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Abstract 

We further study some known families of valid inequalities for the 2-edge-connected and 
2-node-connected subgraph polytopes. For the 2-edge-connected case, we show that the odd 
wheel inequalities together with the obvious constraints give a complete description of the 
polytope for Halin graphs. For 2-node-connected subgraphs, we show that the inequalities 
above, plus the partition inequalities, describe the polytope for the same class of graphs. 

1. Introduction 

The problem of finding a 2-connected subgraph of minimum weight arises in the 
design of communication and transportation networks. In order to use linear pro- 
gramming techniques one needs a system of inequalities that defines or approximates 
the convex hull of incidence vectors of 2-connected subgraphs. The case when the edge 
weights satisfy the triangular inequality was studied in [14]. For the 2-edge-connected 
case a family of facets was given in [13], and it was proved that for series-parallel 
graphs the polytope has a simple description. The polytope of 2-node-connected 
subgraphs of graphs with no I4/4 minor was characterized in [6]. Several classes of 
facets have been given in [11,9], for a more general model, and computational 
experience with them has been presented in [10]. The 2-edge connected case in 
directed graphs was studied in [3], and it was shown that facets for undirected case 
can be obtained by projection. The k-edge connected case was studied in [4], when 
multiple copies of an edge may be used; The polytope for outerplanar graphs, when 
k is odd, was characterized in this paper. 

Proving that some constraints define facets, and showing computational experience 
are ways to validate these classes of inequalities. Another way to validate a family of 
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inequalities is to show that although in general they only approximate the polytope, 
they give a complete description for simple classes of graphs. We are going to follow 
this path with the odd wheel and partition inequalities. We shall show that when 
combined with the obvious inequalities, they define the polytope for the class of Halin 
Graphs. This seems to indicate that for sparse graphs, these constraints are going to be 
useful. Halin graphs can be decomposed by 3-edge cuts, we use this property in 
a similar manner as Cornu6jols et al. I-5] did for the Traveling Salesman Problem. 

Given a graph G = (V, E), a spanning subgraph H = (V, F) is called k-ed#e-con- 
nected (resp. k-node-connected) if there are k edge-disjoint (resp. internally node- 
disjoint) paths between any two nodes. For S c V we denote by 6(S) the set edges 
with exactly one endnode in S. For x ~ ~e  and T_~ E we abbreviate ~ {x(e) I e e T} 
by x(T). 

For a full-dimensional polyhedron P, if two inequalities ax >~ ~ and bx ~ fl define 
the same facet then a = 2b, ct = 2fl for 2 > 0. Also if Ax >>. b is a minimal system that 
defines P then there is a natural bijection between the inequalities in this set and the 
facets of P. So if an inequality defines a facet of P, it will appear (up to multiplication 
by a positive number) in any system that defines P. 

Given F ___ E the incidence vector of F is denoted by x ~. We are going to study the 
2-edge-connected subyraph polytope 

TECP(G) = cony {xr I (V, F) is a 2-edge-connected subgraph of G}, 

and the 2-node-connected subgraph polytope 

TNCP(G) = conv{xel(V, F) is a 2-node-connected subgraph of G}. 

The traveling salesman polytope is a face of both polytopes, this suggests that 
finding a complete description by a system of inequalities is unlikely for general 
graphs. Clearly TNCP(G) ~ TECP(G), so let us first concentrate in TECP(G). The 
bound inequalities 

O<<,x(e)~< 1 f o r e e E  

and the cut inequalities 

x(6(S))>>.2 f o r ¢ ¢ S c  V 

are valid for TECP(G). In [13] it was proved that these inequalities define TECP(G) if 
G is series-parallel. It was also proved that if G is 3-edge-connected then this is 
a full-dimensional polytope, x(e) >1 0 defines a facet if e is not in a 2-2 or 3-edge cut, 
x(e) ~< 1 defines a facet ife is not in a 2-edge-cut, and a cut inequality defines a facet if 
the cut has at Feast three edges and both shores are 2-edge-connected. 

Also in [13], a family of valid inequalities was introduced as follows. Consider 
a partition of Vinto /?, V1, ..., Vp, and let F ~ 6(I ?) with IFI = 2k + 1, let 

p 

6(v ,  . . . . .  v,)  = U 6(v,), 
i=l 



F. Barahona, A.R. Mahjoub / Discrete Mathematics 147 (1995) 19-34 21 

if we add the inequalities 

x(~StV,)) >~ 2, 1 <~ i ~ p, 

we obtain 

- x (e )  >~ - 1, e c F ,  x(e)  >~ O, e e 6 ( V ) \ F ,  

2x(A) >7 2 p -  2k - 1, 

where A = 6(V1 . . . . .  Vp)kF, dividing by 2 and rounding up the right-hand side we 
obtain 

x(A) >1 p -  k. (1.1) 

We are going to prove that bound, cut and inequalities (1.1) define TECP(G) if G is 
a Halin graph. 

