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Abstract

In this paper we study a composition (decomposition) technique for the dominating set poly-
tope in graphs which are decomposable by one-node cutsets. If G decomposes into G, and Ga,
we show that the dominating set polytope of G can be described from two linear systems re-
lated to G; and G;. This gives a way to characterize this polytope for classes of graphs that
can be recursively decomposed. This also gives a procedure to describe facets for this polytope.
Application of these techniques is discussed for the class of the cactus.
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1. Introduction

Given a graph G = (V,E) and two subgraphs G| = (1, E}) and G, = (1, E») of G,
G is called a k-sum of Gy and G, if V = V; U 5, [V} N V5| =k, and the subgraph
(Vi NV, E1 N Ey) is complete. The set ¥y NV, is called a k-node cutset of G.

In this paper we study a composition (decomposition) technique for the dominating
set polytope in graphs which are decomposable by one-node cutsets. If G decomposes
into G; and G, then we derive a system of inequalities that defines the dominating set
polytope from systems related to G, and G,. As a consequence, we obtain a procedure
to construct this polytope in graphs that can be recursively decomposed. This technique
also permits us to describe facets of the dominating set polytope by composition of
facets from the pieces. We discuss applications of this technique for the class of the
cactus.

Developing composition (decomposition) techniques for NP-hard combinatorial
optimization problems has been a motivating subject for many researchers along the
past decade [3,4,10, 14, 18,22,26]. Indeed, for an NP-hard combinatorial optimization
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problem, it is sometimes difficult to give a complete linear description of the associated
polytope in some graph. However, if the graph decomposes into pieces (with respect
to certain decomposition operations), it may be possible to give a complete description
of the polytope from polytopes related to the pieces. This approach has been studied
for different combinatorial optimization problems such as the max-cut problem [4, 18],
the stable set problem [3,10,26], the acyclic subdigraph problem [3]. Margot [26]
studied a general composition (decomposition) approach for combinatorial optimization
polytopes using projection. This permitted him to generalize known results related to
independence systems.

Given a graph G = (V,E), a node subset DC V of G is called dominating set if
every node of V\D is adjacent to at least one node of D. Given a weight system w(u),
u €V, associated with the nodes of G, the minimum dominating set problem (DSP)
consists of finding a dominating set D of G such that >, w(u) is minimum. This
problem is a well-known intractable problem. Berge [5, 6] and Ore [27] are among the
first who have discussed it.

The DSP arises in many applications [6,11,12], in particular those involving the
strategic placement of men or pieces on the nodes of a network. As example, consider
a computer network in which one wishes to choose a smallest set of computers that
are able to transmit messages to all the remaining computers [9,22]. Another example
{27] is that of determining the minimum number of queen one wishes to place on
a chess board so that every square of the board is dominated by at least one queen.
(A square is dominated by a queen if it is placed in the same row, column or diagonal
as the queen.) The DSP has also applications in matching theory [5].

The DSP has been extensively investigated from an algorithmic point of view [6,8,
11-13,15-17). It is NP-hard in general. It has been shown to be polynomial in several
classes of graphs such as the cactus [20] and the class of series—parallel graphs [21].
A complete survey of the algorithmic complexity of the DSP can be found in [13].

If G = (V,E) is a graph and S C ¥ a node subset of G, then the 0—1 vector x5 € R”
with x5(u) = 1 if u€ S and x5(u) = 0 if not is called the incidence vector of S. The
convex hull of the incidence vectors of all dominating sets of G, denoted by Pp(G),
is called the dominating set polytope of G, i.e.

Pp(G) = conv{x®eR" |SCV is a dominating set of G}.
Every optimal basic solution of the linear program
min{wx; x€Pp(G)}

is the incidence vector of a minimum dominating set of G.

Since the DSP is NP-hard, we cannot expect to find a complete characterization
of Pp(G) for all graphs. It may however be that for certain classes of graphs G, the
polytope Pp(G) can be described by means of a few classes of linear inequalities
and that for these classes of inequalities, polynomial-time separation algorithm can be
designed, so that the DSP on these graphs can be solved in polynomial time.
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In contrast of many NP-hard combinatorial optimization problems, the polyhedral
aspect of the DSP has not received much attention. To the best of our knowledge,
the polytope Pp(G) has been studied only in the class of threshold graphs [25] and
the class of strongly chordal graphs [16] within the framework of totally balanced
matrices. Our aim, in this paper, is indeed to study the DSP from a polyhedral point of
view.

The concept of domination is closely related to that of independence. An independent
set of G = (V,E) is a node set S CV such that there is no edge with both endnodes
in S. The problem of finding a minimum independent dominating set has also been
widely studied [1,2,16,22]. Applications of this problem arise, in particular, in game
theory [2].

The paper is organized as follows. In Section 2 we discuss basic facets and structural
properties of Pp(G). In Section 3 we study compositions of polyhedra. In Section 4
we discuss applications of these compositions for the cactus.

The rest of this section is devoted to more definitions and notations.

Let G = (V,E) be a graph. If e€ E is an edge whose endnodes are « and v, then
we write e = uv. If €V is a node that is not adjacent to any node of V\{u}, then u
is said to be isolated.

A path P of G = (V,E) is a sequence of nodes vg,vy,...,v;, such that v;u,,, is an
edge for i = 0,...,k — 1 and no node appears more than once in P. The nodes vy
and v; are the endnodes of P and we say that P links vy and v, If vgvx € E, then the
sequence vg,V1,...,U, is also called a cycle.

We use the standard notation of polyhedral theory. If a € R™ — {0}, ap € R then
the inequality a'x<aq is said to be valid with respect to a polyhedral P C R™ if
PC{xeR"|a'x<ay}. We say that a valid inequality a'x <a, defines a face of P if
0 # PN{a"x = ay} # P. In this case the polyhedron PN {a'x = ay} is called the face
associated with a'x <ap. A valid inequality a’x <aq defines a facet of P if it defines
a face of P and if the dimension of PN {aTx = aqp} is one less than the dimension
of P.

