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Abstract 

We give a complete description of the k-edge connected spanning subgraph polytope (for all k) on series-parallel graphs. 
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1. Introduction 

The graphs we consider are finite, undirected, loop- 
less and may have multiple edges. A graph is denoted 
by G = ( V , E )  where V is the set of nodes and E is the 
set of edges of  G. 

A graph G = (V,E) is called k-edge connected 
(where k is a positive integer) if for any pair of  nodes 
i, j E V, there are at least k edge-disjoint paths from 
i t o j .  

Given a graph G =(V,E)  and a weight function co 
on E that associates with an edge e E E, the weight 
co(e) E R, the k-edoe connected spanning subgraph 
problem (kECSP for short) is to find a k-edge con- 
nected subgraph H = (V,F) of G, spanning all the 
nodes in V, such that ~ eeFco(e) is minimum. 

The kECSP arises in the design of communication 
and transportation networks [4, 7,26,27]. It is NP-hard 
for k ~> 2. For k = 1, the problem reduces to the min- 
imum spanning tree problem and thus can be solved 
in polynomial time. 

* Corresponding author. 

If G = (V,E) is a graph and F C_E, the incidence 
vector o f F  will be denoted by X F. The convex hull of 
the incidence vectors of all edge sets of k-edge con- 
nected spanning subgraphs of G is called the k-edge 
connected spanning subgraph polytope and denoted 
by kECP(G), that is, 

kECP(G) = conv{x F E ~eI(V,F)  is k-edge 

connected spanning subgraph of G}. 

In this paper we discuss the polytope kECP(G), we 
give a complete description of this polytope on series- 
parallel graphs. 

The kECSP and the polytope kECP(G) have 
received special attention in the past few years. 
Grftschel and Monma [19] and Gr6tschel et al. 
[20-22] studied the kECSP within the framework of 
a more general model related to the design of mini- 
mum cost survivable networks. In [19] basic facets of 
kECP(G) are described. In [20-22], further classes of 
valid inequalities and facets are characterized, and a 
cutting plane algorithm along with computational re- 
sults are discussed. A complete survey of that model 
can be found in [27]. 
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In [5], Chopra considered a relaxation of kECSP, 
namely when multiple copies of an edge are allowed. 
The problem here is to determine an integer vector 
x E M E such that the graph (V,E(x)), where E(x) is the 
set of edges obtained by replacing each edge e of E by 
x(e) edges, is k-edge connected and ~ e~E~o(e)x(e) 
is minimum. Chopra [5] studied the polyhedron 
Pk(G), associated with the solutions to that problem, 
that is, 

Pk(G) = conv{x E ~E[(V,E(x)) is k-edge 

connected}. 

He described various classes of facets of Pk(G) and 
gave a complete description of P~(G) when G is 
outerplanar and k is odd. (A graph is outerplanar if 
it consists of a cycle with noncrossing chords.) The 
polyhedron Pk(G) has previously been studied by 
Comurjols et al. [8]. They showed that when k = 2 
and the graph is series-parallel, Pk(G) is completely 
characterized by the non-negativity inequalities and 
the cut inequalities. Their proof can easily be gen- 
eralized to show that these inequalities also suffice 
to characterize Pk(G) for all even k, when G is 
series-parallel. 

The polytope kECP(G) has been characterized 
for k = 1, for general graphs and for k =2,  for some 
classes of graphs. Using Edmonds' characterization 
of matroid polytopes [13, 14], Grrtschel and Monma 
[19] (see also [8]) showed that the so-called partition 
inequalities together with the trivial inequalities suf- 
fice to describe the 1ECP(G). Fonlupt and Naddef 
[16] characterized the class of graphs G for which 
the polyhedron described by the non-negativity in- 
equalities and the cut inequalities, when k = 2, is the 
convex hull of the tours of G (a tour is a cycle going 
at least once through each node of G). Mahjoub [23] 
showed that when G is series-parallel, 2ECP(G) is 
completely described by the trivial inequalities and 
the cut inequalities. Barahona and Mahjoub [3] char- 
acterized 2ECP(G) for the class of Halin graphs. 
Ba'iou and Mahjoub [1] characterized the Steiner 2- 
edge connected subgraph polytope for series-parallel 
graphs. 

