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COMPOSITIONS OF GRAPHS AND POLYHEDRA IV:
ACYCLIC SPANNING SUBGRAPHS*

FRANCISCO BARAHONA*, JEAN FONLUPT*, AND ALl RIDHA MAHJOUB

Abstract. Given a directed graph D that has a two-vertex cut, this paper describes a technique to derive a
linear system that defines the acyclic subgraph polytope ofD from systems related to the pieces. It also gives a
technique to describe facets of this polytope by composition of facets for the pieces. The authors prove that, if
the systems for the pieces are totally dual integral (TDI), then the system for D is also. The authors prove that
the "cycle inequalities" form a TDI system for any orientation ofKs. These results are combined with Lucchesi-
Younger theorem and a theorem of Wagner to prove that, for graphs with no K3,3 minor, the cycle inequalities
characterize the acyclic subgraph polytope and form a TDI system. This shows that, for this class of graphs, the
cardinality of a minimum feedback set is equal to the maximum number of arc disjoint cycles. For planar
graphs, this is a consequence of the Lucchesi-Younger theorem.
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1. Introduction. Given a directed graph D (V, A), we say that D’ (V, A’) is a
subgraph of D if A’

___
A. Given S

___
A, the incidence vector of S, xs NA is defined by

10 if(i,j) 6 S,
xS(i’ J)

if (i, j) e A \S.

The acyclic subgraph polytope ofD, denoted by P(D), is the convex hull ofincidence
vectors of arc sets S such that Ds (V, S) has no directed cycle. Given a weight function
w:A -- , the problem offinding a maximum weighted cyclic subgraph can be formulated
as the linear program

maximize wx s.t. x P(D).

The polytope P(D) is full-dimensional. This implies that (up to multiplication by a
positive constant) there is a unique nonredundant inequality system Ax <_ b such that
P(D) {x:Ax <_ b}. These inequalities define the facets of P(D). The acyclic subgraph
problem is NP-hard, so finding a complete characterization of P(D) seems to be very
difficult. On the other hand, Lucchesi and Younger [9] characterized P(D) for planar
graphs. Gr6tschel, Jfinger, and Reinelt [6], [7] characterized several facet-defining in-
equalities of P(D) and used them to design a cutting plane algorithm.

In this paper, we study directed graphs that have a two-vertex cutset. We show how
to derive a system that defines P(D) from systems associated with the pieces. This also
gives a technique to derive new facets defining inequalities by composition of known
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facets. We also prove that, if the two systems are totally dual integral (TDI), then the
new system is, also.

The most natural system of inequalities that we can think of is

(1.1) x(i,j)<_ ICI-
(i,j)C

for every directed cycle C,

(1.2) 0 <_ x(i, j) _< for every arc (i, j).

Inequalities (1.1) will be called cycle inequalities. Lucchesi and Younger [9] proved
that, for planar graphs, (1.1), (1.2) is a TDI system and defines P(D).

Wagner 10] proved that graphs with no K3,3 minor can be decomposed into planar
graphs and copies of Ks. We prove that, for any orientation of Ks, the system (1.1), 1.2)
is TDI. We combine Wagner’s theorem with the theorem of Lucchesi and Younger and
our composition techniques to prove that, for graphs with no K3,3 minor, the system
(1.1), (1.2) is TDI and defines P(D). This implies that, for this class ofgraphs, the cardinality
of a minimum feedback set is equal to the maximum number of arc disjoint cycles.

The present paper should be considered as a revision of[3]; this type ofcomposition
was studied there, but the results on dual integrality are new.

If G (V, E) is an undirected graph, we say that G contains H as a minor ifH can
be obtained from G by a sequence of deletions and contractions of edges. An orientation
of G is a directed graph that contains exactly one of the arcs (i, j) or (j, i) whenever
ij E. The symmetric digraph D(G) (V, A) associated with G has the arcs (i, j) and
(j, i) whenever ij E. Given a directed graph D (V, A) and S

___
V, we denote by

6+(S) (respectively, 6-(S)) the set of arcs that enters (respectively, leaves) S. We write
cycle instead of directed cycle.

