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ABSTRACT 

AK, is a complete subgraph of size i. A K,-cover of a graph G(V, E) is a set 
C of K,-+ of G such that every K, in G contains at  least one Kr-, in C. 
c,(G) is the cardinality of a smallest @over of G. A &packing of G is a 
set of K,s such that no two K,s have i - 1 nodes in common. p,(G) is the 
cardinality of a largest &-packing of G. Let F,(G) denote the set of K,s in 
G and define c,(F) and p,(F) analogously for f F,(G). G is /(-perfect if 
V F  C F,(G), c,(F) = p,(F). The &-perfect graphs are precisely the bipar- 
tite graphs. We present a characterization of K,-perfect graphs that is 
similar to the Strong Perfect Graph Conjecture, and explore the relation- 
ships between &-perfect graphs and normal hypergraphs. Furthermore, 
if iA denotes the 0 - 1 matrix of G where the rows are the elements of 
F,_,(G) that belong to at least one K, and the columns are the elements 
of F,(G), then we show that iA is perfect iff G is a K,-perfect graph. We 
also characterize the /(-perfect graphs for which iA is balanced. 

1. INTRODUCTION 

Berge [ 11 has defined a graph G to be perfect if for every induced subgraph H 
of G the chromatic number of H equals the clique number of H .  The concept of 
perfectness has two requirements. The first is a pair of parameters such that the 
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value of one parameter is always greater than or equal to the value of the other 
parameter (the chromatic number of any graph is always greater than or equal 
to the clique number). The second requirement is a quantification over all sub- 
sets of a certain type (for example, induced subgraphs). In fact, Berge intro- 
duced a second notion of perfectness (later shown to be equivalent to the first 
by the perfect graph theorem 11 I ] )  using the parameters of clique covering 
number and stability number (definitions given below), and quantification over 
all induced subgraphs. Hell and Roberts [8] extended the notions of chromatic 
number and clique number to n-chromatic number and n-clique number, respec- 
tively. Using these parameters and quantification over all induced subgraphs 
they defined the concepts of n-perfectness and degree of perfectness (the 
smallest value of n such that the graph is n-perfect). Christen and Selkow [3] 
presented other types of perfectness based on pairs of parameters chosen from 
clique number. chromatic number, Grundy number, and achromatic number. 
Again quantification is over all induced subgraphs. For example, they showed 
that a graph is perfect with respect to the parameters of Grundy number and 
clique number iff it is perfect with respect to the parameters of Grundy number 
and chromatic number. These conditions are equivalent to the graph having no 
induced path on four vertices (i.e., a cograph [7]). 

One of the outstanding open problems in graph theory is Berge’s Strong Per- 
fect Graph Conjecture (SPGC), which states that a graph G is perfect iff neither 
G nor 

In this paper we continue our study of K,-covers of graphs (see [ 5 ] ) .  A K ,  is 
a complete graph on i vertices. A K,-cover of G is a set C of K,-,s such that 
every K, in G contains at least one K , - ,  in C. Note that the definition of K,- 
cover is equivalent to that of vertex cover. For a graph G , the K ,  -cover number 
c , ( G )  is the cardinality of a smallest K,-cover of G . In [5] we showed that the 
problem of determining whether c , ( G )  I k for a given graph G , and integers 
i 2 2 and k 2 I ,  is NP-complete. We also studied the complexity of the prob- 
lem on the restricted family of chordal graphs. Having seen that the general 
problem is NP-complete, we examined some families of facets of the K,-cover 
polytope and showed that various induced subgraphs of G define facets of this 

A K,-packing is a set of K,s such that no two K,s have i - 1 nodes in com- 
mon. Note that the definition of a K,-packing is equivalent to a matching. For a 
graph G ,  the K,-packing numberp,(G) is the cardinality of a largest Kl-packing 
of G . In [ 101 it was shown that the problem of determining whether p I  (G) 2 k 
for a given graph G , and integers i 2 3 and k 2 1, is NP-complete. The com- 
plexity status of a generalized notion of K,-packing was studied in 161. 

