
DISCRETE 
MATHEMATICS 

Discrete Mathematics 1651166 (1997) 101-123 

One-node cutsets and the 

Mustapha Bouchakour, 

dominating set polytope 

Ali Ridha Mahjoub” 

Abstract 

In this paper we study a composition (decomposition) technique for the dominating set poly- 
tope in graphs which are decomposable by one-node cutsets. If G decomposes into GI and CY:, 
we show that the dominating set polytope of G can be described from two linear systems re- 
lated to (;I and Gz. This gives a way to characterize this polytope for classes of graphs that 
can be recursively decomposed. This also gives a procedure to describe facets for this polytopc. 
Application of these techniques is discussed for the class of the cactus. 
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1. Introduction 

Given a graph G = (V, E) and two subgraphs G1 = (C<, El ) and G2 = ( 6, Ez) of G, 
G is called a k-sum of G, and GI if V = V, U h, 1 fi n &/ = k, and the subgraph 
(V, f? b.E, I? 172) is complete. The set V, I1 V, is called a k-node cutset of G. 

In this paper we study a composition (decomposition) technique for the dominating 
set polytope in graphs which are decomposable by one-node cutsets. If G decomposes 
into G1 and Gz, then we derive a system of inequalities that defines the dominating set 
polytope from systems related to GI and GZ. As a consequence, we obtain a procedure 
to construct this polytope in graphs that can be recursively decomposed. This technique 
also permits us to describe facets of the dominating set polytope by composition of 
facets from the pieces. We discuss applications of this technique for the class of the 
cactus. 

Developing composition (decomposition) techniques for NP-hard combinatorial 
optimization problems has been a motivating subject for many researchers along the 
past decade [3,4,10, 14,18,22,26]. Indeed, for an NP-hard combinatorial optimization 
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problem, it is sometimes difficult to give a complete linear description of the associated 
polytope in some graph. However, if the graph decomposes into pieces (with respect 
to certain decomposition operations), it may be possible to give a complete description 
of the polytope from polytopes related to the pieces. This approach has been studied 
for different combinatorial optimization problems such as the max-cut problem [4,18], 
the stable set problem [3,10,26], the acyclic subdigraph problem [3]. Margot [26] 
studied a general composition (decomposition) approach for combinatorial optimization 
polytopes using projection. This permitted him to generalize known results related to 
independence systems. 

Given a graph G = (V, E), a node subset D c V of G is called dominating set if 
every node of V\D is adjacent to at least one node of D. Given a weight system W(U), 
u E V, associated with the nodes of G, the minimum dominating set problem (DSP) 
consists of finding a dominating set D of G such that C,,,w(u) is minimum. This 
problem is a well-known intractable problem. Berge [5,6] and Ore [27] are among the 
first who have discussed it. 

The DSP arises in many applications [6,11,12], in particular those involving the 
strategic placement of men or pieces on the nodes of a network. As example, consider 
a computer network in which one wishes to choose a smallest set of computers that 
are able to transmit messages to all the remaining computers [9,22]. Another example 
[27] is that of determining the minimum number of queen one wishes to place on 
a chess board so that every square of the board is dominated by at least one queen. 
(A square is dominated by a queen if it is placed in the same row, column or diagonal 
as the queen.) The DSP has also applications in matching theory [5]. 

The DSP has been extensively investigated from an algorithmic point of view [6,8, 
1 l-13,1 5-171. It is NP-hard in general. It has been shown to be polynomial in several 
classes of graphs such as the cactus [20] and the class of series-parallel graphs [21]. 
A complete survey of the algorithmic complexity of the DSP can be found in [13]. 

If G = (V,E) is a graph and S C V a node subset of G, then the O-l vector xs E [WY 
with xs(u) = 1 if UCS and x’(u) = 0 if not is called the incidence vector of S. The 
convex hull of the incidence vectors of all dominating sets of G, denoted by P&G), 
is called the dominating set polytope of G, i.e. 

PD(G) = conv{x’ E RV 1 S C V is a dominating set of G} 

Every optimal basic solution of the linear program 

min{wx; XEPD(G)) 

is the incidence vector of a minimum dominating set of G. 
Since the DSP is NP-hard, we cannot expect to find a complete characterization 

of &(G) for all graphs. It may however be that for certain classes of graphs G, the 
polytope P&G) can be described by means of a few classes of linear inequalities 
and that for these classes of inequalities, polynomial-time separation algorithm can be 
designed, so that the DSP on these graphs can be solved in polynomial time. 
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In contrast of many NP-hard combinatorial optimization problems, the polyhedral 
aspect of the DSP has not received much attention. To the best of our knowledge., 
the polytope P,(G) has been studied only in the class of threshold graphs [25] and 
the class of strongly chordal graphs [16] within the framework of totally balanced 
matrices. Our aim, in this paper, is indeed to study the DSP from a polyhedral point of 
view. 

The concept of domination is closely related to that of independence. An independm 
set of G = (V, E) is a node set S C V such that there is no edge with both endnodes 
in S. The problem of finding a minimum independent dominating set has also been 
widely studied [ 1,2, 16,221. Applications of this problem arise, in particular, in game 
theory [2]. 

The paper is organized as follows. In Section 2 we discuss basic facets and structural 
properties of P&G). In Section 3 we study compositions of polyhedra. In Section 4 
we discuss applications of these compositions for the cactus. 

The rest of this section is devoted to more definitions and notations. 
Let G = (V, E) be a graph. If e E E is an edge whose endnodes are u and c’, then 

we write e = UU. If UE V is a node that is not adjacent to any node of V\{u}, then 11 
is said to be isolated. 

A path P of G = (V,E) is a sequence of nodes ~‘0, ~‘1,. . . , uk, such that C,U,+I is an 
edge for i = 0,. . . , k - 1 and no node appears more than once in P. The nodes ~‘0 
and vk are the endnodes of P and we say that P links vo and nk. If not& E E, then the 
sequence vg, VI,. . . , uk, is also called a cycle. 

We use the standard notation of polyhedral theory. If a E R” - {0}, a0 E R then 
the inequality aTx <a0 is said to be valid with respect to a polyhedral P 2 KY’ if 
P c{x E R”’ 1 aTx 6 ao}. We say that a valid inequality aTx < a0 defines a j&e of P if 
0 # P f’ {aTx = ao} # P. In this case the polyhedron P n {aTx = ao} is called the face 
associated with aTx <a~. A valid inequality aTx < a0 defines a facet of P if it defines 
a face of P and if the dimension of P n {aTx = ao} is one less than the dimension 
of P. 