Consider now the 2-node-connected case, all the inequalities above are valid for 
TNCP(G) but we need some new constraints. For this let us first notice that if a graph 
is 2-node-connected then when we delete any node the remainder is connected, i.e., it 
contains a spanning tree. The dominant of the spanning tree polytope of a graph 
H = (U, F) is defined by 

x(6(Ul  . . . .  , Up)) t> p - 1 for every partition U1 . . . . .  Up of U, 

x~>0, 

(1.2) 

see [15, 2]. Thus we can delete any node u e G  and inequalities (1.2) for G\u, called 
partition inequalities, are valid for TNCP(G). We shall prove that bound, cut, (1.1) and 
partition inequalities are sufficient to define TNCP(G) if G is a Halin graph. 

In order to use these inequalities in a cutting plane algorithm one needs an efficient 
way to find one of them that is violated. The separation problem for the cut 
inequalities can be solved as a sequence of minimum cut problems. Inequalities (1.1) 
reduce some blossom inequalities for b-matching if the sets { Vi } are singletons, so in 
this case one can solve the separation problem with the procedure of [16]. It would be 
very interesting to have a polynomial algorithm for inequalities (1.1) in general. The 
separation problem for (1.2) can be solved as a sequence of [VI.IE L minimum cut 

problems using an algorithm of 1-7] or as a sequence of [VI 2 minimum cut problems 
using an algorithm of [1]. 

Before concluding this introduction we give a sufficient condition for inequalities 
(1.1) to be facet inducing. This will be used in Section 3. 

Theorem 1.1 (Mahjoub [13]). Let G = (V, E) be a 3-edge-connected graph whose node 

set can be partitioned into V, Vj, i = 0 . . . . .  2k, j = O, 1 . . . . .  Pi, so that: 

(l) the subgraph induced by each member of  the partition is 3-edge-connected; 

(2) there is at least one edge between V ° and V°+ l for  i = 0 . . . . .  2k (modulo 2k + 1); 
(3) if pl > 0 there is exactly one edge between V/ and V/+ 1,j = 0 . . . . .  Pi; i = 0 . . . . .  2k, 

where VP i' + l = 17; 
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(4) /f Vi °, i=  0,.. . ,  2k, are removed the only edges between the members of the 
partition that remain are among those described in (3); 

(5) there is no edge between Vi ° and V / , j  = 0 . . . . .  Pi; i = 0 . . . . .  2k. 

Let ri <~ Pi be the largest integer such that 16(V7') I >i 3, and let ei be the edge between 
V~' and V.~' + l, 0 <~ i <~ 2k. Set F = {el, 0 <~ i <~ 2k}, and 

A= U 6(v/)\F, 
i = O, . . . ,2k 
j = O, . . . , r  i 

then the inequality 

2k 

x(A) >~ k + 1 + ~, ri, (1.3) 
i = 0  

defines a facet of TECP(G). 

Constraints (1.3) are called odd wheel inequalities. 

2. Halin graphs 

A Halin graph G = (V, T w  C) consists of a tree T that has no degree-two nodes, 
together with a simple cycle C whose nodes are the pendant nodes of T, the graph 
should be embeddable in the plane with C as the exterior face. These are examples of 
minimally 3-connected graphs given by Halin [12]. Any edge e e T is a unique 3-edge 
cut that contains two edges of C, we denote this cut by fie- All results in this section are 
valid for TECP(G) and for TNCP(G). We are going to use P(G) to denote either one of 
these polytopes. 

Wheels are those Halin graphs with Tbeing a star. I fa  Halin graph G = (V, T u  C) 
is not a wheel then for any nonpendant edge ee Tthe cut fie is non trivial, i.e., be = 6(S) 
with ISI I> 2 ~< I V\Sl. Let G~ be the graph obtained by shrinking S to a single node 
and let G2 be obtained from G by shrinking V\S, then G~ and G2 are also Halin 
graphs. If we keep applying this procedure recursively we are left at the end with a set 
of wheels. We need the following that is an adaptation of a theorem of [5]. 

Theorem 2.1. Let G = (1I, E) be a graph that has a 3-edge cut 6(S). Let G1 = (V1, El) 
and G2 = (V2, E2) be obtained from G by shrinking S and V\S respectively. Then 
a system of linear inequalities sufficient to define P(G) is obtained from the union of the 
systems that define P(GI) and P(G2), and by identifying the variables associated with the 
edges in 6(S). 