G} [i.e., F,(G) is the 
set of complete graphs on i vertices in GI. For any F C F,(G) we may define 
c , ( F )  and p , ( F )  in a similar manner to their definitions for graphs. Thus c , ( F )  
is the cardinality of a smallest set of K,-,s that covers all K,s in F and p , ( F )  is 
the cardinality of a largest set of K,s in F such that no two of these K,s have 
i - 1 nodes in common. In the next section we will show that, for any such F ,  

contains a hole (i.e., an odd chordless cycle) of size 2 5. 

PlYtOpe. 

Given a graph G ( V , E )  we let F,(G) denote {K,IK,  
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c , ( F )  2 p , ( F ) .  We now define a graph to be K,-perfect ( i  2 2) if for all 
F F, (G) ,  c , ( F )  = p , ( F ) .  Note that our definition of K,-perfect uses the 
parameters of K,-covering number and K,-packing number as well as quantifi- 
cation over all subsets of the set of K,s in a graph G . It is clear from the defini- 
tions that, for i = 2, the K,-perfect graphs are precisely the bipartite graphs. In 
section 2 we will prove a characterization of K ,  -perfect graphs that is very simi- 
lar to the SPGC. This characterization uses the Parthasarathy-Ravindra [ 131 
proof that (K, - e)-free graphs (also called diamond-free graphs) are valid for 
the SPGC (i.e., the SPGC is true for this family of graphs). In that section we 
use Berge’s second notion of perfectness using a(G) ,  the stability number of G 
(the size of the largest maximal induced set of nonadjacent vertices) and k ( G ) ,  
the clique cover number of G (the minimum number of maximal complete sub- 
graphs of G whose union is G).  Equivalently, k(G) may be defined to be the 
minimum number of vertex disjoint complete subgraphs of G whose union is 
G .  Throughout the paper n will denote IVI and K,,, will refer to the complete 
bipartite graph with cell sizes i a n d j .  C, refers to a cycle on i vertices. An anti- 
hole is the complement of a hole, i.e., a chordless cycle of size 25. 

In [ 111 LovAsz studied normal hypergraphs and proved that the two previ- 
ously mentioned definitions of perfect graphs are equivalent. In section 3 we 
study the relationship between K,-perfect graphs and the normality of a hyper- 
graph derived from the clique structure of the given graph. Relevant definitions 
are included in section 3. 

Given a graph G and integer i 2 2, we let iA denote the 0 - 1 incidence 
matrix where the rows represent K,-,s in G that belong to at least one K, and the 
columns represent the Kls .  Clearly each column has i ones and iA contains no 
zero rows. In the following 1 will denote a vector of all ones and a cycle matrix 
is a square 0 - 1 matrix where each row and column contain exactly 2 ones. A 
triangle matrix is a cycle matrix of size three. A 0 - 1 matrix A is perfect if 
the associated set packing polytope {x I Ax I 1, x 2 0} has all integral extreme 
points [ 121. A 0 - 1 matrix A is balanced if A does not contain any square sub- 
matrix of odd order with 2 ones per row and per column (see [2] and [9]). A 
matrix is totally unimodular iff every square submatrix has determinant 0, 1, or 
- 1. Any balanced matrix is perfect, and any 0 - 1 totally unimodular matrix 
is balanced. 

In section 4 we will show that the matrix iA is perfect iff G is K,-perfect. 
Furthermore, for i 2 3 we will characterize those K,-perfect graphs for which 
iA is balanced. 

2. CHARACTERIZATION OF &PERFECT GRAPHS 

We now show that the K,-perfect graphs have a characterization that is very 
similar to Berge’s Strong Perfect Graph Conjecture for perfect graphs. As men- 
tioned in section 1, the diamond-free [or ( K ,  - e)-free] graphs are valid for 
this conjecture [ 131. This result may be stated as follows: 
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Lemma 2.1 
odd hole. 