This paper is organized as follows. Section 2 is devoted to the composition of poly-
hedra; 3 deals with the composition of facets; in 4 we study the algorithmic aspects of
this composition; in 5 we study compositions of TDI systems; 6 is dedicated to the
study of the orientations of Ks; in 7 we study graphs with no K3, minor.

2. Compositions of polyhedra. In this section, we assume that D (V, A) is a
connected digraph having a two-node cutset u, v}, i.e.,

(i) V: Vlt-J
(ii) V,A V2= {u,v},
(iii) D\{u, v} is disconnected.
For k 1, 2, we define Dk (Vk, A), where

Ak A(V) t.J {(u, v), (v, u) },

and D (V, A) with A A t_J {(u, v), (v, u)}. Note that we could create parallel arcs in
this way; this is not a problem in any of the treatments that follow.

We explain how to describe P(D) from systems defining P(D) and P(D2).
The inequality

x(u, v) + x(v, u) <_

defines a facet of P(D); it is easy to see that this is the only facet-defining inequality that
has nonzero coefficients for both x(u, v) and x(v, u). Therefore the facets of P(D), for



392 BARAHONA, FONLUPT, AND MAHJOUB

k 1, 2, can be classified into the five types below:

(2.1a) a[(i, j)x(i, j) <_ a,
(i,j)-Ak

(2.1b) a(i, j)x(i, j) + x(u, v) < a,Z lff2,
(i,j)Ak

(2.1c) Z al(i, j)x(i, j) + x(v, u) < a, l I,
(i,j)aAk

(2.1d) x(u, v) + x(v, u) < 1,

(2. e) x(i, j) > 0 for (i, j) e A,

where I is the set of inequalities with zero coefficients for x(u, v) and x(v, u); I2 is the
set of inequalities with a nonzero coefficient for x(u, v) and a zero coefficient for x(v, u);
I is the set of inequalities having a zero coefficient for x(u, v) and a nonzero coefficient
for x(v, u).

The equation

x(u, v) + x(v, u)

defines a facet F(Dk) ofP(Dk) and a facet F(D) ofP(D). The polytope P(D) is a projection
of F(D) along the variables x(u, v) and x(v, u). The following theorem lets us find a
system that describes F(D).

THEOREM 2.1. The polytope F(D) is defined by the union ofthe systems that define
F( and F(2).

Proof Let Q denote the polytope defined by the union of these two systems. Let x
be a vector in Q. Let xl (respectively, x2) be the restriction ofx to A1 (respectively, A2);
we have that

Xl Z OiYi, Oi >" O, Z Ogi 1,

X2 E iZi, i >-" O, Z i-- 1,

and

where {Yi} and {Zi} are integer vectors in F(D1) and F(O2), respectively.
Since

Z {ailYi(u, v)- 1}- x(u, v)= Z {ilzi(u, v)-- 1},

Z {oei[Yi(V, u)-- 1} x(v, u)-- Z {iilzi(v, u)- 1},

we can match vectors in {Yi} with vectors in {z;} to write x as a convex combination of
integer vectors in F(D). V1

We now need a way to project x(u, v) and x(v, u); this is given by the following
result of Balas and Pulleyblank [2].

