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We give a structural characterization of the inclusionwise minimal arc subsets whose
vertices induce a subgraph containing at least one directed cycle. These arc sets arise in
a linear formulation of a binary quadratic problem.
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1. Introduction

Let G = (V , E) be a digraph. A subset D ⊆ E of arcs is called a dicyclic set of G if the subgraph G[V (D)], induced by the set
V (D) ⊆ V composed of all the vertices incident with at least one arc from D, contains a dicycle (that is, a directed cycle). A
dicyclic set D of G is (inclusionwise) minimal if the subgraph of G induced by V (D′) is acyclic for any proper subset D′ of D.
In other words, a minimal dicyclic set D ⊆ E fulfills the following properties:
(α) G[V (D)] contains a dicycle,
(β) for any dicycle C of G[V (D)] and any arc e of D, there exists a vertex of C whose only incident arc in D is e.

Indeed property (β) prevents from having a dicycle C of G[V (D)] and an arc e of D such that V (D \ {e}) contains all the
vertices of C or equivalently, such that C still is a dicycle of G[V (D \ {e})]. The dicyclic sets of G clearly correspond to the
dependent set of the independence system (E, I = {D ⊆ E : G[V (D)] is acyclic}), and the minimal dicyclic sets of G are
nothing but the circuits of (E, I).

In this paper we give a complete characterization of theminimal dicyclic sets of a digraph, that is, we reveal the structure
of the digraphs induced by the vertex sets of minimal dicyclic sets. Despite the graph-theoretical nature of our result, its
motivation comes from a new linearization technique based on dicyclic sets for a binary quadratic program associated with
finding an induced subgraph of G maximizing an arc-weight function. The obtained binary linear program only considers
arc variables but may have an exponential number of dicycle-set based constraints whose separation problem is showed to
be polynomial-time solvable.

Related works have been done by Cornaz and Fonlupt [3] and Cornaz and Mahjoub [4] on the maximum biclique and
maximum bipartite induced subgraph problems, respectively. Although their approach is quite similar to the one presented
in this paper, the structure and characterization of the minimal dicyclic sets are much harder to achieve and require specific
development.

∗ Corresponding author.
E-mail addresses: denis.cornaz@dauphine.fr (D. Cornaz), kerivin@isima.fr (H. Kerivin), ridha.mahjoub@dauphine.fr (A.R. Mahjoub).

http://dx.doi.org/10.1016/j.dam.2017.02.011
0166-218X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2017.02.011
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2017.02.011&domain=pdf
mailto:denis.cornaz@dauphine.fr
mailto:kerivin@isima.fr
mailto:ridha.mahjoub@dauphine.fr
http://dx.doi.org/10.1016/j.dam.2017.02.011


34 D. Cornaz et al. / Discrete Applied Mathematics 240 (2018) 33–43

The paper is organized as follows. The next section illustrates the connection between the minimal dicyclic sets and
a novel linearization technique for the maximum arc-weight induced subgraph problem. In Section 3 we present some
structural properties of the dicyclic sets that are later used, in the following section, to completely characterize the minimal
dicycle sets.

We conclude this introduction with some definitions and notation, which have been mainly taken from [11]. We will
denote a graph (undirected or directed) by G = (V , E) where V is the vertex set and E is the edge set when G is undirected
or the arc set when G is directed. An edge with end vertices u and v will be denoted by uv, while an arc with head u and tail
v is represented as the ordered pair (u, v). For any S ⊆ V , let E[S] denote the set of edges (arcs) incident with the vertices
in S, and G[S] = (S, E[S]) the subgraph of G induced by S. If F ⊆ E, then the set V (F) is composed of all the vertices of G
incident with the edges (arcs) in F .

Throughout the paper, the graphs we consider are loopless. A path (dipaths) in G then is identified by its sequence of
distinct edges (arcs). If the first and last vertices of a path (dipath) P ⊆ E coincide, P then is called a cycle (dicycle) in G. A
subgraph of G is acyclic if it has no cycles (dicycles). An acyclic subgraph of an undirected graph will sometimes be referred
to as a forest.

Given a vector x ∈ RA where A is a set, x(B) will denote


a∈B xa for any subset B of A.

2. Motivation

In this section, we let G = (V , E) be a (directed or undirected) graph and c ∈ QE be a weight vector associated with the
edges (arcs) of G. We consider the problem of finding a vertex-induced acyclic subgraph of Gwith maximumweight, that is,
so that the sum of the weights of the selected edges (arcs) is maximum. This problem is NP-hard even for its maximum-size
version (i.e., with unit weights) as shown by the next proposition.

Proposition 1. The problem of determining a maximum-size vertex-induced acyclic subgraph of G is NP-hard.

Proof. If G is undirected, the reduction is from the NP-hard maximum stable set problem. Let G = (V , E) be an undirected
graph and letα(G) be themaximum size of a stable set ofG. Construct a graph G̃ fromG as follows: First each edge is replaced
by two parallel edges, and then, for each vertex v, a new vertex v′ and an edge vv′ are created. It can be easily seen that the
maximum-size of an induced forest of G̃ is equal to α(G).

The proof is similar if G is a digraph except that G̃ is a digraph obtained by replacing each edge of G by two opposite
arcs. �

Let C(G) be composed of all the cycles (dicycles) of G, that is,

C(G) := {C ⊆ E : C is a cycle (dicycle) of G}.

