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THE MAXIMUM INDUCED BIPARTITE SUBGRAPH PROBLEM
WITH EDGE WEIGHTS∗
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Abstract. Given a graph G = (V,E) with nonnegative weights on the edges, the maximum
induced bipartite subgraph problem (MIBSP) is to find a maximum weight bipartite subgraph
(W,E[W ]) of G. Here E[W ] is the edge set induced by W . An edge subset F ⊆ E is called in-
dependent if there is an induced bipartite subgraph of G whose edge set contains F . Otherwise, it
is called dependent. In this paper we characterize the minimal dependent sets, that is, the depen-
dent sets that are not contained in any other dependent set. Using this, we give an integer linear
programming formulation for MIBSP in the natural variable space, based on an associated class of
valid inequalities called dependent set inequalities. Moreover, we show that the minimum dependent
set problem with nonnegative weights can be reduced to the minimum circuit problem in a directed
graph, and can then be solved in polynomial time. This yields a polynomial-time separation algo-
rithm for the dependent set inequalities as well as a polynomial-time cutting plane algorithm for
solving the linear relaxation of the problem. We also discuss some polyhedral consequences.
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1. Introduction. A graph is called bipartite if its node set can be partitioned
into two nonempty sets V1 and V2 such that no two nodes in Vi are linked by an
edge, for i = 1, 2. Let G = (V,E) be a graph. A subgraph (W,F ) of G is said to be
induced if F is the set of edges having both endnodes in W . Given w, a function that
associates with each edge e ∈ E a nonnegative weight w(e), the maximum induced
bipartite subgraph problem (MIBSP) is to find an induced bipartite subgraph with
maximum weight.

An edge subset F ⊆ E is called independent if there is an induced bipartite
subgraph of G with edge set B ⊆ E such that F ⊆ B. Otherwise, it is called
dependent. In this paper we characterize the minimal dependent sets of a graph
G = (V,E). Using this, we give a 0-1 linear programming formulation for MIBSP
in the natural variable space, based on an associated class of valid inequalities called
dependent set inequalities. We also show that the minimum dependent set problem
with nonnegative weights can be reduced to the minimum circuit problem in a directed
graph and can then be solved in polynomial time. This yields a polynomial-time
separation algorithm for the dependent set inequalities as well as a polynomial-time
cutting plane algorithm for solving the linear relaxation of the problem.

To the best of our knowledge, MIBSP has not been considered before in the
literature. However, the maximum bipartite subgraph problem has been extensively
investigated. Here, given a graph G = (V,E) and weights on the edges of G, the
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Clermont II, 63177 Aubière Cedex, France (cornaz@isima.fr).

‡Laboratoire LIMOS, CNRS UMR 6158, Université Blaise Pascal, Clermont II, 63177 Aubière
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problem is to find a bipartite subgraph (not necessarily induced) with maximum
weight. In [3] Barahona, Grötschel, and Mahjoub describe several classes of facet
defining inequalities of the associated bipartite subgraph polytope. They also present
some methods with which new facet defining inequalities of that polytope can be
constructed from known ones.

A graph is said to be weakly bipartite if the bipartite subgraph polytope coincides
with the polytope given by the trivial inequalities and the so-called odd cycle inequal-
ities. Grötschel and Pulleyblank [18] showed that the bipartite subgraph problem can
be solved in polynomial time in that class of graphs. Barahona showed that planar
graphs [1] and graphs G that contain two nodes which cover all the odd-cycles of
G [2] belong to that class of graphs. In [10] Fonlupt, Mahjoub, and Uhry generalize
these results by showing that the graphs noncontractible to K5 are weakly bipartite.
Recently Guenin [19] gave a characterization for that class of graphs.

The closely related MIBSP with node weights has also been studied. Here we
suppose that the weights are associated with the nodes of the graph, and the problem is
to determine an induced bipartite subgraph with maximum weight. This problem has
applications to the via-minimization problem which arises in the design of integrated
circuits and printed circuit boards [6], [11]. In [4] Barahona and Mahjoub study the
polytope BP(G) associated with this problem. They exhibit some basic classes of facet
defining inequalities for BP(G) and describe several lifting methods. In [5] they study
a composition technique for BP(G) in the graphs which are decomposable by one-
and two-node cutsets. Fouilhoux and Mahjoub [12] (see also Fouilhoux [11]) study the
polytope BP(G). They describe new classes of facet defining inequalities and discuss
separation procedures. Using this, they develop a branch-and-cut algorithm for the
problem and present some computational results. In [13] Fouilhoux and Mahjoub
consider the via-mimization problem and show that this can be reduced to the MIBSP
with appropriate node weights. Further applications of the MIBSP with node weights
to the via-minimization problem and DNA sequencing are also discussed in [11].

A related work has been done by Cornaz and Fonlupt [7] on the maximum biclique
problem. (A biclique is the edge set of a complete bipartite (not necessarily induced)
subgraph). Although the MIBSP and the maximum biclique problem are different,
this paper gives rise to some structural relations between the minimal dependent sets
associated to both problems.