Related work can also be found in [9, 10, 17, 24]. 
In [9, 10], Coullard et al. studied the steiner 2-node 
connected subgraph polytope. In [24] Margot et al. 
(see also [17] ) gave an extended formulation for the 

Steiner tree problem and showed that it is a complete 
linear description of the associated polytope when the 
graph is a 2-tree (a maximal series-parallel graph). In 
[17] Goemans also gave large classes of facets for the 
Steiner tree polytope. 

In this paper we are going to study kECP(G) for 
all k, when G is series-parallel. In the next section 
we discuss some valid inequalities for kECP(G). In 
Section 3 we give a complete description of this poly- 
tope for that class of graphs. 

The remainder of this section is devoted to more 
definitions and notations. 
A homeomorph of K4 (the complete graph on 4 nodes) 
is a graph obtained from K4 where its edges are sub- 
divided into paths by inserting new nodes of degree 
two. A graph G = (V, E) is called series-parallel if it 
does not contain a homeomorph of K4 as a subgraph. 
Connected series-parallel graphs have the following 
property [12]. 

Lemma 1.1. I f  G = (V,E) is a connected series- 
parallel 9raph with IV I >13, then G contains a node 
that is adjacent to exactly two nodes in G. 

Given a graph G=(V,E)  and WC V, the set of 
edges having one node in W and the other one in V\ W 
is called a cut and is denoted by 6(W). If W = {v} 
for some vE V, then we write 6(v) for 6(W). If G = 
(V,E) is a graph and e E E, then G - e will denote 
the graph obtained from G by removing e. If W C_ V, 
then G(W) denotes the induced subgraph of G on W. 
If WI, W2 are disjoint subsets of V, then [WI, W2] 
denotes the set of edges of G which have one node in 
W1 and the other one in W2. 

Given a constraint ax >i ~, a E R E, and a solution 
x*, we will say that ax/> ~ is tight for x* if ax* = ct. 

Inthe sequel we consider k-edge connected graphs. 
A basic knowledge of polyhedral combinatorics is as- 
sumed. Undefined polyhedral terminology and nota- 
tion are consistent with that of Pulleyblank [25]. 

2. Valid inequalities for kECP(G) 

Let G = (V,E) be a graph. Given a function b : E---~ 
and F C_ E, b(F) will be used to denote ~ eEFb(e). 

If (V,F) is a k-edge connected spanning subgraph of 
G, then x F, the incidence vector o fF ,  must satisfy the 
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following inequalities: 

x(e) >>. 0 for all e E E, (2.1) 

x(e) ~< 1 for all e E E, (2.2) 

x(6(W))>_.k f o r a l l W c V ,  W ¢ 0 .  (2.3) 

The inequalities (2.1) and (2.2) are called triv- 
ial inequalities and the inequalities (2.3) are called 
cut inequalities. In [19] Grrtschel and Monma gave 
necessary and sufficient conditions for inequalities 
(2.1)-(2.3) to define facets for kECP(G). 

If (Vl,. . . ,  Vp) (p~>2) is a partition of V, then 
6(V1 . . . . .  Vp) will denote the set of edges having 
nodes in different members of the partition. The fol- 
lowing inequalities have been introduced by Chopra 
[5] and shown to be valid for the polyhedron Pk(G) 
when G is outerplanar and k is odd: 

x(O(V 1 . . . .  , V p ) ) ~  r k ] p  - -  l ,  

for all partition (Vl .. . .  , Vp) of V, 

such that G(V,.) is connected for i = 1,. . . ,  p. 

(2.4) 

Inequalities (2.4) are called outerplanar partition 
inequalities. Chopra [5] showed that when G is out- 
erplanar and k is odd, Pk(G) is completely described 
by inequalities (2.1) and (2.4). Also he conjectured 
that this remains true even when the graph G is series- 
parallel. In Section 3 we obtain this as a consequence 
of a more general result. We will show that when G 
is series-parallel and k is odd, the polytope kECP(G) 
is completely described by inequalities (2.1), (2.2), 
(2.4). To this end, let us first show that inequalities 
(2.4) remain valid for kECP(G) when G is series- 
parallel. 

Theorem 2.1. I f  G = (V,E) is series-parallel and k 
is odd, then inequalities (2.4) are valid for kECP( G). 