2. On the facets of P,(G) 

In this section we shall describe basic facets of P&G) and discuss some structural 
properties. 

2.1. Basic facets of PD( G) 

Let G = ( V, E) be a graph. If u E V is a node of G, the neighhourhood of u in G, 
denoted by N(u), is the node set consisting of u together with the nodes which are 
adjacent to U. If u E V, we let N*(u) = N(u)\(u). If ,SC V, b : V -+ R, b(S) will 
denote CUES b(u). 
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If SC V is a node set, then xs, the incidence vector of S, satisfies the following 
inequalities 

x(u)>0 for all uE V, (2.1) 

x(u) d 1 for all uE V, (2.2) 

x(N(u)) b 1 for all 2.4 E V. (2.3) 

Inequalities (2.1) and (2.2) will be called trivial inequalities and inequalities (2.3) will 
be called neighbourhood inequalities . 

In what follows, we shall study when the above inequalities define facets of &(G). 
But first let us state the following lemmas. The first one is easily seen to be true. 

Lemma 2.1. If G does not contain isolated nodes, then P&G) is fill dimensional. 

Thus, if G is without isolated nodes, a linear system Ax> b that defines Pn(G) is 
minimal if and only if there is a bijection between the inequalities of the system and 
the facets of Pn(G). Moreover, this system of inequalities is unique up to positive 
multiples. 

In the rest of the paper we consider graphs that do not have isolated nodes. 

Lemma 2.2. Every facet defining inequality of Pn(G) except those given by x(u)< 1, 
is of the form xi= ,,,.,, karxi>ao with ai>Ofor i = l,..., k. 

Proof. Suppose that ai, < 0 for some io E { 1, . , k}. Since c,=,, ,,,, k aixi 2 uo is different 
from xi0 < 1, there must exist a dominating set S such that io $S and ~i=l,,,,,k a,xS = a~. 

Let S’ = S U {io}. Obviously, S’ is a dominating set, but xiz,,,,,,k a$’ < a~. This is 
a contradiction. 0 

Theorem 2.3. (i) hequality (2.1) defines a facet of Pn(G) if and only if IN(v)l > 3 
for every v EN(u). 

(ii) Inequality (2.2) defines a facet of Pn(G). 

Proof. (i) Suppose IN(v)l d 2 for some node v of N(u). Since G does not have isolated 
nodes, there must exist a node u’, U’ # U, such that N(v) = {u,u’} where v is either 
equal to u or to u’. Thus, for every dominating set of G, the following holds: 

u$!s ===+ U’ES. 

But this implies that the face {x E Pn(G) 1 x(u) = 0) is contained in the face {x E 
Pn(G) Ix(u’) = 1). H ence, (2.1) cannot define a facet. 

Conversely, suppose that IN(v)1 23 for every v E N(u). Thus, the sets V\{u}, 
V\{u,v}, for all v E V\{u}, d e fi ne a family of I V ( dominating sets whose incidence 
vectors satisfy inequality (2.1) with equality and are affinely independent. It then fol- 
lows that (2.1) defines a facet. 
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(ii) Since G does not contain an isolated node, the sets V, V\(u), z’ # u, define 
a family of 1 VI dominating sets of G whose incidence vectors satisfy inequality (2.2) 
with equality and are affinely independent. 0 

Theorem 2.4. Inequality (2.3) dejines a facet of P&G) ifand only if the two jbllowing 
conditions are satisjed: 

(i) There is no node u’ such that N(u’) c N(u). 
(ii) For every node w E V\N(u) such that N*(w) C N*(u), there is at least ont 

node z E N*(w) such that every node y E N*(w)\(z) is adjacent either to z or tea 
u node of V\(N(u) U {w}). 

Proof. If there is a node U’ such that N(u’) c N(u), then the inequality (2.3) is implied 
by that associated with N(u’) together with inequalities (2.1). Thus, it does not define 
a facet. If (ii) does not hold for some node w E V\N(u), then for every dominating 
set S of G, the following holds: 

/SflN(u)l = 1 =+ WES. (2.4) 

Indeed, suppose that {S n N(u)} = {z}. If S rl N*(w) = 8, then clearly, w E S. If 
S n N*(w) = {z}, then, as (ii) is not satisfied for w, there must exist a node .V E 
N*(w)\(z) h’ h w IC IS not adjacent neither to z nor to a node of V\(N(u) U {w}). As 
a consequence, one should have w E S and thus (2.4) holds. Thus, every dominating 
set containing exactly one node of N(u) must also contain w. But this implies that the 
face {xEPD(G) Ix(N(u)) = 1) IS contained in the face {XE P&G) Ix(w) = 1). Hence, 
(2.3) is not facet defining. 

Now suppose that both (i) and (ii) hold. Let us denote inequality (2.3) by aTx3a(, 
and assume that there is a facet defining inequality bTx b bo such that 

{xEPD(G) laTx = ao} C_{XEPD(G) I bTx = ho}. 

We will show that there is a scalar p > 0 such that b = pa, which implies that (2.3 b 
defines a facet. First we show that b(u) = b(v) for all r~N(u)\{u}. For this considei 
the sets 

S, = V\N*(u), 

S,, = (V\N(u)) U {u}, for all oEN*(u), 

which define dominating sets of G. This is clear for Si. If S, is not a dominating set, 
then there is a node U’ EN(U)\(U) that is not adjacent to any node of (V\N(u)) U (c}. 
But this implies that N(u’) c N(u), a contradiction. 

Moreover, the incidence vectors of 5’1, S, satisfy constraint (2.3) with equality. Thus, 

0 = bxsl - bx” = b(u) - b(u). 

Hence, 

b(u) = b(u) = p, for all urn* and some p E R. 
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Next we show that b(w) = 0 for all w E V\N(u). First consider the case where N*(w)n 
(V\N(u)) # 8. Let 3 = V\(N*(u) U {w}). Clearly, 3 is a dominating set of G. Since 
aTxS = aa, it follows that bTx” = bo and thus 

0 = bxsl - bx’, 

= b(w), 

where Si is the dominating set introduced above. If N*(w) n (V\N(u)) = 0, then by 
(ii) there is a node ZEN*(W) such that for every node YEN*(W)\(Z), y is adjacent 
either to z or to a node of V\(N(u) U {w}). Let s = $\{w}, where S, is as defined 
above. It easy to see that 3 is a dominating set of G. Moreover, we have aTxS = aa. 
This implies that bTxS = bo and, as above, it fallows that b(w) = 0. 