[W] .  A diamond-free graph is perfect iff it does not contain an 

In order to use this lemma to characterize the K,-perfect graphs we need to 
establish a relationship between the parameters of K, -perfectness, namely, c, (S) 
and p , ( S ) ,  and the parameters of perfectness, namely, a(G)  and k ( G ) .  First we 
note the following relationship between c,(S) and p , ( S ) .  

Lemma 2.2. 
i *P,(S). 

For any i 2 2 and S C F , ( G )  we have p , ( S )  5 c,(S) 5 

Proof. By definition, no two K,s in P ,  any largest packing of S ,  have a 
K,-, in common; therefore, each K, in P must be covered by a distinct K,-, and 
thus c,(S) 2 p , ( S ) .  

To show that c,(S) I i * p , ( S )  we first note that all of the K,s in S\P have at 
least i - 1 nodes in common with a K, E P ,  otherwise P is not a maximal 
packing. Therefore, the family of K,-,s contained in K,s in P is a K,-cover of 
S. Since there are i K,-,s in a K,,  the number of K,_,s in P equals i - p , ( S ) .  I 

Note that the upper bound on c,(S) may be strengthened to c,(S) I i * 

p ,* (S) ,  where p , * ( S )  is the cardinality of the smallest maximal packing. The 
proof is exactly the same. 

To establish the previously mentioned relationship between the parameters of 
K,-perfectness and the parameters of perfectness, we define the K,-intersection 
graph of G ,  denoted I , (G) ,  as follows: The nodes of I , ( G )  are the K,s in F,(G). 
Two nodes of I , (G)  are adjacent iff the corresponding K,s in G have i - 1 
nodes in common. If S G F,(G) we let f s ( G )  denote the corresponding induced 
subgraph of t , (G) .  For i = 2 it is clear that I,(G) is the line graph L(G).  An 
important result by Whitney [I41 states that if n > 4 then GI L(G,) = 
L(G,) (= means isomorphic). It is clear that if i 2 3 we have G I  G ,  3 
Z,(G,) = f , (G, ) ;  however, the converse does not hold. The next two lemmas 
follow immediately from the definitions. 

G ,  

Lemma 2.3. I , (G)  does not contain an induced K,.i+l.  

Lemma 2.4. If  S C F,(G) then a(IS(G)) = p , ( S ) .  

Lemma 2.4 leads us to hope that there is a relationship between c,(S) and 
k( f ; (G) ) .  Although a K,-cover of S does correspond to a clique cover of I f ( G )  
of the same size, the converse does not always hold, as illustrated by the graph 
in Figure 1, where i = 2, {(a, b,  c)} is a clique cover of f 2 ( G ) ,  yet cz(G) = 2. 

Although c,(S) # k(IS(G)) in general, we are able to characterize the I , (G)s  
where equality does hold. I , ( G )  is conformal if, for any clique of size h ,  h 2 2 
in f , ( G ) ,  the corresponding family of K,s in G have exactly i - 1 nodes in 
common. In this case we have equality between k ( I f ( G ) )  and c , (S)  for any 
S C F,(G), namely, 
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b 

c a C 

Lemma 2.5. l , ( G )  is conformal iff, for all S Fi(G), we have k ( l f ( G ) )  = 
Ci(S). 

We now characterize conformal K,-intersection graphs. 

Theorem 2.6. Z,(G) is conformal iff G does not contain a K,+,. 

Proof (3). Suppose there exists a K,+, in G ;  let S denote the set of i + 1 
K,s in this K, , , .  The graph IS(G) is complete; however, it is clear that in G the 
intersection of the K,s in S is the null set since every vertex in the K , , ,  is 
avoided by exactly one K, in S .  Thus l , ( G )  is not conformal. 

Suppose G does not contain a K,., and that Z,(G) is not conformal. 
Thus Z,(G) contains a complete subgraph If(G) but the corresponding K,s in G 
do not have a common set of i - 1 nodes. Clearly this can only happen if 
IS/ 2 3 .  Thus there are three K,s in S ,  A ,  B ,  C ,  such that IA fl B fl CI < 
i - 1. Assume that A n B and B r l  C represent different K, ,s. In G let node 
{ a }  = A\B and {b }  = B\A. Similarly, let node {c} = C\B. If c # a then 
( A  f l  C (  < i - 1, contradicting the existence of edge ( A ,  C )  in Z,(G). I f  
c = a ,  then we have a K , ,  , in G against assumption. 