The paper is organized as follows. In the following section we give some notation,
definitions, and preliminary results. In section 3 we study the dependent sets and give
a characterization for these sets. In section 4 we show that the minimum dependent
set problem with nonnegative weights can be reduced to the minimum odd circuit
problem and can then be solved in polynomial time. In section 5 we discuss some
polyhedral consequences and give some concluding remarks.

2. Definitions, notation, and preliminary results.

2.1. Definitions and notation. Throughout the paper we consider only simple
graphs and digraphs. We will denote a graph by G = (V,E), where V is the node set
and E is the edge set. An edge with endnodes u and v will be denoted by uv. For
W ⊆ V , we let E[W ] denote the set of edges having both nodes in W . The graph
G[W ] = (W,E[W ]) is the subgraph of G induced by W . If F ⊆ E, we let V (F )
denote the set of nodes incident to edges of F , and G(F ) = (V (F ), F ). Note that
G(F ) = G[V (F )] holds if and only if G(F ) is an induced subgraph of G.

We denote a directed graph (or digraph) by D = (V,A), where V is the node
set and A the arc set of D. An arc with initial node u and terminal node v will be
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denoted by uv. (Note that uv �= vu for digraphs.)
A path in G (resp., D) is an alternate sequence of nodes and edges (resp., arcs)

P = v1, e1, v2, . . . , vk, ek, vk+1 such that k ≥ 1, all the nodes vi are distinct, and
ei = vivi+1 ∈ E (resp., ei = vivi+1 ∈ A) for i = 1, 2, . . . , k. The nodes v1 and vk+1 are
the extremities of P , and we will say that P links v1 and vk+1 (resp., v1 to vk+1). The
integer k is called the length of P , and P is said to be even (odd) if k is even (odd).
If v1 = vk+1, P is called a cycle (resp., circuit). An edge linking two nonconsecutive
nodes of a path (cycle) P is called a chord of P . A chordless cycle is also called a
hole. Given a path P , we let E(P ) (resp., A(P )) and V (P ) denote the sets of edges
(resp., arcs) and nodes of P , respectively.

Given a vector x ∈ RE and T ⊆ E, we let x(T ) denote
∑

e∈T x(e). Bipartite
graphs have the following property.

Remark 2.1. A graph is bipartite if and only if it does not contain an odd cycle.

2.2. Signed digraphs. A signed digraph consists of a digraph D = (V,A) and
a subset Σ ⊆ A of arcs called signed arcs. The arcs in A \ Σ are said to be unsigned.
Given a signed digraph D = (V,A), a circuit is said to be odd if it contains an
odd number of signed arcs. Note that if ω ∈ RA is a weight vector, then finding a
minimum weight odd circuit in D reduces to finding a minimum weight odd circuit
in an unsigned digraph. In fact, for this, it suffices to replace every unsigned arc
uv ∈ A\Σ by a path u, uw,w,wv, v, where w is a new node, and associate to the new

arcs uw,wv the weight ω(uv)
2 . Moreover, finding a minimum weight odd circuit in a

digraph reduces to a shortest path problem [17] (see also [16]). As the weights are
nonnegative, it can then be solved in polynomial time, using, for instance, Dijkstra’s
algorithm [9].

2.3. Independent sets. Given a graph G = (V,E), we let B(G) denote the set
of the edge sets of the induced bipartite subgraphs of G, i.e.,

B(G) = {B ⊆ E : G(B) = G[V (B)] and G(B) is bipartite}.

Hence the MIBSP is equivalent to

maximize {ω(B) : B ∈ B(G)}.

Given a graph G = (V,E), a node subset W ⊆ V is called a stable set if E[W ] = ∅.
The stable set problem in G consists in finding a stable set of maximum cardinality.
Note that the stable set problem can be reduced to the MIBSP. In fact, consider the
graph Ḡ = (V̄ , Ē) obtained from G by adding a universal node (a node adjacent to
all the other nodes of G) and associate with the edges of Ē the weight ω(e) = 1 if
e ∈ Ē\E and ω(e) = 0 if not. It is easy to see that an optimum solution of the MIBSP
in Ḡ with respect to weight vector ω corresponds to a maximum cardinality stable set
in G. This implies that the MIBSP is NP-hard. The maximum cardinality MIBSP
is to find a set in B(G) with maximum cardinality. In what follows we shall show
that the maximum cardinality MIBSP is also NP-hard, which implies that MIBSP is
strongly NP-hard.

Proposition 2.2. The maximum cardinality MIBSP is NP-hard.
Proof. We show that the stable set problem in a graph G = (V,E) reduces to the

maximum cardinality MIBSP. As the former problem is NP-hard [14], the latter is
also NP-hard.

Let G̃ = (Ṽ , Ẽ) be the graph obtained from G = (V,E) by considering a copy
G′ = (V ′, E′) of G and adding all the possible edges between V and V ′, that is,
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Ṽ = V ∪ V ′ and Ẽ = E ∪ E′ ∪ {vv′ : v ∈ V , v′ ∈ V ′}. Note that for every stable set
S ⊆ V of G and its copy S′ ⊆ V ′ of G′, G̃[S ∪S′] is a complete bipartite graph. Thus
for every maximum cardinality solution B ∈ B(G̃) and every stable set S ⊆ V of G,
we have that |B| ≥ |S|2. In particular |B| ≥ |S∗|2, where S∗ is a maximum stable set
of G.

