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COMPOSITIONS OF GRAPHS AND POLYHEDRA IL STABLE SETS*

FRANCISCO BARAHONAT anp ALL RIDHA MAHJOUB?

Abstract. A graph G with a two-node cutset decomposes into two pieces. A technique to describe the stable
set polytope for G based on stable set polytopes associated with the pieces is studied. This gives a way to
characterize this polytope for classes of graphs that can be recursively decomposed. This also gives a procedure
to describe new facets of this polytope. A compact system for the stable set problem in series-parallel graphs 1s
derived. This technique is also applied 10 characterize facet-defining inequalities for graphs with no Ks\e minor.
The stable set problem is polynomially solvable for this class of graphs. Compositions of h-perfect graphs are
also studied.

Key words. polyhedral combinatorics, composition of polyhedra, stable set polytope, compact systems
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1. Introduction. Given a graph G, let P(G) be the stable set polytope of G. If G has
a one- or two-node cutset, then G decomposes into G, and G,. We study a technique to
derive a system of inequalities that defines P(G) from systems related to G, and G». In
a companion paper [2], we studied the same technique for the polytopes of balanced and
acyclic subgraphs. We can use this to characterize the stable set polytope for classes of
graphs that can be decomposed by two-vertex cuts, provided that the pieces are “easy”
to handle. It also gives a procedure for characterizing facets of the stable set polytope by
composition of facets for the pieces. We use this method in [3] to characterize the stable
set polytope for graphs with no W, minor.

In §2 we study the structure of the facets of P(G) and show some facet-defining
inequalities for subdivisions of a wheel. In §3 we study the composition of polyhedra. In
§4 we study the algorithmic aspects of this kind of composition. In §5 we study series-
parallel graphs. We derive a compact system for the stable set problem in this class of
graphs; i.e., we show that P(G)1sa projection of a polyhedron that is defined by a system
whose number of variables and number of inequalities is linear in the number of nodes
of the graph. In §6 we study some facets of P(G) for graphs with no Ks\e minor. Based
on a decomposition theorem of Wagner, we can derive a polvnomial algorithm for finding
a maximum weighted stable set in this class of graphs. Using composition of facets, we
show that, for any positive integer p, we can find a graph G with no Ks\e minor such
that P(G) has a facet-defining inequality with coefficients 1, 2, ..., p. In §7 we study
compositions of #-perfect graphs.

We finish this introduction with a few definitions. Given a graph G=(V,E),a
stable set S © I is a node set such that there is no edge with both endnodes in S. If § =
V. let x5 e RY, where x>(u) = 1 ifu € S, and xS(u) = 0if u ¢ S; x* is called the incidence
vector of S.
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The stable ser polytope P(G) is the convex hull of incidence vectors of all stable sets
of G, ie.,

P(G) = conv {x* € R”|S'is a stable set of G}.

The polytope P(G) is full-dimensional. This implies that (up to multiplication by a positive
constant) there is a unique nonredundant inequality system Ax < b such that HlG) =

{x|Ax < b}: moreover, there is a natural bijection among the facets of P(G) and the
inequalities of that System.

2. On the facets of P(G). The facets of P(G) have been studied in [11], [5], [10],
[13]-[15]. In this section, we present some properties of those inequalities that will be
used later. We also present some facets for subdivisions of a wheel.

Let ax < & be an inequality that defines a facet of P(G). If ¢ contains at least two
nonzero components, we say that ax < « defines a nontrivial facet. In this section, we

Vo= {v|a,> 0}.

The subgraph induced by ¥, is denoted by G,. Let us remark that G, is a two-con-
nected graph.

We now present two lemmas about the structure of G, their proofs appear in [9].

LEMMA 2.1, Jf ‘G, contains a path with vertices Dy, v, q, where u and v are of degree
2, then a, = q,.