In general when considering vertex variables, this NP-hard problem can be recorded as the following quadratic binary
program

(QB)


max xTWx
s.t.


v∈V (C)

xv ≤ |C | − 1 for C ∈ C(G),

x ∈ {0, 1}V ,

where W is a V × V matrix defined for the undirected case by Wuv :=
1
2


uv∈E cuv , and for the directed one by Wuv :=

1
2


(u,v)∈E c(u,v). Observe that the continuous relaxation of this formulationmay be extremely weak. If G is a graph with two

vertices u and v and parallel edges (opposite arcs), then x̄u = x̄v =
1
2 is optimal for the continuous relaxation of (QB) and

the objective-function value is 1
4


e∈E ce, although the optimal value of (QB) is zero.

A classical approach for solving quadratic binary problems consists of introducing additional variables in order to
obtain equivalent reformulations as mixed-integer linear programs. The so-called level-1 of the Reformulation-Linearization
Technique (RLT1) of Sherali and Adams [1] appears to be one of the most standard linearization techniques and it provides
tighter linearizations than the classical ones of Glover andWoolsey [6] andGlover [5]. Other linearization approaches related
to RLT1 were considered by Lovász and Schrijver [10], Balas, Ceria, and Cornuéjols [2], and Lasserre [8], yet possibly maybe
for the one of Lasserre, they are not tighter than RLT1. (See Laurent [9] for a comparison of these linearizations.)

To apply RLT1 to our problem, we consider the vertex-cycle (vertex-dicycle) inequalities

x(V (C)) ≤ |C | − 1 for C ∈ C(G), (1)

together with the box constraints

0 ≤ xi ≤ 1 for i ∈ V . (2)

Let P(G) be the polytope of RV defined by (1) and (2). RLT1 linearization is obtained by first performing the reformulation
operation where each constraint of P(G) is multiplied by xi and by 1− xi (for each i ∈ V ), and then by linearizing xixj into yij
(for each unordered pair {i, j} of distinct vertices of V ) and x2i into xi (for each i ∈ V ).
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To illustrate this linearization technique, consider, for instance, the following (QB) problem

max x1x2 + x2x3 + x3x4 + x4x5 + x1x5
s.t. x1 + x2 + x3 + x4 + x5 ≤ 4,

0 ≤ xi ≤ 1 for 1 ≤ i ≤ 5,
x ∈ {0, 1}5.

(3)

Observe that problem (3) corresponds to problem (QB) associated with G being a cycle or dicycle on the five vertices
{1, . . . , 5} and c being the all-one vector of R5. It is immediate to see that the optimum of (3) is 3. The linear program
produced by RLT1 for (3) is

max y12 + y23 + y34 + y45 + y15
s.t. 3xi − 4 +


j∈{1,2,3,4,5}

xj ≤


j∈{1,2,3,4,5}\{i}

yij ≤ 3xi for 1 ≤ i ≤ 5,

xi + xj − 1 ≤ yij ≤ xi, xj for 1 ≤ i < j ≤ 5,
x ∈ [0, 1]5,
y ∈ [0, 1]10.

(4)

The last operation (i.e., linearizing x2i into xi) truly strengthens the formulation. In fact, the projection of RLTn (the formulation
obtained after repeating n times such reformulation-linearization operations to P(G), where n is the dimension of x) onto the
x-space is nothing but the convex hull of the integer points of P(G) [12]. The projection of RLTn onto the y-space therefore
is integer as well. Of course, it is not easy to obtain RLTn in general. The last inequalities of (4) are the result of the RLT1
linearization on the box inequalities (2), and are called the product constraints. These inequalities exactly are the ones
that Glover and Woolsey [6] added in their linearization approach for (QB) while replacing, in the objective function, each
cross-product xixj by variable yij.

Let VIAS(G) denote the convex hull of the incidence vectors of the edge (arc) set of the vertex-induced acyclic subgraphs
of G. The projection of (4) onto the y-space is not equal to VIAS(G). Indeed, it admits the feasible solution y1 ∈ R10 defined
as

y113 = y114 = y124 = y125 = y135 =
1
3
,

y1ij =
2
3

for all the other unordered pairs {i, j} of {1, . . . , 5},

that gives an objective-function value of 10
3 . An inequality of interest for this small example is in fact y12 + y23 + y34 + y45 +

y15 ≤ 3, since it cuts off point y1. It can be easily seen that this inequality belongs to the family of cycle (dicycle) inequalities,
that is, it is a valid inequality for VIAS(G) of the type

e∈C

ye ≤ |C | − 2 for C ∈ C(G). (5)

The validity of (5) follows directly from the fact that removing at least one vertex from a cycle (dicycle) implies to remove
at least two edges (arcs). Let P3(G) be composed of the triplets of edges (arcs) forming a path (undirected dipath) or a cycle
(undirected dicycle) of G, that is,

P3(G) := {(e, f , g) ∈ E3
: f adjacent with both e and g}.

Recall that an undirected dipath (dicycle, respectively) of a digraph G is a path (cycle, respectively) in the underlying
undirected graph of G [11]. Let Q 1(G) be the polytope of [0, 1]E defined by the cycle (dicycle) inequalities (5) and the
3-path inequalities

ye − yf + yg ≤ 1 for (e, f , g) ∈ P3(G). (6)

Inequalities (6) guarantee that any integral vector of Q 1(G) corresponds to the set of edges (arcs) of a vertex-induced acyclic
subgraph of G. Notice that inequality (6) yij − yjk + ykl ≤ 1 can be obtained by projecting down onto the y-space the
polyhedron defined by the inequalities xj + xk − yjk ≤ 1, yij ≤ xj, and ykl ≤ xk of the RLT1 linearization.