Proof. It suffices to show that, for every k-edge con- 
nected series parallel graph G = (V,E), we have 

IEI~ > [-~7 I V l -  1. 

The proof is by induction on I Vl. If lVl = 2, con- 
straint (2.4) is a cut constraint and so it is valid for 
kECP(G). So let us assume that (2.4) is valid for every 
k-edge connected series-parallel graph with no more 

than n nodes and suppose that G is k-edge connected 
with n + 1 nodes. Since G is series-parallel, by Lemma 
1.1 there is a node v E V that is adjacent to exactly 
two nodes, say vl, v2 in V. Let us denote by Fl (F2) 
the set of edges between v and vl (v2). W.l.o.g we 
may assume that [Fll>~ IF2[. Since G is k-edge con- 
nected, we have IFI[~> rk/2q (otherwise, the cut 6(v) 
would have less than k edges). Let G* = ( V*, E*)  be 
the graph obtained from G by contracting the edges 
of F1. Obviously, the graph G* is series-parallel and 
k-edge connected. Furthermore, since [ V* [ -- n, by the 
induction hypothesis it follows that 

IE*I>~ [ ~ l i V * l -  1. 

We have 

[El = IE*[ + [Fii 

i> P~ l lV* l -  1 + f~] 

= f~l(IV*l + 1 ) -  1 

= F ~ ] I v I -  1. [] 

Given a graph G - - ( V , E )  and a partition ~ = 
( V1 . . . . .  lip) of V, we let G. = ( V~, E . )  be the graph 
obtained from G by contracting the sets Vi. Theorem 
2.1 implies that, if  G -- (V,E) is a graph (not nec- 
essarily series-parallel) and n = (V1 . . . . .  Vp) is a 
partition of V such that G~ is series-parallel, then the 
associated constraint (2.4) is valid for kECP(G). Un- 
fortunately, this is no longer true if G~ is not series- 
parallel. In fact, consider, for instance, the graph 
K4 = (V, E)  and let k = 3. Also consider the inequality 
(2.4) where p = 4 and IV, I = 1 for i = 1 . . . . .  4. The 
right-hand side of inequality (2.4), in this case, is 7 
whereas the graph /£4, which is 3-edge connected, 
contains only 6 edges. 

Remark 2.2. For k even, inequalities (2.4) are im- 
plied by the cut inequalities, and for k odd the former 
inequalities, include the latter ones. 

We will refer to inequalites (2.4) as series-parallel 
partition inequalities (SP-partition inequalities). 

Gr6tschel et al. [20] introduced a general class of 
partition inequalities which are valid for kECP(G). 
If G = (V,E) is a graph, and V 1 . . . . .  Vp is a parti- 
tion of  V, then the associated partition inequality is 
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defined as 

x(f(V~ . . . . .  lip))>. { P -  1 i fk  = 1, (2.5) r- l i fk# l .  

in [20], necessary and sufficient conditions are given 
for inequalities (2.5) to define facets for kECP(G). 

Notice that, in the case where a partition V1 . . . . .  lip 
of V yields a series-parallel graph, the associated par- 
tition inequality (2.5) coincides with the correspond- 
ing SP-partition inequality, ifk = 1. For k/> 2, we have 
that the former inequality is implied by the latter one. 

The separation problem for the SP-partition inequal- 
ities (and the partition inequalities (2.5)) can be solved 
as a sequence of IEI max-flow problems using an al- 
gorithm of Cunningham [11] or as I VI max-flow prob- 
lems using an algorithm of Barahona [2]. From the 
ellipsoid method it follows that the kECSP can be 
solved in polynomial time in the graphs for which the 
polytope kECP(G) can be described by the trivial in- 
equalities and the SP-partition inequalities. In the next 
section we shall show that series-parallel graphs are 
among those graphs. 

In what follows we give some necessary condi- 
tions for SP-partition inequalities to define facets for 
kECP( G). 

the case, by (2.6) together with the bound inequalities 
(2.2) it follows that 

.& iv , , ,  < r l. 
Let ~z' = (V(, . . . ,  Vp+ 1) be the partition such that 

V / =  Vt f o r t =  1 . . . . .  i -  1, 

v,' = v, ' ,  

vA, = vL 

V [ = V t _ l  for t  = i + 2  . . . . .  p + l .  