THEOREM 2.2. Let Z {(w, x)lAw + Bx <_ b, w >_ O, x >_ 0}; the projection ofZ
along the subspace ofthe w variables is

X {xl (vB)x .<_ vb, Vv extr Y, x >_ 0},

where extr Y denotes the set ofextreme rays of

Y= {yIyA >- 0}.
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In our case, the rows of the matrix A are of the types below:

0 0
0

0 1"

By observing the extreme rays of the set Y, we can deduce the next theorem.
THEOREM 2.3. Thepolytope P(D) is defined by the inequalities (2. a), together with

x(i, j) > 0 and the mixed inequalities
2(2.2) , al(i, j)x(i, j) + , ap(i, j)x(i, j) < a) + ap

(i,j)eAl (i,j)eA2

for (l, p) 6 (I I) U (I I2).
COROLLARY 2.4. IfP(D and P(D2) are defined by (1.1), (1.2), then P(D) is, also.
A constraint with coefficients 0 or is called a rank inequality. It also follows from

Theorem 2.3 that, ifP(D and P(De) are defined by rank inequalities, then P(D) is, also.
When we add the arcs (u, v) and (v, u), we could create parallel arcs in D and De.

If this is the case, for every inequality of type (2.1 b) or (2.1c), we would have a similar
inequality in (2.1a). This observation and Theorem 2.3 imply the next corollary.

COROLLARY 2.5. The polytope P(D) is defined by (2.1) and (2.2).

3. Compositions of facets. The purpose of this section is to prove that Theorem
2.3 gives a minimal description of P(D).

LEMMA 3.1. Inequalities (2.1b) and (2.1c) definefacets ofF(Dk).
Proof Consider (2. b). Let ax < a be one of them and let S {x,..., xt, } be the

set of extreme points of P(/k) that satisfy ax a. There are I1 linearly independent
vectors in S.

Since dim (F(Dk)) IAI 1, we need the same number of linearly independent
vectors that satisfy ax a. Let X be a vector in S; ifxr F(Dk), we set X’r Xr; otherwise,
we set X’r(i, j) x(i, j) for (i, j) 4: (v, u), and x’r(v, u) 1. Since we have modified only
one component ofthe vectors in S, the set S’ {x’ x contains I1 linearly
independent vectors in F(Dk) that satisfy ax a.

Because of the structure of system (2.1) and the lemma above, we can see that, for
any inequality (2.1 b) or (2.1 c), there is no other constraint in (2.1) that defines the same
face of F(Dk).

THEOREM 3.2. Inequalities (2.2) definefacets ofP(D).
Proof Assume (l, p) 6 I I3. We show that there exists a vector P(D) that

satisfies this inequality as equation and all others as strict inequality.
For the inequality_, a](i,j)x(i,j) + x(u, v) <_ a], e I,

(i,j)A

let S {x Xr} be the set of extreme points of F(/) that satisfy it as equation.
For

2Z a2p(i, j)x(i, j) + x(v, u) <_ at,, p I,
(i,j)A2

let T {y,..., y be the extreme points of F(/2) that satisfy it as equation.
Each vector xt can be matched with a vector Yt’ to give a vector in F(/). Let

{z, Zd} be the set thus obtained. Let z’t be the vector obtained by deleting the
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FIG. 3.1

components z’t(u, v) and z’t(v, u) from zt. Then

+... +

is the required vector.
We conclude this section with one example of this composition of facets. Denote

by D (V, A1) and O2 (V2, A2) the graphs in Fig. 3.1(a) and 3.1(b), respectively. Let
D (V, A) be the graph in Fig. 3.1(c). Let Ol and 2 be defined as in 2. Gr6tschel,
Jtinger, and Reinelt [7] proved that

(3.1) x(i,j)<7
(i,j)eAl

and

x(i,j) < 11
(i,j)A2

define facets of P(D) and P(D2), respectively; these inequalities also define facets of
P(/) and P(/), respectively. Theorem 3.2 implies that_, x(i, j) <_ 17

(i,j)A

defines a facet of P(D).

4. Algorithmic aspects. The problem of optimizing a linear function over P(D)
can be decomposed in a similar way as shown in this section.
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Let w’A 92+ be a weight function. To simplify the notation, we denote by al
(respectively, a2) the arc (u, v) (respectively, (v, u)). Let w, be the maximum weight of
an acyclic subgraph of Di that contains a..