The maximum-weight vertex-induced acyclic subgraph problem can thus be formulated as the integer linear program

max{cTy : y ∈ Q 1(G) ∩ ZE
}.

Observe that if G contains two parallel edges (opposite arcs) e and f , inequalities (5) enforce that ye = yf = 0 for any vector
pf Q 1(G).

Proposition 2. Formulation Q 1(G) is stronger than the formulation obtained by the classical linearization of Glover and
Woolsey [6].
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Proof. Let y ∈ Q 1(G) and let x ∈ RV be defined as xi := max{ye : e ∈ δ(i)} for all i ∈ V , where δ(i) is composed of all the
edges (arcs) of G incident with vertex i. Since y satisfies the 3-path inequalities (6), (x, y) satisfies the product constraints.
We now prove that all the vertex-cycle inequalities (1) are satisfied by (x, y) when G is a digraph. (The proof is similar if G
is undirected.)

Let C be a dicycle of G. For any arc (i, j) in C , the product constraint is xi + xj − yij ≤ 1. By summing up all the product
constraints associated with the arcs of C and the vertex-cycle inequality y(C) ≤ |C | − 2, one gets 2x(V (C)) ≤ 2|C | − 2.
Consequently Q 1(G) is contained in the projection onto the y-space of Glover and Woolsey’s formulation. �

The number of inequalities (5) may be exponential in the size of the graph. One hence must focus on the complexity
of the separation problem for this family of inequalities. The separation problem for a family of inequalities I is defined as
follows: Given a vector y ∈ RE , find an inequality in I violated by y or prove that none exists. In the next proposition, we
state that the separation problem for (5) is polynomial-time solvable, which implies that so is optimizing a linear function
over Q 1(G) [7].

Proposition 3. Let y ∈ [0, 1]E . The separation problem for inequalities (5) can be solved in polynomial time.

Proof. Any inequality y(C) ≤ |C | − 2 can be rewritten as


e∈C (1 − ye) ≥ 2. The separation problem for inequalities (5)
then is equivalent to finding a minimum-cost cycle (dicycle) in G with respect to the edge (arc) cost vector 1 − y. (1 is the
all-one vector in RE .) Since y ∈ [0, 1]E , this problem can be solved in polynomial time, since it reduces, for each edge (arc)
of G, to computing a shortest path between its extremities (from its head to its tail). �

Let us now look at another, but close, example. Consider the following (QB) problem

max x1x6 + x2x3 + x4x5
s.t. x1 + x2 + x3 + x4 + x5 ≤ 4,

0 ≤ xi ≤ 1 for 1 ≤ i ≤ 6,
x ∈ {0, 1}6.

(7)

Observe that we have simply added a unit-weight pending edge e = 16 (arc, nomatter its orientation is), and dropped some
of the weights to zero. It is not hard to see that the optimum of (7) now equals 2. The linear program produced by RLT1 for
the continuous relaxation of (7) is

max y16 + y23 + y45
s.t. 3xi − 4 +


j∈{1,2,3,4,5}

xj ≤


j∈{1,2,3,4,5}\{i}

yij ≤ 3xi for 1 ≤ i ≤ 5,

4x6 − 4 +


j∈{1,2,3,4,5}

xj ≤


j∈{1,2,3,4,5}

y6j ≤ 4x6,

xi + xj − 1 ≤ yij ≤ xi, xj for 1 ≤ i < j ≤ 6,
x ∈ [0, 1]6,

y ∈ [0, 1]15.

(8)

The first and the third families of constraints in (8) are already present in (4). Again the projection of (8) onto the y-space is
not equal to VIAS(G). Indeed, it admits the following feasible solution y2 ∈ R15 defined as

y224 = y225 = y234 = y235 =
1
3
,

y2ij =
2
3

for all the other unordered pairs {i, j} of {1, . . . , 6},

that gives an objective-function value of 7
3 . The interesting inequality for this second small example is in fact y16+y23+y45 ≤

2, since it cuts off point y2. Let D(G) be composed of all the sets D of edges (arcs) of E such that G[V (D)] contains a cycle
(dicycle), that is,

D(G) := {D ⊆ E : G[V (D)] is not acyclic}.
The elements in D(G) are the dicyclic sets of digraph G as introduced in Section 1, and similarly are called the cyclic set of
G if G is undirected. It can be easily seen that this inequality belongs to the family of cyclic-set (dicyclic-set) inequalities, that
is, it is a valid inequality for VIAS(G) of the type

y(D) ≤ |D| − 1 for D ∈ D(G). (9)
The validity of (9) is straightforward from the definition of the cyclic (dicyclic) sets of G and, of course, (9) can be restricted
to only the (inclusionwise) minimal elements of D(G).

Let Q 2(G) be the polytope [0, 1]E defined by the cyclic-set (dicyclic-set) inequalities (9) and the 3-path inequalities (6).
The maximum-weight vertex-induced acyclic subgraph problem can thus be formulated as the integer linear program

max{cTy : y ∈ Q 2(G) ∩ ZE
}.

Observe again that if y belongs to Q 2(G), inequalities (9) then imply that ye = yf = 0 for any parallel edges (opposite arcs)
e and f of G.
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Fig. 1. A graph induced by a minimal subset of edges D so that G[V (D)] has a cycle.