2. On the facets of Pp(G)

In this section we shall describe basic facets of Pp(G) and discuss some structural
properties.

2.1. Basic facets of Pp(G)

Let G = (V,E) be a graph. If u€V is a node of G, the neighbourhood of u in G,
denoted by N(u), is the node set consisting of u together with the nodes which are
adjacent to u. If ue V, we let N*(u) = Nw)\{u}. f SCV, b:V — R, b(S) will
denote 3 ¢ b(u).
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If SCV is a node set, then x5, the incidence vector of S, satisfies the following
inequalities

x(u)=0 for all ue/, (2.1)
x(u)<1 for all ue/, (2.2)
x(N(u))=1 for all ue/V. (2.3)

Inequalities (2.1) and (2.2) will be called trivial inequalities and inequalities (2.3) will
be called neighbourhood inequalities .

In what follows, we shall study when the above inequalities define facets of Pp(G).
But first let us state the following lemmas. The first one is easily seen to be true.

Lemma 2.1. If G does not contain isolated nodes, then Pp(G) is full dimensional.

Thus, if G is without isolated nodes, a linear system A4x>=b that defines Pp(G) is
minimal if and only if there is a bijection between the inequalities of the system and
the facets of Pp(G). Moreover, this system of inequalities is unique up to positive
multiples.

In the rest of the paper we consider graphs that do not have isolated nodes.

Lemma 2.2. Every facet defining inequality of Pp(G) except those given by x(u)<1,

ey

Let §' = S U {ip}. Obviously, §" is a dominating set, but 3., aix? < ag. This is
a contradiction. [J

Theorem 2.3. (i) Inequality (2.1) defines a facet of Pp(G) if and only if |N(v)| =3
for every ve N(u).
(i) Imequality (2.2) defines a facet of Pp(G).

Proof. (i) Suppose |[N(v)| <2 for some node v of N(u). Since G does not have isolated
nodes, there must exist a node u’, ' # u, such that N(v) = {u,u’'} where v is either
equal to u or to #'. Thus, for every dominating set of G, the following holds:

ugS = u' €S.

But this implies that the face {x € Pp(G)|x(u) = 0} is contained in the face {x €
Pp(G)|x(u') = 1}. Hence, (2.1) cannot define a facet.

Conversely, suppose that |[N(v)| >3 for every v € N(u). Thus, the sets V\{u},
V\{u,v}, for all v € V\{u}, define a family of |V'| dominating sets whose incidence
vectors satisfy inequality (2.1) with equality and are affinely independent. It then fol-
lows that (2.1) defines a facet.
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(i1) Since G does not contain an isolated node, the sets ¥, V\{v}, v # u, define
a family of |V| dominating sets of G whose incidence vectors satisfy inequality (2.2)
with equality and are affinely independent. [

Theorem 2.4. Inequality (2.3) defines a facet of Pp(G) if and only if the two following
conditions are satisfied.

(i) There is no node u' such that N(u') C N(u).

(ii) For every node w € V\N(u) such that N*(w)C N*(u), there is at least one
node z € N*(w) such that every node y € N*(w)\{z} is adjacent either to z or to
a node of V\(N(u)U {w}).

Proof. If there is a node «’ such that N(u') C N(u), then the inequality (2.3) is implied
by that associated with N(u') together with inequalities (2.1). Thus, it does not define
a facet. If (ii) does not hold for some node w € V\N(u), then for every dominating
set S of G, the following holds:

ISAN@)| =1 = weS. (2.4

Indeed, suppose that {S N N(u)} = {z}. If SN N*(w) = 0, then clearly, w € S. I
SN N*(w) = {z}, then, as (ii) is not satisfied for w, there must exist a node y €
N*(w)\{z} which is not adjacent neither to z nor to a node of V\(N(u)U {w}). As
a consequence, one should have w e S and thus (2.4) holds. Thus, every dominating
set containing exactly one node of N(u) must also contain w. But this implies that the
face {x € Pp(G)|x(N(u)) = 1} is contained in the face {x € Pp(G)|x(w) = 1}. Hence,
(2.3) is not facet defining.

Now suppose that both (i) and (ii) hold. Let us denote inequality (2.3) by a'x >ay
and assume that there is a facet defining inequality 57x> by such that

{x€Pp(G)|a"x = ap} C{xEPH(G)| b x = by}.

We will show that there is a scalar p > 0 such that b = pa, which implies that (2.3)
defines a facet. First we show that b(u) = b(v) for all v€N(u)\{u}. For this consider
the sets

Si = V\N*(u),

S, = (V\Nw))U{v}, for all ve N*(u),

which define dominating sets of G. This is clear for S;. If S, is not a dominating set,
then there is a node «' € N(u)\{v} that is not adjacent to any node of (V\N(u))U{v}.
But this implies that N(u') C N(u), a contradiction.

Moreover, the incidence vectors of Sy, S, satisfy constraint (2.3) with equality. Thus,

0 = bxSt — bx> = b(u) — b(v).
Hence,

b(u) = b(v) = p, forall ve N*(u) and some peR.
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Next we show that b(w) = 0 for all we V\N(u). First consider the case where N*(w)Nn
(V\N(u)) # 0. Let § = V\(N*(u) U {w}). Clearly, § is a dominating set of G. Since
a"xS = ay, it follows that #Tx5 = b, and thus

0 =bx5 — bxS,
= b(w),

where S is the dominating set introduced above. If N*(w) N (V\N(u)) = @, then by
(ii) there is a node z € N*(w) such that for every node y € N*(w)\{z}, y is adjacent
either to z or to a node of V\(N(u)U {w}). Let § = S,\{w}, where S, is as defined
above. It easy to see that S is a dominating set of G. Moreover, we have a'xS = aq.
This implies that #Tx% = by and, as above, it fallows that b(w) =

Thus, altogether we have

b() = p for all veN(u),
0 for all ve V\N(u).