LEMMA 22 If G, is different from an odd hole (and from K), then it does not

contain between two given nodes p and q two edge-disjoint paths such that each node of
them different from D, q 18 of degree 2.

polytope from known facets. The first procedure consists of subdividi ng a star.
THEOREM 2.3 (subdivision of a star). Let G = (V, E) be a graph and ax < @ be q
nontrivial facet-defining inequality. Let v be q vertex of G and N = {00, ..., ey} be
the neighbor set of v. Suppose that, for each | = 0, ...,k =1, there exists a stable set S,
Such that ax™ = o gnd SSNN= 0 Bicg o s Vikp—1}, where p> | is a fixed integer
and the indices are numbered modulo k. Suppose also that P and k are relativel 'V prime
and a,, = oy =" =@y ,=a)p. Let G' = (V's E) be the graph obtained from G by

adding on each edge VU, @ new node v} for i = (), . k—1. Set
@, =a, forue PA\{v},
a4 = a(k — p)/p,
Ay = aylp fori= (VN S— i
a = o+ alk — p)/p.

Then ax < & aefines a facet of P(G").
Proof. First, let us show that ax < & is valid for P(G'). Let S" be a maximal stable

set of G,

Case 1. The node v belongs to S".

Then § = SN{v} is a stable set in (, which implies that ax® < a and then
= a.

Case 2. The node v does not belong to .5,

Let T=8"NNand T = (Vilve T,0 < i < k — 1}]. Note that 7 < S, Lt
§S=E"TuUmU {v}. It is clear that S is a stable set of G; then gx5 < «. Since
| TU T"| = k, we have that ax®’ = a.
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Now we have to show that ax = « is facet-inducing. Letn = |V | and m = n + k.
There are #n stable sets S, . . . , S, of G whose incidence vectors are linearly independent
and satisfy ax = «. Consider the following sets:

Si=(S\{vhU {1g,...,0,,} ifves,
Si=85U{v} ifveS,fori=1...,n,
and
it =50 Pl d B Rorj=0 400 o~ 1

The incidence vectors of S, ..., S,, satisfy ax = a. Let us assume that they dlso
satisfy bx = a, where bx = a is a facet-defining inequality of P(G'). We prove that
b=a.

Since the incidence vectors of So,...,S._ are linearly independent, we can assume
chﬂ.S| = ;S:(}, o= .7S,L = S;‘-|.

Consider the equations hx™ — hx®+ =0, i = 1, ..., k. This is a svstem like

() =0

where u is a row of 17s, and C is the k X k cyclic matrix having (k — p) I’s in each row
and column. Hence, we have that

by =>bfk—p) fori=0,...,k—1.

There is some number 6 > 0 such that a — b, = da.
Consider the equations bx™> = & (or bx> — by =a — b,), i = 1, ..., n. Since a is
the unique solution of ax® = @, i = 1,.... n and @ — b, = da, we have that

b,=éa, forue V\{v} and b,p/tk —p)= ba,.
Therefore,
b, = dafk — p)/p = 6d@, and by=da/p=2éa,;, i=0,...,k— 1.

Since @ = da + b, = da + da,(k — p)/p, we have that 6 = 1. The proof is complete. O

Wolsey [15] gave some methods to construct facets of P(G) from known ones. One
of those methods 1s the following, which consists of replacing one edge by a chordless
path of length 3.

THEOREM 2.4 (subdivision of an edge). Given a graph G = (V, E) and uv € E, let
ax = a be a nontrivial facet-defining inequality of P (G), different from x(u) + x(v) < 1.
Let G' be the graph G without the edge uv, if § = max {ax|x € P(G')} has a solution
with x(u) = x(v) = 1, then

ax + Ax(s) +Ax() =g

defines a facet of P(G"), where A = 8 — «, and G has been obtained by adding the nodes
S and t to G', and the edges us, st, and tv.

In the following, we show a converse transformation.

THEOREM 2.5. Let G = (V, E) be a graph. Let ax = « be a facet-defining inequality
of P(G). Suppose that G contains a path (pu, uv, vg) such that u and v are of degree 2.
Assume also that a, = a, = a, = 8. Let G' = (V', E") be the graph obtained from G by



replacing that path by the edge pq. Let

then ax < & defines a face of P(G").

Proof. First, we show that ax < & is valid for P(G’). Let S’ be a stable set of G If

{P,g} NS"+ &, saype S, then S = §' U {v} is a stable set in G: hence ax>" < a —
B=alf{p gt NS = then S = §'U {v} is a stable set of G and thus ax> < a —
8= a

Let n = |V| and m = n — 2. We must exhibit m stable sets of G' whose incidence
vectors are linearly independent and satisfy dx = a.