Now let B ∈ B(G̃) be of maximum cardinality and S̃ ⊆ Ṽ a maximum cardinality
stable set of G̃ such that every node v ∈ S̃ is incident to an edge in B. Obviously,
either S̃ ⊆ V or S̃ ⊆ V ′. Thus |S̃| ≤ |S∗|. As |B| ≤ |S̃|2, it follows that |B| ≤ |S∗|2.
Consequently, |B| = |S̃|2 = |S∗|2.

Denote by I(G) the set of the independent sets of G, i.e.,

I(G) = {I ⊆ E : ∃ B ∈ B(G), I ⊆ B}.

Obviously, B(G) ⊆ I(G). However, in general we have that B(G) is a strict subset of
I(G). For instance, consider the graph G consisting of a path of three edges (e1, e2, e3).
Clearly, the edge subset I = {e1, e3} is independent. However, G(I) �= G[V (I)], and
hence I /∈ B(G). Also note that, since the weights are nonnegative,

max{ω(I) : I ∈ I(G)} = max{ω(B) : B ∈ B(G)}.

Therefore the MIBSP is equivalent to finding a maximum weight independent set in
G. Moreover, we have the following which is a direct consequence of Remark 2.1.

Lemma 2.3. Given an edge set I ⊆ E, I ∈ I(G) if and only if G[V (I)] contains
no odd cycle.

In what follows we will denote by C(G) the set of the minimal dependent sets of
G, i.e.,

C(G) = {C ⊆ E : C �∈ I(G) and C ′ ∈ I(G) ∀ C ′ ⊂ C}.

We have the following.
Lemma 2.4. Given an edge set C ⊆ E, C ∈ C(G) if and only if
(i) there exists at least one odd cycle in G[V (C)], and
(ii) for every odd cycle Q of G[V (C)] and every edge f ∈ C, there exists a node

vf ∈ V (Q) such that f is the unique edge of C incident to vf .
Proof.
Necessity.
(i) This follows from Lemma 2.3.
(ii) Let Q be an odd cycle of G[V (C)] and f an edge of C ∈ C(G). If the statement

does not hold, it is not hard to see that V (Q) ⊆ V (C \ {f}). But this implies
that C \ {f} is dependent, contradicting the minimality of C.

Sufficiency. By Lemmas 2.4(i) and 2.3, we have that C /∈ I(G). Now suppose
that C is not minimal. Then there exists an edge f = uv ∈ C such that C ′ = C\{f} �∈
I(G). By Lemma 2.3, this implies that G[V (C ′)] contains an odd cycle, say Q, and
hence V (Q) ⊆ V (C ′). Moreover, by Lemma 2.4(ii), it follows that one of the nodes
of f , say v, belongs to V (Q) and is not incident to any edge in C ′. But this implies
that v ∈ V (Q) \ V (C ′), a contradiction.

Figure 1 shows a subgraph which is induced by the node set of a minimal de-
pendent set. The dependent set is presented by bold lines. We can remark that the
subgraph contains an odd cycle, and that for every edge f of the dependent set, there
is a node of the cycle such that f is the only edge incident to it.
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in F

in E \ F

Fig. 1. A subgraph induced by a minimal dependent set.

3. Minimal dependent sets. The characterization of the minimal dependent
sets, given by Lemma 2.4, is not strong enough to obtain certain polyhedral results
for the MIBSP which we will present in the next sections. In this section we give
a stronger characterization of the minimal dependent sets. This will be given in
Theorem 3.2. To this end, we first introduce some definitions.

Let F ⊆ E and Q be an odd cycle of G. A node v ∈ V (Q) is said to be unsaturated
with respect to F and Q if v is not incident to any edge of F ∩ E(Q); otherwise v is
said to be saturated.

Definition 3.1. Given an edge set F ⊆ E, we say that F induces an obstruction
with respect to an odd cycle Q if Q is an odd cycle of G[V (F )] and if conditions (1)
and (2) below are satisfied.

(1) Every edge f ∈ F \E(Q) is of the form f = vw where v ∈ V (Q), w ∈ V \V (Q),
and there is no edge in F \ {f} adjacent to f .

(2) Every edge in F ∩ E(Q) is adjacent to at most one edge of F .

Figure 2 shows an obstruction induced by an edge set F with respect to the odd
cycle on seven edges. We can remark here that F does not correspond to a minimal
dependent set. The edges e, f induce a minimal dependent set.