Thus, altogether we have 

b(v) = 
{ 

p for all vEN(u), 
0 for all vE V\N(u). 

Since for every u E V, there is a dominating set S such that aTxS = a0 and v 9 
S, this implies that the facet defined by bTx 2 bo is not contained in a trivial facet 
{xEPD(G) IX(W) = 1) f or some w E V. Therefore, bTx B bo defines a nontrivial facet. 
By Lemma 2.2 it follows that p > 0 and our proof is complete. Cl 

Lemma 2.4. Let C,, be a chordless cycle on n nodes. Then the inequality 

(2.5) 

is valid for Po(C,,). Moreover, it defines a facet of Po(C,) if and only if IC,, 1 is not 
a multiple of 3. 

Proof. Easy. 0 

2.2. Structural properties 

In what follows we shall study some structural properties of the facets of PD(G). 
These propreties will be used later for the composition of polyhedra. 

Let uTx 3 aa be an inequality that defines a nontrivial facet of PD( G), i.e a constaint 
with at least two nonzero components. Hence by Lemma 2.2 we have a 2 0 and a0 > 0. 
We denote by V, the set 

v, = {VE v 1 a(u) > 0). 

The graph G, = (&,E( V,)) is called a facet-inducing graph. We denote by D(G) the 
set of dominating sets of G and by D, the set 

D, = {S c V 1 SED(G) and uTx = uo}. 

We have the following lemmas. 
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Lemma 2.5. The graph G, is connected. 

Proof. Suppose that G, is the union of two disjoint graphs G’ = (fl,E’) and GZ = 
( lf2, E2). Let al and a2 be the restrictions of a on VI and V2, respectively. 

Letting 

ah = min{aTxS\y’, SED(G)}, 

where i’ = {1,2}\(i), we obtain that a0 = aA + ai and aTx>,ab is valid for &(Gi), 
for i = 1,2. Thus, aTx >a0 can be obtained as the sum of two valid inequalities. But 
this contradicts the fact that aTx aa0 defines a facet. 0 

Lemma 2.6. Suppose that G is the l-sum of a graph Cl = (6, El) and a kycle C 
where C = {u, WI, ~2, ~3, wq} with u = C n VI (see Fig. 1). Suppose that aTx 3 a0 i.5 
direrent from a neighbourhood inequality and the inequality (2.5) associated with C. 
Then 

(1) a(wl) = a(w4)da(u), 

(2) a(w2) = a(w3) = 0. 

Proof. First we show that a(wl) = a(w4). For this we will show that a(wq)aa(wl). 
The statement then follows by symmetry. W.l.o.g., we may suppose that a(wl) > 0. 
Since aTx >a0 is different from the inequality x(C) 22, there must exist a dominating 
set S’ ED, with IS’ n Cl 33. We shall distinguish three cases. 

Case 1: WI,W~ @S’. Then {u,w2,ws}CS’. Since the sets S’\{WZ} and S’\{wsJ 
are both dominating sets of G, one should have a(wz) = a(wg) = 0. Now, since 
aTx 2 a is different from a trivial inequality, there must exist a dominating set S2 ED,, 
with w’ E S2. Let s2 = (S2\{w’}) u { ~2, WJ,WJ}. It is clear that s2 E D(G). Since 
4~2) = a(wx) = 0, it follows that a(w4)aa(wl). 

Case 2: w’,w~ES’. Suppose first that {wz,w~} nSi # 0. 
- If w2 E S’, then the set S’\{w’} E D(G). But this yields a(~‘) = 0, which is 

impossible. 
- If w3 E S’, then the set S1\{w4} and S’\{ws} are both dominating sets of G, 

and thus we get u(w3) = a(w4) = 0. Since aTx>ao is different from the neigh- 
bourhood inequality associated with wl, there is a dominating set S3 such that 
IS3 n {u,w’,w~}I~2. If {u,w’}CS3 (resp. {w’,w2}CS3, {u,w2}CS3) then the 

Fig. 1 
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set (s3\{w~})U (~3) (resp. (S3\{w~})U {wq}, S3\{w1}) is a dominating set of G. 
Since 4~3) = a(wq) = 0, in all cases we obtain that a(wi) = 0, a contradiction. 

Consequently, {wz, wg} tl S’ = 0 and thus we have {u, ~1, wd} C S’. Then the sets 

(S’\{wi}) U (~3) and (S’\{wd)) U (~3) are dominating sets of G. This yields 

dw3) a a(w1 1, a(w4). (2.6) 

Since aTx > a0 is different from the neighbourhood inequality associated with ~2, there 
is a dominating set S4 ED, with IS4 n {WI, ~2, ~3) 12 2. 
- If {wi,w2} c S4, then the set (S4\{wi}) U {w4} is a dominating set of G and thus 

a(w4)>a(w). 

- If either {WI, ws} & S4 or (~2, ~3) c S4, then the set (S4\{w3}) U (~4) is a domi- 
nating set of G and thus a(w4)>a(ws). By (2.6), it follows that a(w4) >a(wl). 

Case 3: I{wi, ~4) n S’I = 1. Consider first the case where wi ES’. If u ES’, since 
S’ n {~2,~3} # 8, it follows that S’\{wi} IS a dominating set of G. Hence a(wl) = 0, 

a contradiction. As a consequence, we have {wi,w2,wg} c S’. As S’\{WZ} belongs 
to D(G), we obtain that a(w2) = 0. Now consider the set S2 introduced above. Note 
that wi E S2. Since (S2\{wi}) U { w2,w4} is a dominating set, it then follows that 
a(w4) 2 a(wi ). If w4 ES’ we can show in a similar way that a(w4) 3 a(w1). 

In all cases we obtain that Ada. Since by symmetry we also have a(~,) 3 

a(w4), it then follows that a(wl) = a(w4). 
Next we show that 4~2) = a(~-,) = 0. For this we shall consider two cases. 
Case 1’: a(w1) = a(w4) = 0. Since aTx Zao is a nontrivial inequality, there are two 

dominating sets S and T of Da such that w2 E S and w3 E T. Let S’ = (S\{W~}) U 
{w,w4} and T’ = (T\(w)) U { ~1, ~4). Obviously, S’ and T’ are dominating sets 
of G, which yield a(w2)6a(wi) + a(w4) and a(ws)<a(wi) + 4~4). Since a(~~)>0 
and a(ws)>O, by our hypothesis, it follows that a(w2) = a(w3) = 0. 