Define

=wl-o, X=max{0,}, =
Let r 6 92 such that

(4.1)

Define w" z2 "-- 92+ as

w’(i, j) w(i, j) for (i, j) A2,

w’(al) ,
w’(a2)

THEOrEM 4.1. The maximum weight ofan acyclic subgraph ofD with respect to w
is X + r, where is the maximum weight of an acyclic subgraph of O2 with respect
t0 W.

Proof The maximum weight of an acyclic subgraph ofD is

max {wl + w- w(a), + w22- w(a2)};
it follows from (4.1) that this is equal to

a + max {x + w- w(a),

5. Total dual integrality. A system Ax < b is called total dual integral (TDI) if the
dual problem of

maxwx s.t. Ax<b

has an integer optimal solution for every integer vector w such that the maximum exists.
If the system is TDI and b is an integer vector, then {x lAx < b) has integer extreme
points. In this section, we prove that, if systems (2.1) are TDI, then the system given by
Corollary 2.5 is also TDI. For k 1, 2, we denote by the linear program

max wx s.t. (2.1).

The dual problem of is ,
minimize Yl a! + Yo

p 1,2,3 l Ip

s.t. E Z a(i, j)y >_ w(i, j) for (i, j) e A,
p 1,2,3 le Ip

Z + y0 >- v),
lk

Z + >- w(v, u),
lk3
k k

Yl >_0, Yo>O.
We denote by the linear program

max wx s.t. (2.1) and (2.2).
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Below is the dual 3.
minimize , yl

q .qt_

q 1,2 p 1,2,3 lIqp

s.t. _, Z a)(i, j)y] +
p= 1,2,3 leI

(k,/) (I X 1])0 (I I)
(a) + a- 1)z, + y0

(k,l) (121 I)LJ (I 122)
a(i, j)Zk,! > w(i, j)

Z Z a(i,j)y + E
p= 1,2,3 leZ2p (k,l)e(I{ 1) U(I{ I22)

for (i, j) e A,

a(i, j)Zk,l w(i, j)

for(i,j)A2,

E E yT+y0>-w(u,v),
q 1,2 le I- Yq -1- YO > W(1), U),
q= 1,2 lI

y>_O, yo>_O, zk,>_O.

Suppose that systems (2.1) are TDI and that the weights w are integer. To prove
that 3 has an integer optimal solution, we must study four cases; we present one of
them; the others are similar.

Suppose that we apply the algorithm of 4. Let 12 be the maximum acyclic arc
set in/2 with respect to w’. We consider the case where a > 0 and (v, u) 12. Thus
X a, K 0. We can assume that (u, v) e 12. There is an integer optimal solution fi2
of 2. Complementary slackness implies that

E +
lI

Now let us associate the weights Wl to the arcs in D, where

w(i,j)
w(i, j)

{w(v, u) + a

if (i, j) 4: (v, u),

if (i, j) (v, u).

Since w is integer, there is an integer vector 371 that is an optimal solution of 1. Thus
we have

which implies that

ll

Suppose that jT < a (the case where 37 >_ a is similar). There is a set J
_
I such that

and
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where s e I\. Let J U {s}. Define c (E. 37) + 37). Consider now the
system of equations

This matrix is totally unimodular; actually, it is a network flow matrix. Therefore the
above system has a nonnegative integer solution.

Now consider the vector defined below:

for e II U I{ U (I\3),

for e J,

if/= s;

for I U I,
for e I;

p0=6,

forke,leI,

otheise.

The vector 07, ) is a feasible solution of 9 and its value is X + r as defined in
Theorem 4.1.

The remaining cases can be treated in a similar way, they are
(1) c >_ 0 and a2
(2) c < 0 and a2
(3) c < 0 and a2

Therefore the system defined in Corollary 2.5 is TDI.

6. Orientations of Ks. In this section, we prove that system (1.1), (1.2) when as-
sociated with D(Ks) is TDI. This has been conjectured by Jtinger [8].