Let F ⊆ E be an edge set. And suppose that F induces an obstruction with
respect to an odd cycle

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1

of G[V (F )], where vk+1 = v1. Let e ∈ E[V (F )] \ (F ∪ E(Q)). Edge e is called a
diagonal (with respect to F and Q) if there is i ∈ {1, . . . , k} such that e = vivi+3,
the edges ei, ei+2 are in F , and the edges ei−1, ei+1, ei+3 are in E \ F (the indices
are taken modulo k). And edge e is called a forward (resp., backward) wing (with
respect to F and Q) if there is i ∈ {1, . . . , k} and a node w ∈ V \ V (Q) such that
e = wvi with ei, wvi+2 ∈ F (resp., wvi−2, ei−1 ∈ F ), and ei−1, ei+1, ei+2 ∈ E \ F
(resp., ei−3, ei−2, ei ∈ E \ F ). An edge is called a wing if it is either a forward or a
backward wing.
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e

f

in F

in E \ F

Fig. 2. An obstruction induced by F .
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Fig. 3. Wings and diagonals.

We say that two wings wvi and w′vj overlap if vivj ∈ F . Note that if two wings
overlap, then necessarily one is forward and the other is backward (see Figure 3 for
an illustration).

The following theorem gives a characterization of the set of minimal dependent
sets of G.

Theorem 3.2. Let G = (V,E) be a graph and F ⊆ E an edge subset of E. Then
F is a minimal dependent set if and only if F induces an obstruction with respect to
an odd cycle Q such that

(i) every edge of E[V (F )] \ (F ∪ E(Q)) is either a diagonal or a wing, and
(ii) no wings overlap.

Proof.

Necessity. Suppose F ∈ C(G). Let W = V (F ). By Lemma 2.3, G[W ] contains
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an odd cycle. Let

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1,

with vk+1 = v1, be an odd cycle of G[W ] such that |F ∩ E(Q)| is maximum. Let
F1 = F ∩ E(Q), F2 = F \ F1, and E′ = E[W ] \ (F ∪ E(Q)). Note that by Lemma
2.4(ii), no edge of F1 is adjacent to an edge of F2.

For the rest of the proof, we will need to consider paths of G[W ] with extremities
in V (Q) and internal nodes in W \ V (Q). If P is a path of G[W ] linking two nodes
vi and vj of V (Q) such that E(P ) ∩ E(Q) = ∅ and none of the internal nodes of P
belongs to V (Q), we let P1 = vj , ej+1, . . . , ei−1, vi and P2 = vi, ei, . . . , ej−1, vj (where
the indices are modulo k) denote the edge-disjoint paths of Q between vi and vj .
Note that Q = P1 ∪ P2. We also denote by Q1 = P ∪ P1 and Q2 = P ∪ P2 the cycles
obtained by adding P to Q. Note that Q1 and Q2 are of opposite parity. We will
suppose, without loss of generality, that Q1 is odd and Q2 is even.

By Lemma 2.4(ii), for every edge f ∈ F , there exists a node vf ∈ V (Q) such that
f is the only edge of F incident to vf . By a similar argument, there is also a node
v1
f ∈ V (Q1) such that f is the only edge of F incident to v1

f (v1
f and vf may be the

same). We have the following claims.
Claim 1. Let P be a path of G[W ] linking two nodes vi and vj of V (Q) whose

internal nodes belong to W \ V (Q). Let f2, f
′
2 ∈ F2 and e ∈ E′. Then the following

cases cannot occur:
(a) P = vi, f2, vj,
(b) P = vi, f2, w, f

′
2, vj with w ∈ W \ V (Q), or

(c) P = vi, f2, w, e, w
′, f ′

2, vj with w,w′ ∈ W \ V (Q).
Proof. Assume that P is of type (a), (b) or (c). Notice that if f ∈ F ∩ E(P2),

then v1
f = vi or vj . Also note that vi and vj are both incident to an edge of F \E(P2).

Then it follows that F ∩E(P2) = ∅. Since |F ∩E(P )| ≥ 1, |F ∩E(Q)| < |F ∩E(Q1)|.
But this contradicts the maximality of |F ∩ E(Q)|.

Claim 2. F induces an obstruction with respect to Q.
Proof. Let f = wvf ∈ F \ E(Q). (Recall that vf is the node of V (Q) such that

f is the only edge of F incident to it.) If w ∈ V (Q), then w, f, vf is a path of G[W ].
But this is impossible by Claim 1(a). So suppose that w �∈ V (Q). If there is an edge
f ′ = wvf ′ ∈ F , then P = vf , f, w, f

′, vf ′ is a path of G[W ], contradicting Claim 1(b).
In consequence, f is adjacent to no edge in F , and thus condition (1) of Definition 3.1
is satisfied.

Now let f = uvf be an edge of F ∩ E(Q). Since F satisfies condition (1) of
Definition 3.1, f is adjacent to no edge in F2. Moreover, we have that vf is incident
to no edge in F . Hence f is adjacent to at most one edge of F ∩ E(Q). Therefore
condition (2) of Definition 3.1 is satisfied.

Claim 3. Every edge of E′ is incident to a node of Q.
Proof. Suppose that for an edge e = ww′ of E′, we have {w,w′} ∩ V (Q) = ∅.

Since w,w′ ∈ W \ V (Q), there exist two edges f = wvf and f ′ = w′vf ′ of F . Note
that vf �= vf ′ . Hence vf , f, w, e, w

′, f ′, vf ′ is a path of G[W ], which contradicts Claim
1(c).