Case 2’. a(wl) = a(w4) > 0. Consider the dominating set S’ of D, introduced above. 
Note that ISi n Cl > 3. First suppose that {w2, w3} nS1 = 0. Thus, S’ n C = (24, ~1, ~4). 
Let T’ = (S’\{wl}) U {WZ} and T2 = (S1\{w4}) U (~3). Clearly, both T’ and T2 are 
in D(G). Hence, 

a(w2) 2 a(w1>, 

a(w3)3a(w4). 
(2.7) 

We claim that there is i E {2,3} such that a(w1) = a(w4) = a(wi). In fact, consider 
again the dominating set S4 ED, introduced in Case 2, satisfying IS3 n {WI, ~2, w3)j 2 2. 

- If (w19w2) cs4, then (S4\{w2}) U (~4) E D(G), and thus u(w~)~u(w~). Since 
a(~,) = a(w4), by (2.7) we obtain that a(w1) = a(w4) = a(w2). 

- If (~1,~s) CS4, then (S4\{w3}) U (~4) E D(G) and we obtain similarly that 
a(w1) = a(w4) = a(w3). 

- If (W2,ws) ZS4, then the sets (S4\{w2})U{w~} and (S4\{w3})U (~4) are both in 
D(G). Thus, a(wi)>a(wz) and Ada, which implies by (2.7) that a(w1) = 

a(w4) = a(w2) = a(w3). 
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Hence, our claim is proved. Now suppose, for instance, that a(wr) = a(wl) = a(xld). 
Let 3’ = (S’\{W~,W~})U{W~}. It is clear that S’ED(G). Thus, a(~2)3a(~/i)+a(w;l). 
As u(w2) = a(~~), it follows that a(wl) = 0. But this is a contradiction. 

Now suppose that ({wZ,w3}nsi = 1. W.l.o.g., we may suppose S’ n (~2, wi} =IQ 
If bvl E S’ (resp. w4 E S’), since IS’ n Cl 2 3 and thus S’ n {u,w4} # 0 (resp. 5” rl 
{u,wl} # @), we have that S’\{wi} (resp. S’\{wd}) is a dominating set of G. BU 
this implies that a(~,) = 0 (resp. u(iv~) = 0), a contradiction. 

Consequently, (~2,~s) CS’. If u E S’, then the sets S’\{wl} and S’\{ tiji} are both 
in D(G), implying that a(w2) = ~(1~3) = 0. If not then we may, w.l.o.g., assume 
that WI ES’. Clearly, the sets S’\{wz} and (S’\{W~,MJ~})U {wd} belong to D(G). As 
u(M~~) = u(w4), it follows that u(w2) = a( w3) = 0. 

Finally, we show that a(wr ) (= u(wq)) <u(u). For this consider again the dominating 
set S* ED, introduced in Case 1, containing wt. Since the set (S*\{w, j ) U {u, MY} is 
also a dominating set and u(wz) = 0, it follows that u(Jv~)<u(u), and our proof is 
complete. 0 

3. Composition of polyhedra 

In this section we derive a system of inequalities that defines &(G) provided that 
G is the l-sum, of two graphs and such a system is known for two graphs related to 
the pieces. 

Consider a graph G = (V,E) that is a l-sum of two graphs G, = (&,E, ) and C& == 
(yZ,Ez). Let {u} = r{ n fi. Let Gi = (p,,El) (G2 =(~;,EI)) be the graphs obtained 
from G1 (G2) by adding the nodes wi,wz, w3,wd and the edges {uu’~,w~w~,w~w~, 
M’~w~,vv~u} (see Fig. 2) Let C = (u, wl,w2,ws, ~4). In what follows, we shall show 
that a system of inequalities defining &(G) can be obtained whenever such a system 
is known for PD((?,) and PD(~z). 

Lemmas 2.4 and 2.6 imply that the polytopes P&Gk), for k = 1,2, can be 
assumed to be described by two minimal linear inequality systems of the following 

Fig. 2 
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jEVk 

x(u) + x(w1 > + x(w2) a 1, 

x(w) +x(w2) +x(w3)> 1, 

-$w2) +x(w3) +x(w4)2 1, 

x(u)+x(w4)+x(w3)al, 

x(u) + x(w) + x(w2) + x(w3) + x(w4) 22, 

x(j)< 1, jE &, 

,x(j)>O, jE 4. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The set I,k consists of the nontrivial inequalities whose support does not intersect 
C. The inequalities of Zi have a support that contains both wi and ~4, and has empty 
intersection with (~2, ~3). 

A constraint of type (3.2) corresponding to i E Z,k will be denoted by [i,k]. Given 
two inequalities [i, l] and [1,2], we call mixed inequality of [i, I] and [Z,2], denoted 
by (i, I), the inequality given by 

Note that any mixed inequalities have nonnegative coefficients. Moreover we have the 
following. 

Lemma 3.1. Mixed inequalities are valid for P&G). 

Proof. Let S be a dominating set of G. We distinguish two cases. 
Case 1: u ES. Let S1 = (S I- V,) U (~2) and S2 = (S I- V,) U (~2). It is clear that 

Si and S2 are dominating sets of G1 and G2, respectively. Thus, we have 

c &j)xSl(j) > c& (3.11) 
iE& 

c u:(j)xsQ) 2 a:. (3.12) 
iEV2 

From (3.11) and (3.12) together with x(u)6 1, it follows that (3.10) is satisfied by x’. 
Case 2: US. Thus, there exists a node v E N*(u) that belongs to S. W.l.o.g., we 

may suppose that v E V,. Let 
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Obviously, Sj and Sd are dominating sets of Gt and G2, respectively. Thus, 

c a;(j)xsJ(j)& - 1. (3.14) 
iEv,\{ul 

By adding (3.13) and (3.14) we obtain that (3.10) is satisfied by x’. E 

Definition 3.2. Let G = (V,E) be a graph. Suppose that &I(G) is given by the system 
{Ax 3 6, x30) where A is an (m,n) matrix and b is an m-column vector. If aTx2 x1 
and a;x 3 CQ are two valid constraints of PD(G), then we say that a:x > CQ dominates 
afx>ccl if (i) there exists an m-row vector ~20 such that u2 = yA, ~2 = yb (i.e. 
azx 2 ~(2 is a linear combination of the constraints of the system Ax > b), and 

(ii) u2 <al, x2 3x1. 