(e). 

I 

We now establish the relationship between conformal intersection graphs and 
diamond-free graphs. 

Lemma 2.7. If I , (G) is conformal then it is diamond-free. 

Proof. Suppose l , (G)  has a diamond on the vertices A ,  B ,  C ,  D where the 
edge ( A , D )  is missing. Since l i ( G )  is conformal, the Kis A .  B ,  and C share a 
K,-] in G and the K,s  B ,  C, and D also share a different K,-, in G. Therefore B 
and C have two distinct Ki-,s in common, which is impossible. I 

We are now ready to characterize K,-perfect graphs: 

Theorem 2.8. 
odd hole of size 25. 

G is K,-perfect iff I i ( G )  is conformal and does not contain an 
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Proof (3). Suppose I , ( G )  is not conformal and let S be a complete sub- 
graph in I , ( G )  that violates conformality. Since a( f : (G) )  = 1 we know that 
p , ( S )  = 1 by Lemma 2.4. However, since the K,s in S do not have a K,. , in 
common, c,(S) 2 2, thereby contradicting the K,-perfectness of G. We now 
assume that I , (G)  is conformal and contains IS(G),  an odd hole of size 2h + 1, 
(h  2 2). For this odd hole k(If(G)) = h + 1, whereas a( f : (G))  = h.  Since 
I , (G)  is conformal, this implies that c , ( S )  > p , ( S )  (by Lemmas 2.4 and 2.5) ,  
again contradicting the K, -perfectness of G. 

Since f , ( G )  is conformal, it is diamond-free by Lemma 2.7. The 
nonexistence of an odd hole allows Lemma 2.1 to be applied and we conclude 
that I , ( G )  is perfect, and thus that a(ff(G)) = k(ff(G)) for all induced sub- 
graphs I f ( G )  of I , (G) .  Since I , ( G )  is conformal, we may use Lemmas 2.4 
and 2.5 to conclude that, for any set S C_ F,(G), c, (S)  = p , ( S ) ,  thus implying 
that G is K,-perfect. I 

(c). 

An equivalent form of Theorem 2.8 is the following: 

Theorem 2.9. 
whose K,-intersection graph contains an odd hole of size 25. 

G is K,-perfect iff G contains neither a K,,, nor a subgraph 

As an immediate corollary to Theorem 2.8 we have 

Corollary 2.10. G is Ki perfect iff Z,(G) is conformal and perfect. 

Theorems 2.8 and 2.9, when restricted to i = 2, state that a graph is K2- 
perfect (i.e., bipartite) iff G does not contain a triangle and L ( G )  does not 
contain an odd hole of size 25. Since L(G)  has such an odd hole iff G has an 
odd cycle of that size, our result is equivalent to the standard characterization 
of bipartite graphs. 

We now relate K,-perfectness to normality on hypergraphs. 