We have 

x F ( 6 ( V [ , . . . ,  V;+I) ) = xF((~(VI . . . . .  Vp)) 

-~xF([v/i , ~ ] )  

< r llV,<l- 1 + 

: r- llV.,I- 1, 

a contradiction. Consequently, for any edge subset F 
inducing a k-edge connected spanning subgraph of G, 
such that x F satisfies (2.4) with equality, we have e0 
E F. This implies that the face defined by inequality 
(2.4) is the same as the one defined by the inequality 
x(eo) ~> 1. But this is a contradiction. [] 

Theorem 2.3. Let G = (V,E) be a 9raph and :z = 
(Vl . . . . .  Vp) a partition o f  V. Then the inequality 
(2.4) defines a facet  Jbr kECP(G), different f rom a 

face defined by a bound inequality (2.2) when k is 
odd, only i f  

(i) G(V/) is connected, for  i = 1 . . . .  , p, 
(it) the graph G~ = (V~,E~) is 2-node connected, 

(t i t) for every edge e c E~ such that G - e  is k-edge 
connected, G~ - e is 2-node connected, 

(iv) tf e0 is an edge o f  G(Vi), for  some i 
C {1 . . . . .  p}, such that G - eo is k-edge connected, 
and (Vi 1 , V F) is a partition o f  Vi such that eo E [Vi l, 
VT], then i[Vi l, V/2]/~> ~k/2] + l. 

Proof. ( i)-( i i i )  are easily seen to be true. 
(iv) Assume the contrary. Then 

I[V,', VT]l rgl. (2.6) 

Let F C E be an edge subset inducing a k-edge 
connected subgraph such that x g satisfies (2.4) with 
equality. We claim that eo ~ F. Indeed, if this is not 

3. The kECP(G) of a series-parallel graph 

In this section we are going to show that the 
SP-partition inequalities together with the trivial in- 
equalities completely describe kECP(G) when G is 
series-parallel and k is odd. When k is even, we shall 
show that the cut inequalities together with the trivial 
inequalities completely describe the polytope for that 
class of graphs. This generalizes the results known 
for k -  1 [19] and k = 2  [23]. 

Let G = ( V , E )  be a graph. Let P(G,k )  be the poly- 
hedron defined by the inequalities (2.1)-(2.4). I fx  is 
a solution of P (G ,k )  and 6(W)  ((V1 . . . .  , Vp)) is a cut 
(partition) of G whose the associated inequality (2.3) 
((2.4)) is satisfied with equality by x, then we say that 
6( W ) ( ( Vl . . . . .  Vp ) ) is tioht forx. 

In what follows we give a technical lemma which 
will be useful in the proof of the main result. 

Lenuna 3.1. Let  x be a solution o f  P( G,k  ). 
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(i) I f  n = (V1,... ,  Vp) is a partition o f  V tight for 
x then 

x([V,., ~])~<[~] f o ra l l i ,  j E { 1  . . . . .  p}. (3.1) 

Moreover, i f  (3.1) is satisfied with equality for i,j, 
i < j, then the partition ~' = (V/ . . . . .  V~_ 1) such that 

V / = V t  f o r t = l  . . . . .  i - 1 ,  i + 1  . . . . .  j - I ,  

v / : v i u v j ,  

Vt' = Vt+l for t = L . . . .  p - 1  

is also tight for  x. 
(ii) 1fro = (V1 . . . . .  Vp) (6(W))  is a partition (a 

cut) tight for x and V', V" is a partition o f  Vi for 
i E {1 . . . . .  p}, then x([V', V"])~> rk/2]. 

(iii) I f  3(Wl) and 6(W2) are two cuts tioht for x, 
then x( f (  Wt ) A 6( W2 ) ) ~ [k/Z]. 