Since ax < o defines a facet of P(G), there are » stable sets St ov., S, of G such

that ax¥ = o, 1 < i < n, and this set of vectors is linearly independent. Consider the
following sets:

1) 8= S\{v}if {p, v) = 8,
2) Si=S\{p}if {p.q} = S,
3) 8t =S\{u}if {q, u} = S|,
4) Si=S\u}ifueS,qes,
5) §i=8\{v}ifveS,pesS

fori=1,...,n
Note that the sets S; for i = 1, ..., n are all stable sets of G". Let us denote by Af
(respectively, M) the matrix whose columns are the incidence vectors 4 i | PR 4

(S, ..., S.). The matrices M and M look like

A, Ay A Ay s

N

co—o
SO =0

We must show that the rank of M’ is n — 2. Let M be the following matrix:

=
]
—_—0 OO - S

This is nonsingular. In fact, if M is singular, then its last row should be linearly dependent
of the others. Since ¢ is the only solution of tM = («, . . ., a), we should have Bla = 1.
However, « = 28, a contradiction.

and st

Since

1S a st

define
star ¢
coeffi
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defini
appes
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Now let us add the rows corresponding to & and v to the row corresponding to p
and subtract from the resulting row the last row of /7. We obtain the following:

A, A, A Ay As 0

]++-1 00 0--<0 0---0 0---0 :

0---0 Qrecll 1o o] Jows]  Qoesp 0
sle set of G, If Ieeed 020 033500 1Qeenf Lo ] 0
g & oy 0-:-0 Lewel  Teevl Qe+sQ Q-0 0
us ax%’ < o — 1111 ]
nose incidence Since this matrix is nonsingular, we can conclude that M’ is of rank n — 2. O

We finish this section by showing some facet-defining inequalities of P(G), when G

, Sy of G such is a subdivision of a wheel.
. Consider the Let G be the graph of Fig. 1(a); it is well known that the inequality

5
> x(j) + 2x(6) < 2

S

defines a facet of P(G). By applying Theorem 2.3 to the star of node 6 and then to the
star of node 5, we obtain the graph of Fig. 1(b) and a facet-defining inequality; the
coefficients different from | appear in the figure. The right-hand side is 7. Again, if we

 denote by M apply Theorem 2.3 to the stars of nodes 1, 2, 3, 4, and 5 in Fig. 1(a), we obtain a facet-

of S, ...\ S, defining inequality whose right-hand side is 12 and whose coefficients different from 1
appear in Fig. 1(c). Finally, if we apply Theorem 2.3 to the star of 6 in Fig. 1(a) and then
Theorem 2.4 to subdivide some edges, we also obtain the graph in Fig. 1(c) but a different
inequality whose right-hand side is 10 and whose coefficient different from 1 appears in
Fig. 1(d).
: 2
(a) (b)
2
Zz '; ; 2 { ; ;
lv dependent 2 2
ave Bla = 1. (© (d)

FiG. 1
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3. Compositions of graphs. Let G = (V, E) be a graph such that V = Vi Vs,
W=1V,NV,+ & and (W, E(W)) is a clique and (V\W, E(V\W)) is disconnected.
Chvatal [5] proved the following.

THEOREM 3.1. If G, = (V}, E(W)), G3 = (Va, E(V2)), then a system that defines
P(G) is obtained by taking the union of the systems that define P(G,) and P(G5).

This theorem applies to the case where G has a one-node cutset or a two-node cutset
{u, v} with uv € E; we refer to this as Case 1.

In the remainder of this section, we assume that

(i) V=V, UV,
() VNV, ={u, v},

(i) G\{u, v} is disconnected,

(iv) The nodes « and v are not adjacent.

This will be called Case 2. We add a five-cycle to each piece. We shall see that we
can easily derive a description of the polytope for the original graph from the polytopes
of the modified pieces. Let G, = (V. E.) be defined as follows:

(1) [7;\ = ViU {wy, wy, wa},

(i) Ex = E(Vi) U {uwy, vw,, uwy, waws, wyv} fork = 1, 2. Let G = (V, E) be the
union OFG1 and Gg., i.e., [7: FFI U 172, E = E[ U E_g.