Proof. Let Q be the polytope defined by the union of these systems. Clearly P(G) _ Q, 
so we have to prove that every vector x e Q is a convex combination of vectors in P(G). 
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Assume that e, f and O are the edges in G1 c~ G2. The restriction x 1 of x to the 
component set E1 belongs to P(G~) thus 

X1 ~- 2 "~'iY', with ~ ~.i = 1, 2 ~> O, 
iEl i~l 

and the vectors { yi} are extreme points of P(G1). 
Let 

ley= ~{2,:  i ~ l  such that y ' ( e ) =  y ' ( f )  = 1, y'(g) = 0}, 

ly 0 = ~ {2,: i e l  such that y ' ( f )  = y'(g) = 1, y'(e) = 0}, 

leo : ~ {~.,: i e l  such that y i ( e )=  yi(g) = 1, y i ( f )  = 0}, 

lefo = '~ {J,,: i~ I such that y ' ( e )=  y ' ( f ) =  y ' ( g ) =  1}. 

Note that 

[ef "q- leo + lefo "~ x(e) ,  

leo q" lfo d- le f  O = X(g) ,  

lef d- [fo -k- [ef o = x( . f ) ,  

lef "1- leg + lfg "1- lef o : 1. 

This uniquely determines le f  , leg, If# and lefg, given x. 
Similarly, for the restriction x 2 of x to E2, we have 

x 2 =  ~ ' # j z  j, with ~ p ~ = l ,  p~>O, 
jEJ j e J  

where the vectors {z i} are extreme points of P(G2). 
Let 

mel -- ~ {Pj: j ~ J  such that zJ(e) = zJ ( f )  = 1, zJ(g) = 0}, 

mfg = ~ {~2j: j E J  such that zJ ( f )  = zJ(9) = 1, zJ(e) = 0}, 

me, = ~ { laj: j ~ J  such that zJ(e) = zJ(o) = 1, z i ( f )  = 0}, 

meyo = ~ {#j: j E J  such that z~(e) = zJ ( f )  = z~(o) = 1}. 

Then 

reef + me9 + mefg = x(e), 

meg + mfg + mefg = x(g) ,  

mey + myg + meyg = x ( f ) ,  

I~lef "[- meg "Jr mfo  + l'?lefg ~-- 1. 

This system of equations has a unique solution, then le f  = ree f  , Is o = mso, leg = meo 
and lefg = ree f  a. Thus we can match vectors y' with vectors z j to form incidence 
vectors of 2-edge-connected subgraphs of G, say {XP}, and a family of coefficients { tip} 
such that 

x = ~ f l p X  p, ~ f l p =  1, and fl>~O. 
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The procedure  for matching  these vectors goes as follows. Pick y~ with 

y~(e) = y i ( f )  = 1, yi(#) = 0 and 2~ > 0. Pick z i with zJ(e) = z~(f) = 1, zJ(#) = 0 and 

/~j > 0. Match  these two vectors to obta in  Z p, define tip = rain {2~, #j}, set 2i ~ 2~ - tip, 

I~ *-- ~ - tip and continue, D 

This theorem shows that  one can obtain  a description of the poly tope  if one knows 

it for wheels. It also shows that  the poly tope  for G is defined by bound and cut 

inequalities if the poly tope  for the pieces is defined by this type of constraints.  Assume 
now that  the systems of inequalities that  define P(G~) and P(G2) are minimal  and that  

these polytopes  are full-dimensional,  we are going to prove  that  the system given in 
Theorem 2.1 is also minimal.  

Theorem 2.2. Suppose that 

ax >t ~ (2.1) 

defines a facet ~ of P(G1) that is not the face defined by x(e) + x ( f )  + x(9) >>- 2, then 
(2.1) also defines a facet of  P(G). 

Proof.  Let S = {xl, . . . ,xp} be the set of  extreme points  P (GI )  that  lie in 3~-, then the 
vector  

1 
= - ( x l  + ... + xp) 

P 

satisfies a£  = ~ and every other  inequali ty in the system that  defines P(G~) as strict 
inequality. 

N o w  we have to construct  a vector  in P(G) with the same property .  Let 
T = { y~ . . . . .  yq } be the set of extreme points  of  P(GE), since this is a full-dimensional 

poly tope  the vector  

37 = -l(y 1 + ... + yq) 
q 

satisfies all the inequalities that  define P(G2) as strict inequalities. We say that  a vector  
x; and a vector  yj are agreeable if they agree in their componen t s  associated with e, 

f a n d  9. N o w  define a set of  extreme points  of P(G) as follows. 
Match  each vector  xi with an agreeable vector  in T to define a vector  zi, 1 ~< i ~< p. 

