, contains a node u of degree 2 and its neighbours are v and w,
then a, < a,, a, = a,.

Proof. Since ax < « defines a nontrivial facet, there is a set W € 8, such that ¢
W. It implies that v, we W.
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w @ w

3,

Fig. 3

Let
W= w\{v} U {u}, W= W\{w} U {u}.

It is clear that W' € B(G) and W" € B(G); then a, = a,, a, < a,.. O

COROLLARY 5.3. If G, contains a path u, u,, . . ., U, v whose internal nodes are
of degree 2, then ay, = a, for 1 < i<k, 1 <j=<k

LEMMA 5.4. If G, contains the induced subgraph T = (U, E(U)) where

U= {u v, w, m, w3},
E(L/T) = {HH’], UWyp, Uwo, VW3, WiWy, W‘2W3},

and all the edges in E(U) are labeled negative, then Quy, = Quw, = Qy,. See Fig; 3.
Proof. Let Ty = {u, wi, w,} and T3 = {v, wp, w3 }. If We 8,, W {u, wo} # &,
and W {v, wy} # &, then |T\NW| =2and |T, N W| = 2.

Since ax =< a is different from the inequalities
x(u) + x(w)) + x(ws) = 2, x(v) + x(wn) + x(wy) < 2,

there are two node sets W, and W in (3, such that {u, wol DW= @, {v, we} N W5 =
&. Hence w, € W, and wy € W,. Let

W’| ~ W|\{W|} U {Wz}.
Since { W', W4} < B(G), we have

B iy

W2 = Wo\{ws} U {m,}.

Ay, = Ayy
and, from Lemma 5.2, we have

Gy = Qisys Gy = Ay,
which vields

Gy = By = By O

LEMMA 5.5. Given two nodes u and v, there is at most one path in G, containing
an even (respectively, odd) number of negative edges whose internal nodes are of degree
2 (a path could consist of a single edge).

Proof. Suppose that G, contains the paths %, u,, . . . , w, v and u, Ui,..., 0, vthat
satisfy the conditions above. If W € ,, then either (a) | W N {1, ..., )| = k and
[ W oy, ..., =lor(d) [WN {uy,...,u}| =k—1and I[N {vy,...,0}] =
! — 1. Thus

> xMu) =2 M) =k—1
i J

but this is not possible because ax < « defines a facet. |
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LEMMA 5.6. Let p be a node of degree 3 in G, given any other node q in G, there
is at most one path between p and q in G, whose internal nodes are of degree 2.

Proof. Suppose that there are two paths p, uy, ..., u, g and DV, ..., U, ¢ that
satisfy the above conditions. Because of Lemma 5.5, we assume that these paths have
different parities.

Let W e 3,. We have the two following cases:

(1) If g ¢ W, then S W oy W o Uit € W, because p has degree 3 in G,
and ¢ = 0;

(i) If g€ W, then |{p, u, ..., u, Ui, .- -5 0} O W] =k + [ because @ = 0 and
W cannot contain a cycle with an odd number of negative edges.

Thus x" satisfies

x(p)+x(@ + 2 x(u) + 3 x()=k+1+1,

J

but this is not possible because ax < « defines a facet. N

LEMMA 5.7. For a facet-defining inequality ax < a, the graph G, cannot be decom-
posed as in Theorem 2.1.

Proof. Suppose that G, admits such decomposition, since ax < « should also define
a facet of P((,). This contradicts Theorem 2.1. O

Now we study the facet-defining inequalities of P(G)).

LEMMA 5.8. Ifax < « defines a facet of P(G), k= 1,2 and {u,, w1l =i = 4} =
Vain Cases 2 and 3, {u, v, wi | < i <5} < V,, in Case 4, then ax < is of the type
(2.1) or (2.2).

Proof. In Case 2, we can apply Lemma 5.4 and we have that ¢, = By = @y

Let W € f,. There are the three following cases:

1) W {u, v} = ; in this case, {will<i<d4}cw:

(1) {u, v} = W, in this case. w, ¢ W, because it would create a cycle with one
negative edge, and W N {w,, w;, Waj = {ws, wy}, because s = Gy, = Qs

(i) |{x, v} N W| = 1. this implies that [N {ws, wy, wyl| = 2:also, w, e W,
because a,, > 0.