The inequality

3
(3.1) 2 X(w) + x(u) + x(v) < 2

r=1

defines a facet F(G,) of P(Gy). k = 1, 2 and a facet F(G) of P(G). Furthermore, the
polytope P(G) is the projection of /() along the variables {x(w))}, ie.,

P(G) = {p[(y, x(wy), x(w3), x(w3)) € F(G)}.

The next lemma gives a system that defines F(G).

LEMMA 3.2. Given two systems of inequalities defining F(G,) and F(G,), the union
of these two systems defines F(G).

Proof. See Theorem 2.4 in [2]. O

Lemmas 2.1 and 2.2 show that the facet-defining inequalities of P(Gy) can be classified
as follows, for k = 1, 2:

(3.2a) > afx(j) = af, ielt,
Je Vg
(3.2b) D akx(j) + x(wy) < ok, i€ Ik
1y
(3.20) > aix(j) + x(wy) + x(ws) = ok, eIk,
JEV
(3.2d) x(1) + x(wy) < 1,
(3.2e) x(u) + x(wy) < 1,
(3.21) x(v) + x(w)) < 1,
(3.2g) xX(v) + x(wy) = 1,
(3.2h) x(wy) + x(ws) < 1,
(3.21) x(u) + x(v) + x(wy) + x(ws) + x(ws) < 2,

(3.27) x(j) =0, je ¥,

Ehe
inter:
Wo, W

(3.3)

leybl:

along

wher

The
to (3

SO W

whe

The



= VU ¥V,
isconnected.

thar defines
"(Ga).
~node cutset

| see that we
1e polytopes

V, E) be the

ermore, the

), the union

be classified

COMPOSITIONS OF GRAPHS AND POLYHEDRA II: STABLE SETS 365

The set I§ consists of the inequalities whose support does not intersect {w, wa, w; |.
The set 7% contains the inequalities whose support includes {u#, v, w;} and has empty
intersection with {w,, ws}. The inequalities in I% have a support that contains {u, v,
ws, wi| and does not include w;.

Then F(G) is defined by both systems together with the inequality
(3.3) —x(u) = x(v) — x(wy) — x(w2) — x(w3) = —2.

Now we project the variables {x(w;)} using the following result of Balas and Pul-
leyblank [1].

THEOREM 3.3. Let Z = {(w, X)|Aw + Bx = b, w= 0, x = 0} the projection of Z
along the subspace of the w variables is

X ={x|(wB)x = vh, Vveextr ¥, x = 0},
where extr ¥ denotes the set of extreme rays of
¥ ={y|lyd=0,y=0}

In our case, the rows of 4 are of the following types:

0 0 0
1 0 0
0 1 ]
1 0 0
0 1 0
1 0 0
0 0 1
0 I 1
1 1 1
=] =1 =i

The first nine rows correspond to inequalities (3.1a)-(3.11), and the last row corresponds

to (3.3). The extreme rays of ¥ correspond to the extreme points of

{vlyd=0, 2 yi=1,y=0},
so we enumerate the extreme points of
{z|Bz=0, > z;=1,z =2 0},

where B 1s the matrix

1 0 0 0 1 -1
o 1 1 0 1 -1}1.
0 1 0 1

The extreme points are the columns of the matrix below:

oo o

1 0 0 0 00
0 1 - 4+ 1o
0 1 00
0 + 0

0 L 0

1 0 0 1§
[ 0 O 0 5 i 3
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Therefore the inequalities given by

Theorem 3.3 are obtained by performing the following
steps:

(i) Keep inequalities (3.2a)~(3.21) but delete the variables tx(w)},

(i1) Add three inequalities, one of type (3.2b), (3.2d), or (3.2,
or (3.2h), and (3.3),

(i) Add four inequalities, one of type (3.2b
one of type (3.2g), and (3.3),

(iv) Add (3.2i) and (3.3) (this gives the redundant inequality 0 < 0).