For  each xi there is an agreeable vector  in T, because P(G2) is full-dimensional. 
Match  each vector  Yl with an agreeable vector  in S to define zp+i, 1 ~< i ~< q. For  

each y~ there is an agreeable vector  in S, because P(Ga ) is full-dimensional and ~ is 
not  the face defined by x(e) + x ( f )  + x(9) t> 2. 

The vector  

1 
= - - ( z l  + "" + zp+q) 

p + q  
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satisfies (2.1) as equat ion and every other  constraint  in the system given by 

Theo rem 2.1 as strict inequality. 

Theorem 2.3. I f  the constraint 

x(e) + x ( f )  + x(9) ~> 2 (2.2) 

defines a facet for P(G1) and P(G2) then it also defines a facet for P(G). 

Proof.  As in the p roof  of Theorem 2.2, ma tch  vectors in the facet of P(G ~ ) with vectors 

in the facet of P(G2) and produce  a vector  in P(G) that  lies in the face defined by (2.2) 

and not  in any other  p roper  face. [] 

3. The 2-edge-connected subgraph polytope of a Halin graph 

Let G -- (V, Tw C) be a Halin graph. Given a nonpendan t  node u~ T, andfG6(u), 
set F .  y = U {6e: e~b(u)}\b~. Also set F ° = U {be: eeb(u)}\b(u). The main  result of this 

section is the following. 

Theorem 3.1. Let G = ( V ,  T w C )  be a 
inequalities that defines the TECP(G)  is: 

x(e) <~ 1 for every edge e, 

x(b,) >t 2 for every edye e G T, 

x(6(u)) >1 2 for every node u q} C, 

x(FI. ) >>-I6(u)l- 1 for every nonpendant node uG T, and every fG6(u), 

x(F°) >~ F ]6(u)[/2 ] for every nonpendant node u ~ T, with 16(u) 1 odd. 

We have seen in the last section that  the key is to prove Theorem 3.1 for 
wheels. Consider  a wheel IV, = (U, F)  where n is a positive integer >~ 3. Let 

U = { u o , u l  . . . . .  u , -1 ,w}  and F- - -{eo  . . . . .  e.-1 , fo  . . . . .  f . _ , } ,  where ei=uiui+l,  
f~ = wui, for i = 0 . . . . .  n - 1, th roughou t  this section the indices are taken modulo  n. 

Also denote  by C the cycle {Co . . . . .  e ,_ 1}. See Fig. 1. 
It is easy to see that  the following constraints  are valid for TECP(W,) :  

x(F\6(u l ) )>~n-  1, i = 0  . . . . .  n -  1, (3.1) 

x(F \ 6(w) ) >>- Fn/2].  (3.2) 

To  derive them from (1.3) take I7=  {Uo}, Vo ° - {w}, V ° = {u.-1},  Vj = {u , -2 - j} ,  
j = 0 . . . . .  n - 3; and we obtain  an inequality (3.1). When  n is odd take lP = {w} and 

Halin graph, then a minimal system of 
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Fig. 1. 

V ° = {ui}, i = 0 . . . . .  n - 1; and we have (3.2). When n is even, constraint  (3.2) can be 
obta ined by adding the cut inequalities associated with the nodes Ug, 0 ~< i ~< n - 1, 
and the upper  bounds  for the edges in 6(w), so it defines a facet if and only if n is odd. 

We plan to show that  (3.1) and (3.2) together  with the bound and cut constraints  

define TECP(W~).  

Let 

t (W~)  = {S _~ F I(U, S) is a 2-edge-connected subgraph  of Wn}. 

For  the valid inequality ax  >1 • let 

ta = { S e t ( W ~ ) l a x  s = ct}. 

Suppose that  a x  >~ ct defines a facet of  TECP(Wn)  that  is not a bound  inequality nor  

a cut constraint .  For  any edge e, there is a set S~ta, with e ~ S. Since S w {e} e t ( W n ) ,  

we have that  a ~> 0. Also ct > 0. Since Wn is 3-edge connected then TECP(W~)  is full 
dimensional.  Thus any  valid constraint  of  T E C P ( W , )  which is satisfied with equality 
by every S e ta  must  be a positive multiple of  ax  >>. ~. We will show that  ax >>. ~ is 
necessarily of  type (3.1) or  (3.2). In what  follows we give a series of  lemmas  which lead 

to this result. 

L e m m a  3.2. Le t  T e  ta, i f6(ui)  c_ T f o r  some i ~ {0, ... ,  n - 1 } and a ( f i )  > O, then C ~ T. 