Since for every v € V, there is a dominating set S such that a'x5 = gy and v ¢
S, this implies that the facet defined by »Tx>by is not contained in a trivial facet
{x € Pp(G)|x(w) = 1} for some we V. Therefore, bTx>b, defines a nontrivial facet.
By Lemma 2.2 it follows that p > 0 and our proof is complete. []

Lemma 2.4. Let C, be a chordless cycle on n nodes. Then the inequality

HCy)> ['C;'] @.5)

is valid for Pp(C,). Moreover, it defines a facet of Pp(C,) if and only if |C,| is not
a multiple of 3.
Proof. Easy. [

2.2. Structural properties

In what follows we shall study some structural properties of the facets of Pp(G).
These propreties will be used later for the composition of polyhedra.

Let a'x >ap be an inequality that defines a nontrivial facet of Pp(G), i.e a constaint
with at least two nonzero components. Hence by Lemma 2.2 we have a >0 and ay > 0.
We denote by ¥, the set

V,={veV |a(v) > 0}.

The graph G, = (V,, E(V,)) is called a facet-inducing graph. We denote by D(G) the
set of dominating sets of G and by D, the set

D,={SCV|SeD(G) and a"x = ay}.

We have the following lemmas.
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Lemma 2.5. The graph G, is connected.

Proof. Suppose that G, is the union of two disjoint graphs G; = (¥, E,) and G, =
(V2,E,). Let a; and a, be the restrictions of a on V] and V5, respectively.
Letting

dy = min{a"x*\¥"| SeD(G)},

where i’ = {1,2}\{i}, we obtain that ay = a} + a3 and a]x>a is valid for Pp(G)),
for i = 1,2. Thus, a'x>ay can be obtained as the sum of two valid inequalities. But
this contradicts the fact that aTx>a, defines a facet. [

Lemma 2.6. Suppose that G is the 1-sum of a graph G, = (W,E\) and a 5-cycle C
where C = {u,w|,wa, w3, wq} with u = C NV (see Fig. 1). Suppose that a"x>ay is
different from a neighbourhood inequality and the inequality (2.5) associated with C.
Then

(1) a(wi) = a(ws) <a(u),

(2) a(w2) = a(w3) = 0.

Proof. First we show that a(w;) = a(wy). For this we will show that a(ws)=a(w).

The statement then follows by symmetry. W.l.o.g., we may suppose that a(w;) > 0.

Since a"x>ay is different from the inequality x(C)>2, there must exist a dominating

set S' €D, with |S' N C|>3. We shall distinguish three cases.

Case 1: wi,wq € S'. Then {u,wz,w3} CS'. Since the sets S'\{w,} and S'\{w;}
are both dominating sets of G, one should have a(w;) = a(w;) = 0. Now, since
a'x > o is different from a trivial inequality, there must exist a dominating set S? € D,,
with w; € §2. Let §2 = (82\{w;}) U {wa, w3, ws}. It is clear that §? € D(G). Since
a(wy) = a(wz) = 0, it follows that a(ws)=a(w;).

Case 2: wy,ws€S'. Suppose first that {w;, w3} NSt # 0.
~— If w, € S, then the set S'\{w,} € D(G). But this yields a(w;) = 0, which is

impossible.

— If w3 € S', then the set S'\{w;} and S'\{w3} are both dominating sets of G,
and thus we get a(w;) = a(ws) = 0. Since a'x>aq is different from the neigh-
bourhood inequality associated with wy, there is a dominating set S® such that
1S* N {u,wi,wa}| =2, If {u,w;} €S> (resp. {wi, w2} CS>, {u,wp} CS*) then the
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set (S*\{w1 DU {ws} (resp. (S*\{w1})U{ws}, S>\{w1}) is a dominating set of G.
Since a(w3) = a(wy) = 0, in all cases we obtain that a(w;) = 0, a contradiction.
Consequently, {wy, w3} N S! = @ and thus we have {u,w;,ws} CS'. Then the sets
(S"\{w1}) U {ws} and (S'\{ws}) U {w;} are dominating sets of G. This yields

a(wsy)=a(wi),a(ws). (2.6)

Since a'x >ay is different from the neighbourhood inequality associated with w;, there

is a dominating set S*€D, with |S* N {w),wy, w3}|>2.

— If {w1,wr} CS* then the set (S*\{w;})U{ws} is a dominating set of G and thus
a(wg) = a(wy).

— If either {wy, w3} CS* or {wy, w3} CS*, then the set (S*\{w3})U {w4} is a domi-
nating set of G and thus a(ws) =>a(w3). By (2.6), it follows that a(ws)=a(wy).

Case 3: |[{wi,ws} N S| = 1. Consider first the case where w; € S'. If u € S!, since
StN{wy, w3} # 0, it follows that S'\{w,} is a dominating set of G. Hence a(w;) = 0,
a contradiction. As a consequence, we have {wj,wy, w3} CS!. As S'\{w,} belongs
to D(G), we obtain that a(w,) = 0. Now consider the set S? introduced above. Note
that w; € S2. Since (S®\{w1}) U {wz, w4} is a dominating set, it then follows that
a(ws)=a(wy). If wyeS' we can show in a similar way that a(w,)>a(w).

In all cases we obtain that a(w,)=a(w, ). Since by symmetry we also have a(w;)>
a(wy), it then follows that a(w;) = a(wy).

Next we show that a(w,) = a(w;) = 0. For this we shall consider two cases.

Case 1: a(w)) = a(ws) = 0. Since a'x>ap is a nontrivial inequality, there are two
dominating sets S and T of D, such that w, € S and w3 € T. Let 8’ = (S\{mx}) U
{wy,ws} and T’ = (T\{ws}) U {w,ws}. Obviously, S’ and 7' are dominating sets
of G, which yield a(wy)<a(w;) + a(ws) and a(ws)<a(w;) + a(wy). Since a(w;)=0
and a(w;) =0, by our hypothesis, it follows that a(w;) = a(ws) = 0.