Therefore |W N {u, v, w; | =i = 4}| = 4. Hence x" satisfies (2.1); this implies that
ax = a is of the type (2.1). In Case 3 or Case 4, the proof is analogous. |

Consider now a nontrivial facet-defining inequality ax < «. In Cases 2 and 3, the
structure of G, falls into one of the types below:

(i) G, does not contain any of {will =i<4);

(1) If wy € G,, Lemma 5.7 shows that u, Wi € Gy; if there is any other node in G,
then Lemma 5.7 shows that v e G,, and Lemma 5.6 shows that w3 should not have
degree 3. Hence w, € G,. From Lemma 5.4, we have that a,, = ayy = a,,. We can
assume without loss of generality that a,, = 1. From Lemma 3.8, we have that w, € G,
only if the inequality is of type (2.1).

(ii1) If {ws, wa} NV, = &, then Lemma 5.5 shows that, in Case 2, w; cannot be in
Va: however, w; could be in V. In Case 3, Lemma 5.5 shows that Hwi, m} NV, = 1.

Thus we have that, in Cases 2 and 3, the facet-defining inequalities of P(Gy) are
classified as follows, for k = 1, 2:

4

(5.1a) Z awx(j)<eaf, ielt,
Je by
(5.1b) > ahix(j) + x(w) + x(ws) + x(w,) < o, i Ik,

1€V

(5.1d)

(5.1e)
(5.1f)
(5-1g)
(5.1h)
(5.10)

(5.2)
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(5.1¢c) > abx()) + x(ws) < of, ielt,
jeVy
(5.1d) Z apx()) +x(m)=eof, i€l
€ VR
(5.1e) X(u) + x(wp) + x(w3) < 2,
(5.1) x(U) + x(w3) + x(wy) < 2,
(5.1g) x(u) + x(v) + x(wy) + x(wz) + x(ws) + x(wq) < 4,
(5.1h) x(w) =1, 1 =j =4,
(5.11) x(/)=0, jE V.

Then F(G) is defined by both systems, together with the inequality

(5.2) =x(u) — x(v) — x(w,) — x(wz) — x(w3) — x(wy) = —4.

To project the variables {x(w,)}, we use the following theorem of Balas and Pulley-
blank [1].

THEOREM 5.9. Let Z =
of the w variables is

{(w, x)| Aw + Bx < b}; the projection of Z along the subspace

X = {x|(vB)x < vb, Vv eextr ¥, x = 0},
where extr Y denotes the set of extreme rays of

={ylp4=0,y=0}.

In our case, the matrix 4 has the following twelve types of rows:

o o0 0 0
0 1 1 1
0 0 1 0
1 o 0 0
0 1 1 0
0 0 1 1
1 1 1 |
1 0O 0 0
0 1 0 0
0 0 1 0
0O 0 ©0 1
=l = =1 =,

Column j corresponds to x{(w;) for 1 < j = 4; the first seven rows correspond to
inequalities (5.1a)-(5.1g), respectively; the next four rows correspond to inequalities
(5.1h); the last row corresponds to inequality (5.2).

The extreme rays of Y correspond to the extreme points of

{(rlyd=0, 2 y;=1,y=0},

so we enumerate the extreme points of

{z|Bz=0, 2 z;= 1,z = 0},
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where B is the matrix below:

0001 00100 —
01 001 01 1 0 —1
01 1 01 110 0 —1
01 00 0 1 1 0 1 —]
The extreme points are the columns of
1 0 000 00 0 0]
0 1 100000
0 0 00 0 0 &
4+ 44 0 4
0L L 00 o0
010400
0 000 {0
0000 4 0}
1 0 0 L 0 0!
_0000%%%%%%J