Proof. We will show (i) (the proof  for (ii) and (iii) 
is similar). Consider the partition nl = (V( . . . . .  V~_t ) 
defined in the second part o f  the statement. We have 

x(V( , . . . , v ;_ , )  = x(Vl . . . . .  v p ) -  x[V,, vA 

= [ k i p _  1 - x [ V / ,  Vj] 

~> [ ~ ] ( p -  1 ) -  1, 

which implies that x[V~., Vj] ~< [k/2]. 
Furthermore, if  x[V,-,~] = [k/2], then the 

above inequality is satisfied as equation and thus 
( V( . . . . .  Vp_ 1 ) is tight for x. [] 

Theorem 3.2. l f  G = ( V, E) is a series-parallel graph 
and k is even (odd), then kECP( G) is completely de- 
scribed by inequalities (2.1), (2.2), (2.3) ((2.1), (2.2), 
(2.4)). 

Proof .  We will show that kECP(G) = P(G,k) ,  the 
theorem thus follows from Remark 2.2. The proof  is by 
induction on [E[. I f  G consists o f  two nodes joined by 
k edges, then clearly kECP(G) = P(G, k). So suppose 
that the claim holds for every series-parallel graph 
with no more than m edges and suppose that G has 
m + 1 edges. Since inequalities (2 .1 ) - (2 .4 )  are valid 
for kECP( G ), we have kECP( G ) C_ P( G, k ). Also, any 
integer solution of  P(G,k)  belongs to kECP(G). I f  
kECP(G) # P(G, k), then there must exist a fractional 

extreme point x of  P(G, k), which by the induction 
hypothesis, must satisfy 

x(e) > 0 for all e E E. (3.2) 

Let E1 be the set o f  edges e such that x(e) = 1. 
Since x is an extreme point o f  P(G, k), there must 
exist a set {6(Wi), i = 1 . . . . .  r} of  tight cuts and a set 
{ rq , . . . ,  ~Zs} of  tight partitions of  V with [V~j[ f>3 for 
j = 1 . . . . .  s, such that x is the unique solution of  the 
linear system 

x(e)  = 1 for all e E El,  

x(6(Wi)) = k for i = 1 . . . . .  r, (3.3) 

x(E~,) = [ § ] I V ~ j l -  1, f o r j  = 1 . . . . .  s, 

where r + s + IEll = [El. 

Claim 1. Each variable x( e ) has a nonzero coefficient 
in at least two equations of(3.3) .  

Proof. It is clear that each variable x(e) must have a 
nonzero coefficient in at least one of  the equations o f  
(3.3). Suppose that for an edge eo = uv E E, x(eo) 
has a nonzero coefficient in exactly one equation o f  
(3.3). Let F be the set o f  edges between u and v and 
let G t = ( V t, E t ) be the graph obtained by contracting 
the edges of  F.  Let x t be the restriction of  x on E' .  
Clearly, x I E P(G ~, k). We claim that x ~ is an extreme 
point o f P ( G  ~, k). Indeed, since any cut (partition) ei- 
ther contains all the edges of  F or does not intersect 
this set, it follows that at most one of  the edges of  F 
may have a fractional value. We claim that there are 
exactly IF[ equations of  the system (3.3) that involve 
variables x(e) with e E F.  In fact, i fx (e0)  = 1, then 
x(e) = 1 for all e E F.  Otherwise, there exists an edge 
e t E F \ {e0} with 0 < x ( d )  < 1. And thus at least 
one of  the equations of  the system (3.3) different from 
x(eo) = 1 must contain x(d) .  Since this equation also 
contains x(eo), it follows that x(eo) has a nonzero co- 
efficient in at least two equations of  the system (3.3), 
a contradiction. Consequently, x(e) = 1 for all e E F. 
Moreover, these equations are the only equations in- 
volving the edges o f F .  I f 0  < x(eo) < 1, then, by the 
remark above, x(e) = 1 for all e E F \  {co}. Moreover, 
any edge e E F \ {eo} cannot be in a cut or a parti- 
tion among those defining system (3.3) other than that 
containing e0. Otherwise, x(eo) would have nonzero 
coefficients in more than one equation o f  (3.3). Thus, 
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the only equations of  (3.3) that involve edges of  F 
are x(e) = 1, for all e E F \ {e0} and the (nontriv- 
ial) equation that contains x(eo). Therefore, there are 
exactly IF I equations of  (3.3) that contain variables 
x(e), e E F. Let (3.3)'  be the system obtained from 
(3.3) by deleting the equations involving a variable 
x(e), e E F. We have that x'  is the unique solution 
for the system (3.3)'. Thus, x'  is an extreme point of  
P(G',k). Moreover, x ~ is fractional. This is clear if  
x ( e ) =  1 for all e EF .  I f  this is not the case, since sys- 
tem (3.3) has integer right-hand side and 0-1 coeffi- 
cients, there must exist at least one more variable x(e), 
e # e0, that has a fractional value, and hence x ~ is frac- 
tional. Since IE'I ~< m, this contradicts the induction 
hypothesis. [] 