Case 2'. a(w1) = a(ws) > 0. Consider the dominating set S' of D, introduced above.
Note that |S' N C|>3. First suppose that {w, w3} NS! = (. Thus, S'NC = {u, wi, w4}
Let T! = (S"\{w1 }) U {w,} and T? = (S'\{w4}) U {w3}. Clearly, both T! and 7?2 are
in D(G). Hence,

a(wy) Za(wy), (2.7)
a(ws) = a(ws). |

We claim that there is i € {2,3} such that a(w;) = a(ws) = a(w;). In fact, consider

again the dominating set S* € D, introduced in Case 2, satisfying |S* N {w, wy, w3 }|>2.

— If {wi,wy} CS% then (S*\{wr}) U {ws} € D(G), and thus a(ws)=a(w,). Since
a(wy) = a(wy), by (2.7) we obtain that a(w;) = a(ws) = a(w,).

— If {w1,w3} CS*% then (S*\{w3}) U {ws} € D(G) and we obtain similarly that
a(wi) = a(ws) = a(ws).

— If {wz, w3} C §*, then the sets (S*\{w2})U{w;} and (S*\{ws3})U{w4} are both in
D(G). Thus, a(w;) = a(w;) and a(ws) = a(ws), which implies by (2.7) that a(w;) =
a(ws) = a(wz) = a(ws).
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Hence, our claim is proved. Now suppose, for instance, that a(w,) = a(w,) = a(wa).
Let §' = (S'\{wi, w4 })U{w,}. It is clear that SteD(G). Thus, a(wy)=a(w,)+a(ws).
As a(wy) = a(wy), it follows that a(w;) = 0. But this is a contradiction.

Now suppose that |[{wy, w3} NS!| = 1. W.lo.g., we may suppose S’ N {wa, w3} =w,.
If wy €S!' (resp. wy €8"), since |S' N C|=3 and thus S' N {u,wy} # 0 (resp. S' 1
{u,wi} # 0), we have that S'\{w;} (resp. S'\{ws}) is a dominating set of G. Bui
this implies that a(w;) = O (resp. a(ws) = 0), a contradiction.

Consequently, {wy, w3} C€S'. If u € S', then the sets S'\{w>»} and S'\{ws} are both
in D(G), implying that a(w;) = a(ws;) = 0. If not then we may, w.l.o.g., assume
that w; € S'. Clearly, the sets S'\{w,} and (S'\{w;,w3})U {ws} belong to D(G). As
a(w; ) = a(wy), it follows that a(w,) = a(w;) = 0.

Finally, we show that a(wy) (= a(w4))<a(u). For this consider again the dominating
set S2¢ D, introduced in Case I, containing wy. Since the set (S?\{wi})U {u,w,} is
also a dominating set and a(w,) = 0, it follows that a(w))<a(u), and our proof is
complete. [

3. Composition of polyhedra

In this section we derive a system of inequalities that defines Pp(G) provided that
G is the [-sum, of two graphs and such a system is known for two graphs related to
the pieces.

Consider a graph G = (V,E) that is a 1-sum of two graphs G, =(V1,E}) and G; =
(V2,Ey). Let {u} = Vi N V. Let Gy = (V},E1) (Gy = (V3,E3)) be the graphs obtained
from G, (G:) by adding the nodes wyi,w,, w3, ws and the edges {uw|, wywz, wpws,
wiws, wau} (see Fig. 2) Let C = (u,wy,wa, w3, wq). In what follows, we shall show
that a system of inequalities defining Pp(G) can be obtained whenever such a system
is known for Pp(Gy) and Pp(G>).

Lemmas 2.4 and 2.6 imply that the polytopes Pp(Gy), for k = 1,2, can be
assumed to be described by two minimal linear inequality systems of the following

U
G
w1 Wy 7.- 2 wy
> [
Wq w3 w3 Wy
G1 G2
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form:
PILAOEOEL AR 3.1)
E;k a(Nx(G) +x(wy) + x(wy)=of, ielf, (32)
;e(“k) +x(wi) + x(w2) 21, (3.3)
x(wi) +x(wz) + x(ws) =1, (34)
Po(Gh) § x(wz) +x(ws) + x(wa) = 1, (35)
x(u) + x(wa) + x(w3) 21, (3:6)
x(u) +x(wr) +x(w2) + x(w3) + x(wg) 22, (3.7
x())<1, jeW, (3.8)
x(j)=0, jel. (3.9)

The set /¥ consists of the nontrivial inequalities whose support does not intersect
C. The inequalities of I have a support that contains both w; and wj, and has empty
intersection with {wp,w3}.

A constraint of type (3.2) corresponding to i € I¥ will be denoted by [i,k]. Given
two inequalities [, 1] and [/,2], we call mixed inequality of [i,1] and [/,2], denoted
by (i, 1), the inequality given by

X a(NHN+ X @)+ (@) +af(w) = Dx@)>o +of — 1
j€riN{u} j€va\{u}

(3.10)
Note that any mixed inequalities have nonnegative coefficients. Moreover we have the
following.

Lemma 3.1. Mixed inequalities are valid for Pp(G).

Proof. Let S be a dominating set of G. We distinguish two cases.
Case 1: ucS. Let S = (SN W)U {w} and $; = (SN ) U {wy}. Tt is clear that
S) and S, are dominating sets of G; and Go, respectively. Thus, we have

> (N = af, (3.11)
JEN
> ai(Hx*()) = o (3.12)
JEV:

From (3.11) and (3.12) together with x(#)<1, it follows that (3.10) is satisfied by x5.
Case 2: ud/S. Thus, there exists a node v € N*(u) that belongs to S. W.lo.g., we
may suppose that v€ V. Let

S3=(SN W)U {wy, w3},
Sy =(SNH)U {w,ws}.
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Obviously, S; and S are dominating sets of (-?1 and G, respectively. Thus,

> q (NP =, (3.13)
JeVniu)

S @)z — L (3.14)
jevaniu}

By adding (3.13) and (3.14) we obtain that (3.10) is satisfied by x5. [

Definition 3.2. Let G = (V,E) be a graph. Suppose that Pr(G) is given by the system
{Ax=b, x>0} where 4 is an (m,n) matrix and b is an m-column vector. If ajxza
and a;xZaz are two valid constraints of Pp(G), then we say that a§x>cx2 dominates
alx>a if (i) there exists an m-row vector y=0 such that a; = y4, oy = yb (ie.
aEx;ocz is a linear combination of the constraints of the system Ax>5), and

(i) e <ar, w=o.