Proof. If C ~ T, then since 6(ui) = { e i - l , e i ,  f } ,  there are two integers 1, p, 0 ~< 1, 
p ~< n - 1, such that  {el, . . . ,  et } ~ Ti, el + 1 ~ T and {ep . . . . .  e i -  i } ~- T, ep_ 1 ¢ T, notice 
that  et+ 1 and e ,_  ~ m a y  coincide, recall that  the indices are taken modu lo  n. Thus  we 

have that  f t + l , f p e T ,  and consequently T \ { f i } e t ( W , } ,  which implies a ( f i ) = 0 ,  
a contradict ion.  [] 

L e m m a  3.3. There ex i s t s  at least one edge in 6(w) having a zero coeff icient  in ax  >f ~. 
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Proof.  Suppose not. Since ax >~ ~ is different f rom a cut constraint ,  then for every i, 
i = 0 . . . . .  n - 1, there is an edge set T~ e t, containing 6(u~). Otherwise we would have 

that  x s satisfies x(6(u~)) = 2, for every S e t , .  
F r o m  L e m m a  3.2 and our  hypothesis,  it follows that  C c T~ for i = 0 . . . . .  n - 1. 

Thus,  the edge sets (T~\{e~}) to {j]+~ } and (T~\{e,_~ }) w {fi-1 } define 2-edge connec- 

ted subgraphs  of IV,, and consequently we have 

a ( e l ) ~ a ( f i + l ) ,  a(e i -1)<~a(f i  ') (3.3) 

for i = 0  . . . . .  n - 1 .  
Fur thermore ,  there must  exist an edge set Tne t, such that  ]fi(w) c~ Tn] ~> 3. Since, by 

hypothesis,  a(.f~) > 0 for i = 0 . . . . .  n - 1, there must  exist two nonconsecut ive edges ej, 

ek, O ~ j < k < < , n - 1 ,  which are not  in 7'.. Thus {Jj, f j+ l , fk , fk+ l} - -=  7".. Let 
T, = (T . \{ f j ,  f j+ l } )  to {ej}. Clearly T, e t (W. ) ,  which implies that  a(ej) >1 a(f j)  + 

a( f j÷ l ) .  This contradicts  (3.3). [] 

Define 

a(f /)  = min{a(J~): i = 0 . . . . .  n - 1} = 0, 

fl = a ( f t ) =  max{a(f j ) :  j = 0 . . . . .  n - 1}, 

7 = a(e,.) = max{a(el):  i = 0 . . . . .  n - 1}. 

L e m m a  3.4. fl = a(f j )  for all j ~ k. 

Proof.  If fl = 0 there is nothing to prove.  So assume that  fl > 0. There is Q e t. with 
{e~-l, e~,J~} c Q. By L e m m a  3.4, C _ Q. So C u  { ~ , f k } e t ,  and C u  {fj ,fk} e t, for 

each j 4: l, k. This shows that  fl = a( f j )  for all j :/: k. [] 

L e m m a  3.5. I f  fl = O, then 7 = a(ei) for  i = O, . . . ,n  - 1. 

Proof.  There is Q~ta with {e, , - , ,er , , fm} = Q. If  em+lCQ then Q w  { f , .+ ,} \ {e , . }~ ta  
implying a(er,)= 0 and a = 0, a contradiction.  So { fm+l, f , .+z ,e , ,+2} = Q. Thus  
Q to {e,.+ x }\{e,. } ~ t. implying 7 = a(em)= a(em+ 1). Now we repeat  the same argu- 

ment  and the p roof  is complete.  [] 

L e m m a  3.6. l f  fl > O, then (i) a(ek) = a(ek- 1) = 0 and (ii) fl = a(e;)for all j ~ k, k - 1. 

Proof.  Since we are not  dealing with a cut inequality, there is Q e t ,  with 
{ek, ek+l,fk+l} = Q. By L e m m a  3.2 C = Q. Not ice  that  Cto  {fk, f~+t} and 

C to {fk,fk+ 1 }\{ek } are in t., hence a(ek) = 0. By symmetry ,  a(ek- t) = 0. 
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Now consider (ii). For  any j # k, k - 1, since we are not dealing with a bound 
inequality, there exists Q 'e  t~ not containing ej. Note that Q' must contain f~ and 

Jj+l.  So Q'w{ej ,  f k } \ { f j } ~ t ( W . )  implying a(e~)>~a(fj)=fl.  So a(e,.)>~fl and 
a(fm) = a(f,, +1) = ft. Since this is not a cut constraint, there exists Q"~ ta containing 
{ f,,, e,,, e,,_ , }. By Lemma 3.2, C c Q " .  And Q " u { f m + ~ } \ { e m } e t ( W , ) i m p l y i n g  
a(f,,+1) >>- a(em). Hence (ii) follows. [] 

Now we are ready to prove our result for wheels. 