Proposition 4. Formulation Q 2(G) is stronger than the formulation obtained by the classical linearization of Glover and
Woolsey [6].

Proof. We proceed as in the proof of Proposition 2, that is, we consider a vector y ∈ Q 2(G) and define a vector x ∈ RV as
xi := max{ye : e ∈ δ(i)} for all i ∈ V . We only consider the case of an undirected graph G, the digraph case being similar.

Let C be any cycle of G. Let F be the set of arcs e of E such that ye = xv for some vertex v of C . Since G[V (F)] contains cycle
C , there must exist a minimal subset D of F so that G[V (D)] contains cycle C . For any arc e in D, the subgraph G[V (D \ {e})]
is acyclic, and there thus exists a vertex of C , say φ(e), that is not in G[V (D \ {e})]. Since e must be the only arc of D
incident with φ(e), the mapping φ : D ↔ Vφ then is one-to-one between some subset Vφ of V (C) and D. Consequently
|V (C) \ Vφ | = |C | − |D|, and therefore

x̄(V (C)) = x̄(Vφ) + x̄(V (C) \ Vφ) = ȳ(D) + x̄(V (C) \ Vφ) ≤ ȳ(D) + |C | − |D| ≤ |C | − 1,

where the last inequality follows from ȳ(D) ≤ |D| − 1. So Q 2(G) is contained in the projection onto the y-space of Glover
and Woolsey’s formulation. �

As for the cycle (dicycle) inequalities (5), the number of cyclic-set (dicyclic-set) inequalities (9) may be exponential in
the size of G. Later on, we prove that the separation problem for inequalities (9) is polynomial-time solvable by adapting
the separation algorithm of [4] that is based on the characterization of the minimal cyclic (dicyclic) sets of G. So before
presenting this separation algorithm, Theorem 1 below gives a characterization of the minimal cyclic sets of an undirected
graph G (having at least three edges, otherwise it would be easy to obtain a characterization by enumeration). In essence,
Theorem 1 states that the minimal cyclic sets of an undirected graph are as in Fig. 1, where the solid lines correspond to the
edges of a cyclic set D and the dashed lines to the edges of G[V (D)] not in D.

Theorem 1. Let G = (V , E) be an undirected simple graph and let be an edge subset D ⊆ E with |D| ≥ 3. Then D is an
(inclusionwise) minimal cyclic set of G if and only if
(i) every component of the partial subgraph (V ,D) is a path of length at most 2,
and the induced subgraph G[V (D)] contains a cycle C such that
(ii) every edge in D \ C has one vertex incident with two edges in C \ D and the other vertex is of degree one in G[V (D)],
(iii) every edge of G[V (D)] which is not in D must be an edge of the cycle C.

Proof. Sufficiency: By (ii)–(iii), cycle C is the only cycle of G[V (D)]. By (i)–(ii), every edge e of D has at least one vertex v in
C which is incident to no other edge in D, and hence v does not belong to G[V (D \ {e})]. It follows that G[V (D′)] is a forest
for every proper subset D′

⊂ D.
Necessity: Let D = {e1, e2, . . . , ek} with k ≥ 3 so that G[V (D)] has a cycle and G[V (D′)] is a forest for every proper subset
D′

⊂ D. It suffices to prove that G[V (D)] has exactly one cycle, since the necessity of (i)–(iii) then comes straightforwardly
from the minimality of D.

In order to prove that G[V (D)] has exactly one cycle, we prove that, given an edge of D and two cycles of G[V (D)], this
edge must be a chord of at least one of the two cycles. This would lead indeed to a contradiction because, if an edge e ∈ D
were a chord of a cycle C , then C could be split into two cycles C1, C2 the intersection of which could be {e}; so e is a chord
of neither C1 nor C2.

Suppose that G[V (D)] contains at least two cycles C and C ′. We know that for i = 1, 2, . . . , k, there exists two (not
necessarily distinct) vertices vi and v′

i of ei such that vi belongs to C and v′

i to C ′. Moreover if i ≠ j then vi ≠ vj and v′

i ≠ v′

j .
Suppose that e3 is a chord neither of C nor of C ′. There then is a path P of C linking v1 and v2 which does not contain v3, and
a path P ′ of C ′ linking v′

1 and v′

2 which does not contain v′

3. However this is impossible since the vertices spanned by P and
P ′ form a cycle which contains no vertex of e3. �

The characterization of the minimal dicyclic sets of a digraph turns out to be more challenging, and then is postponed to
the next two sections. At this point in the motivation, let us say that Theorem 2 of Section 4 holds true. Roughly speaking, a
minimal dicyclic set D of a digraph resembles those in Figs. 2 and 3 of Section 3. We now are set to prove that the separation
problem for the cyclic-set (dicyclic-set) inequalities (9) can be solved in polynomial-time solvable.
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Fig. 2. Digraph induced by a minimal dicyclic set with two vertex-disjoint dicycles.

Fig. 3. Digraph induced by a minimal dicyclic set.

Proposition 5. Let y ∈ [0, 1]E . The separation problem for inequalities (9) can be solved in polynomial time.