So the inequalities given by Theorem 5.9 are obtained by performing the following
steps:
(1) Keep inequalities (5.1a)-(5.1g), but delete the variables {x(w)};
(i1) Add three inequalities, one of type (5.1b), one of type (5.1d) or x(w;) < 1, and
(5.2),
(111) Add four inequalities, one of type (5.1d) or x(w,) < 1, one of type (5.1e), one
of type (5.1f), and (5.2), from the result delete x{(wy);
(iv) Add four inequalities, one of type (5.1d) or x(w;) = 1, one of type (5. 1e), x(w;)
= 1, and (5.2);
(v) Add four inequalities, one of type (5.1d) or x(w) < 1, one of type (5.11),
Xx(w;) < 1, and (5.2):
(vi) Add (5.1g) and (5.2) (which gives the redundant inequality 0 < 0);
(vii) Add five inequalities, one of type (5.1¢) or x(w3) < 1, one of type (5.1d) or
x(wi) = 1, x(wy) < 1, x(w,) < 1, and (5.2).
The next lemma shows that some of these inequalities are redundant.
LEMMA 5.10. Letax < a bea Jacet-defining inequality of P(G), « = 0. Ifv,c v,
then this inequality aiso defines a facet of P(Gy), k = 1, 2.
Proof. Tt is clear that this inequality is valid for P(G}).
By hypothesis, there are |V, | linearly independent incidence vectors of balanced
induced subgraphs that satisfy ax = «. Let us form a matrix M with them. Among these
vectors, there is one vector X with X(x) = 0 or X(v) = 0. Hence the columns of

X & X X
1
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form a set of | V; | linearly independent incidence vectors of balanced induced subgraphs
of G. Moreover, they satisfy ax = a. O

This lemma states that, if an inequality is essential in the definition of P(G) and its
support 1s included in V}, then a multiple of this inequality already appears in (5.1a). So
in (i) we should only keep (5.1a) and in (ii) we should keep the constraints whose support
intersects both V)\{u, v} and V2\{«, v}. For the same reasons, the inequalities produced
in (i11)~(v) are redundant. Thus we obtain the following result.

THEOREM 5.11. In Cases 2 and 3, P(G) is defined by (5.1a), together with
x(j) = 0 for j € V and the mixed inequalities

(5.3) 2 aix(N+ T ax()— xw) - xw) <o + ol — 4
eV Je¥;

fork=1,2;1=1,2;iel% seli.

In what follows, we prove that, if k # /, inequalities (5.3) define facets of P(G). First,
we must introduce a technical lemma.

LEMMA 5.12. Inequalities (5.1b) and (5.1d) define facets of F(G},).

Proof. First, let us study inequalities (5.1b). Since dim (F(G,)) = |V} | — 1, we must
show that there are | V| — 1 linearly independent vectors in Fi (G) that satisfy (5.1b). Let
n=|V.|. There is a linearly independent set {x, ..., x,} of extreme points of P(G,)
that satisfy (5.1b).

For a vector x;, we do the following. If x; satisfies (5.2), we keep it; otherwise, we
set the component x;(w,) equal to 1. We obtain a set S = {x1, ..., x,} of vectors that
satisfy both (5.1b) and (5.2). Since we only modified one component, there are 1 — |
linearly independent vectors in S.

Now let us study an inequality of type (5.1d), say ax = a. Let S = {xi,...,x,} be
a set of linearly independent extreme points of P(G,) that satisfy ax = a. Let X, be one
of these vectors; if x, satisfies (5.2), we define Xj = X;; otherwise, we define x/(u) = x;(11)
if u # wy, ws, ws. We set to 1 some of the components Xy (ws), xi(ws), x}(ws) to obtain
an extreme point x; that satisfies (5.2).

Let us assume that ax < o is inessential in the definition of F(G). This implies that

a=2 Nbi+yd, az=2 N8 +ve, =0,

where b x < §; denotes an inequality in (5.1), other than ax < «, but not (5.1g). and
dx = ¢ denotes the equation derived from (5.1g).

For each inequality b,x < §;, there is a vector x, € S such that bix; < B;and bix| =
Bi. Hence b;,, > 0, j = 2, 3, 4; then b,,, = 0. This implies ¥ = 1 and some A0, a
contradiction. O

So if ax = « is of type (5.1b) or (5.1d) and another inequality bx < £ defines the
same face of F(G,), then b = \a + vd, where dx = ¢ denotes (5.1g) as equation and A =
0. The constraint bx < § cannot be in (5.1), because of the structure of the inequalities
1n this system.

LEMMA 5.13. If k # [, inequalities (5.3) define facets of P(G).

Proof. Suppose that k = 1, [ = 2. We show that there exists a vector ¥ in P(G) that
satisfies this inequality as equation, and all the others as strict inequality.