3. RELATIONSHIP OF K,-PERFECT GRAPHS WITH NORMAL 
HY PERGRAPHS 

We first introduce notation and results presented in [ 1 I].  A hypergraph H(V,  E )  
consists of a nonempty set V of vertices and a nonempty set E of hyperedges 
where each hyperedge is a nonempty subset of V. The degree of a vertex is the 
number of hyperedges containing it. A ( H )  denotes the maximum degree of a 
vertex in the hypergraph H .  H ‘ ( V , E ‘ )  is a pwtial hypergraph of H ( V , E )  iff 
E ’ C_ E .  x ’ ( H ) ,  the chromaric index of hypergraph H is the least number of 
colors needed to color the hyperedges of H such that hyperedges with the same 
color are disjoint. Obviously x ’ ( H )  2 A ( H )  for any hypergraph H .  A hyper- 
graph H is normal if, for every partial hypergraph H ‘  of H .  we have x ’ ( H ’ )  = 
A(H ’). Note that normality satisfies the criteria of perfectness discussed in sec- 
tion 1, where the parameters are chromatic index and maximum degree, and 
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quantification is over all partial hypergraphs. Given H(V,  E ) ,  T V is a vertex 
cover or transversal if every hyperedge in E contains at least one vertex in T. 
7 ( H )  is the cardinality of the smallest transversal of H .  We now define v ( H )  to 
be the maximum number of pairwise disjoint hyperedges of H .  Obviously 
r ( H )  2 u ( H )  for any hypergraph H .  A hypergraph is r -normal  if, for every 
partial hypergraph H '  of H ,  r ( H  ') = v ( H  '). Again 7-normality satisfies the 
criteria of perfectness discussed in section 1. A hypergraph satisfies the Helly 
proper ty  if any collection of hyperedges whose intersection is empty contains 
two disjQint hyperedges. As pointed out by Lovasz, normal and 7-normal hyper- 
graphs satisfy the Helly property. Finally, given a hypergraph H the edge  graph 
L ( H )  is the intersection graph of the hyperedges of H .  Thus the vertices of 
L ( H )  represent the hyperedges of H ;  two vertices are adjacent iff the corre- 
sponqing hyperedges intersect. 

Lpvasz [ 111 proved the following: 

Lemma 3.1. 
- 

(i) If hypergraph H has the Helly property, then H is 7-normal if L ( H )  is 

(ii) A hypergraph is .r-normal iff it is normal. 

We now relate the K,-perfectness of a graph G to the normality of a hyper- 
graph HI; defined on the clique structure of G as follows: The vertices of H f  
are the K,-,s in G ;  the hyperedges correspond to the K,s in G. From the defini- 
tions, Lemma 3.1 and the perfect graph theorem we have: 

perfect. 

Lemma 3.2. 

(1) c , ( G )  = 7Wf) 
(ii) p , ( G )  = v ( H Y )  

(iii) G is K,-perfect iff HY is ?--normal. 
(iv) I , (G)  = L(HY) 
(v) I , ( G )  is conformal iff HY satisfies the Helly property. 

(vi) H is normal iff H Y has the Helly property and L(H f )  is perfect. 

From Lemmas 3.1 and 3.2 we have another proof of Corollary 2.10, namely, 
that G is K,-perfect iff l , (G)  is conformal and perfect. Note that from Lemma 
3.2 we cannot conclude the stronger statements of Theorems 2.8 or 2.9. 

We now examine the matrix iA and show that iA is perfect iff G is Ki-perfect. 

4. iA AND &PERFECT GRAPHS 

We first introduce some definitions. Given a 0 - 1 matrix A ,  the intersection 
graph I(A) is constructed by associating one node to each column of A and join- 
ing two nodes by an edge if the corresponding columns have at least one 1 in 
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the same position (i.e., the columns are not orthogonal). A is a clique matrix if 
the undominated rows of A form the list of the representative vectors of all the 
cliques of f ( A ) .  In [4] Chvatal has shown the following: 

Lemma 4.1. A clique matrix A is perfect iff &A) is a perfect graph. 

We now study the matrix iA for a graph G and see immediately that f ( i A )  = 
f i ( G ) .  Furthermore, we have: 

Lemma 4.2. f , ( G )  is conformal iff iA is a clique matrix. 

Proof. We have the following identities: iA is a clique matrix W all 
cliques of I , ( G )  are represented by rows of iA @ and S F,(G) such that any 
two K,s in S have i - 1 points in common has the property that lflKjEsK:l = 
i - 1 @ I , (G)  is conformal. (This last identity uses Theorem 2.6.) I 

Theorem 4.3. iA is a clique matrix iff iA does not have a triangle submatrix. 

Proof. 

(3). 

From Lemma 4.2 and Theorem 2.6 we know that iA is a clique 
matrix iff G p K,,,. 

Assume that there is a triangle submatrix in i A .  It is straightforward 
to see that the three K , s  whose columns are in this triangle submatrix must form 
a K, , ,  in G. 