Theorem 3.7. A minimal system of inequalities that defines TECP(W,)  is: 

x(e) <~ 1 for every edge e, 

x(6(u)) >~ 2 for every node u, 

x ( F \ 3 ( u i ) ) > ~ n - 1 ,  i = O  .. . . .  n - l ,  

x(F\3(w))  >1 ~n/2 ] if n is odd. 

Proof. Let ax >1 ~ be a facet defining inequality of TECP(W,).  Suppose that ax >>. • is 
neither a cut constraint nor a bound constraint. By Lemma 3.3, we may assume that 
a(fk) = 0 for some ke  {0 . . . . .  n -- 1}. We shall discuss two cases. 

Case a: There exists j # k, such that a(fj)  = 0. Thus, from Lemma 3.4 we have 
a(ft) = 0 for all I. From Lemma 3.5 it follows that a(ei)= a(e i) > 0 for all 
i,j~{O, .. . ,n - I}. Now it is easy to see that in this case, every edge set Teta must 
contain exactly ~n/2 7 edges from {eo . . . . .  e,_ 1 }, implying that ax >1 ~ is equivalent to 
inequality (3.2). 

Case b: a ( f~)>  0 for all j e{O .. . . .  n -  1}\{k}. From Lemma 3.6 we have that 
ax is a positive multiple of the left hand side of an inequality in (3.1). It is also 
easy to see that  any set in ta must contain n - 1  edges from F\{ek, ek-l , fk} .  
This implies that ax >1 ~ is a positive multiple of an inequality of type 
(3.1). [] 

It is straightforward to see that Theorem 3.1 follows from Theorem 3.7 and the 
results of Section 2. 

4. The 2-node-connected subgraph polytope of a Halin graph 

We use here the notation defined in the preceding section. Our main result for the 
two-node-connected case is the following. 
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Theorem 4.1. Let G = (V, Tw C) he 
inequalities that defines TNCP(G)  is 

x(e) <~ 1 for every edoe e, 

x(fe) >~ 2 for every edge e~ T, 

x(f(u)) >t 2 for every node u 4~ C, 

z(F~) >~ ]6(u)l - 1 

x(F °) >1 If(u) I -- 1 

a Halin graph, then a minimal system 

for every nonpendant node u ~ T and f e  6(u), 

for every nonpendant node u ~ T. 

29 

of 

(4.1) 

(4.2) 

Here inequalities (4.1) are of the type (1.1) whereas (4.2) are of the class (1.2). 

As seen in Section 2, we have to derive a description of TNCP(IV,) .  It is easy to see 

that  if G is a graph such that G\e is 2-node-connected for every edge e e G, then 

TNCP(G)  is full dimensional. Notice that TNCP(G)  ~ TECP(G)  so if an inequality is 

redundant  for the second polytope it will also be redundant  for the first one. So from 

Theorem 3.10 we have that the only bound  inequalities that are candidates to define 

facets for a wheel are 

x(e) ~< 1 for every edge e, 

and in fact it is not  difficult to see that they do define facets. Also from Theorem 3.7 we 

have that the only cut inequalities that are candidates to define facets are 

x(6(u)) >~ 2 for every node u, 

and as it is shown in the next two lemmas they do define facets. 

Lemma 4.2. The constraints 

x(f(ui)) >/2 for i = 0 . . . .  ,n - 1 (4.3) 

define facets of TNCP(W. ) .  

Proof.  Consider  i = 1. Denote  (4.3) by ax >~ ot and suppose that t, ~ tb for a facet 

defining inequality bx >>, [1. 
Consider  T =  C \ { e l }  w { f l , f 2 } e t , .  Since Tw [ f l}~ ta  for i = 0 , 3 , . . . , n -  1, we 

have b(f~) = 0 for i = 0,3 . . . . .  n - 1. In the same way we can prove that  b(f2) = 0. 

Consider  now T = C\{e2} w {f2,f3} ~t , .  Since Tw {e2} e t .  we have b(e2) = 0. In 
the same way we can prove that b(ei) -= 0 for i = 3 . . . . .  n - 1. 

Since the sets C \ { e l } w { f l , f 2 }  and C\{e2}w {f2,f3} are both in t, we have 

b ( f l ) = b ( e l ) ,  in the same way we have b(f l )=b(eo) .  So a = 2 b  and ~=211,  
for 2 ~> 0. 
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Lemma 4.3. The inequality 

xO(w))/> 2 

defines a facet  o f  T N C P ( W . ) .  