Define the linear program

(6.1) Sot.

maximize wx

x(i,j)<_ [CI-
(i,j)C

for every directed cycle C,

0 <_ x(i, j) _< for every arc (i, j)
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and its dual

minimize yc( cI 1) +

(6.2) s.t. yc + ’ti,j) >- w(i, j) for each arc (i, j),
C :(i,j)

y>O,.>O.

Here ;,) denotes the set of cycles that contain (i, j).
Let us denote by and problems (6.1) and (6.2) when they are associated with

D(K). We construct D’ (V’, A’) as follows:
(a) If w(i, j) > w(j, i) > O, then (i, j)6 A’ and w’(i, j) w(i, j) w(j, i);
(b) If w(i, j) w(j, i) > 0, then (i, j) A’ or (j, i) A’ but not both, say (i, j) A’

with w’(i, j) 0;
(c) If w(i, j) >_ 0 > w(j, i), then (i, j) e A’ and w’(i, j) w(i, j);
(d) If w(i, j) < 0 and w(j, i) < 0, we do not put any arc between and j.
Denote by ’ and ’ problems (6.1) and (6.2) when they are associated with D’.

Let and (37, ) be optimal solutions of ’ and ’, respectively; we can construct
optimal solutions of and as shown below.

Set (i, j) 2(i, j), (j, i) (i, j) if (a) or (b) holds; (i, j) 2(i, j),
(j, i) 0 if (d) holds; (i, j) (j, i) 0 if (d) holds; fc fc if C is a cycle of D’;
Y-c 5’(i, j) + w(j, i) if C {(i, j), (j, i)} and (a) or (b) holds; )7c (i, j) if C {(i, j),
(j, i)} and (c) holds; JTc 0 otherwise; and i,9) 0 for all (i, j). Therefore, instead of
studying D(Ks), we study the different orientations of Ks.

In the remainder of this section, D (V, A) denotes an orientation of Ks. We first
prove that (6.1) defines a polytope with integral extreme points. Let be an extreme
point; the following remarks allow us to rule out many cases.

Remark 6.1. If there is an arc (i, j) that does not belong to any cycle, then is
integer-valued.

Proof If (i, j) does not belong to any cycle, then the nontrivial inequalities of(6.1)
are associated with D\(i, j), and this is a planar graph.

Remark 6.2. If (i, j) 0 for an arc (i, j), then is integer-valued.
Proof Consider D’ D\(i, j) and let x’ be without the component associated

with (i, j). Since D’ is planar, we have that x’ P(D’) and x’ is a convex combination of
a set of vectors {x incidence vectors of acyclic subgraphs of D’. For each vector x, we
can add a zero component and obtain the incidence vector of an acyclic subgraph of D.
We have then that is a convex combination of them.

Remark 6.3. For any set S, 4: S C V, there is at least one arc (i, j)
6-(S) with 2(i, j) 1.

Proof If 0 < 2(i, j) < for every arc (i, j) e/+(S) U 6-(S), define x’ as

"(i, j) + e if (i, j) e i+(S),

x’(i, j) 2(i, j) e if (i, j) 6-(S),

2(i, j) otherwise.

For e sufficiently small, x’ satisfies (6.1), and, if some of these inequalities hold as
equation for , they also do for x’. This contradicts the assumption that is an extreme
point.

Remark 6.4. It follows from Remark 6.1 that we can assume that D is strongly
connected.
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Remark 6.5. It follows from Remark 6.3 that we can assume that there is a tree
of arcs (i, j) with (i, j) 1.

Remark 6.6. For every variable x(i, j) with 0 < 2(i, j) < 1, we can assume that it
appears in at least two tight cycle constraints.

Proof If 0 < 2(i, j) < and x(i, j) appears in only one tight constraint, we can set
x(i, j) 0; this new vector is also an extreme point, and, from Remark 6.2, we can
conclude that it is integral. This gives a contradiction.

Remark 6.7. If there is a node v that covers every cycle, then 2 should be integer-
valued.

