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Abstract. Given a graph G = (V,E) with weights on its edges and a set of specified nodes
S ⊆ V , the Steiner 2-edge survivable network problem is to find a minimum weight subgraph of G
such that between every two nodes of S there are at least two edge-disjoint paths. This problem has
applications to the design of reliable communication and transportation networks. In this paper, we
give a complete linear description of the polytope associated with the solutions to this problem when
the underlying graph is series-parallel. We also discuss related polyhedra.

Key words. Steiner 2-edge connected subgraphs, polytopes, series-parallel graphs

AMS subject classifications. 05C85, 90C27

PII. S0895480193259813

1. Introduction. A graph G = (V,E) is said to be k-edge (respectively, k-node)
connected (1 ≤ k ≤ |V |− 1) if for any pair of nodes i, j ∈ V there are at least k edge-
disjoint (respectively, node-disjoint) paths from i to j. Let G = (V,E) be a graph and
w ∈ RE a weight vector associated with the edges of G. The weight of a subgraph
of G is the sum of the weights of its edges. Given a subset of distinguished nodes
S ⊆ V , called terminals, the Steiner 2-edge survivable network problem (STESNP)
is the problem of finding a minimum weight subgraph of G spanning S such that
between every two nodes i, j of S there are at least two edge-disjoint paths between
i and j. The STESNP has applications to the design of reliable communication and
transportation networks [5], [25], [26].

In this paper, we discuss the polytope associated with the solutions to this prob-
lem. We give a complete linear description of this polytope when the graph is series-
parallel.

The STESNP is NP-hard in general. It has been shown to be polynomially
solvable in some special cases of graphs. In [28], [29], Winter devised linear time algo-
rithms to solve the STESNP in Halin graphs [28] and series-parallel graphs [29]. Ac-
tually, Winter considers the following more general problem called the general Steiner
problem: Given a set S ⊆ V and an integer (|S|, |S|)-matrix R = (Rij) (defining
certain pairwise connectivity requirements), find a minimum weight subgraph span-
ning S such that between every pair (i, j) of nodes in S there are at least Rij edge
(node)-disjoint paths. He showed that this problem can be solved in linear time if
the graph is series-parallel or a Halin graph. This problem has been considered later
by Grötschel and Monma [18] and Grötschel, Monma, and Stoer [19], [20], [21] in
the framework of a more general model. In particular, Grötschel, Monma, and Stoer
studied polyhedral aspects of that model and devised cutting plane algorithms.

Given a graph G = (V,E) and a node subset W ⊆ V of G, the set of edges having
one endnode in W and the other in V \W is called a cut of G and denoted by δ(W ).
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If v ∈ V is a node of G, then we write δ(v) for the cut δ({v}) and we say that δ(v) is
defined by v. If a cut contains k edges, it is also called a k-edge cut set.

Let G = (V,E) be a graph. Let x(e) be a variable associated with each edge e
and for an edge subset F ⊆ E, the 0-1 vector xF ∈ RE with xF (e) = 1 if e ∈ F
and xF (e) = 0 otherwise is called the incidence vector of F . For any subset of edges
F ⊆ E, we define x(F ) =

∑
e∈F x(e). If W ⊆ V , then we denote by E(W ) the set of

edges having both endnodes in W . The STESNP can be formulated as the following
integer linear program.

Min wx

subject to

0 ≤ x(e) ≤ 1 for all e ∈ E,(1.1)

x(δ(W )) ≥ 2 for all W ⊆ V, S 6= W
⋂

S 6= ∅,(1.2)

x(e) ∈ {0, 1} for all e ∈ E.(1.3)

Let

STESNP(G,S) = conv{x ∈ RE | x satisfies (1.1), (1.2), and (1.3)}
be the polytope associated with the STESNP.