For the inequality

2 apx(j) + x(w) + x(wy) + x(wg) < af,  ield,

1e
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FIG. 4
let S = {X;, ..., x| bethe set of extreme points of F((,) that satisfy it as equation. For
S aix(j) + x(w) < af, i€ 7s
feVz
let 7= {1, ..., m} be the set of extreme points of F(G>) that satisfy it as equation.

First. for each vector x;,, we can find a vector y;, such that both together give a vector
in F(G), 0 < i = I. Next, for each vector y;, we can find a vector x, such that together
they give a vector in F(G), 0 = < m.

Let {z,....z/ be the set of vectors thus obtained (r = [ + m). Let z} be the vector
obtained by dropping the components zi(w;), 1 =j = 4,
Then

o
K ==iaf $omos go)
¥

is the required vector. O

This theorem gives a way to describe facets of P(G) by composition of facets for the
pieces. For instance, consider the graphs in Figs. 4(a) and 4(b), with all the edges labeled
negative. The inequalities

> x(1)=<9 and ¥ ="
define facets for the first and second graph respectively; see [6]. Theorem 5.16 shows that
> x(i) = 12
defines a facet for the graph in Fig. 4(c).

The techniques of this section also apply to Case 4 of §2. The only missing piece in
this case is a characterization of the extreme rays of the set Y, defined in Theorem 5.9.

6. Acyclic induced subgraphs. In this section, our aim is to show how the same
ideas apply to the acyclic induced subgraph polytope. Similar compositions for the
polytope of acyclic spanning subgraphs have been studied in [5].
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Let D = (V, A) be a directed graph; the induced subgraph (7, A(W7)) is called acyclic
if it does not have a directed cycle. The acyelic induced subgraph (AIS) polytope is

P(D) = conv {x" e R |(W, 4(W)) is acyclic},
and the maximum AIS problem is
max ¢x, xe€ P(D).

If G = (V, E) is an undirected graph, the maximum stable set problem in G can be
reduced to a maximum AIS problem in a directed graph D = (V, 4), where each edge
e € E 1s replaced by the arcs (7, /) and (/s £). This shows that the maximum AIS problem
is NP-hard for planar digraphs.

The analogue of Theorem 2.1 is the following result.

THEOREM 6.1. Let D = (V, 4) be a direcied graph such that there exist two node
sets Vi and V with the jollowing properties:

() V=1, UV,

() W=V N+,

(i) For {i,j} = W, the arc (i, j) € A and (J,1)e A,

(iv) The induced subgraph (V' \ W, A(V\W)) is disconnected.

If D, = (V,, AV,) and Dy = (Va, A(V3)), then a system of inequalities that defines
P(D) is obtained by the juxtaposition of such systems defining P(D,) and P(D,).

Now let us study digraphs with a two-vertex cutset.

Let D, = (V,, 4,)and D, = (V>, A3) be two digraphs such that V, N Va = {u, v}
and let D = (V, A) be the union of Dy and D,,ie., V=V, U Va, 4= A, U 4,. There
are three cases.

Case 1. The arcs (u, v) and (v, u) belong to A.

Case 2. The arc (u, v) € A.

Case 3. There is no arc between u and v.

Case 1 is covered by Theorem 6.1. In Case 2, wedefine D, = (V,, 4,), i = 1, 2 as
follows:

I7f = Vr U ]I_w]-s Wz}:
A= A, U {(wi, ), (v, w)), (1, Wa), (Wa, 1), (v, wy), (wy, v)}.
In Case 3, we define

Vi=V,U{w, us, ws b,
A= A; U {(, wy), (wi, 1), (1, wa), (ws, ), (1, W), (w3, ), (ws, 1), (o, ws)}.
For Case 2, the inequality
x(wi) + x(wy) + x(u) + x(v) < 2
plays the role of inequality (2.1). For Case 3, the inequality
x(w) + x(ws) + x(wy) + X(u) + x(v) < 3

plays the role of (2.2).

So they define a facet F(D,) of P(D,), i = 1, 2 and a facet F(D) of P(D); again. the
polytope P'(D) is the projection of F(D) along the variables {x(w)}!, and the following
is the analogue of Theorem 2.2.

THEOREM 6.2. The juxtaposition of a system that defines F(D, ) and a system that
defines F(Ds) gives a system that defines AD).

Algorithmic aspects analogous to those of §3 hold for the AIS problem. For series-
parallel digraphs, we have the following result.
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