(4.4) 

Proof. Denote (4.4) by ax >~ ct and suppose that ta _~ tb for a facet defining inequality 

b x >>. fl. 
Consider T =  C \ { e l }  w { f l , f z } 6 t a .  Since T w  {e~}et~ we have b ( e l ) =  0. In the 

same way we can show that b(el) = 0, for i = 0 . . . . .  n - 1. 

Since the sets C w  {A,A} and C w  {f2,fa} are both in t~ we have b(fl) = b(f3), in 
the same way we have b(f~) = b(f.) for i ~: 1. So a = 2b and c~ = 3.fl for 2/> 0. [] 

Notice that with the exception of Lemmas 3.3 and 3.5, all proofs of the lemmas 
of Section 3 are valid for TNCP(W,) .  Now we are going to prove the analogues of 

these two. 

Lemma 4.4. There exists at least one edge in t$(w) having a zero coefficient in ax >~ ~. 

Proof. Suppose not. Since ax >>: • is different from a cut constraint, there must exist an 

edge set T~ta such that ]6(w)c~ Tp >~ 3. 
If C c T, then for any edge e~6(w)c~ T, T ' =  T \{e}  is 2-node-connected. Since 

ax r' < ~, we have a contradiction. 

If there exists e, such that C : ~ T =  C\{e~}, then {fi,f~+x} ~ T. Notice that 

T ' =  C\{eg} w { f , f i + l }  is two-node-connected, and T ' c  T. We would have that 
ax r' < ~. A contradiction. [] 

Lemma 4.5. l f  fl = O, then 7 = a(el) for  i = 0 . . . . .  n - 1. 

Proof. Since we are not dealing with a bound inequality, for any ei there is a Q ~ ta 

with e i ¢ Q. And C \ { e i }  c Q, otherwise Q would not be 2-node connected. Let 
Q ' =  Q u  {J): j = 0 . . . . .  n -  1}, we have that Q'~ta.  Consider Q " =  Q'\{em} w {el}. 

Since Q" is 2-node connected, a(em) <~ a(ei), and then a(em) = a(el). [] 

The following theorem gives a description of the polytope for a wheel. Its proof is 

similar to that of Theorem 3.6. 

Theorem 4.6. The system below defines TNCP(W,)  

x(e) ~ 1 for  every edge e, 

x(6(u)) >1 2 for  every node u, 

x (F\6(u) )  >i n - 1 for  every node u. (4.5) 
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Actually this is a minimal  system, in the next section we shall see that  inequalities 
(4.5) are facet defining. Theorem 4.1 follows from Theorem 4.6 and the results of 

Section 2. 

5. A class of facet defining inequalities for TNCP(G) 

Here is a sufficient condit ion for (1.2) to define a facet of TNCP(G) ,  other  condit ions 

for inequalities of this type have been given in [11]. Let G = (V, E) be graph  whose 
node set can be par t i t ioned into 17, vii, i = 0 . . . . .  n - 1, j = 0, 1 . . . . .  Pl, so that: 

(1) each of the members  of the part i t ion induces a 3-node-connected subgraph;  

(2) there is exactly one edge between V ° and V°÷l for i = 0 , . . . ,  n - 1 (modulo n); 
(3) if p ; > 0 ,  there is exactly one edge between V/j and V/÷1, j = 0  . . . .  ,p~; 

i = 0  . . . .  , n - l ,  where Vf'  ÷ 1 =  17; 

(4) if V °, i = 0 . . . . .  n - 1, are removed,  the only edges that  are left are a m o n g  those 
described in (3); 

(5) there is no edge between V ° and V/, f o r j  = 2 . . . . .  pl + 1; i = 0 . . . . .  n - 1, 

let 

F = U 
i = 0  . . . . .  n -  1 

j = 0 . . . . .  p~ 

As we shall see later, the part i t ion inequality 

x(F) >t n - 1 + Y'.Pi (5.1) 

defines a facet of TNCP(G) .  

Let us see first two examples  of this. For  a wheel take l~ = {w} and V ° = {ui}, 

i = 0 . . . . .  n - 1; and we obtain  one of the inequalities (4.3). N o w  take 17= {Uo}, 

V ° = {w}, V ° = {u , - l } ,  V~ = {U,-z- j} ,  j = 0  . . . . .  n - 3 ;  and we obtain  another  
inequali ty (4.3), all inequalities (4.3) can be obta ined in this way. 

Theorem 5.1. Given G = (V, E), suppose that G\e  is 2-node-connected for  every edge e, 

i f  G admits a partition that satisfies (1)-(4) then inequality (5.1) defines a facet  of  
TNCP(G) .  