We then have the following. 

Lemma 3.3. Let aTx>cc be a valid inequality of PD(G~) k = 1,2 with a(w2) = 
a(w3) =0 and a(~,) = a(wd). Then there exists a valid inequality cFTx> E of Pi, 
k = 1,2, that dominates aTx>cc with Z(wz) = Z(WJ) = 0 and a(wl) = a(w4). Moreover, 
if a(~,) # 0 # a(wd) (resp. a(~,) = u(wd) = 0) then ZTx> Cr can be chosen as u 
linear combination of the inequalities (3.1),(3.2) (resp. (3.1)) and the construints 
x(i)< 1 J‘or iE Vk. 

Proof. First notice that if aTx > CI is a linear combination of the constraints of Po( Gk ), 
then one can take 5 = u and E = a. Now assume that this is not the case and, for 
instance, that aTx>cc is valid for Pi. Let ,41x2 bl denote the system given by 
inequalities (3.1) and (3.2). Then the linear program 

min{aTx; xEPD(GI)} (3.15) 

has an optimal solution x0 such that aTxa > CC (Note that x0 can be considered as the 
incidence vector of some dominating set of G,.) By LP-duality there exists an optimal 
dual solution (y,z, t) 2 0, where y = (y(i), i E I{ U Zi ) is associated with the constraints 
(3.1) and (3.2) z = (z(j), j E VI) is associated with the constraints x(j) 3 1, j E & 
and t = (t(wl ), . . , t(wq), t(C)) is associated with the constraints (3.3)-(3.7) such that 

_yA\‘) - z(i)<a(i) for iE Vl\C, 

y&’ -z(u) + t(w1) + t(w4) + t(C)<a(u), 

Y4”’ ’ +~(wl)+~(WZ)+t(C)-Z(WI)~~(wl), 

Yf? ’ + t(w3) + t(w4) + t(C) - z(w4)Gdw4), 

t(w) + t(w2) + t(w3) + t(C) - z(wz)<O, 

(3.16) 

(3.17) 

(3.18) 
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t(w2) + f(W3) + t(w4) + t(C) - Z(WJ)<O, 

Ybl - c z(i) + t(w) + t(w2) + t(w3) + t(w4) + 
iE# 

where A(‘) is the column of A associated with node i. 
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(3.19) 

2t(C) = arxc 2 a, 

Since the dual program is to be maximized, by (3.18) and (3.19), it follows that 

z(w2) = z(w3) = 0, 

t(w1) = t(w2) = t(w3) = t(w4) = t(C) = 0. 

Moreover, we should have z(wi) = z(w4) = 0. For this, first note that xo(Wi) = 0 for 
at least one node of {wi,wq}. In fact, if xo(wi) =xo(w~) = 1, then let .ZOE[WI~I such 
that 

{ 

x0(i) if iE V,, 

X0(i) = 1 if iE{wl,wj}, 

0 if iE{w2,w4}. 

Clearly, Xc induces a dominating set of G. Thus, Xc is a solution of (3.15). Since 
aT& < uTxg, this contradicts the fact that x0 is an optimal solution of (3.15). 

Consequently, we may suppose, for instance, that xa(wi) = 0. By complementary 
slackness, it then follows that z(wi ) = 0. Now if ~4~4) = 0, then by the same argument 
we have z(w4) = 0. If not, then consider again the solution X0 defined above. Since 
a(wi) = a(w4), we have that aT&, = uTxa. Thus, X0 is an optimal solution for (3.15) 
which yields z(we) = 0. 

Let 

Z(i) = yA(,‘)z(i) for iE VI, 

Z(i) = yAy) for iE{wl,wd}, 

G(w2) = C(w3) = 0, 
(3.20) 

E = yzq c z(i). 
iEV1 

Then aTx 2 E is the required constraint. 
Now if u(wi) # 0 # u(w4), by (3.20) it is clear that ZTx> E is a linear combination 

of inequalities (3.1), (3.2) and the constraints x(i)< 1, for i E V,. If u(wi) = U(WJ) = 0, 
since z(wi) =z(w4) = 0, by (3.16) and (3.17) it follows that 

yAy’) = YAP) = c y(i)<O. 
itSI: 

As y(i) 30 for i E Ii, one obtains that y(i) = 0 for i E 1:. By (3.20), it then follows 
that ZTx 2 cl is a linear combination of inequalities (3.1) and the constraints x(i) < 1, 
foriEI$. ??
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Lemma 3.4. Let 

113 

;g, &)x(i) + al(wl)x(wl) + a1(w4)x(w4)&> (3.21) 

,g, a2(Mi) + a2(wi )x(wi ) + a2(w4)x(w4) > m2 (3.22) 

be two valid inequalities of Pb(Gl) and Pb(&), respectively, such that u’(w~) = 
u’(w4) = a2(w1) = a2(w4) = o # 0. Suppose that inequality (3.21) (resp. (3.22)) is u 
linear combination of inequalities (3. l), (3.2) and the constraints x(i)< 1, for i E VI 
(resp. i E v2). Then the inequality 

C a’(i)x(i>+ C &i)x(i) + (a’(u) + a2(u> - a)x(u)>x, + CC2 - CT 
Srl\ju) iCVZ\{U} 

(3.23) 

is redundant with respect to the system de$ninq Pb(G). 