If a K,,, C G ,  then for any i 2 2 there must exist three distinct K,s 
in the K,, , such that any two of them have i - 1 points in common; however, 
the intersection of all three contains fewer than i - 1 points. Therefore, iA 
contains a triangle submatrix. I 

(0. 

We may now characterize &perfect graphs in terms of perfect matrices. 

Theorem 4.4. G is K,-perfect iff iA is a perfect matrix. 

Proof. Follows immediately from Corollary 2.10, Lemma 4 .1  and 
Lemma 4.2. I 

As a result of Theorem 4.4 we conclude that a graph G is Ki-perfect iff the 
polytope 

has all its vertices in 0 , l .  
As a summary, we have the following theorem: 

Theorem 4.5. Given a graph G, the following seven conditions are equivalent: 
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(i) G is K,-perfect. 
(ii) I , (G)  is conformal and does not contain an odd hole of size 2 5 .  

(iii) I , ( G )  is conformal and perfect. 
(iv) HY is normal. 
(v) iA is a perfect matrix. 

(vi) iA is a clique matrix and l , ( G )  is perfect. 
(vii) P(G)  has all its vertices in 0 , l .  

It is well known that for K,-perfect graphs (bipartite graphs) 2A (the vertex- 
edge incidence matrix) is totally unimodular. One might hope that the structure 
of L4 might allow a stronger statement than that made in Theorem 4.4, in par- 
ticular that G is K,-perfect iff iA is a balanced matrix (i.e., that, for matrices of 
the form iA ,  the perfection and balance properties are equivalent). However, 
already for i = 3 one may construct K,-perfect graphs for which 3A is not 
balanced. The smallest such graph is shown in Fig. 2 .  I , (G)  is presented in 
Fig. 3 and 3A is in Table 1 .  The first 13 rows and the 13 columns of 3A form 
a cycle submatrix. 

We have seen that G is K,-perfect iff iA is a perfect matrix and that for i 2 3 
there exist K,-perfect graphs for which iA is not balanced. We now characterize 
the K,-perfect graphs for which iA is balanced. Clearly, any K,-perfect graph 
with unbalanced iA must have a partial odd hole C in l , ( G )  where the edges of 

16 20 

FIGURE 2. G, &-perfect, 3A not balanced. 
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{ 11,12 ,2O!  

FIGURE 3. /3(G) 

Table 1. 3A. 

1 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2  
13 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
14 15 16 14 22 17 24 18 19 23 14 20 21 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 

1 1  
1 1  

1 1  
1 1  

1 1  
1 1  

1 1  
1 1  

1 1  
1 1  

1 1  
1 1  

1 1 
1 1 

1 
1 

1 
1 

1 

1 

1 

1 
1 

1 
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this hole correspond to distinct K,-,s in G. Since f , ( C )  is perfect the induced 
subgraph on the nodes in C must contain chords. Furthermore, f , ( G )  is con- 
formal and thus the edges of t, (G ) may be partitioned into edge-disjoint cliques 
such that each vertex of /,(G) belongs to at most i such cliques. In the follow- 
ing we will characterize the number, size, and structure of the complete sub- 
graphs formed by the chords of a smallest such partial odd hole. 

Throughout this discussion, given C a partial odd hole of size 2k + l(k 2 2) 
in f , ( G ) ,  we let {KP, . . . , K)?} denote the K,s of G corresponding to the vertices 
of C and let {Ky- , ,  . . . , Kf!,} denote the K, ,s of G where K:- ,  represents the 
edge (K:,K{&’) in t , ( G )  (addition modulo 2k). The K,-,s are all distinct, other- 
wise the submatrix of iA representing C would not be a cycle matrix. A sub- 
graph of t , (G)  that has the above properties together with at least one “chording” 
complete subgraph that corresponds to K,?, @ {KP- ,, . . . , K,?!,} is called a 
clique-chorded hole. We now have 

Lemma 4.6. 
odd clique-chorded hole. 