Since G is series-parallel by Lemma 1.1, there is 
a node v that is adjacent to exactly two nodes Vl and 
v2 in G. As we did before, let us denote by F1 (F2) 
the set of  the edges between v and vl (v2). W.l.o.g we 
assume that IFll >/IF21. Since G is k-edge connected, 
it then follows that 

IF11>- - [~1. (3.4) 

x(e) = 1, for all eEF1, it cannot be among the equa- 
tions of  the system (3.3). Now consider the system 
obtained from (3.3) by replacing the equation defined 
by nj by the one defined by rt~.. Clearly, x is also the 
unique solution of  the new system. 

Now suppose that (~(Wi)('1 F1 # 0 for some i 
E {1 . . . . .  r}. Then F1 C_6(Wi). W.l.o.g we may sup- 
pose that v E Wi (and vl E V \ Wi). Suppose that v2 
E V \ Wi, then Wi = {v}. We claim that x(e) = 1 for 
all e E F2. Indeed, suppose this is not the case. Since 
x(e) = 1, for all e E F1 and x(b(v)) = k, F2 would 
contain at least two edges with fractional values. Let 
f and 9 be two such edges. Let x '  be defined as 

x(e )  + co i f e  = f ,  

x'(e) = x(e) - co if e = g, 

x(e) if  e E E \ { f ,  g}, 

where ~o is a scalar sufficiently small. Clearly, x I is a 
solution of(3.3) .  Since x # x ' ,  this contradicts the ex- 
tremality o f x  and our claim is proved. Consequently, 
x(e) = 1 for all e E 6(v). This implies that x(f(v))  = k 
is redundant in the system (3.3), a contradiction. 

Thus,/2 2 E ~..  Let IVi' = Wi \ {v}. Since 

Claim 2. There is an edoe f EF1, such that 0 < x ( f )  
< 1 .  

Proof.  Suppose x(e) = 1 for all e E FI (i.e F1 C E1 ). 
We claim that the set {6(WI) . . . . .  6(Wr)} and the 
set {rtl . . . . .  ~s} of  tight cuts and tight partitions, re- 
spectively, of  the system (3.3) can be chosen so that 
6(IVi)  (q F 1 = 0 for i = 1 . . . . .  r and E~j M F1 : 0 for 
j = 1 . . . .  , s. In fact, let us examine first the parti- 
tions {Tq . . . . .  ~zs}. Suppose that for some partition 
nj = (VI . . . . .  Vp) where p/> 3, we have E~j M FI 
0. Then Fj C E~/. W.l.o.g we may assume that 
Fj_C[V1, V2]. A s x ( e ) =  1 for all e E F I ,  we have 
x[Vt, V2]/> [k/2]. Since by Lemma 3.1 (i) one should 
have x[V1, V2] <~ [k/2], it then follows that x[V1, V2] 
= rk/21 , and thus the partition 7t~ = ( V' l . . . . .  Vp_ l ) 
such that 

v'~ = v~ u v2, 

V~ = Vi+l for i = 2 . . . . .  p - 1, 

is tight for x. Since the equation defined by rcj is 
implied by the one defined by 7tj together with 

x(6(W/)) = x(a(W/))  - x(F1 ) + x(F2), 

= k - x ( F ,  ) + x ( F 2 )  

>>,k, 

it follows that x(F2)>~x(Fl). Since x(e) = 1 for all 
e E F1 and IF2[ ~< [FI[, we have x(F2) <~x(F1 ). Hence, 
x(F2) = x(F1) and 6(W/) is tight for x. Now by re- 
placing the cut 6(Wi) in the system (3.3) by the cut 
6(W/), we obtain a nonredundant system whose x 
is still a unique solution. Thus, system (3.3) can be 
chosen so that F1 does not intersect any of  the cuts 
3(IVi) . . . . .  3(Wr) and the edge sets E~, . . . .  , En .  There- 
fore, for every edge e E F1, the variable x(e) belongs 
to exactly one equality of  (3.3), namely x(e)= 1. But 
this contradicts Claim 1. [] 

Now, to complete the proof  of  Theorem 3.2 we 
distinguish two cases. 