Using a polynomial time algorithm for the maximum flow problem [10], [12] and
the famous maximum flow-minimum cut theorem (cf. Ford and Fulkerson [14]), one
can solve in polynomial time the separation problem for inequalities (1.2) (the problem
that consists to determine whether a given solution x satisfies the inequalities (1.2),
and if not, to find an inequality among (1.2) which is violated by x). This implies,
from the ellipsoid method [17], that there is a polynomial time algorithm for solving
STESNP whenever STESNP(G,S) is completely described by the inequalities (1.1)
and (1.2). Also one can obtain an equivalent extended compact formulation for the
system given by (1.1) and (1.2) using the max flow-min cut theorem. This yields a
further polynomial time algorithm for solving the STESNP when STESNP(G,S) is
described by these inequalities.

In this paper, we will show that if the graph is series-parallel, then the polytope
STESNP(G,S) is given by inequalities (1.1) and (1.2).

To the best of our knowledge, the STESNP(G,S) has not been considered in the
literature. However some special cases received much attention. In particular, the
case where S = V has been extensively investigated.

For S = V , Mahjoub [22] gave a complete description of STESNP(G,S) in the
case where the graph is series-parallel and he introduced a large class of facet defining
inequalities for the polytope STESNP(G,S) called the odd-wheel inequalities. This
class of facet defining inequalities has been generalized by Grötschel, Monma, and
Stoer [19] for more general polyhedra. In [2] Barahona and Mahjoub characterized
the polytope STESNP(G,S) for Halin graphs. In [18] Grötschel and Monma discuss
a general model related to the design of minimum-cost survivable networks. They
discuss polyhedral aspects of this model and identify basic facets of the associated
polyhedra. Grötschel, Monma, and Stoer [19], [20], [21] describe further classes of
facets of these polyhedra, develop a cutting plane algorithm for the associated problem
and present computational results. A complete survey of that model and related work
is given in Stoer [26].

Coullard, Rais, Rardin, and Wagner [7], [8], [9] consider the Steiner 2-node con-
nected subgraph polytope, that is the polytope, the extreme points of which are the
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incidence vectors of the edge sets of the 2-node connected subgraphs of G, spanning S.
They give a complete description of that polytope when the graph is series-parallel [7].
In [9] they characterize the dominant of that polytope for the graphs noncontractible
to W4 (the wheel on five nodes). In [8] they devise linear time algorithms for the
Steiner 2-node connected subgraph problem in the graphs noncontractible to W4 and
Halin graphs.

Related work can also be found in [4], [6], [13]. In [6] Cornuéjols, Fonlupt, and
Naddef studied some related polyhedra to STESNP(G,S). They showed that when
S = V and G is series-parallel, the polyhedron given by the nonnegativity inequalities
and the cut-inequalities is integral. Fonlupt and Naddef [13] characterized the class
of graphs for which the system given by these inequalities defines the convex hull of
the incidence vectors of the tours of G (a tour is a cycle going at least once through
each node). Chopra [4] considers the polyhedron, the extreme points of which are the
incidence vectors of the edge sets of the k-edge connected spanning subgraphs of G,
when multiple copies of an edge may be considered. He characterized this polyhedron
for the class of outerplanar graphs when k is odd.

In the next section, we describe the polytope STESNP(G,S) for series-parallel
graphs, and we give some structural properties for the system of inequalities defining
that polytope. In section 3 we prove our main result. Concluding remarks are given in
section 4. The remainder of this section is devoted to more definitions and notations.

The graphs we consider are finite, undirected, connected, and may have multiple
edges and loops. We denote a graph by G = (V,E) where V is the node set and E is
the edge set of G. If e is an edge with endnodes u and v, then we write e = uv.

A graph G is said to be contractible to a graph H if H may be obtained from G by
a sequence of elementary removal and contractions of edges. A contraction consists
of identifying a pair of adjacent vertices and of preserving all other vertices and of
preserving all other adjacencies between vertices. A graph is called series-parallel [11]
if it is not contractible to K4 (the complete graph on four nodes). Note that if G is a
series-parallel graph and G is contractible to a graph H, then H is series-parallel. It
is easily seen that series-parallel graphs have the following property.