Claim 4. Let e ∈ E′, f ∈ F , and vi, vj ∈ V (Q).
(1) If P = vi, e, w, f, vj is a path of G[W ], then e is a forward wing.
(2) If P = vi, f, w, e, vj is a path of G[W ], then e is a backward wing.
Proof. We prove (1), the proof of (2) is similar. As Q2 is even, the path P2 must

contain an even number of edges, and hence |E(P2)| ≥ 2. Moreover, as by Claim 2 F
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induces an obstruction with respect to Q, f is the only edge of F incident to vj (w).
In consequence, vj is unsaturated. Moreover, vj is the unique unsaturated node of P2.
Indeed, if v was a further unsaturated node of P2, then there must exist an edge, say
f ′, of F2 incident to v. As by Claim 2 F induces an obstruction with respect to Q,
v1
f ′ ∈ V \V (Q). (Recall that v1

f ′ is the node of V (Q1) such that f ′ is the only edge of

F incident to it.) Thus v1
f ′ = w. But this is impossible since f is (the only edge of F )

incident to w. In consequence, ei is the unique edge of F in P2 and thus |E(P2)| = 2.
Therefore ei−1, ej−1, ej are not in F , and hence e is a forward wing.

Claim 5. Let e ∈ E′. If P = vi, e, vj is a path of G[W ] with vi, vj ∈ V (Q), then
e is a diagonal.

Proof. As |P | is odd and Q2 is even, P2 must be odd, and therefore |E(P2)| ≥ 3.
Also P2 contains no unsaturated nodes. In fact, if P2 contains an unsaturated node v,
then there must exist f ∈ F incident to v such that v1

f ∈ V (P1). But this contradicts
Claim 1(a). In consequence, two consecutive edges of E(P2) cannot both be in E′.
From Lemma 2.4(ii), it then follows that ei and ej−1 are the only edges of F in E(P2)
and that |E(P2)| = 3. We also have that ei−1 and ej are not in F , j = i + 3, and
ei+1 /∈ F . Thus e is a diagonal.

Claim 6. No wings overlap.
Proof. Suppose that there are two wings e = wvi+1 and e′ = w′vi that overlap.

Note that w,w′ ∈ W \ V (Q), w �= w′, and ei = vivi+1 ∈ F . The path P ′ with edge
set E(P ′) = {wvi−1, e, ei, e

′, w′vi+2} has three edges in F . And the path P ′′ of Q
with edge set E(P ′′) = {ei−1, ei, ei+1} has only one edge in F . Note that both P ′

and P ′′ are odd. Hence the cycle Q̃ obtained from Q by replacing P ′′ by P ′ is odd.
As V (Q̃) ⊆ W and |E(Q̃) ∩ F | > |E(Q) ∩ F |, we have a contradiction.

By Claim 2, F induces an obstruction with respect to Q. If e ∈ E′, then by
Claim 3, e belongs to a path P of the form either vi, e, w, f, vj or vi, f, w, e, vj or
vi, e, vj with vi, vj ∈ V (Q), f ∈ F , and w ∈ W \ V (Q). It then follows by Claims 4
and 5 that e is either a wing or a diagonal. Moreover, by Claim 6, no wings overlap.

Sufficiency. Suppose that F induces an obstruction with respect to an odd cycle
Q satisfying (i) and (ii). By Lemma 2.3, F is a dependent set. We will show that
F ′ = F \ {f} is an independent set for every f ∈ F . Let W ′ = V (F ′) and let us set
as before Q = v1, e1, v2, e2, . . . , vk, ek, vk+1 with v1 = vk+1. First remark that if f is
an edge of E(Q), as F induces an obstruction with respect to Q, at most one edge
of F is adjacent to f . Thus Q cannot be a subgraph of G[W ′]. If f links a node not
in V (Q) to an unsaturated node, say v, of V (Q), then v is not a node of G[W ′] and
again Q is not a subgraph of G[W ′].

Now assume, by contradiction, that F \{f} is not in I(G). By Lemma 2.3, G[W ′]
contains an odd cycle, say D. Suppose that D contains an edge e = vivi+3 which is a
diagonal with respect to F and Q. Thus ei, ei+2 ∈ F and ei−1, ei+1, ei+3 �∈ F . Also,
since F is an obstruction, ei and ei+2 are the only edges of F incident to vi and vi+3,
respectively. In consequence, f can be neither ei nor ei+2. Now if we replace in D e
by the path vi, ei, vi+1, ei+1, vi+2, ei+2, vi+3, we get a new cycle in G[W ′] which does
not contain e and which is still odd. We can reiterate this procedure until we get an
odd cycle in G[W ′], still denoted by D, without diagonals with respect to F and Q.