Proof. Let z ∈ QE
+
. With any vertex v of V , we associate a weight wv := min{ze : e ∈ δ(v)}. Given a subset C of E and a

subset C ′ of C , a vertex of V (C) is saturated if it belongs to V (C ′), otherwise it is unsaturated. The weight

w(C) := min
C ′⊆C

z(C ′) +


v∈V (C)

v unsaturated

wv

of C is the minimum over all C ′
⊆ C of the z-value of C ′ plus the weight of the unsaturated vertices of V (C). A minimum-

weight cycle (dicycle) of (G, z) is a cycle (dicycle) C minimizing w(C).
Observe that a vector y ∈ [0, 1]E satisfies the inequalities (9) if and only if the vector z = 1 − y satisfies

z(D) ≥ 1 for D ∈ D(G),
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that is,D is a cyclic (dicyclic) set ofG. Hence, separating the constraints (9) amounts to find a cyclic (dicyclic) setDminimizing
its value z(D). If G is undirected, it is straightforward from Theorem 1 that the minimum z-value of a cyclic set D is equal
to the minimum weight w(C) of a cycle C of G. If G is a digraph, Theorem 2 of Section 4 then implies that the z-value of a
dicyclic set D is equal to the minimum weight w(C) of a dicycle C of G.

We now first focus on the case of G being a digraph. The polynomial separation algorithm of [4] is based on the following
transformation (G̃, z̃) of the weighted digraph (G, z) in two steps:

1. For each vertex v of G, create four vertices vlu, vru, vls, vrs in G̃ together with three 0-weight arcs (vlu, vru), (vlu, vrs) and
(vls, vru), and one arc (vls, vrs) with weight wv;

2. For each arc (u, v) of G, create one 0-weight arc (urs, vls) and one arc (uru, vlu) with weight z(u,v).

We distinguish two types of arcs in G̃, the vertex arcswhich are the arcs created at step 1, and the true arcs created at step 2.
In the subscripts of the created vertices and arcs, ‘‘l’’ and ‘‘r ’’ stand for left and right, and ‘‘s’’ and ‘‘u’’ stand for saturated
and unsaturated. So every vertex arc of G̃ goes from a left vertex to a right vertex, and every true arc goes from a right
vertex to a left vertex. Observe that any dicycle C̃ of G̃ alternates between vertex arcs and true arcs which correspond to the
alternated vertex and arc sequence of a dicycle C in G. In fact, it is proved in [4] that there is a one-to-one mapping between
the dicycles C̃ of G̃ and the dicycles C of G, and that z̃(C̃) = w(C) for any dicycle C̃ of G̃ and its corresponding dicycle C in G.
Thus aminimum z̃-value dicycle of (G̃, z̃) corresponds to aminimum-weight dicycle of (G, z), and, since finding aminimum
z̃-value dicycle is polynomial, so is the separation of (9) in the directed case.

If G is undirected, we let (G̃, z̃) be the weighted graph obtained from the weighted digraph on V by considering two
opposite arcs (u, v) and (v, u)with value zuv for each edge uv of G. In order to find aminimum-weight cycle of Gwe proceed
as follows: for each edge uv of G, we remove both true arcs (vru, ulu) and (vrs, uls) in G̃, and we look for a minimum z̃-value
dicycle of G̃ containing either the true arc (uru, vlu) or the true arc (urs, vls). �

From a strict combinatorial optimization point of view, we have identified two families of valid inequalities that
strengthen Sherali-Adams linearization [12] of (QB), and we have observed that [4] implies that they can be separated in
polynomial time. Moreover, we have noticed that both families of inequalities give in fact stronger formulations than the
classical linearization of Glover andWoolsey [6]. From a structural point of view, we have obtained a good characterization
of the cyclic set of an undirected graph. Now that the pertinence of describing the structure of the minimal dicyclic set has
been motivated, the next two sections are devoted to achieving such a characterization.

3. Preliminaries, definition and examples

Throughout, an arc (u, v) will simply be denoted by uv, and vu denotes the arc (v, u).
The characterization of theminimal dicycle setsDwith a small cardinality is easy, sowewill assume that |D| ≥ 3. Clearly,

D is a minimal dicyclic set of G if and only if it is a minimal dicyclic set of G[V (D)]. Hence for the sake of conciseness, we
assume that

every vertex of G is incident with an arc of D. (10)

Since D has at least three arcs, G is loopless and it has no opposite arcs e = uv, e′
= vu. Also, we can assume that G has no

parallel arcs e = uv = e′ since such arcs play the same role for our task.
Both Figs. 2 and 3 show a digraph G induced by (the vertex set of) minimal dicyclic setsDwhere the solid arcs correspond

to the arcs inD and those in dotted lines correspond to the arcs in E\D. The essence of our characterization is that anyminimal
dicyclic set falls either in the case of Fig. 2 or in that of Fig. 3.

In order to describe both cases in detail we will introduce some definitions all along this section. Most of the definitions
are related to the case of Fig. 3 which is the more complicated.

Throughout the rest of the paper C ⊆ E is a dicycle of G with vertex sequence v1, v2, . . . , vn where n ≥ 3 and all the
vertices are distinct. Dicycles, dipaths and undirected dipaths will be considered as arc sets but described by their vertex
sequence. All the vertices, in particular the extremities, of our paths and dipaths must be distinct vertices. When referring
to Fig. 2, C is the dicycle v1, . . . , v4. In Fig. 3, C is given by the vertex sequence v1, . . . , v36 (the names vi are represented in
the figure for i = 1, 5, 10, . . . , 35).

Let D ⊆ E and suppose that

every arc of D is incident with a vertex of C . (11)

The dicycle C being given, let

• S := {s ∈ V \ V (C): s is the tail of an arc of D},
• T := {t ∈ V \ V (C): t is the head of an arc of D}.