Proof Consider D’ (V’, A’), where V’ V\{v} U {s, t} and A’ is defined below:

(i,j) 6A, i4:v, j4:v(i,j) 6A’,

(v, i) A (s, i) A’,

(i, v) 6A (i, t) 6A’.

Let Mbe the incidence matrix of all directed paths from s to in D’; it is well known
that, for any w >_ 0, the problem

minimize wx s.t. Mx > 1, x >_ 0

has an integer-valued optimal solution 2. Since M is also the incidence matrix of the
cycles in D, the vector A defined by

A(i,j)- -5(i,j) for(i,j) 6A

is an optimal solution of (6.1).
Now we can prove the following result.
THEOREM 6.8. All the extremepoints ofthepolyhedron defined by (6.1) are integral.
Proof There are three cases to study.
Case 1. The tree " contains a directed path with two arcs; i.e., suppose that

2(1, 2) 2(2, 3) 1. We have that (1, 3) 6 A. Consider the cycle inequalities that are
tight for 2; if there is a cycle that contains (1, 3) and goes through 2, it should be C
(1, 3, 4, 2, 5, 1). Since

we have that

2(2, 3) + 2(3, 4) + 2(4, 2) _< 2,

2(2, 5) + 2(5, 1) + 2(1, 2) _< 2,

2(1,3)< 1,

2(1, 3) + 2(3, 4) + 2(4, 2) + 2(2, 5) + 2(5, 1) _< 3,

a contradiction.
Therefore we should assume that every cycle containing (1, 3) does not go

through 2.
Let C be a cycle that contains 1, 3); if the constraint associated with C is tight, then

2(1, 3) 1; otherwise, the constraint

x(i,j) <_ IC’I
(i,j)C’

would be violated, where C’= C\{(1, 3)} tO {(1, 2), (2, 3)}. Then we must only study
the case where Y(1, 3) 1.
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Now consider the graph D’ D\(1, 3). Let 2’ be the restriction of ? to the arc set
of D’. We have that 2’ y/-, ; > 0, Z 1, where the vectors {Yi are incidence
vectors of acyclic subgraphs of D’.

Now define 37i as follows:

f(k, l) yi(k, l) if (k, l) 4 (1, 3),

i(1, 3) for all i.

The vectors {JTi } are incidence vectors of acyclic subgraphs of D, and 2-- Xi37i; then
2 should be an integer vector.

Case 2. The tree #- is {(1, 2), (3, 2), (3, 4), (3, 5)}. We can assume that (4, 5) E A.
We should assume that (1, 3) E A; otherwise, there is no cycle going through 3. We also
assume that (5, 1) A; otherwise, 4 covers every cycle. For the same reasons, we assume
that (4, 1) A. Also, we should have that (5, 2) and (2, 4) are in A; otherwise, would
cover every cycle. See Fig. 6.1.

We have that

92(2, 4) + 2(4, 1) + 2(1, 3) < 2,
(6.3)

92(2, 4) + 92(4, 1) + 2(1, 3) + 2(5, 2) _< 3.

Thus (6.3) holds as equation only if 2(5, 2) 1; then, however, we would be in
Case 1. If (6.3) does not hold, we would have that (5, 2) only appears in one tight cycle
inequality; then we can apply Remark 6.6.

Case 3. The tree W is {(1, 2), (3, 2), (3, 4), (5, 4)}. We can assume that (2, 4) e A.
Therefore (4, 1) e A; otherwise, there is no cycle going through 4. Then every cycle
containing (2, 4) also contains (4, 1). Consider the cycle C {(2, 4), (4, 1), (1, 2)}; we
have that

92(2, 4) + 92(4, 1) < 1.

Thus, if there is any other tight cycle inequality containing (2, 4), all its variables
different from 2(2, 4) and 2(4, 1) should take the value 1; this is Case 1. This concludes
Case 3 and the proof of the theorem.