Case 1: IF~I = rk/21 • Then IF2I = [k/21. Other- 
wise, we would have I~s(v)l = k and thus x(e) = 1 for 
all e E FI ,  contradicting Claim 2. 
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Also, by symmetry, from Claim 2, there must 
exist an edge g E F2 such that 0 < x(g) < 1. We 
claim that every cut 5(W/), i = 1 . . . . .  r, (partition 
nj, j = 1 . . . . .  s), either contains all the edges of both 
F~ and F2 or does not intersect any one of these sets. 
In fact, suppose, for instance, that for some partition 
r 9 = ( V1 . . . . .  Vp) we have, say, F1 C E~j and F: N E~j 
= ~. (The proof is similar for a cut.) W.l.o.g we may 
suppose v E Vl. Thus x[v, Vt \ {v}] = x(F2)~< [k/2q. 
By Lemma 3.1 (ii), it follows that x[v, Vl \ {v}] 
= [k/2] and thus x (e )=  1 for all e E F2, a contradic- 
tion. Let £ be the solution given by 

f x(e) + a~ if e---- f ,  

£(e) = ~ x(e) - 09 i f e  = g, 

[ x(e) i f e  E E \ { f ,  g}, 

where co is a scalar sufficiently small. From the above 
claim it follows that £ is also a solution of the system 
(3.3). Since £ ~ x, this contradicts the extremality 
ofx.  

Case 2: IFll > [k/2]. First of all, it is clear that 
f is the only edge of F1 with a fractional value. If 
not, one can construct as above a solution different 
from x satisfying with equation the constraints tight 
for x, a contradiction. Consequently, x(e) = 1 for all 
e E FI \ { f }  and by (3.2), it follows that 

x(F,) > [~]. (3.5) 

By Lemma 3.1(i), FI cannot be in the edge set of  
any of the partitions nj = 1,. . . ,s .  Thus, by Claim 1 
there must exist two cuts 6(Wi) and 5(Wj), i, j E 
{1 . . . . .  r} containing f .  Hence, F1 C_ 6(IV/) f3 5(Wj), 
and by (3.2) and (3.5), x(6(W~) fq 5(Wj)) > [k/2], 
contradicting Lemma 3.1 (iii), which finishes the proof 
of  our theorem. [] 

As a consequence of Theorem 3.2 we obtain the fol- 
lowing result which has been conjectured by Chopra 
[5] and, independently, proved by Chopra and Stoer 
[6]. 

Proof. Let P~(G) be the polyhedron described by 
inequalities (2.1) and (2.4). It suffices to show that 
the extreme points of  P'~(G) are integral. Suppose, 
on the contrary, that there exists a fractional extreme 
point x E R E of  P~(G). Let G' = (V ' ,E ' )  be the 
graph obtained from G by replacing each edge e of 
E by Ix(e)] edges el . . . . .  efx(e)]. Letx '  E ~e' be the 
solution given by 

x'(ei) x ( e ) -  I x ( e ) -  1] 
for i = Ix(e)], 

i fx(e)  ~ 0. 

It is easily seen that x' satisfies inequalities (2.1), 
(2.2) and (2.4). Moreover, x' is an extreme point of  the 
polytope described by these inequalities. In fact, if this 
is not the case, there must exist two integer solutions 
y~, y~, y~ ~ y~, that satisfy inequalities (2.1), (2.2), 
(2.4), and such that x ' - -  l(y~ + y~). Now let yt, yz E 
R E be the solutions such that 

Ix(e)] 

yi(e) = E y~(ej), 
j=l 

for e E E and i = 1, 2. It is clear that y], y2 E P~(G). 
Morever, we have thatx --  l ( y  1 +Y2). Since Yl ~ Y2, 
this contradicts the fact that x is an extreme point of 
P~(G). 

Consequently, x' is an extreme point of the polytope 
given by inequalities (2.l), (2.2) and (2.4). Since x' 
is fractional and G* is series-parallel, this contradicts 
Lemma 3.1. [] 
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