The dicycle C induces the external-partition (S, T ) if (S, T ) defines a partition of V \ V (C), and if furthermore, no vertex in S
belongs to a dipath linking two vertices of C . If C induces the external-partition (S, T ), we let

• W := {w ∈ T : w is an internal vertex of a dipath linking two vertices of C}.



40 D. Cornaz et al. / Discrete Applied Mathematics 240 (2018) 33–43

For instance in Fig. 2, C induces indeed an external-partition with S = W = ∅ = C ∩ D. In Fig. 3, C induces an external-
partition as well with |S| = 4, |T | = 13, |W | = 10, and |T \ W | = 3 (in the middle of the picture, the four vertices on the
left are those of S and the three vertices on the right those of T \ W ). Notice that G[T ] is acyclic in Fig. 3 but not in Fig. 2.

For two disjoint subsets V1 and V2 of V , we denote by δ(V1, V2) the set of all arcs of G having their tail in V1 and their head
in V2. From these definitions and |D| ≥ 3 we directly remark that:

δ(V (C), S) = δ(T , S) = δ(T \ W , V (C)) = δ(T \ W ,W ) = ∅, (12)

and obviously G[S ∪ T ] has no arc in D as a consequence of (11).
In the following we introduce the definition of an obstruction which allows us to describe the structure of the partial

digraph (V , C ∪ D). A 2-dipath is a set of two arcs forming a dipath. An out-star (in-star, respectively) is a set of at least two
arcs with the same tail (head, respectively) called a center.

Definition 1. Let G = (V , E) be a graph and D ⊆ E satisfy (10)–(11) with a dicycle C inducing the external-partition (S, T )
of V \ V (C). Then (D, C) forms an obstruction of G if each (weak) component of the partial subgraph (V ,D) is either an
(out- or in-) star, a 2-dipath, or an arc so that

(a) each out-star (in-star, respectively) has its center in S (in T \ W , respectively);
(b) each 2-dipath belongs to C;
(c) no arc in D is a chord of C .

In both Figs. 2 and 3, (D, C) is an obstruction.
In the following we introduce the concepts of short-chords and out-ladders which allow us to describe how the arcs of

E \ (C ∪ D) take place. Throughout the rest of the paper, given two vertices vi and vj of C , we denote by Pij the dipath of C
going from vi to vj. We write i ≤ i′ ≤ j whenever vi′ belongs to Pij. (Subscripts will always be reduced to modulo n.)

Definition 2. Let (D, C) be an obstruction of G. An arc e = (vi, vj) ∈ E \ D is a short-chord of C if j = i + 2 and either (a),(b)
or (c) holds, or j = i + 3 and (c) holds, where

(a) (vi, vi+1) is the only arc in D of Pi−1 i+2,
(b) (vi+1, vi+2) is the only arc in D of Pi i+3,
(c) (vi, vi+1) and (vj−1, vj) are the two only arcs in D of Pi−1 j+1.

In Fig. 3, (v2, v4) is a short-chord of type (a), (v28, v30) is a short-chord of type (b), (v35, v1) is a short-chord of type (c) with
j = i + 2, and (v16, v19) is a short-chord of type (c) with j = i + 3.

Given an obstruction (D, C) with external-partition (S, T ) and a vertex w ∈ W , then w is incident with exactly one arc
of D whose tail is a vertex of C called the mate of w. In the following, since C has vertex sequence v1, . . . , vi, . . . , vn, we
denote by wi every vertex inW with mate vi.

Definition 3. Let (D, C) be an obstruction of G. A maximal dipath L of G[W ] induces an out-ladder if it satisfies the following
conditions:

(a) its vertex sequence has the form wi, wi+1, . . . , wj,
(b) (vj+1, vj+2) is the only arc in D of Pi−1 j+3,
(c) (wj, vj+2) (in E \ D) is the only arc from L to C ,
(d) every arc (vi′ , wj′) from C to L is so that either

i − 1 ≤ i′ ≤ j + 1 and i ≤ j′ ≤ i′ + 1, or
(vi−3, vi−2) ∉ D, (vi−2, vi−1) ∈ D, i′ = i − 2, and j′ = i.

In Fig. 3, the three dipathswith vertex sequencew4, . . . , w8, vertex sequencew20, . . . , w24, and vertex sequencew26 induce
out-ladders.

An arc e ∈ E\Dbelongs to an out-ladder if it is an arc of L, or an arc between L and C satisfying the conditions of Definition 3.
For instance, (v5, w6), (v8, w6) and (v9, w8) belong to the out-ladder induced byw4, . . . , w8 as well as all arcs of the dipath
w4, . . . , w8.

4. Structure of minimal dicyclic sets

This section is devoted to proving our main theorem which gives a complete characterization of minimal dicyclic sets.
An obstruction (D, C) is called a good obstruction if every arc e in E \(C∪D) satisfies one of the three following conditions

(a) at least one extremity of e is in S ∪ (T \ W ), or
(b) e is a short-chord, or
(c) e belongs to an out-ladder.

Observe that in (a), the tail of e is in S or the head of e is in T \W , non-exclusively. We are ready now to state and prove the
main result of this paper.
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Theorem 2. Let G = (V , E) be a graph and let D ⊆ E with V (D) = V . Then D is a (inclusionwise) minimal dicyclic set of G if
and only if there is a dicycle C of G with external-partition (S, T ) such that (D, C) is a good obstruction satisfying either
(i) T induces a dicycle C ′ with |C ′

| = |C | = |D| and S = W = ∅, or
(ii) G[V \ V (C)] is acyclic.