It remains to prove that (6.1) defines a TDI system. This has been proved by Ap-
plegate, Cook, and McCormick using an algorithm that tests whether a system is TDI.
We present here a proof that does not involve computer calculations.

Suppose that, for every integer vector w _< #, w 4 , problem (6.1) has an integer
dual solution and let z(w) be its value. Now we study the weights w /s; we should

FG. 6.1
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assume that > 0. If one component ofu is zero, then the associated arc can be removed
yielding to a planar graph. Consider the set of inequalities that are tight for every optimal
solution of (6.1).

Case 1. Assume that

(6.4) x(i, j) <

is tight; then we can define w’ as

w(k, l) if (k, l) 4 (i, j),
w’(k, l)

w(i,j) if(k,l)=(i,j).

We have that z(w’) z(w) 1, and there is an integer dual solution for the objective
function w’. We increase by the value of the dual variable associated with (6.4) and we
have a dual integer solution for the vector w.

Case 2. Consider now a cycle C oflength 3, C= {(1, 2), (2, 3), (3, 1)} say. Assume
that the constraint associated with C is tight. Define w’ by subtracting from the costs
coefficients of the arcs in C.

LEMMA 6.9. The value ofthe new optimum is z(w’) z(w) 2.
Proof If z(w’) z(w), there is an optimal solution for the new objective function

that does not contain any arc of C. However, we can always add one of the arcs of C to
that solution without creating a cycle. This gives a solution for the original problem with
value z(w) + 1, which is a contradiction.

If z(w’) z(w) 1, there is an optimal solution for the new problem that contains
one of the arcs of C. This is also an optimal solution for the objective function w, which
is impossible because the constraint associated with C is tight for every optimum of the
original problem. V?

Given an integer optimal dual vector for the objective function w’, we increase by
the value of the dual variable associated with C and we obtain a dual optimal solution

for w.
Case 3. A cycle of length 4 is tight. In this case, it is easy to see that there is always

a cycle of length 3 that is tight, and we are in Case 2.
Case 4. A cycle of length 5 is tight. In this case, there is also a cycle of length 3 or

4 that is tight.
We can then state the main result of this section.
TttFORFM 6.10. For D(Ks), system (6.1) is TDI.

7. Graphs with no K3,3 minor. Gr6tschel, Jtinger, and Reinelt [7] proved that, if D
is a subdivision of the graph of Fig. 3. l(a), then an inequality analogous to (3.3) defines
a facet of P(D). Therefore, if G contains K3,3 as a minor, then system (1.1), (1.2) is not
sufficient to define P(D(G)). Wagner [10] proved that, if an undirected graph G has no
K3,3 minor, then either it is planar, it is Ks, or it has a two-vertex cut. We know that, if
G is planar or it is Ks then P(D(G)) is defined by (1.1), (1.2), and this is a TDI system.
This and the result of 5 imply the following result.

THgORgM 7.1. Given a graph G, system (1.1), (1.2) defines P(D(G)) and is TDI/f
and only ifG does not contain K3,3 as a minor.

An immediate consequence is the result below.
COROLLARY 7.2. IfD is a directed graph that does not contain a subdivision of.K,3

then the cardinality ofa minimumfeedback set is equal to the maximum number ofarc-
disjoint cycles.

For planar graphs, this follows from the theorem of Lucchesi and Younger [9].
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Let A be a matrix with nonnegative entries. Let P {xlAx > 1, x > 0} and let us
assume that this system is not redundant. If B is the matrix whose rows are the extreme
points of P, then the pair (A, B) is called a blocking pair; see Fulkerson [4]. Actually,
extreme points of Q {xlBx > 1, x > 0} are the rows of A.

Theorem 7.1 implies the next corollary.
COROIIAR’ 7.3. Given an undirected graph G, let A be the incidence matrix ofthe

directed cycles ofD(G) and let B be the incidence matrix ofall minimalfeedback sets of
D(G). We have that (A, B) is a blocking pair ifand only ifG has no K3,3 minor.
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