iA is balanced iff G is K,-perfect and t , ( G )  does not contain an 

Proof. This proof follows immediately from the definitions, Lemma 4.2, 
and Theorems 4.3 and 4.4. I 

The definition of clique-chorded hole allows the chording complete sub- 
graphs to have an unrestricted interaction. We will show in fact that this inter- 
action must be greatly constrained. To this end we let X, denote the set of 
chords of C in t , ( G )  and partition X, into I edge disjoint complete subgraphs, 
XI, 1 5 j 5 1. The vertices in each X, may be considered ordered using the 
ordering of the K,s in C. Each XI represents a Kl-, in G that does not belong to 
{Kl- , ,  . . . , K,?,}. In the following lemmas, C will refer to a minimum C, 
namely, any partial odd hole in t l ( G ) ,  G Kl-perfect, whose corresponding sub- 
matrix in iA is a cycle matrix and there does not exist any other such C‘  where 
IC‘I < ICI. From Theorem 4.3 we know that [C( > 3. 

n 

Lemma 4.7. For each XI E X, the number of vertices of C between consecu- 
tive vertices in X, is even. 

Proof. Since K;*_,, the K,-, E Fl-,(G), which representsx,, does not belong 
to {KP- ,, . . . , Kf! ,}, consecutive vertices in C cannot be vertices in XI. Now 
assume that there exist vertices KP, Kf ,  (a  < p) consecutive vertices in X, such 
that p - a - 1, the number of C vertices trapped between KP and K f  is odd. 
We immediately see that the submatrix of iA defined on {KP, K f ” ,  . . . , Kf} is a 
cycle matrix, which contradicts the minimality of C. I 

Corollary 4.8. Each X, of X ,  is of odd order. 

Proof. Follows immediately from Lemma 4.7 since 1CI is odd. I 
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We now examine the situation where X ,  contains at least two complete sub- 
graphs. An exterior edge of such a complete subgraph is the chord of C be- 
tween two consecutive vertices of the complete subgraph. Given two complete 
subgraphs X I  and X ,  where (KS, K f )  is a chord of XI, we say that this chord 
traps vertex K r  of X ,  if a 5 y I p. Note that X ,  and X ,  may have at most one 
vertex in common. We now state a lemma that determines the interaction be- 
tween two complete subgraphs X I ,  X ,  € X ,  . The proof is straightforward and 
will be left to the reader. 

Lemma 4.9. There cannot exist two complete subgraphs X , , X ,  € X ,  
where an exterior edge e of X I  traps an odd number of vertices of X ,  unless the 
single vertex trapped by e belongs to e .  

From this lemma we have the following corollary: 

Corollary 4.10. There cannot exist two disjoint Xis in X,. 

Proof. If XI and X ,  are two disjoint elements of X,, then from Lemma 4.9 
every exterior edge of XI must trap an even number of vertices of X,. This 
implies that X ,  has even cardinality, contradicting Corollary 4.8. I 

Thus each pair of X j s  in X ,  must have a common vertex. We now show that 
all such X j s  must have the same common vertex. 

Lemma 4.11. If /X,1 > 1, then there exists a single vertex that belongs to all 
xi E x,. 

Proof. Assume there exist three complete subgraphs in X,, XI, X,, X ,  such 
that X I  n X ,  = x ,  X ,  n X ,  = y ,  and X I  fl X ,  = z where x ,  y ,  and z are all 
different. In Zi(G) the Kis x ,  y ,  and z are the vertices of a triangle. Conformality 
of Zi(G) requires that these Kis all have a Ki-, in common, which contradicts the 
assumption that X I ,  X,, and X ,  are different. I 

We can now make a statement about the maximum number of elements in 
X,. All such elements have node X in common. 

Lemma 4.12. The maximum number of complete graphs in X ,  is i - 2. 