Lemma 1. Any connected series-parallel graph with more than two nodes and
without nodes defining 2-edge cut sets contains multiple edges.

If G = (V,E) is a graph and W ⊆ V is a subset of nodes, we denote by G(W )
the subgraph of G induced by W . For W, W ′ ⊆ V, (W, W ′) denotes the set of edges
having one endnode in W and the other in W ′. If F ⊆ E, V (F ) will denote the set
of the nodes of the edges of F . If W ⊆ V , we let W = V \W . Given a constraint
ax ≥ α, a ∈ RE and a solution x∗, we will say that ax ≥ α is tight for x∗ if ax∗ = α.
If G = (V,E) is a graph and e ∈ E, G− e will denote the graph obtained from G by
removing e.

2. The polytope STESNP(G,S) of a series-parallel graph. Let G = (V,E)
be a graph and S ⊆ V a set of terminals. We will suppose |S| ≥ 2, (if |S| = 1, then
an optimal solution to the problem STESNP would consist of the edges of negative
weights). Let P (G,S) denote the polytope given by inequalities (1.1) and (1.2). These
inequalities will be called, respectively, trivial and Steiner-cut inequalities. A cut
corresponding to a Steiner-cut inequality will be called Steiner-cut. Given a Steiner-
cut δ(W ) and a solution x for which the corresponding Steiner-cut inequality is tight,
we will also say that δ(W ) is a Steiner-cut tight for x.

Our main result is the following.
Theorem 2. If G = (V,E) is a series-parallel graph and S ⊆ V a set of terminals,
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then STESNP(G,S) = P (G,S).
The proof of this theorem will be given in the following section. In what follows,

we are going to discuss some properties of the extreme points of the polytope P (G,S).
These properties will be useful in the sequel. First we give a technical lemma.

Lemma 3. Let x be a solution of P (G,S). If δ(W1) and δ(W2) are two Steiner-
cuts tight for x and (W1 ∩W2) ∩ S 6= ∅ and (W1 ∪W2) ∩ S 6= ∅ (respectively, (W1 \
W2)∩S 6= ∅ and (W2 \W1)∩S 6= ∅), then δ(W1 ∩W2) and δ(W1 ∪W2) (respectively,
δ(W1\W2) and δ(W2\W1)) are two Steiner-cuts tight for x, and x(W1\W2, W2\W1) =
0 (respectively, x(W1 ∩W2,W1 ∪W2) = 0.

Proof. Since δ(W1) and δ(W2) are tight for x we have

4 = x(δ(W1)) + x(δ(W2))

= x(δ(W1 ∩W2)) + x(δ(W1 ∪W2)) + 2x(W1 \W2,W2 \W1)

≥ x(δ(W1 ∩W2)) + x(δ(W1 ∪W2))

≥ 4.

The two last inequalities follow from the fact that x(e) ≥ 0 for all e ∈ E and
δ(W1 ∩W2) and δ(W1 ∪W2) are both Steiner-cuts. This implies that all the above
inequalities are satisfied at equality. Consequently, x(δ(W1∩W2)) = x(δ(W1∪W2)) =
2 and x(W1 \W2,W2 \W1) = 0.

If (W1 \ W2) ∩ S 6= ∅ and (W2 \ W1) ∩ S 6= ∅, then the cuts δ(W1 \ W2) and
δ(W2 \W1) are Steiner-cuts and in a similar way, we obtain that these cuts are tight
for x and x(W1 ∩W2,W1 ∪W2) = 0.

If x is an extreme point of P (G,S), then there exist two edge subsets, E0, E1 ⊆ E
of G and a family of Steiner-cuts {δ(Wi), i = 1, ..., l} such that x is the unique solution
of the system x(e) = 0 for all e ∈ E0,

x(e) = 1 for all e ∈ E1,
x(δ(Wi)) = 2 for i = 1, . . . , l,

(2.1)

where |E0|+ |E1|+ l = |E|.
Lemma 4. Let x ∈ RE be a solution of P (G,S) such that x(e) > 0 for all e ∈ E.