We then have the following.

Lemma 3.3. Let a"x>o be a valid inequality of Pp(Gy) k = 1,2 with a(w;) =
a(w3)=0 and a(wy) = a(ws). Then there exists a valid inequality a'x > & of Pp(Gy),
k=1,2, that dominates a*x > a with a(wy) = a(ws) = 0 and a(w,) = a(ws). Moreover,
if a(wi) # 0 # a(ws) (resp. a(wy) = a(ws) = 0) then @'x> & can be chosen as a
linear combination of the inequalities (3.1),(3.2) (resp. (3.1)) and the constraints
x()Y<1 foriel.

Proof. First notice that if aTx>« is a linear combination of the constraints of Pp(Gy),
then one can take § = a and & = «. Now assume that this is not the case and, for
instance, that a"x>a is valid for Pp(G;). Let 4;x>b; denote the system given by
inequalities (3.1) and (3.2). Then the linear program

min{a"x; x€Pp(G))} (3.15)

has an optimal solution xo such that a’xy>a. (Note that xo can be considered as the
incidence vector of some dominating set of G;.) By LP-duality there exists an optimal
dual solution (y,z,¢)>0, where y = (y(i), i €1} UI}) is associated with the constraints
(3.1) and (3.2), z = (z(j), j€ V) is associated with the constraints x(j)>1, j& ¥,
and t = (¢(wy),...,1(wy),2(C)) is associated with the constraints (3.3)—(3.7), such that

yA' — z(iy<a(i) foric P\C,

vA = 2(u) + twy) + t(wa) + H(C) <alu),

YA+ Hwy) + t(wa) + 1(C) — z(wr) <a(w), (3.16)
YA+ t(w3) + t(wa) + 1(C) — z(wa) <a(ws), (3.17)

t(w) + t(wy) + (w3 ) + H(C) — z(wr) <0, (3.18)
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t(wa) + H{wsy) + t(wa) + t(C) — z(w3) <0, (3.19)
yby = 3 2(i) + t(w1) + t(w2) + t(w3) + 6(ws) + 26(C) = a'xg >,
i€n

where 49 is the column of 4 associated with node i.
Since the dual program is to be maximized, by (3.18) and (3.19), it follows that

z{wy) = z(w3) = 0,
twy) = t(wa) = Hws3) = t(wy) = H(C) = 0.

Moreover, we should have z(w;) = z(ws) = 0. For this, first note that xo(w;) = 0 for
at least one node of {wi,ws}. In fact, if xo(w;) = xo{ws) = 1, then let %o & Rl such
that

xo(i) ifieln,
xo(iy=+«1 ifiE{Wl,W3},
0 if e {wy,wq}.
Clearly, %o induces a dominating set of G. Thus, Xy is a solution of (3.15). Since
a' %y < a¥xp, this contradicts the fact that xo is an optimal solution of (3.15).
Consequently, we may suppose, for instance, that xo(w;) = 0. By complementary
slackness, it then follows that z(w;)=0. Now if xo(w4)=0, then by the same argument
we have z(wy) = 0. If not, then consider again the solution X, defined above. Since
a(wy) = a(ws), we have that a"xo = a'xp. Thus, ¥y is an optimal solution for (3.15),
which yields z(ws) = 0.
Let

ai) = yAPz(i) for ien,

a(i) = yA(]i) for i€ {wi,ws},

3.20
a(wy) = d(ws) = 0, (3.20)
&= yb1 Y. z(i).
ien

Then @"x> & is the required constraint.

Now if a(w;) # 0 % a(ws), by (3.20) it is clear that @'x > & is a linear combination
of inequalities (3.1), (3.2) and the constraints x({)< 1, for i € V. If a(w;) = a(wy) = 0,
since z(w;) = z(wy) = 0, by (3.16) and (3.17) it follows that

yA? = yAM = 37 p(i)<0.

A
i€l

As y(i)>0 for i € I, one obtains that y(i) =0 for i € I}. By (3.20), it then follows
that @"x> & is a linear combination of inequalities (3.1) and the constraints x(i)<1,
foricly,. O
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Lemma 3.4. Let

>2 ' (D)x(@) + a' (wi)x(wy) + @' (wa)x(wa) Z a0, (3.21)
Ha
> @ ()x() + a*(w)x(wr) + @ (wa)x(wa) = 0 (3.22)
HS 2

be two valid inequalities of Pp(G,) and Pp(G,), respectively, such that a'(w ) =
a'(wy) = a*(wy) = a?(ws) = o # 0. Suppose that inequality (3.21) (resp. (3.22)) is a
linear combination of inequalities (3.1), (3.2) and the constraints x(i) <1, for i € V,
(resp. i€ V). Then the inequality

STod'(x()+ Y @)x() + (@' () + @ (u) — o)x(w)=a +or — o
ieVi\{u} i€Va\{u}

(3.23)

is redundant with respect to the system defining Pp(G).

Proof. Inequality (3.21) (resp. (3.22)) can be written as the sum of three inequal-
ities c'x>al, blx + b'(w)x(w)) + b'(ws)x(ws)=B' and d'x>8' (resp. c*x>u?,
B2x 4 bH(w)x(wy) + b2(ws)x(ws) = f* and d?x>6%) that are linear combinations of
the inequalities (3.1), (3.2) and constraints x(i)<1, i € 1] (resp. i € },), respectively.
Let y!' = (¥}, i € I)) (resp. y* = (¥?, i €1})) be the vector yielding the inequality
involving w; and ws. We have

Sy=Yy=o0

i€l JjEnR

Thus, there are || x |IZ| values x; >0 that are a solution to the transportation
constraints

inj:y]z- for j€]22,

iel)

S x; =y foriel).
jet}

Now for every (i,j) € I} x I} such that x;; # 0, mix the constrains [i, 1] and [},2]
and multiply the resulting constraint by x;;. Let @"x>4 be the sum of all the mixed
constraints thus obtained. We have

a(v) =Y ylal(v) if ve \{u},

i€l

av) =Y yia(v) if ve n\{u},
jen
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a(u) =Y ylaj(w)+ Y yiai(u) — o,
i€l Jen

s 1.1 22
i= Y yiol + ¥ yjo} ~o.
i€l j€s]

Now by summing the inequalities 4'x>d and cfx>of, and dfx =&, for k = 1,2, we
obtain inequality (3.23). O

Note that inequalities (3.1), for £ = 1,2, are valid for Pp(G) .