The next lemma shows that some of those inequalities are redundant.

one of type (3.2¢)

), (3.2d), or (3.2f), one of type (3.2e),

Va © Vi, then this inequality also defines q Jacet of P(Gy), k = |, 2.
Proof. Let H be the graph obtained by replacing the edge uw, in G, by the path us,
St twy, where s and ¢ are new nodes. First, we prove that ax < « defines a facet of P(H).
[t is clear that this inequality is valid for P(H).
By hypothesis, there are | V| linearly independent Incidence vectors of stable sets
of G, that satisfy ax = «. Let us form a matrix A7 with them. Among these vectors, there
Is one vector ¥ such that X(x) = 0 and one vector X such that X(v) = 0. Consider the

LEMMA 34, Let gy < a be an inequality that defines a nontrivigl Jacet of P(G). Iy

OCJC‘-‘*"—'C’%

The last five rows correspond to s, 7, w,, Wz, and wy, respectively.

The columns of M’ are linearly independent incidence vectors of stable sets of i
and satisfy gx = o Now, by Theorem 2.5, we can replace the path us, st, tw, by the edge
uw, and we have that gx = o defines a facet of the stable set polytope of G, . (]

This lemma states that, if an inequality is essential in the definition of P(G) and its
support is included in Vi, then a multiple of this inequality already appears in (3.2a). So
when we apply (i) we should keep only the inequality (3.2a); in (ii) we should keep only
those constraints whose support intersects both Vi{w, v} and Va\{u, v}; for the same
reasons the inequalities produced in (iii) are redundant. We can state the main result of

THEOREM 3.5, 7pe polytope P(G) is defined by (3.2a), together with

X(J) =0, for
J €V, and the mixed inequalities

2 aix()+ 3 alx(jy— X(U) = x(v) = af + ol — 2
JelV, =¥

(3.4)
Jork=1,2:/= L, 2: &k # !::'efﬁ,sef‘;.

To prove that this system is minimal, we introduce the following lemma.
LEMMA 3.6, Inequalities (3.2 b) and (3.2¢) define Jacets of F{ G.).
Proof. First, we study inequality (3.2b). Let ax < @ be one of them and et § =
WX <o, ) bethe set of extreme points of P(G)) that satsfy ax = o.
Let x; be a vector in §- if x; € F(Gy), we define x/ = X;; othe
X() if i # w,, wy. We set to | X;(w2) or X;(ws3) to obtain an ex
Now let us assume that ax < « is inessential in the definition of
a=2ZNb+yd, a>3 Ay + ve, with A, > 0, where bix <
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of (3.2) different from ax = a and from (3.2i); dx = ¢ denotes the equation obtained
from (3.21).

For each inequality b,x < ,, there is a vector x; € S such that b,x, < 8, and b, x| =
g;. Hence b, > 0 for j = 2 or 3; then b, = 0. This implies ¥ = | and then some A, <
0, a contradiction.

Now we consider an inequality ax < « of the tvpe (3.2¢).

Since dim (F(G) = | V.| — 1, we must show | V.| — 1 linearly independent vectors
in F(G)) that satisfy ax = a. Let S = {x), ..., x,} be the set of extreme points of P(G,)
that satisfy ax = a. Let x; be a vector in S; if x; € F(Gy), we set Xj = x;; otherwise, we set
X)) = x;(i), if i # wy, xj(w;) = 1. Since § contains | V| linearly independent vectors
and we modified only one component of the vectors in S, the set §' = {x}, ..., x}}
contains | V| — 1 linearly independent vectors in F(G,) that satisfy ax = a. O

So if ax = « 1s of type (3.2b) or (3.2¢) and another inequality bx =< § defines the
same face of F(G,), then b = Aa + yd, where dx = ¢ denotes (3.2i) and A = 0. The
constraint bx = f cannot be in (3.2) because of the structure of the inequalities in this
system.

COROLLARY 3.7. Imegualities (3.4) define facets of P(G).