If δ(W ) is a Steiner-cut tight for x, then G(W ) and G(W ) are both connected.

Proof. Suppose, for instance, that G(W ) is not connected. Let W
1
, W

2
be

a partition of W such that (W
1
,W

2
) = ∅. Since G is connected, it follows that

(W,W
1
) 6= ∅ 6= (W,W

2
). From the hypothesis we then have

x(W,W
1
) > 0, x(W,W

2
) > 0.(2.2)

In addition, since W ∩ S 6= ∅, we may, without loss of generality (w.l.o.g.), assume

that W
1 ∩ S 6= ∅. Hence δ(W

1
) is a Steiner-cut of G. However, as

x(δ(W )) = x(W,W
1
) + x(W,W

2
) = 2,

it follows by (2.2) that x(δ(W
1
)) = x(W,W

1
) < 2, a contradiction.

The following remark will be used frequently in the next section.
Remark 5. Let G′ = (V ′, E′) be a graph obtained from G by contracting a

connected edge subset F ⊆ E. Let S′ = (S \ V (F )) ∪ {s′} if S ∩ V (F ) 6= ∅ and



STEINER 2-EDGE CONNECTED POLYTOPES 509

S′ = S if not, where s′ is the node that arises in the contraction of F . Let x′ be the
restriction of x on G′. Then x′ is a solution of P (G′, S′).

Proof. Obviously, x′ satisfies the inequalities (1.1). Furthermore, since any
Steiner-cut δ(W ) of G′ with respect to S′ is a Steiner-cut of G with respect to S,
it follows that inequalities (1.2) are also satisfied by x′.

3. Proof of Theorem 2. The proof is by induction on the number of edges.
The theorem is trivially true for a graph with no more than two edges. Suppose it is
true for any series-parallel graph with no more than m edges and suppose G contains
exactly m+1 edges. Let us assume that, on the contrary, STESNP(G,S) 6= P (G,S).
And let x be a fractional extreme point of P (G,S). Also let us assume that, under
the induction hypothesis, |S| is maximum. That is, for any series-parallel graph
G′ = (V ′, E′) with |E′| = m + 1 and a set of terminals S′ such that |S′| > |S|, we
have STESNP(G′, S′) = P (G′, S′). We have the following lemmas:

Lemma 6. x(e) > 0 for all e ∈ E.

Proof. If e0 is an edge such that x(e0) = 0, then let x′ be the point given by
x′(e) = x(e) for all e ∈ E \ {e0}. Clearly, x′ belongs to P (G− e0). Moreover x′ is an
extreme point of P (G− e0). Since x′ is fractional, we have a contradiction.

Lemma 7. Let x be an extreme point of P(G,S) and g = uv an edge of G such
that x(g) > 0. Then there exist at least two constraints containing g in the system
(2.1) defining x.

Proof. System (2.1) must be of full rank and therefore there must exist at least one
constraint containing g in the system (2.1). So, let us assume that there exists exactly
one constraint of system (2.1) that contains g. Let (2.1)′ be the system obtained from
(2.1) by deleting this constraint. Let x′ ∈ Rm be the solution given by x′(e) = x(e)
for all e ∈ E \ {g}. We claim that x′ is fractional. In fact, this is clear if x(g) = 1. If
not, then g belongs to a tight Steiner-cut and thus there must exist at least one more
edge in G with a fractional value, which implies that x′ is fractional. Moreover, x′ is
the unique solution of the system (2.1)′. Now let G′ be the graph obtained from G
by contracting g. Let S′ = (S −{u, v})⋃{w} if g ∈ E(S) and S′ = S if not, where w
is the node arising from the contraction of g. By Remark 5 we have x′ ∈ P (G′, S′).
Furthermore, note that the system (2.1)′ is included in P (G′, S′). This implies that
x′ is an extreme point of P (G′, S′). Since G′ is series-parallel and has less edges than
G this contradicts the induction hypothesis and thus our lemma is proved.