Let Py(G) be the polytope in RI”l given by the trivial inequalities together with
the inequalities (3.1) and (3.10). What we are going to show in the following is that
Po(G) is precisely the polytope Pp(G). To this end we need some lemmas.

Lemma 3.5. Neighbourhood inequalities are redundant with respect to the system
defining Po(G).

Proof. Let v& V. Suppose, w.l.o.g. that v€ V. We shall distinguish two cases.
Case 1: v # u. Then the inequality

3 ox(i)=1 (3.24)
iEN(v)
is valid for Pp(G;). By Lemma 3.3 it follows that (3.24) is dominated by a valid
inequality of Pp(G) that is a linear combination of inequalities (3.1) and x(i)<1, for
i€ V. Thus, (3.24) is redundant with respect to Py(G).
Case 2: v = u. Then the inequalities

> x(@) +x(wi) +x(wa) =1, (3.25)
i€ViNN(u)

> x(@) +x(wi) +x(ws) =1, (3.26)
i€V N N(u)

associated with the neighbourhood sets of u in G| and G-, respectively, are valid for
Po(G1) and Pp(G,). Thus, by Lemma (3.3) there is a valid inequality a' x>a! (resp.
a* x>a?) of Pp(G)) (resp. Po(Ga)), that dominates (3.25) (resp. (3.26)). Moreover,
this inequality is a linear combination of the inequalities (3.1), (3.2) and x(i)<1, i€}
(resp. i€ V,). Hence, we have

a'(w)) = a'(ws) <1,

a*(w) = a®(ws) <,

d*(iy<1 for all i € Vy NN(u), k=1,2,
d*(iy=0 for all i€ V;\N(u), k = 1,2,

al =1, =1,
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Let p' = 1 —a'(wi), p* = 1 — a®(wi). Note that p' >0 and p?>0. Let b x> ¥,
for k=1,2, be the inequality obtained by summing a* x>of and the inequalities
p*(w1)=0 and p*(ws)>0. Hence b*(w;) = b*(ws) = 1, for k = 1,2. By Lemma 3.4
the mixed inequality
> PO+ X BN+ (0 w) + b )~ Dx@) 2 f + ]
ievi\{u} jeva\{u}

is redundant with respect to the system defining Py(G). Now it is not hard to see that
this inequality dominates (3.24). O

Lemma 3.6, Let > ) a(i)x(i)+x(w1)+x(ws) 2o be a valid constraint for Pp(Gy).
Then the constraint

S a(i)x(@) + (a(u) — Dx(u)zoa — 1 (3.27)

ieVi\{u}

is valid for Pp(G).

Proof. Suppose k = 1. Let S be a dominating set of G. If u € S, then let §' =
(SN ¥)U{ws}. Since §’ € D(G)), we then have D e, a(i)xS/(i)zoc. This implies that
(3.27) is satisfied by x5. If u &S, then there exists a node w # u such that we N(»)NS.
If weV;\{u}, then let S' = (SN ¥;) U {wy,w3}. Thus, S’ € D(G,) and, consequently,
> ier, a(i)xS' (i) >« Which implies that (3.27) is satisfied by x5. If we ¥3\{u}, then let
82 = (SN¥ ) U{w,,ws}. Clearly, §2 € D(G)), and thus Zie,,‘\{u} a(i)xsz(i)+x(w1)2a.
It then follows that 3"y, ,y @(DX3() = Yy, g @Dx (1) 2 a—1, and hence (3.27)
is satisfied by x¥, which ends the proof of our lemma. [

Now we are ready to state the main result of this section.
Theorem 3.7. Py(G) = Pp(G).

Proof. By Lemma 3.5 every integral feasable solution of Py(G) is the incidence vector
of a dominating set of G. Since Pp(G) C Py(G), to prove the result, it suffices to show
that every extreme point of Py(G) is integral.

Suppose not, then let x be a fractional extreme point of Py(G). We shall examine
two cases.

Case 1: x(u) = 1. Let % € RI"|, for k = 1,2, be the solution given by

x(i) ifieV,
@)=<1 if i =ws,
0 if ie{w, w2, ws}.
We claim that ¥, € Pp(Gy) for k = 1,2. We shall show the claim for %, (the proof is

similar for ¥;). In fact, it is clear that x; satisfies all the constraints of Pp(G1) whose
support does not intersect {wi, wq}.
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Now consider a constraint

> al()x(J) + x(wr) + x(ws) = o (3.28)

JEN

of type (3.2). By Lemma 3.6, the constraint

> i (NA() + (@ (@) = Dx(u) 2o — 1
JEV\{u}
is valid for Pp(G). Since x(u) = 1, it then follows that constraint (3.28) is satisfied
by Xi.
Thus, x; EPD(G_l) and x; € Pp(G,). As a consequence, X; and X, can be written as

X = ‘ > Ay (3.29)

Y= 3 Wz (3.30)

points of Pp(G1) and Pp(G,), respectively, for i = 1,...,s, and j = 1,...,¢. At this
point we should remark that any constraint of Pp(G;) (resp. Pp(G,)) which is tight
for X1 (resp. ¥,) is at the same time tight for y;,, i = 1,...,s (resp. z;, j = 1,...,¢).
In particular, since X;(u#) = x2(u) = 1, we should have y;(¥) =1 and z;(u) = 1, for
i=1,....,5,and j=1,...,t.

Let x* € RI”l be the solution such that

w2 ifieh,
* (l)_{zl(i) if ie 1\ {u}).