Proof. Assume that £ = 1, / = 2. We show that there exists a vector X € P(() that
satisfies this inequality and all others as strict inequalities,

For the inequality

> apx(j)+x(w) =al, i€l

Fe V)
let S = {x,,...,x,} be the set of extreme points of F{G,) that satisfy it. For
> apx(j) + x(w)) + x(ws) = af, i€l},
Je by
let 7= {yi,..., Vm| be the set of extreme points of F(G,) that satisfy it. First, for each
vector x,, we find a vector y;, such that together they give a vector z, € F(G), i = 1, .. .,

n. Similarly, for each vector y,, we find a vector x;, that gives a vector z,,, € F(G), i = 1,
....m. Let{z, ...,z be the set of vectors thus obtained, (r = n + m). Let z} be the
vector obtained by dropping the components z;(w;), 1 < j < 3 from z;; then

X = =g +ormik 20

|
' 8
is the required vector. ]

4. Algorithmic aspects. The optimization problem can be also decomposed. The
following algorithm appeared in Boulala and Uhry [4] and Sbihi and Uhry [12].

Let G = (V, E) be a graph and ¢ : VV— R, a weight function. Let us assume that
G is the graph of Theorem 3.1, let W= {w,, ..., w;}, and let 8, be the maximum weight
of a stable set of (4, that contains w, for | < / < [ Let §, be the maximum weight of a
stable set of (; that does not contain any node of W, Let us redefine the weights in G,
as follows:

c(u) = e(u) if g W,
¢{w)=max {0,8;,— Bo} forl =i<l

Let « be the maximum weight of a stable set of GG1; then the maximum weight of a stable
set of G is e + By.



Now let us study Case 2 of §3. Let yo = u, y, = wa, Y2 =Wy, 13 = v, y, = w,. For
0 < [ =4, let B, be the maximum weight of a stable set of (-; whose node set contains y,
and y, ., (indices taken mod 5); the weights of the nodes {w,} are zero.

Let [y, . .., v4] be the solution of the system
1 0 0 1t 0
0O 1 0 0 1
Winsssysy Yol 1 0 1 0 0= B B2 B Ba)
0O 1 0 1 0
0 0 1 0 1

We have that

_Bo—Bi— B2+ B3+ B
Yo = s

2

_Bot B —B2— B3+ B

l 2 )

_Bot+Bi+ Bi—Bi— P
Y2 = 2 ’

_ =Bot B+ B+ B3+ B
i T 2 )

__BO_6|+182+63+64
Y4 = ;

2

Let M = min {¥, }; if the numbers {8, } are integers, then y; — M is a nonnegative integer
for 0 < i = 4. Now we define

c'(j)=c()) ifjeViN{u v},
cyy=v,—M forO=i<4

Let & be the maximum weight of a stable set of G,; then the maximum weight of a stable

set of G is a + 2M. Let us remark that one of the weights ¢'(y) is zero; we can then
delete that node from G;.

5. Application to series-parallel graphs. Boulala and Uhry [4] proved the following.
THEOREM 5.1. If G = (V, E) is a series-parallel graph, then P(G) is defined by

0=x(w) forallueV,

x(w)+x(v) =1 foralluwwekE,

Z x(12) £|C|7_l

uel” 2

(5.1
Jor all odd holes C.

They also gave a linear time algorithm to find a maximum weighted stable set in a
series-parallel graph. A short proof of Theorem 5.1 appears in [9].

A connected series-parallel graph can be decomposed into paths and triangles using
one-node and two-node cutsets. If G consists of a cycle and a path joining two nodes of
the cycle, then it is easily seen that P(G) is defined by (5.2). Thus Theorem 5.1 can be
derived from Theorems 3.1 and 3.5.

Since a series-parallel graph may have exponentially many odd cvcles, the stable set
polytope may have exponentially many facets.
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Hassin and Tamir [7] proved that, if G = (V. E) is a series-parallel graph, then it
contains a two-node cutset such that, when the decomposition of §3 is carried out,
|Vl =2/3|V| + 2 fori= 1, 2. Hence we can recursively decompose a series-parallel
graph until each piece has at most fifteen nodes. By Lemma 3.2, we can describe a
polytope Q such that P(G) is a projection of Q. If G has r nodes, then the number of
inequalities and the number of variables in the system that defines Q is O(n). Such a
system is compact.