Lemma 8. G does not contain a node defining a 2-edge cut set.

Proof. Suppose that G contains a node v such that δ(v) = {e1, e2} where e1 = vw1

and e2 = vw2. We will distinguish two cases.

Case 1. x(e1) = x(e2).

Let G′ be the graph obtained from G by contracting e1. Clearly, G′ is series-
parallel. Let x′ be the restriction of x on G′ and let S′ = (S \ {v, w1}) ∪ {v′} if
{v, w1} ∩ S 6= ∅ and S′ = S if not, where v′ is the node that arises in the contraction
of e1. By Remark 5, we have that x′ belongs to P (G′, S′). We claim that x′ is an
extreme point of P (G′, S′). In fact, if this is not the case, then there are two solutions
y1 and y2 of P (G′, S′), y1 6= y2 such that x′ = 1

2 (y1 + y2). Let x1 and x2 be the
solutions given by

x1(e) =

{
y1(e) if e ∈ E \ {e1},
y1(e2) if e = e1,
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and

x2(e) =

{
y2(e) if e ∈ E \ {e1},
y2(e2) if e = e1.

We claim that x1 and x2 both belong to P (G,S). Clearly, both x1 and x2 satisfy
the trivial inequalities. In what follows we show that they also satisfy inequalities
(1.2). We show this for x1, the proof for x2 is identical.

Let δ(W ) be a Steiner-cut of G. If e1 /∈ δ(W ), then δ(W ) is a Steiner-cut of G′

with respect to S′ and then x1(δ(W )) = y1(δ(W )) ≥ 2. So suppose that e1 ∈ δ(W ).
Also, suppose, w.l.o.g, that v ∈W . Hence w1 ∈W . We consider two cases.

Case 1.1. v ∈ S.
Since δ(v) is a Steiner-cut, it follows from inequalities (1.1) and (1.2) that x(e1) =

x(e2) = 1. Hence

x1(e1) = x1(e2) = 1.(3.1)

We claim that w2 ∈ S. In fact, first remark that x(δ(Z)) ≥ 2 holds for every
cut δ(Z) such that S ⊆ Z and w2 ∈ Z. This is clear if w1 (and w2) belong to
Z. Now suppose that w1 ∈ Z. Let Z ′ = Z \ {v}. Since |S| ≥ 2 and v ∈ S, we
have that Z ′ ∩ S 6= ∅ and Z ′ ∩ S 6= ∅. Thus δ(Z ′) is a Steiner-cut of G. Moreover,
we have δ(Z ′) = (δ(Z) \ {e2}) ∪ {e1}. Since x(e1) = x(e2) it then follows that
x(δ(Z)) = x(δ(Z ′)) ≥ 2.

Now if w2 /∈ S, then let S = S ∪{w2}. From the above remark, we have that x is
an extreme point of P (G,S). Since x is fractional and |S| < |S|, this contradicts the
maximality of S.

Thus w2 ∈ S. Now if e1, e2 ∈ δ(W ) then by (3.1), we have x1(δ(W )) ≥ 2. If
not, since e1 ∈ δ(W ), we have {e1, e2} ∩ δ(W ) = {e1}, and thus w2 ∈ W . Let
W ′ = (W \ {w1}) ∪ {v′}. As v′ and w2 belong to S, δ(W ′) is a Steiner-cut of G′.
Since δ(W ′) = (δ(W ) \ {e1}) ∪ {e2}, it follows by (3.1) that

x1(δ(W )) = x1(δ(W ′)) = y1(δ(W ′)) ≥ 2.(3.2)

Case 1.2. v /∈ S.
First of all note that every constraint of type (1.2), with e1, e2 ∈ δ(W ) is re-

dundant in P (G,S). Since w1 ∈ W and v ∈ W we may then suppose that {e1, e2} ∩
δ(W ) = {e1}. By setting W ′ = (W \{w1})∪{v′}, we obtain that δ(W ′) is a Steiner-cut
in G′ and that (3.2) holds.