We claim that every constraint of Py(G) that is tight for x is also tight for x*. (A con-
straint is tight for a solution x if it is satisfied by x as equation). In fact, by the
remark above, any constraint among (3.1), (3.8), (3.9) that is tight for x and thus for X
is also tight for x*. Now consider a mixed constraint (i) that is tight for x.
Since x(u) = 1, we have

S oa@xy+ Y ajz-(w)x(w) =al + ajz» —al(u) - ajz-(u).
veVi\{u} wer\{u}
By Lemma 3.6, we also have

S al)x(v)=a) - alw),

veVi\{u}

> af-(w)x(w);ocjz- — ajz-(u).
weVa\{u}
It then follows that the above inequalities are tight for x and thus for ¥; and X,
respectively, which implies that (i,j) is tight for x*. Consequently, any constraint
of Py(G) that is tight for x is also tight for x*. Since x # x*, this contradicts the
extremality of x.
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Case 2: x(u) < 1.

Case 2.1: None of the mixed inequalities is tight for x. Then any nontrivial inequality
of P(G) that is tight for x is among inequalities (3.1). Let ¥, €R" and X; € R** be
the solutions given by

x(j) if jen,
(jy=14q1 if je{w;,wl,
0 if je{wa, w3},
and
x(j) if jen,
B(jy=+<1 if je{w;,wsl,
0 if j€{wy,ws}.
It is easy to see that X; and X, belong to Pp(G;) and Pp(G,), respectively. Thus,
and X, can be written as in (3.29) and (3.30). Since x(u) < 1 and thus ¥,(#) <1 and

%(u) < 1, there must exist i€ {1,...,s} and jo€{1,....t} such that y; (1) =z (#) = 0.
Let xeR¥! be such that

o viu(j) if je,
5(j) = N (3.31)
Zju(j) lfje Vé\{u}

We have that every constraint that is tight for x is also tight for X. Since x # X, this
is a contradiction.

Case 2.2: One of the mixed constraints is tight for x. Let r€ I} and s€/7 be such
that the mixed inequality (r,s) is tight for x, that is

S oaUx()+ Y ak)xtk) + (af(u) + ai(u) — Dx(u) = o} + 2 — 1.

JEVI\{u} kev\{u}
(3.32)
Let ¢ = x(u). We claim that there is 0 <A< such that
S oa(x()=a — 1+ 4, (3.33)
jevt
S ak(k)x(k)y=o? — i +e. (3.34)
kev:?

In fact, first note that by Lemma 3.36 together with (3.32) it follows that (3.33) and
(3.34) hold for some 2=&e>0. Now if 2 > 1, then from (3.32) it follows that

S ak(k)x(k) + (wx(u) <o — 1+
ker:\{u}

Since x(u) = ¢, this contradicts Lemma 3.36.
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Now let %; € R and %, RI%| be the solutions given by

(x(j) ifjen,
1-4  if j=wi,
x(j)=41 if j=ws,

A—e if j=ws,

L0 if j=wy
and

(x(j) ifjeh,
A—¢ ifj=w,
(=<1 if j = ws,
1—-4 ifj=ws,

L0 if j = wa.

We claim that %; and X, belong to Pp(G,) and Pp(G>), respectively. We will show
that x; € Pp(G,), the proof for X, EPD(G2) is similar. It is clear that x; (X;) verifies
the constraints (3.1) and the trivial inequalities. Thus, consider an inequality of the
form

S @ (Nx() +x(wr) + x(ws) . (3.35)
jevi

We claim that, there exists A’ >4, such that

X aNBN = T a(Dx() =0 —1+7, (3.36)

jev jevt
Indeed, from Lemma 3.36, there is A’ >0 for which (3.36) holds. Now if 2’ < A, then
it is easy to see that by mixing inequality (3.35) and inequality [s,2], one gets an
inequality that is not satisfied by x, a contradiction. Thus, 4’ >, which implies that
inequality (3.35) is satisfied by X;. Consequently, i, EPD(G_l) and X, EPD(Gz) and
hence %; and X, can be written as in (3.29) and (3.30), respectively. Since 0<A<1
and ¢ < 1, we have ¢ =max(l — 4, 4 —¢) > 0. W.Lo.g, we may suppose that ¢ =
1 — 2 > 0. Hence, there must exist i € {1,...,s} such that y,(w;) = 1. Also, by
the same argument, there must exist jo € {1,...,¢} such that z;(w;) = 1. As y;, (z;,)
satisfies as equation the constraints of Pp(G1) (Pp(G,)) that are tight for %, (%), it
follows that

Yi(u) =zj(u) =0,
yio(w3):Zj0(w3): 1,

Yi(C) =2;,(C) = 2.
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Now let x€R!"! be the solution defined as in (3.31). We claim that every constraint

that is tight for x is at the same time tight for . In fact, if an inequality of type (3.1)

is tight for x and thus for ¥, (X;), then it is also tight for y; (z;,) and thus for X.
Now consider a mixed inequality (i,/) which is tight for x. that is

Soad(hHx)+ Y @k)x(k)+(al(u) +aj(u) — Dx(u) = of +2; — 1.

JeEV\{u} keva\{u}
(3.37)
We claim that the following hold:
Y oal()x()=a — 1+, (3.38)
jev!
S ai(k)x(k) =of — A +e. (3.39)
key:

In fact, by the claim above, there is A’ >4 such that (3.36) holds. Now if A’ > 4, by
(3.32), it follows that

ST ad(k)x(k) <o — A+ e (3.40)

kel

By summing (3.33) and (3.40) we obtain

S oax()+ Y ai(k)xk) + (afu) + aj(u) — 1)x(u)
jeViN{u} kev\{u}
= —1+i+a]—4 +¢

<o<l—+—oc?—1,

a contradiction. Thus, A’ = 4 and hence, (3.38) and (3.39) hold. In consequence, we
have that x; and X, satisfy constraints [, 1] and [/,2] as equation. Hence, inequalities
[i,1] and [/,2] are tight for y;, and z;, respectively. This implies that constraint (i, /)
is tight for %, which finishes the proof of our theorem. [

Theorem 3.37 permits us to give a system that characterizes the dominating set
polytope Pp(G) of a graph G that is a 1-sum of two graphs G and G, provided that
this characterization is known for Pp(G;) and Pp(G,). The next theorem shows that
this system is indeed minimal. For this let us first give a lemma.