Proof. From Lemma 2.3,  there is no K l , i + l  in Zj(G). Since X is on C it 
already has two independent cycle edges emanating from it and thus since each 
X i  E X ,  adds another independent edge, the maximum is i - 2. I 

For i = 3, we thus see that there is exactly one element in X,. We now 
examine the case where i > 3 and show that a certain nesting property must 
hold among the complete graphs in X,. Given two X , , X ,  E X ,  we say that XI 
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is nested in X, ,  if the two exterior edges of X ,  from x trap no vertices of XI .  A 
set of complete graphs is called nested if, for any pair, one is nested in the 
other. We now show that the set X ,  is nested in this sense. 

Lemma 4.13. 
in XI.  

If X , , X ,  E X ,  then either X I  is nested in X ,  or X ,  is nested 

Proof. If not, then from Lemma 4.9 we see that both XI and X ,  have an 
even number of vertices, which contradicts Corollary 4.8. I 

We are now ready to characterize the &perfect graphs for which iA is bal- 
anced. A graph G(V, E )  is called an i-nested clique hole if E may be partitioned 
into a Hamiltonian cycle C and a set of at most i - 2 nested odd cliques such 
that the intersection of any two cliques is X E V. Furthermore, for any clique 
each exterior edge traps an even (>2) number of vertices of C and an even 
number (possibly zero) of vertices of any other clique. 

Theorem 4.14. The following conditions are equivalent: 

(i) iA is balanced. 
(ii) G is Ki-perfect and l i ( G )  does not contain an odd induced i-nested 

clique hole. 
(iii) G is Ki-perfect and l i (G)  does not contain an odd clique-chorded hole. 

Proof. 
(i) 3 (ii). 

(i) W (iii) is Lemma 4.6. 
This proof is the same as the (3) proof in Lemma 4.6, except 

we must show that the K , - , S  corresponding to the edges of the cycle are distinct 
and different from the K i - , s  corresponding to the interior cliques. This follows 
immediately from the definition of i-nested clique hole since each exterior edge 
of an interior clique must trap at least four vertices of C .  Thus if G is &-perfect 
and contains an odd induced i-nested clique hole, iA is not balanced. 

Assume iA is perfect but not balanced. Let C be a minimum size 
odd cycle matrix of iA. That the subgraph of f j ( G )  induced on the K , s  in C is 
an odd i-nested clique hole follows from the definition of i-nested clique hole 
and Lemmas 4.7, 4.9, 4.11, 4.12, 4.13, and Corollary 4.8. 

(i) (ii). 

I 

5. CONCLUDING REMARKS 

As stated in section 1, our definition of Ki-perfect uses quantification over all 
subsets F of Fi(G). We could of course have chosen the quantification to be 
over all induced subgraphs of G or all partial subgraphs of G. 

We now examine each of these two alternative definitions and show by coun- 
terexample that they are not equivalent to the definition of &perfect used in 
this paper. 
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FIGURE 4. G, 
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FIGURE 5. /&GI). 

We define a graph to be K,-partial perfect if VH < G, c,(H) = p,(H), and a 
graph to be K,-induced perject if QH 4 G, c,(H) = p,(H). Figure 4 shows G I ,  
a graph that is both K,-partial perfect and K,-induced perfect, but that is not 
K,-perfect. Its K ,  intersection graph is presented in Fig. 5. For this graph c3(GI) = 
p,(G,) = 11. It is easy to verify that all H < GI and all H a G, satisfy c,(H) = 
p,(H). The odd hole in 13(Gl) shows that G,  is not K,-perfect. 
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G, presented in Fig. 6 is a K,-induced perfect graph that is neither K,-perfect 
nor K,-partial perfect. 1,(G2) is drawn in Fig. 7. I t  is seen that p 3 ( G 2 )  = 
c,(G2) = 8 and that p 3 ( H )  = c , (H)VH Q Gz. Again the odd hole in 1,(C2) 
shows that G 2  is not K,-perfect. The removal of the bold edge yields a 
partial subgraph that is not K,-partial perfect. 

FIGURE 6. G2 

8 

2 - 1 

FIGURE 7. /3(G2). 
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The characterizations of the K,  -partial perfect and the Ki -induced perfect 
graphs are left as open problems. 
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