Proof. Inequality (3.21) (resp. (3.22)) can be written as the sum of three inequal- 
ities c’x>ccl, b’x + b’(wl)x(wl) + b’(w~)x(w~)>fl’ and d’x36’ (resp. c2x>u2, 
b2x + b2(w1 )X(WI ) + b2(w4)x(w4) >f12 and d2x 3 S2) that are linear combinations of 
the inequalities (3.1), (3.2) and constraints x(i)< 1, in V, (resp. in J5), respectively. 
Let y’ = (y!, i E 1: ) (resp. y2 = (y,‘, i E Z,“)) be the vector yielding the inequality 
involving wr and ~4. We have 

c y; = c y; = cr. 
IEd jE$ 

Thus, there are 11: 1 x IZ,‘I values xij 20 that are a solution to the transportation 
constraints 

C Xi,i = J+ for j E 122, 
iE1, 

C x,, = y,’ for iEli. 
JEl; 

Now for every (i, j) E Zd x 1: such 
and multiply the resulting constraint 
constraints thus obtained. We have 

that xlj # 0, mix the constrains [i, l] and [j,2] 
by xii. Let GTx3 E be the sum of all the mixed 

E(C) = C y!a!(v) if L; E &\{u}, 
ir1; 

Z(v) = C yj’+v) if v E v2\{u}. 
jt1; 
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a”(u) = c y;a;<u> + c yi”a,2(u> - 0, 

iEli jEI,' 

di= cyl’a;+ ~yi’+s. 
ia; jEIi 

Now by summing the inequalities ZTx>d and ckx>ak, and dkx3dk, for k = 1,2, we 
obtain inequality (3.23). Cl 

Note that inequalities (3.1), for k = 1,2, are valid for PD( G) . 
Let Pa(G) be the polytope in RIVl given by the trivial inequalities together with 

the inequalities (3.1) and (3.10). What we are going to show in the following is that 
P,(G) is precisely the polytope PD(G). To this end we need some lemmas. 

Lemma 3.5. Neighbourhood inequalities are redundant with respect to the system 
defining Po( G). 

Proof. Let VE V. Suppose, w.1.o.g. that VE fi. We shall distinguish two cases. 
Case 1: v # u. Then the inequality 

E&(i) a 1 (3.24) 

is valid for Po(Gt ). By Lemma 3.3 it follows that (3.24) is dominated by a valid 
inequality of Po(Gt ) that is a linear combination of inequalities (3.1) and x(i) $1, for 
i E fi . Thus, (3.24) is redundant with respect to PO(G). 

Case 2: v = u. Then the inequalities 

C x(i) +X(W) +x(w4)2 1, (3.25) 
iEY, rlN(u) 

c x(i) +x(W) +x(w4)2 1, (3.26) 
iCV* llN(u) 

associated with the neighbourhood sets of u in Gt and Gz, respectively, are valid for 
PD(Gl) and Po(G2). Thus, by Lemma (3.3) there is a valid inequality alTxkal (resp. 
a2Tx>a2) of P&Gr) (resp. &(Gz)), that dominates (3.25) (resp. (3.26)). Moreover, 
this inequality is a linear combination of the inequalities (3.1), (3.2) and x(i) < 1, i E V, 
(resp. in F5). Hence, we have 

a’(wl) = aI( 1, 

a2(wl ) = a2(w4) d 1, 

ak(i)< 1 for all i E rk n N(u), k = 1,2, 

ak(i) = 0 for all iE vk\N(U), k = 1,2, 

a’a1, tX231. 
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Let p’ = 1 - ai( p2 = 1 - Us. Note that p’ 20 and p2>0. Let bk’~3fik, 
for k = 1,2, be the inequality obtained by summing akT, >, IX~ and the inequalities 
pk(wl)>O and #(wd)>O. Hence bk(wl) = bk(w4) = 1, for k = 1,2. By Lemma 3.4 
the mixed inequality 

c b’(i)+) -k c b2(j)x(j) + (b’(u) + P(U) - 1)X(U)>,/? + fi2 - 1 
iE VI \{u} jEVZ\lUl 

is redundant with respect to the system defining Pa(G). Now it is not hard to see that 
this inequality dominates (3.24). 0 

Lemma 3.6. Let CiEv, a(i)x(i) +x(w~)+x(w~)>(Y be a valid constraint for Pn(Gk). 
Then the constraint 

lEv)& 4iMi) + (a(u) - l)x(u)Ba - 1 (3.27) 

is valid for PD(G). 

Proof. Suppose k = 1. Let S be a dominating set of G. If u E S, then let S’ = 
(Sn V,)U{W~}. Since ~‘ED(G,), we then have CiEr, a(i)xS’(i)a,. This implies that 
(3.27) is satisfied by xs. If us;/s, then there exists a node w # u such that w~N(u)flS. 
If WE P’,\{u}, then let S’ = (S fl V,) U { ~2, ~3). Thus, S’ ED(G, ) and, consequently, 
Ci,c,, a(i)xs’(i) aa. Which implies that (3.27) is satisfied by xs. If w E Q\(u), then let 

s2 = (sn v, )U{ ~1,~s). Clearly, S2 E D(Gi), and thus CiEV,,lU) a(i)xs’(i)+x(w~)21x. 

It then follows that Ci,-V,,lU) a(i)xs(i) = ~jCy,j(ur a(i)$(i)>z-1, and hence (3.27) 

is satisfied by xs, which ends the proof of our lemma. 0 

Now we are ready to state the main result of this section. 

Theorem 3.7. PO(G) = &(G). 

Proof. By Lemma 3.5 every integral feasable solution of PO(G) is the incidence vector 
of a dominating set of G. Since P,(G) C PO(G), to prove the result, it suffices to show 
that every extreme point of PO(G) is integral. 

Suppose not, then let x be a fractional extreme point of PO(G). We shall examine 
two cases. 

Case 1: x(u) = 1. Let &El@“, for k = 1,2, be the solution given by 

i 

X(i) if iE I$, 

&(i) = 1 if i = ws, 

0 if iE{wl,w2,w4}. 

We claim that ik EPo(Gk) for k = l,2. We shall show the claim for ?i (the prOOf iS 

similar for 22). In fact, it is clear that Xl satisfies all the constraints of Po(Gi) whose 
support does not intersect { wi, ~4). 
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Now consider a constraint 

(3.28) 

of type (3.2). By Lemma 3.6, the constraint 

jtv%{U1 a!(j)x(j) + (a,‘(u) - I)X@)& - 1 

is valid for PD(G). Since x(u) = 1, it then follows that constraint (3.28) is satisfied 
by xi. 

Thus, Xi E P,(C$l) and X2 EPD(&). As a consequence, Xi and 22 can be written as 

(3.29) 

-f2 = 1 PjZj, (3.30) 
j=l,...,t 

where Ci=I,,..,s A = 1, cj=l,,,,,l Pj = 1, A 3% pj 30 and yi and zj are integer extreme 

points of P,(Cf& ) and P&G2), respectively, for i = 1,. . . , s, and j = 1,. . . , t. At this 
point we should remark that any constraint of PD(c?~) (resp. PD(&)) which is tight 
for Xi (resp. X2) is at the same time tight for yz, i = l,.. .,s (resp. zj, j = l,..., t). 
In particular, since Xi(u) = X2(u) = 1, we should have yi(U) = 1 and Zj(U) = 1, for 
i= l,..., s, and j= l,..., t. 