Suppose that V (D) contains a node w �∈ V (Q). As w ∈ V (F ′), there is an edge,
say g′, belonging to F2 ∩E(D) incident to w. By condition (1) of Definition 3.1, this
edge is the only edge of F incident to w. Consequently, there must exist an edge
g ∈ E(W ) \ ((F ∪E(Q)) ∩E(D)) incident to w. By our hypothesis, g is then a wing
with respect to Q. Suppose, without loss of generality, that g = wvi is a forward
wing. Hence g′ = wvi+2 ∈ E(D). Also note that ei is the only edge of F incident
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to vi, which implies that f �= vivi+1. If we replace in D the path vi, g, w, g
′, vi+2 by

vi, ei, vi+1, ei+1, vi+2, we get an odd cycle in G[W ′]. Moreover, this new cycle does
not contain the wing g. So, if we reiterate this procedure, we get an odd cycle D in
G[W ′] which contains neither a diagonal nor a wing with respect to F and Q and
whose nodes are all in V (Q). But this implies that D contains only edges of Q, which
contradicts the fact that Q is not a subgraph of G[W ′].

4. Finding a minimum dependent set. In this section we consider the prob-
lem of finding a minimum dependent set in a graph with nonnegative weights. Using
the characterization of the minimal dependent sets given in section 3, we will show
that this problem reduces to the minimum odd circuit problem in a signed directed
graph, and can then be solved in polynomial time. Some polyhedral and algorithmic
consequences of this result will be discussed in the next section.

Let G = (V,E) be a graph and (c(e), e ∈ E) a nonnegative weight vector associ-
ated with the edges of E. In what follows we are going to construct from G a signed
digraph D = (U,A). For convenience we will use the following notation.

For every node u of G, c(u) will denote the minimum weight of an edge incident
to u, and eu a minimum weight edge incident to u. That is, c(eu) = c(u). Given a
minimal dependent set F ∈ C(G) of G, we let

Q = v1, e1, v2, e2, . . . , vk, ek, vk+1

denote the odd cycle of the obstruction induced by F . (Such a cycle exists by Theo-
rem 3.2.) And we suppose that the sequence e1, . . . , ek follows the clockwise order. We
say that a node vi ∈ V (Q) is left-saturated (resp., right-saturated) if ei−1 (resp., ei) is
in F ; otherwise vi is said to be left-unsaturated (resp., right-unsaturated). Note that,
since by Definition 3.1 E(Q) \ F �= ∅, Q has at least one left-unsaturated node and
one right-unsaturated node. If vi is unsaturated (i.e., left- and right-unsaturated),
we denote by fi the unique edge in F incident to vi. A node v is said to be a left-
node (resp., right-node) if v is either left-saturated or left-unsaturated (resp., right-
saturated or right-unsaturated).

Now we define the signed digraph D = (U,A) (see Figure 4 for an illustration).

signed arc

unsigned arc

vRS

vRUvLU

vLS

uRU

uRSuLS

uLU

c(uv)

c(uv)

c(u) c(u)

Fig. 4. The subdigraph of D corresponding to an edge uv of G.
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• For every node u ∈ V , consider four nodes uLS, uRS, uLU, uRU which corre-
spond to the four possible states of u: left-saturated, right-saturated, left-
unsaturated, and right-unsaturated. And consider four unsigned arcs: uLSuRS,
uLSuRU, uLUuRS with weight 0 and uLUuRU with weight d(uLUuRU) = c(u).

• For every edge uv ∈ E consider four signed arcs: uRUvLU, vRUuLU with weight
d(uRUvLU) = d(vRUuLU) = 0 and uRSvLS, vRSuLS with weight d(uRSvLS) = d(vRSuLS) =
c(uv).

Observe that the tail of an unsigned arc is always a left-node and the head is always
a right-node. Also note that any sequence of arcs in D alternates between signed and
unsigned arcs. In consequence, any circuit of D has an even number of arcs.

We let Σ denote the set of signed arcs and U = A \ Σ the set of unsigned arcs.
So a circuit QD of D is odd if |A(QD) ∩ Σ| is odd.

Let QD be a minimum weight odd circuit of D with respect to the weight vector
d. Let F be a minimum weight dependent set of G with respect to the weight vector
c. In what follows we are going to show that d(QD) = c(F ). As a consequence, we
can compute minimum dependent sets by calculating minimum weight odd circuits
in an auxiliary graph.

First we show that c(F ) ≤ d(QD). Let F ′ be the set of edges uv of G such that
either

(i) uRSvLS is an arc of QD,
(ii) vRSuLS is an arc of QD, or
(iii) the edge uv is the minimum weight edge eu incident to u and uLUuRU is an arc

of QD.
The way we defined the cost vector d yields c(F ′) ≤ d(QD). Let w1, . . . , wq be
the sequence of nodes of QD (where the indices are modulo q). Then the sequence
u1, . . . , uq′ of nodes of G, obtained by taking the node ui if wi is either uLSi , uRSi , uLUi ,
or uRUi (note that q′ ≤ q), induces a subgraph H of G whose edges correspond to the
signed arcs of QD. Since QD is odd, H contains an odd cycle Q′. Since Q′ is a cycle
of the graph G[V (F ′)], by Lemma 2.3, F ′ is dependent. As F is chosen minimum,
c(F ) ≤ c(F ′) and therefore

c(F ) ≤ d(QD).