In both cases, x1 satisfies the inequality associated with δ(W ), and thus x1 ∈
P (G,S). Consequently, x1, x2 ∈ P (G,S). But x = 1

2 (x1 + x2). Since x1 6= x2, this
contradicts the extremality of x.

Case 2. x(e1) 6= x(e2).
Without loss of generality, we may suppose that x(e1) > x(e2). Thus e1 cannot

belong to any Steiner-cut tight for x. In fact, first note that v cannot be in S.
Otherwise δ(v) would be a Steiner-cut not satisfied by x which is impossible. Now
suppose that there is a Steiner-cut δ(W ) tight for x with e1 ∈ δ(W ). W.L.O.G., we
may suppose v ∈W . Then δ(W ′) where W ′ = W \{v} is a Steiner-cut of G. Moreover,
x(δ(W ′)) = x((δ(W ) \ {e1}) ∪ {e2}) = 2 − x(e1) + x(e2) < 2, a contradiction. As
a consequence, e1 belongs to only one constraint of system (2.1), namely x(e1) = 1.
But this contradicts Lemma 7 and our lemma is proved.

Lemma 9. G cannot contain two multiple edges f and g such that x(f) =
x(g) = 1.
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Proof. Suppose the contrary. Let G′ = (V ′, E′) be the graph obtained from G by
contracting the edges f and g. Clearly, G′ is series-parallel. Let S′ = (S\{u, v})∪{w},
if S ∩ {u, v} 6= ∅ and S′ = S if not, where u and v are the endnodes of f and g and
w is the node arising from the contraction of f and g. Let x′ ∈ Rm−1 be the solution
given by x′ = x(e) for all e ∈ E \ {f, g}. By Remark 5, x′ is a solution of P (G′, S′).
Moreover x′ is an extreme point of P (G′, S′). Indeed, if this is not the case, then there
must exist two solutions y1 and y2, y1 6= y2, of P (G′, S′) such that x′ = 1

2 (y1 + y2).

Now consider the solutions y1′
, y2′ ∈ Rm+1 given by

y1′
(e) =

{
y1(e) if e ∈ E \ {f, g},
1 if e ∈ {f, g},

and

y2′
(e) =

{
y2(e) if e ∈ E \ {f, g},
1 if e ∈ {f, g}.

It is clear that y1′
and y2′

both belong to P (G,S). Also we have that x = 1
2 (y1′

+y2′
), a

contradiction. Consequently, x′ is an extreme point of P (G′, S′). Since x′ is fractional
and |E′| < |E|, this contradicts the induction hypothesis.

Lemma 10. G does not contain two multiple edges f and g such that x(f) = 1
and 0 < x(g) < 1.

Proof. Let us suppose the contrary. Let u and v be the endnodes of f and g.
Since x(g) is fractional, there must exist a Steiner-cut δ(W1), W1 ⊂ V , tight for x,
and containing g (and f). From Lemma 4, it follows that G(W1) and G(W 1) are both
connected. We consider two cases.

Case 1. |W1| ≥ 2, |W 1| ≥ 2.
Let G1 and G2 be the graphs obtained from G by contracting W1 and W 1,