Proof.  We denote  by O(G) the set of 2-node-connected subgraphs  of G. Denote  (5.1) 
by ax >t ~ and suppose that  

ta = {F~  O(G) lax  r = ~} ~_ tb = {F~  O(G) lbx  v = ~} 

for a facet defining inequality bx >>, ~. Since T N C P ( G )  is full dimensional  we have to 
prove  that  a = pb for p > 0. When  appropr ia te  the indices are taken modu lo  n. 

Let us denote  by % the edge between V / a n d  V/÷1 and set 

Eo = {eijli = 0 . . . . .  n -  1; j = 0  . . . . .  Pl}. 
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First we have to see that be has the same value for all e e b ( V i ° ) \ ( { e i o }  w 6(k')),  

i = 0 . . . . .  n - 1. Let hi be an edge between V~ ° and V°÷t. Consider the edge sets 

E1 = {hi . . . . .  h,-~} u Eo, E2 = ( E 1 \ { h l } ) u { e } ,  

where e e 6 ( V ° ) \ ( { h ~ ,  e~,o} u 6(I7)). Clearly {E~, E2} c to, thus 

0 = bx  E' - b x E  E~ = bhl - -  b e. 

So 

b e = p for all e ~ 6 ( V i ° ) \ ( { e i o }  u 6(V)) .  

By symmetry we obtain 

be = p for all e ~ 6 ( V ° ) \ ( { e , o }  u6(I7)), i = 0 . . . . .  n - 1. (5.2) 

Next we show that be,~ = p for every edge eij, j # Pi. Since G\ei i  is 2-node- 
connected, it follows that eij is not in a 2-edge cutset and by (3) and (4) there is an edge 
f between Vd and some set V ° and there is an edge g between V, )+ 1 and some set V °. 
Consider now 

E3 = { h , , h , + ,  . . . . .  h,+,-1} w E o ,  E a = ( E a \ { h , , e , j } ) u { f ,  9}, 

since {E3, E4} c to, we have 

0 = bx  e3 - b x  e" = bh, + be,~ - by - bg, 

from (5.2) we obtain b f  = bg = bh, = p ,  and therefore be, j = p .  

For every edge e with a(e) = 0, there is Qe e to with e ~ Qe. This is because we are not 

dealing with a bound inequality. Since Qe u {e} ~ to, we have that be = 0. We have 
shown that 

b e = p  for a l l e e F ,  b e = 0  for a l l e e E \ F .  

Now consider E~ and E5 = El u {ho}, since bx  ~' = fl and bx  Es >>. fl, we have that 

p > O .  [] 

6. Algorithmic aspects 

The polyhedral decomposition of Section 2 has an algorithmic analogue. In this 
section we deal with finding a minimum weighted 2-edge-connected (2-node-connec- 
ted) subgraph of a Halin graph G. If the present graph is not a wheel then G is 
decomposed into G1 and G2 as before. Let e, f a n d  9 be the edges in G1 n G2. Let us 
denote by 2(S, T, H) the minimum weight of a 2-connected subgraph of the graph H, 
containing the edge set S and having empty intersection with the edge set T. 

The edge weights in G2 are taken to be the same as for G. Then, the problem is 
solved in G1 where all the edge weights are taken to be the same as for G, except for e,f, 
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g, which are redefined as the solution of the following system of linear equations: 

w'(e) + w ' ( f )  = 2({e,f},  { g } , G 2 ) -  K, 

w'( f )  + w'(g) = 2({f, g}, {e}, G2) - ~c, 
(6.1) 

w'(e) + w'(g) = 2({e, g}, {f}, G2) - re, 

w'(e) + w ' ( f )  + w'(9) = 2({e,.~ g}, 0, G2) - •. 

Notice that we had to add the variable x to guarantee that the system above has 
a solution. Let /~(G) be the value of an optimum for G and/~(G~) the value of an 
optimum of G1 with the new weights. Any solution contains either two or three edges 

from {e,f, g}. Since the new weights in G1 satisfy (6.1), we have that 

/~(~) = ~ t 6 1 )  + ~. 

When doing this decomposition we can assume that G2 is a wheel, it remains to 
show how to solve the problem in this case. 

For the 2-edge-connected case, we use the fact that the complement of a 2-edge 
connected subgraph of a wheel is a b-matching. More precisely given a wheel 
W =  (V, T w  C) where Tis  a star, C is a cycle on the pendant nodes of T, and edge 

weights w(.), one has to solve 

maximize wx 

subject to x(f(u)) ~< 1 for every node ueC,  

x(6(v)) ~< I~(v)l - 2 for the center v, 

x~{0, 1}IT~C( 

This can be solves as a matching problem with Edmonds' algorithm [81. 
The 2-node-connected case is easier. For a wheel IV,, one has to enumerate 

n Hamilton cycles. Then one should add all edges with negative weight, if there is any. 
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