Let x* E RIVl be the solution such that 

x*(i) = 
{ 

y,(i) if iE 6, 

zl(i) if iE b\(u). 

We claim that every constraint of PO(G) that is tight for x is also tight for x*. (A con- 
straint is tight for a solution x if it is satisfied by x as equation). In fact, by the 
remark above, any constraint among (3.1), (3.8) (3.9) that is tight for x and thus for & 
is also tight for x*. Now consider a mixed constraint (i, j) that is tight for x. 
Since x(u) = 1, we have 

& ) afwxw + WC&) ’ 
a?( w)x( w) = u; + a; - u;(u) - uj2(u). 

’ u 

By Lemma 3.6, we also have 

c 
WEVZ\{U) 

up w)x( w) 3 cc; - uj2(u). 

It then follows that the above inequalities are tight for x and thus for Xl and X2, 
respectively, which implies that (i, j) is tight for x*. Consequently, any constraint 
of PO(G) that is tight for x is also tight for x*. Since x # x*, this contradicts the 
extremality of x. 
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Cuse 2: x(u) < 1. 
Cuse 2.1: None of the mixed inequalities is tight for x. Then any nontrivial inequality 

of&(G) that is tight for x is among inequalities (3.1). Let Xl E [WV’ and X2 E RF2 be 
the solutions given by 

X,(j) = 1 

( 

x(j) if jE 6, 

if j E {WI, wq}, 

0 if j E {we, ws}. 

and 

x(j) if j E V,, 

X*(j) = 1 

I 

if jE{wl,wq}> 

0 if jE{wz,wg}. 

It is easy to see that Xl and X2 belong to P,(Gt ) and P’( GZ ), respectively. Thus, _?l 
and X2 can be written as in (3.29) and (3.30). Since x(u) < 1 and thus X,(U) < 1 and 
X~(~)<1,theremustexisti~~{l,...,s}andj~~{1,...,t}suchthaty~,(u)=z,,(u)=0. 

Let XE [WI’1 be such that 

i 

,vi,(j> ifjE fi, 
X(j) = 

zj,j(j) if j E v2\{u). 
(3.31) 

We have that every constraint that is tight for x is also tight for X. Since x # X, this 
is a contradiction. 

Case 2.2: One of the mixed constraints is tight for x. Let Y ~1; and s E I; be such 
that the mixed inequality (Y,s) is tight for x, that is 

c &W) + c &)x(k) + (u;(u) + u;(u) - 1)x(u) = $! + Xt - 1. 
/tr”\{uI kEV’\{U} 

(3.32) 

Let E = x(u). We claim that there is 0 ~3, < 1 such that 

C uL( j)x( j) = U: - 1 + A, (3.33) 
ic I” 

c af(k)x(k) = cc; - i + E. (3.34) 
kc V’ 

In fact, first note that by Lemma 3.36 together with (3.32) it follows that (3.33) and 
(3.34) hold for some i 3830. Now if i. > 1, then from (3.32) it follows that 

c a,2(k)x(k) + u~(u)x(u) < c( - 1 + i:. 
kEI’:\{u} 

Since x(u) = c, this contradicts Lemma 3.36. 
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Now let Xi E Rlc;l and X2 E RIE1 be the solutions given by 

if jE 6, 

l-1 ifj=wi, 

if j = w3, 

if j = w2, 

ifj=w4 

and 

X2(j) = 1 1 
x(j) if jEI& 

A---E ifj=wi, 

if j = w3, 

l-1 if j=w2, 

0 if j = w4. 

We claim that Xi and .Fz belong to Po(k?i ) and Po(&), respectively. We will show 
that Xi ~Po(($i), the proof for .?z~Po(Gz) is similar. It is clear that _?i (X2) verifies 
the constraints (3.1) and the trivial inequalities. Thus, consider an inequality of the 
form 

c &j)x(j) + x(w1) + x(w4) > Ui’. 
jEV’ 

(3.35) 

We claim that, there exists ;1’ > I, such that 

(3.36) 

Indeed, from Lemma 3.36, there is 2’20 for which (3.36) holds. Now if ;1’ < 1, then 
it is easy to see that by mixing inequality (3.35) and inequality [s,2], one gets an 
inequality that is not satisfied by x, a contradiction. Thus, I’ > 1, which implies that 
inequality (3.35) is satisfied by Xi. Consequently, 2, EPD(G~) and X2 E&(&) and 
hence Xi and X2 can be written as in (3.29) and (3.30), respectively. Since O<A< 1 
and E < 1, we have d = max( 1 - 1, 2 - E) > 0. W.l.o.g, we may suppose that 0 = 
1 - 2 > 0. Hence, there must exist io E { 1,. . . , s} such that yiO(wi ) = 1. Also, by 
the same argument, there must exist jc E { 1,. . . , t} such that zj,(wz ) = 1. AS yio (zi, ) 
satisfies as equation the constraints of Po(ci) (Po(&)) that are tight for Xi (X2), it 
follows that 

.Yi,(U) =Zj~(u> = 03 

Yi,(W3)=Zj,(W3)= 1, 

yi,(C) =Zj,(C) = 2. 
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Now let X E [wl’i be the solution defined as in (3.3 1). We claim that every constraint 
that is tight for x is at the same time tight for X. In fact, if an inequality of type (3.1) 
is tight for x and thus for jlt (X2), then it is also tight for ylo (z,,) and thus for X. 

Now consider a mixed inequality (i, I) which is tight for X, that is 

We claim that the following hold: 

c af (j)x(j> = cc; - 1 + i”, (3.38) 
/EC” 

c &)x(k) = x; - A + E. 

kEl’- 

(3.39) 

In fact, by the claim above, there is A’> i such that (3.36) holds. Now if A’ > i, by 
(3.32), it follows that 

,z,: &qx(k) < a: - 1. + c. 