respectively. Since G(W1) and G(W 1) are connected, both graphs G1 and G2 are
series-parallel. Let S1 = (S ∩W 1) ∪ {s1} and S2 = (S ∩W1) ∪ {s2} where s1 and
s2 are the nodes arising from the contractions of W1 and W 1, respectively. Since
G1 and G2 contain less edges than G, by the induction hypothesis, P (G1, S1) and
P (G2, S2) are both integral. Let x1 and x2 be the restrictions of x on G1 and G2,
respectively. By Remark 5, x1 and x2 are solutions of P (G1, S1) and P (G2, S2),
respectively. Hence there must exist two integral solutions y1 and y2 of P (G1, S1)
and P (G2, S2) such that every constraint of P (G1, S1) (respectively, P (G2, S2)) that
is tight for x1 (respectively, x2) is also tight for y1 (respectively, y2). In particular
we have y1(δ(W1)) = y2(δ(W1)) = 2 and y1(f) = y2(f) = 1. Moreover, since 0 <
x1(g) = x2(g) = x(g) < 1, y1 and y2 can be chosen so that y1(g) = y2(g) = 1.
Consequently, y1(δ(W1) \ {f, g}) = y2(δ(W1) \ {f, g}) = 0. Now consider the solution
x∗ ∈ Rm+1 given by

x∗(e) =


y1(e) if e ∈ E(W 1),
y2(e) if e ∈ E(W1),
1 if e ∈ {f, g},
0 otherwise.

We claim that every constraint of P (G,S) that is tight for x is also tight for x∗.
Let e ∈ E such that x(e) = 1. Then e belongs either to E(W1) or E(W 1) or

e = f . If e ∈ E(W1) (respectively, e ∈ E(W 1)) then, x∗(e) = y2(e) = x2(e) = 1
(respectively, x∗(e) = y1(e) = x1(e) = 1). From Lemma 6 it then follows that every
inequality of type (1.1) that is tight for x is also tight for x∗.

Consider now a Steiner-cut δ(W ) tight for x.
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(a) If W ⊆ W1, then x(δ(W )) = x2(δ(W )) = y2(δ(W )) = 2. Since x∗(δ(W )) =
y2(δ(W )), we obtain that δ(W ) is tight for x∗.

(b) If W ⊆W 1, we obtain similarly that δ(W ) is tight for x∗.
(c) Suppose that W 6⊂W1, W1 6⊂W and W ∩W1 6= ∅.

(c.1) Consider first the case where at least one of the sets (W1 \W ) ∩ S and
(W \W1) ∩ S is empty. Since both δ(W ) and δ(W1) are Steiner-cuts,
it follows that (W1 ∩W ) ∩ S 6= ∅ and (W1 ∪W ) ∩ S 6= ∅. Hence by
Lemma 3, δ(W1 ∩W ) and δ(W1 ∪W ) are both Steiner-cuts tight for x
and x(W1\W,W \W1) = 0. By Lemma 6, this implies that (W1\W,W \
W1) = ∅. Furthermore, since (W1 ∩W ) ⊂ W1, and (W1 ∪W ) ⊂ W 1,
from Cases (a) and (b) above, it follows that δ(W1∩W ) and δ(W1 ∪W )
are both tight for x∗. Thus we have

x∗(δ(W )) = x∗(δ(W1∩W ))+x∗(δ(W1 ∪W ))−x∗(δ(W1)) = 2+2−2 = 2.

And the constraint x(δ(W )) ≥ 2 is tight for x∗.
(c.2) If (W1 \W ) ∩ S 6= ∅ and (W \W1) ∩ S 6= ∅, then by Lemma 3 we have

that δ(W1 \W ) and δ(W \W1) are both Steiner-cuts tight for x and
x(W1 ∩W,W1 ∪W ) = 0. Using this, we obtain in a similar way as in
c.1) that x(δ(W ) ≥ 2 is also tight for x∗.

Consequently, every constraint of P (G,S) that is tight for x is also tight for x∗. Since
x 6= x∗, this contradicts the fact that x is an extreme point of P (G,S).