Proof. Sufficiency: LetD′
⊂ D be a strict subset ofD. Since (D, C) is an obstruction, then the cycle C cannot belong toG[V (D′)].

To see the sufficiency of (i) first observe that in this case C and C ′ are the only dicycles of G. Since |C ′
| ≥ |C |, the arcs in D

must be pairwise disjoint. Thus C ′ is not present in G[V (D′)]. It follows that D is a minimal dicyclic set.
To see the sufficiency of (ii), assume there exists a dicycle C ′ in G[V (D′)]. First, we remark that any dicycle of G is only

composed of vertices of V (C) ∪ W . Hence, we can delete all the arcs of E \ Dwhich are incident with a vertex in S ∪ T \ W .
Similarly, we can delete all the chords of C , since we can replace (vi, vj) by Pij, if C ′ contains (vi, vj). Now, if C ′ contains
an arc e ∈ E \ D of an out-ladder induced by a dipath L so that e = (vi′ , wj′) runs from C to L, then C ′ must contain the
sequence vi′ , wj′ , wj′+1 . . . , wj, vj+2 and the latter can be replaced by Pi′j+2. Similarly, if e = (wj, vj+2) is the arc from L to C
or if e = (wj′ , wj′+1) is in L, then it can be removed. So we can remove all the arcs in G[W ], and then all the arcs in E \ C .
Hence C ′

= C which is impossible.
Necessity: Assume that D is a minimal dicyclic set, so recall that

(α) G = G[V (D)] contains a dicycle,
(β) for every dicycle C of G and for every arc e of D, there exists a vertex v of C incident with e and with no other arc in D.

Given a dicycle C , letρ(C)denote the number of arcs inD\C whose heads are vertices ofC . Choose a dicycle C ofGminimizing
ρ(C) and maximizing |C ∩ D|, in this order of priority. Clearly, every arc in D has at least one extremity in C . Let us denote
by S (T , respectively) the set of vertices in V \ V (C) being the tail (head, respectively) of some edge in D \ C . Obviously,
V \ V (C) = S ∪ T .

Now let P be a dipath from vi to vj such that vi and vj are the only vertices in V (C) of P . Then

the last arc of P cannot be in D (in particular, no chord of C is in D). (13)

To see that (13) holds, let C ′ be the dicycle formed by the arcs in P ∪Pji. Suppose that the last arc of P is in D. Letw be the last
internal vertex along the dipath P so that w is the head of an arc in D. Such a vertex w exists since otherwise ρ(C) > ρ(C ′).
Let vk be the first vertex along the dipath Pjj−1 being the tail of an arc (vk, w) in D. Such an arc exists because w is a node of
T . Let C ′′ be the dicycle formed by the arcs of Pjk, the arc (vk, w) and the arcs of P from w to vj. Since ρ(C) ≤ ρ(C ′′), there is
an arc (vl, w) in D where vl is distinct from vk. This contradicts the minimality of D since C ′′ belongs to G[V (D \ {(vl, w)})].

One consequence of (13) is that

C induces the external-partition (S, T ) of V \ V (C). (14)

Indeed, first, if there exists some vertex w in S ∩ T , then there is a dipath vi, w, vj consisting of two arcs in D, which is
impossible. Second, if there is some vertex s in S belonging to dipath vi, . . . , s, . . . , vk, then there is a dipath vi, . . . , s, vj so
that (s, vj) ∈ D, which is impossible by (13).

Remark that if G[S] has a dicycle C ′, then by (14), we have ρ(C ′) = 0. But since S is nonempty, ρ(C) > 0, which is
impossible. So, one has

G[S] is acyclic. (15)

LetW is the set of vertices outside C belonging to some dipath P from vi to vj. By (14),W ⊆ T . We have also that

each vertex of W is the head of exactly one arc of D. (16)

Let w be a vertex of W and suppose for contradiction that w is the head of two arcs e1 and e2 in D. Since there is a dipath
from w to a vertex of C , then there are two dicycles C1, C2 such that ei ∈ Ci for i = 1, 2. Note that, by (β) both tails of e1 and
e2 must belong to both dicycles C1 and C2, which is impossible.

Now we can prove that

(D, C) forms an obstruction. (17)

To see that (17) is true, let Q be the arc-set of a (weak) component of (V ,D). Clearly, the minimality of D implies that Q can
contain neither a triangle nor an undirected path with more than two arcs. If Q has a path u, v, w, then by (β), both u and
w are in V (C). If the path u, v, w is in fact a dipath, by (13), the internal vertex v must belong to C . Moreover since C has no
chord, no arc in D can be incident with v. So Q is either an arc, a dipath belonging to C , an out-star, or an in-star. (Recall that
stars have at least two arcs). If Q is an out-star, its center is clearly in S. By (16), no in-star S has its center in W . Thus (17)
holds.

Let us prove the following lemma which will be useful.

Lemma 1. Given a dipath P from vi to vj, such that vi and vj are the only vertices in V (C) of P, and an arc e ∈ D, then
(a) if e is in Pij, then it is incident with either vi or vj;
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(b) if e is incident with one internal vertex of Pij, then its other extremity is in P (its head);
(c) the vertex vi (vj, respectively) is incident with at most one arc in D;
(d) if e is in P, then it is the first arc of P and P has no other arc in D, moreover, (vj−1, vj) is the only arc in D of Pi−1,j+1.