By summing (3.33) and (3.40) we obtain 

,tLCi,l &)x(j) + C &).X(k) + (a;(z4) + u:(u) - 1)x(u) 
kEV’\{u} 

(3.40) 

a contradiction. Thus, R’ = A and hence, (3.38) and (3.39) hold. In consequence, we 
have that Xl and X2 satisfy constraints [i, l] and [l,2] as equation. Hence, inequalities 
[i, I] and [I, 21 are tight for y10 and ziO, respectively. This implies that constraint (i, /) 
is tight for .X, which finishes the proof of our theorem. 0 

Theorem 3.37 permits us to give a system that characterizes the dominating set 
polytope P’(G) of a graph G that is a l-sum of two graphs Gt and G2, provided that 
this characterization is known for PD(G, ) and PD(~z). The next theorem shows that 
this system is indeed minimal. For this let us first give a lemma. 

Lemma 3.8. If A is a dominating set uhose incidence vector sutisjes (I constraim 
afx >c(, of type (3.2) with equality, then IA n {u, WI, 1~4}1 d 1. 

Proof. If IA n { u, ~1, w4}1>2, then there is a node z E {u, wt, ~4) such that A’ = 
(A\(z)) U {w2,w3} is a dominating set of G. But this implies that c$x’@ < a:# = ‘x,., 
a contradiction. 0 
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Theorem 3.9. Inequalities (3.10) define facets of&(G). 

Proof. We show that there exists a vector X EPD(G) that satisfies (3.10) with equality 
and all others with strict inequalities. For the inequality [i, 11, i EZ~ (resp. [1,2], 1~1;) 
let S = {S,,..., &} (resp. T = { Ti, , T,}) be the set of dominating sets whose 
incidence vectors satisfy it with equality. By Lemma 3.8 we have /Si n {u, ~1, wd} j < 1, 
for i = l,...,n (resp. 1q n { u,w,,w~}~ < 1, for j = 1,. .,m). Since (3.2) is different 
from a trivial inequality, there must exist Si, ,S,,,&, E 5’ such that u E Si,, wi E Si, and 
w4 E Si,. We claim that there is a set Si, ES with S, n {u, ~1, ~4) = 8. In fact, if this 
is not the case, then for every set Si we would have ISi n {u, ~1, wq} 1 = 1. But this 
implies that (3.2) is a positive multiple of the equation x(u)+x(w~)+x(w~) = 1 which 
is impossible. We can show along the same line that there are q,, q2, q3, q4 E T such 
that u E 7;, , w1 E T2, w4 E z3 and 7;, n {u, ~1, wd} = 0. As a consequence, for each 
set Si, i = l,..., n, one can find a set q, such that Zi = (& U T/z )\{w,, . . . , wq} is a 
dominating set of G whose incidence vector satisfies (3.10) with equality. Similarly, for 
each set 1;, j = I,..., m, one may find a set ,S’i, such that Z,+i = (Si, U Zj)\{wl,. . . , ~4) 
is a dominating set of G whose incidence vector satisfies (3.10) with equality. Let 
{Zl, , Zr} be the set of all dominating sets thus obtained (r = n + m). Then 

x= t(XZl _t...fxZ’.) 

is the required vector. 0 

4. Applications to the cactus 

The technique discussed in the previous section is useful for classes of graphs that 
are decomposable by one-node cutsets. This is the case, for instance, of the cactus. 

A Cactus is a graph that can be decomposed by one-node cutsets into cycles and 
edges (see Fig. 3). 

To describe the polytope &(G) when G is a cactus we should recursively decompose 
the graph. For each one-node cutset we have to add a 5-cycle to each piece. We might 
have to add more than one 5-cycle for one-node cutset. Let r (r’) be the class of 
graphs G that may be obtained by means of l-sums from a chordless cycle (an edge) 
and a family of S-cycles. To give a complete description of P,(G) when G is a cactus, 
one then has to know such a description for the classes r and r’. 

If G is a graph of r’, then it is not hard to see that &(G) is given by inequalities 
(2.1)-(2.3). Thus by Theorem 3.37, it follows that when G is a tree, the polytope 
PD(G) is completely described by inequalities (2.1)-(2.3) together with the inequalities 
of type (2.5) associated with the 5-cycles. This can also be obtained from [16] as a 
special case of a more general result related to strongly chordal graphs. 

A strongly elimination ordering of a graph G = (V, E) is an ordering vl, ~2,. . . , v, 
of V with the property that for each i, j, k and 1, if i < j, k < I, uk, vl E N(Ui), and 
rk E N(vj), then VI E N(vj). 
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Fig. 3. A cactus. 

A graph is said to be strongly chordal if it admits a strong elimination ordering. 
The class of strongly chordal graphs contains, for instance, the trees. 

A 0-l matrix is called balanced [7] if it does not contain as a submatrix an incidence 
matrix of an odd cycle. (A cycle matrix is a square matrix such that the sum of 
the coefficients in each row and each column equals two.) And it is called total<) 
balanced [23] if it does not contain as a submatrix an incidence matrix of any cycle 
of lenght at least three. 

In [19] Fulkerson et al. showed the following. 

Theorem 4.1 (Fulkerson et al. [19]). If A is a balanced matrix, then the polytopc 

Axal, Odxdl 

has O-l extreme points. 

The neighbourhood matrix of a graph G = (V, E) is the (1 V 1 x / V 1 )-matrix given 
by the neighbourhood inequalities. In [16] Farber discussed the relationship between 
strongly chordal graphs and totally balanced matrices. He showed that a graph IS 
strongly chordal if and only if its neighbourhood matrix is totally balanced. This to- 
gether with Theorem 4.1 yield the following. 

Theorem 4.2. If G = (V,E) is strongly chordal then PD(G) is given by inequalities 
(2.1))(2.3). 

If G is a cactus that contains cycles, it 
not suffice to give a complete description 
cactus G = (V, E) shown in Fig. 4. 

may be that the inequalities (2.1)--(2.3) do 
of Pa(G). In fact, consider for instance the 
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Fig. 4 

r;copi-c&-J 
Hl HZ 10 11 

Fig. 5. 

To give a linear description for PD(G), we need such a description for the polytopes 
PD(HI) and PD(Hz) where HI and HZ are the graphs shown in Fig. 5. 

It can be shown that the minimal system describing PI is given by the inequali- 
ties (2.1)-(2.3) together with the inequalities of type (2.5) associated with the 5-cycles 
of the graph. And a minimal system describing PD(Hz) is given by these inequalities 
together with the inequality 

.=,c ,ax@)= , 9 

From Theorems 3.37 and 3.9 it follows that a minimal description of PD(G) is given 
by the following system of inequalities: 

O<x(u)d 1 for all uE V, 

x(N(u)) 2 1 for u E V\{2,16}, 
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