Lemma 3.8. If' 4 is a dominating set whose incidence vector satisfies a constraini
d*x = of type (3.2) with equality, then |4 N {u,wi,wa}|<1.

Proof. If |4 N {u,w;,ws}| =2, then there is a node z € {u,wi,ws} such that 4’ =
(A\{z}) U {w2, w3} is a dominating set of G. But this implies that dixt < dfxt = o,
a contradiction. [J
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Theorem 3.9. Inequalities (3.10) define facets of Po(G).

Proof. We show that there exists a vector X € Pr(G) that satisfies (3.10) with equality
and all others with strict inequalities. For the inequality [7,1], i€l; (resp. [1,2], I€1?),
let S = {S1,...,8,} (resp. T = {7,...,T,}) be the set of dominating sets whose
incidence vectors satisfy it with equality. By Lemma 3.8 we have |S; N {u, w;,ws}| <1,
for i = 1,...,n (vesp. |T; N {u,wy,wa}| <1, for j = 1,...,m). Since (3.2) is different
from a trivial inequality, there must exist S;,, S;,S; €S such that u€S;, w; €S, and
ws €S;,. We claim that there is a set S;, €S with S;, N {u, w), w4} = 0. In fact, if this
is not the case, then for every set S; we would have |S; N {u, w;,ws}| = 1. But this
implies that (3.2) is a positive multiple of the equation x(u)+x(w;)+x(ws) = 1 which
is impossible. We can show along the same line that there are 1, 7,,1;,,T;, €T such
that u€ T, wy €T, wa €T;, and T, N {u,w,wa} = 0. As a consequence, for each
set S;, i = 1,...,n, one can find a set 7, such that Z; = (S; U T,)\{wy,...,ws} is a
dominating set of G whose incidence vector satisfies (3.10) with equality. Similarly, for
each set 7j, j = 1,...,m, one may find a set §;, such that Z,,; = (S;, UT)\{w1,...,wq}
is a dominating set of G whose incidence vector satisfies (3.10) with equality. Let
{Z;,...,Z,} be the set of all dominating sets thus obtained (» = n + m). Then

1
X = ;(le _|_...+er-)

is the required vector. [J

4. Applications to the cactus

The technique discussed in the previous section is useful for classes of graphs that
are decomposable by one-node cutsets. This is the case, for instance, of the cactus.

A Cactus is a graph that can be decomposed by one-node cutsets into cycles and
edges (see Fig. 3).

To describe the polytope Pp(G) when G is a cactus we should recursively decompose
the graph. For each one-node cutset we have to add a 5-cycle to each piece. We might
have to add more than one S-cycle for one-node cutset. Let I' (I'') be the class of
graphs G that may be obtained by means of 1-sums from a chordless cycle (an edge)
and a family of 5-cycles. To give a complete description of Pp(G) when G is a cactus,
one then has to know such a description for the classes I' and I".

If G is a graph of I'’, then it is not hard to see that Pp(G) is given by inequalities
(2.1)—(2.3). Thus by Theorem 3.37, it follows that when G is a tree, the polytope
Pp(G) is completely described by inequalities (2.1)—(2.3) together with the inequalities
of type (2.5) associated with the S-cycles. This can also be obtained from [16] as a
special case of a more general result related to strongly chordal graphs.

A strongly elimination ordering of a graph G = (V,E) is an ordering v),02,...,0,
of ¥ with the property that for each 7, j, k and [, if i < j, k <, vt,v; € N(vy), and
vy €N(v;), then v; € N(vy).
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Fig. 3. A cactus.

A graph is said to be strongly chordal if it admits a strong elimination ordering.
The class of strongly chordal graphs contains, for instance, the trees.

A 0—1 matrix is called balanced [7] if it does not contain as a submatrix an incidence
matrix of an odd cycle. (A cycle matrix is a square matrix such that the sum of
the coefficients in each row and each column equals two.) And it is called totally
balanced [23] if it does not contain as a submatrix an incidence matrix of any cycle
of lenght at least three.

In [19] Fulkerson et al. showed the following.

Theorem 4.1 (Fulkerson et al. [19]). If 4 is a balanced matrix, then the polytope
Ax=1, 0<x<l1

has 0-1 extreme points.

The neighbourhood matrix of a graph G = (V,E) is the (|V] x |V|)-matrix given
by the neighbourhood inequalities. In [16] Farber discussed the relationship between
strongly chordal graphs and totally balanced matrices. He showed that a graph s
strongly chordal if and only if its neighbourhood matrix is totally balanced. This to-
gether with Theorem 4.1 yield the following.

Theorem 4.2. If G =(V,E) is strongly chordal then Pp(G) is given by inequalities
(2.1)-(2.3).

If G is a cactus that contains cycles, it may be that the inequalities (2.1)—(2.3) do
not suffice to give a complete description of Pp(G). In fact, consider for instance the
cactus G = (V,E) shown in Fig, 4.
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To give a linear description for Pp(G), we need such a description for the polytopes
Pp(Hy) and Pp(H,) where H, and H, are the graphs shown in Fig. 5.

It can be shown that the minimal system describing Pp(H,) is given by the inequali-
ties (2.1)-(2.3) together with the inequalities of type (2.5) associated with the S-cycles
of the graph. And a minimal system describing Pp(H>) is given by these inequalities
together with the inequality

From Theorems 3.37 and 3.9 it follows that a minimal description of Pp(G) is given
by the following system of inequalities:

0<x(u)<l for all ueV,
x(N(u))=1 for uev\{2,16},
> x(u)=2,

u=2,..,6

E x(u)>2,

u=12,...,16

ST x(u)=3.

u=4,..,14
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