Case 2. |W1| = 1.
By Lemma 7, there must exist a further Steiner-cut δ(W2) tight for x and con-

taining g (and f). If |W2| ≥ 2, |W 2| ≥ 2 then Case 1 applies. Thus let us assume, for
instance, that |W2| = 1. Hence we may suppose that W1 = {u} and W2 = {v}. This
implies that (V \ {u, v}) ∩ S = ∅. Otherwise δ(V \ {u, v}) would be a Steiner-cut not
satisfied by x, a contradiction. Hence any Steiner-cut of G contains both edges f and
g. Furthermore, note that every Steiner-cut tight for x contains only one edge with
integer value, namely f . Now consider the solution x̄ ∈ RE defined as

x̄(e) =
{

1 if x(e) = 1 or e = g,
0 if not.

We have that x̄ ∈ P (G,S). Moreover any inequality of P (G,S) which is tight for x
is also tight for x̄. Since x 6= x̄, this contradicts the fact that x is an extreme point of
P (G,S), which achieves the proof of our lemma.

From Lemmas 1, 8, 9, and 10 it follows that G contains two multiple edges f and
g such that 0 < x(f) < 1 and 0 < x(g) < 1. Let x′ be the solution such that

x′(e) =

x(e) + ε if e = g,
x(e)− ε if e = f ,
x(e) otherwise,

where ε is a scalar sufficiently small. Since any cut of G either contains both edges
f and g or none of them, it follows that x′ is also a solution of system (2.1). Since
x 6= x′, we have a contradiction, and the proof of our theorem is complete.

4. Concluding remarks. We have studied the Steiner 2-edge survivable net-
work problem and have given a complete linear description of the associated polytope
when the underlying graph is series-parallel. We have shown that in this case, the
polytope is given by the trivial inequalities and the Steiner cut inequalities.
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The following related problem, called the Steiner 2-edge connected subgraph prob-
lem (STECSP) has also been studied. Given a graph G = (V,E) with weights on
its edges and a set of terminals S ⊆ V , find a minimum 2-edge connected subgraph
of G, spanning S. Note that any solution of STECSP is also a solution of STESNP.
Moreover, if the weights are positive, then an optimal solution of STESNP is also an
optimal solution of STECSP. And if S = V , then both problems coincide.

As the STESNP, the STECSP is NP-hard in general. Wald and Colbourn [27]
showed that the STECSP can be solved in polynomial time in outerplanar graphs.
Also from [24], [29] it can be shown that this problem is polynomially solvable in the
more general class of series-parallel graphs.

The STECSP has also been studied by Monma, Munson, and Pulleyblank [23]
in the metric case, that is when the underlying graph G = (V,E) is complete and
the weight function satisfies the triangle inequality (i.e., w(e1) ≤ w(e2) + w(e3) for
every three edges e1, e2, e3 defining a triangle in G). In particular, Monma, Munson,
and Pulleyblank showed that in this case the weight of a minimum 2-edge connected
spanning subgraph in (S,E(S)) is at most 4

3 times the weight of a minimum 2-edge
connected subgraph of G, spanning S. Further structural properties and worst case
analysis are given in Frederickson and Ja’Ja’ [15], Bienstock, Brickell, and Monma [3]
and Goemans and Bertsimas [16].

If (W,F ), W ⊆ V , is a 2-edge connected subgraph of G, spanning S, then xF ,
the incidence vector of F satisfies the following inequalities:

x(δ(W ))− 2x(e) ≥ 0 for all W ⊆ V, S ⊆W, e /∈ E(W ).(4.1)

Inequalities (4.1) express the fact that for a cut δ(W ) that leaves S on one side, any
2-edges connected subgraph spanning S and containing an edge from E \E(W ) must
contain at least two edges from δ(W ).

Let STECSP(G,S) be the polytope associated with the STECSP, that is, the
convex hull of the incidence vectors of the edge sets of all the 2-edge connected sub-
graphs of G spanning S. Let Q(G,S) be the system given by inequalities (1.1), (1.2),
and (4.1). We have the following result; its proof uses similar techniques as that of
Theorem 2.

Theorem 11. If G = (V,E) is a series-parallel graph and S ⊂ V a set of
terminals, then STECSP(G,S)=Q(G,S).

Proof. For the proof, see [1].
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