Now we show that c(F ) ≥ d(QD). Since c is nonnegative we can assume that F is
minimal. By Theorem 3.2, F induces an obstruction with respect to an odd cycle Q.

Let P1 = vi, ei, . . . , vj−1, ej−1, vj be a path of Q such that all the edges of P1

are in F and ei−1, ej /∈ F . The node vi is left-unsaturated and right-saturated,
the nodes vi+1, . . . , vj−1 are left- and right-saturated, and vj is left-saturated and
right-unsaturated. In the digraph D, the path P1 corresponds to a path PD

1 with
node set V (PD

1 ) = {vLUi , vRSi , vLSi+1, v
RS
i+1, . . . , v

LS
j−1, v

RS
j−1, v

LS
j , vRUj }. The arc set of PD

1

is A(PD
1 ) = {ai, σi, . . . , aj−1, σj−1, aj}, where ai, . . . , aj ∈ U are unsigned arcs with

weight 0 and σl is a signed arc with cost d(σl) = c(el) for l = i, . . . , j − 1. Thus

d(PD
1 ) = d(ai) + d(σi) + · · · + d(aj−1) + d(σj−1) + d(aj)

= c(ei) + · · · + c(ej−1)

= c(P1).

Let P2 = vi, ei, . . . , vj−1, ej−1, vj be a path of Q such that no edge of P2 is in
F . The node vi is right-unsaturated, the nodes vi+1, . . . , vj−1 are left- and right-
unsaturated, and vj is left-unsaturated. In D, there is a path PD

2 with node set
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V (PD
2 ) = {vRUi , vLUi+1, v

RU
i+1, . . . , v

LU
j−1, v

RU
j−1, v

LU
j }. The arc set of PD

2 is A(PD
2 ) = {σi,

ai+1, σi+1, . . . , aj−1, σj−1}, where al ∈ U is an unsigned arc with cost c(vl) for l =
i + 1, . . . , j − 1 and σi, . . . , σj−1 are signed arcs with cost 0.

Thus

d(PD
2 ) = d(σi) + d(ai+1) + d(σi+1) + · · · + d(aj−1) + d(σj−1)

= c(vi+1) + · · · + c(vj−1)

≤
∑

l=i+1,...,j−1

c(fl).

(Recall that fl is the unique edge of F incident to vl.) Observe now that Q decomposes
into paths of types P1 and P2. The associated paths of D of types PD

1 and PD
2

form a circuit RD of D whose weight d(RD) is less than or equal to c(F ). Since
|Σ ∩ A(RD)| = |E(Q)|, RD is an odd circuit of D. Then d(QD) ≤ d(RD), and
therefore

c(F ) ≥ d(QD).

So we can state the following theorem.
Theorem 4.1. The minimum dependent set problem with nonnegative weights

can be solved in polynomial time.

5. Polyhedral consequences and concluding remarks. Given a graph G =
(V,E), let IBSP(G) be the convex hull of the incidence vectors of the edge sets of
induced bipartite subgraphs of G.

Let P(G) be the polyhedron given by

0 ≤ x(e) ≤ 1 ∀ e ∈ E,(1)

x(C) ≤ |C| − 1 ∀ C ∈ C(G).(2)

Obviously, inequalities (1) and (2) are valid for IBSP(G). Constraints (1) are called
the trivial inequalities. Constraints (2) will be called the dependent set inequalities.

Moreover, we have that MIBSP is equivalent to the integer program

max {wx : x ∈ P(G), x integer}.

The separation problem for a class of inequalities is to decide whether a given vector
x̄ ∈ QE satisfies the inequalities and, if not, to find an inequality that is violated by x̄.

Given a vector x̃ ∈ RE
+, let x̄ ∈ RE

+ such that x̄(e) = 1−x̃(e) for all e ∈ E. Clearly,
there is an inequality of type (2) violated by x̃ if and only if the minimum weight of
a dependent set with respect to x̄ is less than 1. It thus follows by Theorem 4.1 that
the separation problem associated with inequalities (2) is solvable in polynomial time.
From [15] we then have the following corollary.

Corollary 5.1. The problem

max {wx : x ∈ P(G)}

can be solved in polynomial time.
A natural question that may be posed is to characterize the graphs for which the

polytope P(G) is integral. As it will turn out, these graphs are precisely the bipartite
graphs.
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Proposition 5.2. P(G) is integral if and only if G is bipartite.
Proof. If G = (V,E) is bipartite, then P(G) is given by the trivial inequalities,

and hence any extreme point of P(G) is integer.
Now suppose that G = (V,E) is not bipartite, and let Q = v1, e1, v2, e2, . . . , v2k+1,

e2k+1, v2k+2, where v2k+2 = v1, be an odd cycle of G. We can assume that Q is a
hole. Consider the solution x̄ ∈ RE given by

x̄(e) =

{
k

k+1 if e ∈ E(Q),

0 if not.