6. Graphs with no K5\e minor. A graph G is said to contain a graph H as a minor
if a graph 1somorphic to H can be obtained from G by repeated deletion and contraction
of edges of G. Let us denote by € the class of all connected graphs that do not contain
Ks\e as a minor; this is the graph K5 minus one edge. Wagner [16] gave a characterization
of the graphs in ¥.

If G| and G are node-disjoint graphs with at least two nodes, v, a node of G, and
vy @ node of G then the 1-sum of G, and G, (with respect to v; and v,) 1s obtained by
identifying the nodes v, and v,. If ¢, is an edge of G, and e, is an edge of G,. then the
2-sum of & and G, (with respect to e, and e,) is obtained by identifying ¢, and e, (and.
of course, the endnodes of ¢, and ¢,).

Wagner proved that each maximal graph G in € (ie., by adding a further edge to
G, the new graph will contain K5\e as a minor) can be obtained by starting with the
graphs of Fig. 2 and taking repeated 1-sums or 2-sums. Equivalently, if we have a2 maximal
graph G € €, we can decompose it into the graphs of Fig. 2. If the graph G € € is not
maximal, then we may use also spanning subgraphs of the graphs in Fig. 2. In this case,
the nodes of the two-node cutset may be nonadjacent in G.

Let 7 be the number of nodes of G € ¥; a two-vertex cutset can be found in O(n)
time. The pieces that we obtain are the graphs of Fig. 2, where some edges are replaced
by a five-cycle. The max stable set problem in a graph of this tyvpe obtained from a wheel
can be solved in linear time, so, using the procedure of §4, we can find a maximum
weighted stable set in G in O(#%) time.

O

FiG. 2
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The development of a polynomial algorithm for combinatorial optimization prob-
lems has often been closely related to the characterization of a system of linear inequalities
that defines the corresponding polytope. This is the case for the stable set polyvtope of
series-parallel graphs [4]. The missing piece here is a characterization of the polyvtope for
subdivisions of wheels; in §2 we gave procedures to produce some of these inequalities.
In [3] we used a tour de force to characterize the polytope for subdivisions of K. In what
follows, we present some examples of facet-defining inequalities of P(G) for G € €.

The graph of Fig. 3(a) has been obtained by subdividing one edge of the graph in
Fig_ I(a). Theorem 2.4 gives us a facet-defining inequality whose right-hand side is 3 and
whose coefficient different from 1 is shown in the figure. We can compose this graph
with the graph of Fig. 1(b) to obtain the graph in Fig, 3(b). By Corollary 3.7, we can see
that there is facet-defining 1nequality whose right-hand side is 8 and whose coefficients
different from 1 appear in the figure. Given any positive integer p, we can construct a
graph & € ¥ and an inequality that defines a facet of P(G) with coethicients 1, 2, ...,
p. For this, it is enough to compose subdivisions of wheels of different sizes.

7. Composition of k-perfect graphs. A graph G is said to be A-perfect if P(G) is
defined by the constraints corresponding to cliques, odd holes, and the nonnegativity
constraints.

Let ¢ be the graph of Theorem 3.5; we can derive A-perfectness of G as follows:

(a) If G, and G, are A-perfect then G is also h-perfect:

(b) If G,\{w, } is h-perfect, G, is h-perfect and the set of inequalities (3.2¢) for P(G,)
is empty then G is A-perfect;

(c) If Go\{w,, wy} is h-perfect, G, is h-perfect and the set of inequalities (3.2b) for
P(G) is empty then G is A-perfect.

Sbihi and Uhry [12] studied graphs G, which are the union of a bipartite graph G,
and graph G having exactly two common nodes # and v and no edge in common. They
proved that the graph G is A-perfect if the graph obtained from G by replacing G, by an
u — v chain is #-perfect. They also proved that the graph obtained by substituting bipartite
graphs for edges of a series parallel graph is A-perfect. Their results follow from remarks
(a)-(c).

Gerards [6] studied graphs with not odd K4. Those graphs can be decomposed by
two-node cutsets as shown by Lovasz et al. [8]. Gerards used compositions similar to
those of Boulala and Uhry [4] and Sbihi and Uhry [12].
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tation of this work.
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