Proof. If (a) does not hold, then e is incident with no vertex of the dicycle C ′ formed by the arcs in P ∪ Pji; this contradicts
(β). If (b) does not hold, since e is not a chord of C , then again e is disjoint from C ′; impossible. So (a) and (b) hold. Assume
now that (c) does not hold. Since vi is incident with two arcs in D, then by (17), (vi−1, vi) and (vi, vi+1) both belong to D.
Now, by (β), vi+1 must be in C ′, hence j = i + 1. It follows that P has at least one internal vertex w. So there is an arc
(vk, w) ∈ D, where vk ∈ V (C). Clearly, vk is distinct from vi−1, vi, vi+1. Let P ′ be the subdipath of P from w to vj. Yet vi−1 is
not in the dicycle created with P ′, Pjk and (vk, w); one has a contradiction with (β). Thus (c) holds. Since P has no internal
arc in D, then (13) implies that the only possible arc in D of P is the first arc. Suppose that the first arc of P is in D. Let w be
the last internal vertex of P and let C ′ be the dicycle formed by the arc (vi′ , w) ∈ D, the arc (w, vj) ∈ E \ D, and Pji′ . Since
ρ(C ′) = ρ(C), then Pi′j has at least one arc in D since otherwise |C ∩ D| < |C ′

∩ D|. Since (a) and (c) hold, it follows that
(vj−1, vj) is the only arc in D of Pi−1,j+1. So (d) holds and the proof of the lemma is complete. �

Remark that in Lemma 1, the arc e ∈ D may be incident with one internal vertex of P and having no extremity in Pij for
instance P = v8, w6, w7, w8, v10 and e = (v7, w7) in Fig. 3. Of course, such a situation occurs only if |C ′

∩ D| < |C ∩ D|.
Applying Lemma 1.(a)–(c) to a path P which is a chord of C (in E \ D), one directly obtains that

every chord of C is a short-chord. (18)

A consequence of Lemma 1(d) is that

ifW ≠ ∅, then |C ∩ D| ≥ 1. (19)

Indeed, if there is a vertex w ∈ W , then there is a dipath vi, w, . . . , vj. Since the first arc is in D, Lemma 1.(d) implies that
C ∩ D is non-empty.

Proposition 6. If G has a dicycle C ′ vertex-disjoint from C, then Case (i) of the theorem holds.

Proof. By (β), every arc e of D has one extremity in C , the other in C ′, and all the arcs of D are pairwise disjoint. So |D| ≥ 3
and, more generally, any two vertex-disjoint dicycles have necessarily the same cardinality. Therefore, as a chord creates a
smaller dicycle, C and C ′ are chordless. Since we know that C ∩D = ∅, (19) impliesW = ∅. If neither S nor T is empty, then
there are two arcs of D, one from C to C ′ and the other from C ′ to C . But it creates a dicycle C ′′ having no vertex incident with
arcs in D; a contradiction with (β). So either S or T is empty, and by (15), S = ∅. �

Finally the proof of necessity follows from this last proposition.

Proposition 7. Any maximal dipath of G[W ] induces an out-ladder. In particular, the digraph G[W ] is a union of vertex-disjoint
dipaths.

Proof. Letwi0 , wi1 , . . . , wi|L| be the sequence of vertices of a maximal-length path L in G[W ]. Since by (16), there is a unique
arc eil ∈ Dwhose head is wil , we let vil be the tail of eil , that is in other words, the mate of wil .

Let j := i|L|. Since wj ∈ W , there is an arc (wj, vk) in E \ D. By Lemma 1.(d) with the dipath vj, wj, vk, then (vk−1, vk) is
the only arc in D of Pj−1k+1. By Lemma 1.(b), vk−1 is the only internal vertex of Pjk, so k = j + 2. The same argument can be
applied to the dipath vi|L|−1 , wi|L|−1 , wj, vk in order to prove that i|L|−1 = j − 1. Then it follows by induction that i|L|−l = j − l
for l = 0, . . . , |L|. So the vertex sequence of L has the form wi, wi+1, . . . , wj, and, moreover, (vj+1, vj+2) is the only arc in D
of Pi−1 j+3. So Definition 3.(a)–(b) holds.

Suppose that vj′ is the head of an arc in E \Dwhose tail is a vertexwi′ of L. Consider the dipath vi′ , wi′ , vj′ . By Lemma 1.(d),
j′ = j + 2. By Lemma 1.(b), i′ = j. So Definition 3.(c) holds.

Let (vi′ , wj′) ∈ E \ D be an arc from C to L and let P be the dipath vi′ , wj′ , wj′+1 . . . , wj, vj+2. Note that j + 1 ≤ j + 2 ≤ i.
Suppose first that i − 1 ≤ i′ ≤ j + 1 and that if i′ = j + 1, then j + 1 ≠ i − 2. So, if i′ + 2 ≤ j′ ≤ j, then Lemma 1.(b) is
contradicted by the internal vertex vi′+1 of P . Hence we can assume that j + 1 ≤ i′ ≤ i − 1. Since all internal vertices of P
have their mate in Pj′j, then, by Lemma 1.(a)–(b), Pi′j+2 can have neither internal arcs in D, nor internal vertices outside Pj′j.
It follows that j′ = i. Moreover, i′ = i − 2 and (vi−1, vi) ∈ D. Hence, (vi−2, vi−1) ∉ D by Lemma 1.(c). �

The proof of Theorem 2 then is complete. �
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