Let Ci = {ei, ei+2, . . . , ei+2k} for i = 1, . . . , 2k + 1 (the indices are modulo 2k + 1).
Note that |Ci| = k + 1. By Theorem 3.2, the Ci’s are in C(G). We also have that x̄
satisfies the system

x(Ci) = |Ci| − 1 for i = 1, . . . , 2k + 1,
x(e) = 0 ∀e ∈ E \ E(Q).

Furthermore it is not hard to see that x̄ is the unique solution of that system. Hence
x̄ is an extreme point of P(G).

In contrast with the classical bipartite subgraph problem, the linear relaxation of
the MIBSP does not seem to be quite strong. As it has been shown by Guenin [19], for
the former problem, the trivial and the cycle inequalities suffice to describe the bipar-
tite subgraph polytope in a large class of graphs (the weakly bipartite graphs) which
contains, for instance, planar graphs and bipartite graphs. However, for the MIBSP,
as shown by Proposition 5.2, the graphs for which the trivial and the dependent set
inequalities completely describe IBSP(G) are reduced to the bipartite graphs. We
can also notice that any inequality that is valid for the bipartite subgraph polytope
is also valid for the IBSP(G). These inequalities are not, however, so strong for the
MIBSP. To see this, consider, for instance, a clique (W,T ) on p nodes in a graph G.
The inequality x(T ) ≤ p

2��
p
2� is valid for the bipartite subgraph polytope on G and

is facet defining [3], whereas, any solution for the MIBSP can take at most one edge
from T .

e f e e ef f f

(d)(c)(b)(a)

Fig. 5. The minimal dependent sets of size 2.

These negative observations motivated us to investigating new valid inequalities
for IBSP(G). By Theorem 3.2, {e, f} ∈ C(G) if and only if the subgraph induced by
the endnodes of e, f is one of the four graphs of Figure 5. Let us consider from G
an auxiliary graph A(G) whose nodes correspond to the edges of G and such that
two nodes e, f are linked by an edge if and only if {e, f} ∈ C(G). Remark that any
independent set of G is a stable set of A(G). (Note that the converse is not true.)
Hence the so-called clique and odd cycle inequalities of the stable set polytope of
A(G) (see [20]) given by

x(K) ≤ 1 for every clique K of A(G),(3)

x(C) ≤ |C| − 1

2
for every odd cycle C of A(G)(4)
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are valid for IBSP(G). Notice that the edge set of a clique of G corresponds to a clique
of A(G). (Note that the converse is not true.) As it will turn out, the separation
problem for inequalities (3) is NP-hard. The separation problem for inequalities (4)
can be solved in polynomial time (see, for instance, [17]).

Proposition 5.3. The separation problem for inequalities (3) is NP-hard.
Proof. We use a reduction from the maximum clique problem. Let G = (V,E)

be a graph. Add a node u and the edges uv for each v ∈ V to obtain the graph

G̃ = (Ṽ , Ẽ). Let x̃ ∈ RẼ given by

x̃(e) =

{
1/k if e ∈ Ẽ \ E,
0 if e ∈ E.

Clearly, there is a clique K in A(G̃) with x̃(K) > 1 if and only if there is a clique of
size k + 1 in G.

Let G = (V,E) be a (nonbipartite) graph and let Q and Ci be as defined in the
proof of Proposition 5.2, i = 1, . . . , 2k + 1. Observe that e belongs to k + 1 different
Ci’s for each e ∈ E(Q). As the Ci’s are dependent sets in G, the following inequalities
are valid for IBSP(G):

x(Ci) ≤ k for i = 1, . . . , 2k + 1.

By summing these inequalities, we obtain the inequality

(k + 1)x(E(Q)) ≤ k(2k + 1).

Therefore the inequalities

(5) x(E(Q)) ≤ |E(Q)| − 2, for every odd cycle Q of G,

are valid for IBSP(G). Inequalities (5) also arise naturally since any independent set
of G uses at most |V (Q)| − 1 nodes (and thus at most |E(Q)| − 2 edges) of Q. Note
that inequalities (5) are different from the inequalities induced by the odd cycles of
A(G). (If, for instance, G = (V,E) is an odd cycle with edge set, say E = {e1, . . . , e5},
then A(G) has no edge, while G produces the inequality x(E) ≤ 3 of type (5) which
is facet defining.) Inequalities (5) will be called cycle inequalities.

Proposition 5.4. The separation problem for inequalities (5) can be solved in
polynomial time.

Proof. Let x̄ be a vector associated with the edges of G. We may suppose that x̄
satisfies the trivial inequalities. Let y ∈ RE such that y(e) = 1 − x̄(e) for all e ∈ E.
An inequality (5) is violated by x̄ if and only if y(E(Q)) < 2. Thus the separation
problem for inequalities (5) reduces to finding a minimum odd cycle in G with respect
to the weight vector y. As y(e) ≥ 0 for all e ∈ E, this can be done in polynomial time
as shown in [18].

It would be interesting to determine when the dependent, cycle, and clique in-
equalities are facet defining for the polytope IBSP(G).

The approach presented in this paper can be adapted to handle the maximum
induced forest and the maximum induced acyclic subgraph problems (see [8]).
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