
Integer Programming Formulations for the
k -Edge-Connected 3-Hop-Constrained Network
Design Problem

I. Diarrassouba
Laboratoire LMAH, Université du Havre, 25 Rue Philippe Lebon, 76600 Le Havre, France

V. Gabrel and A. R. Mahjoub
Laboratoire LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775
Paris Cedex 16, France

L. Gouveia
Departamento de Estatística e Investigação Operacional, Centro de Investigação Operacional,
Faculdade de Ciênçias, Universidade de Lisboa, Portugal

P. Pesneau
University of Bordeaux, INRIA Bordeaux - Sud-Ouest, IMB UMR 5251, France

In this article, we study the k -edge-connected L-hop-
constrained network design problem. Given a weighted
graph G = (V , E), a set D of pairs of nodes, two inte-
gers L ≥ 2 and k ≥ 2, the problem consists in finding
a minimum weight subgraph of G containing at least k
edge-disjoint paths of length at most L between every
pair {s, t } ∈ D . We consider the problem in the case where
L = 2, 3 and |D| ≥ 2. We first discuss integer program-
ming formulations introduced in the literature. Then, we
introduce new integer programming formulations for the
problem that are based on the transformation of the ini-
tial undirected graph into directed layered graphs. We
present a theoretical comparison of these formulations in
terms of LP-bound. Finally, these formulations are tested
using CPLEX and compared in a computational study for
k = 3, 4, 5. © 2015 Wiley Periodicals, Inc. NETWORKS, Vol.
67(2), 148–169 2016

Keywords: survivable network; edge-disjoint paths; flow; hop-
constrained path; integer programming formulation; k-edge-
connected; aggregated formulations; separated formulations

Received December 2012; accepted May 2015
Correspondence to: A. R. Mahjoub; e-mail: mahjoub@lamsade.dauphine.fr
Contract grant sponsor: National Funding from FCT—Fundaç ā o para a
Ciência e a Tecnologia, under the project: PEst-OE/MAT/UI0152
DOI 10.1002/net.21667
Published online 26 December 2015 in Wiley Online Library
(wileyonlinelibrary.com).
© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Let G = (V , E) be an undirected graph with node set V
and edge set E and D ⊆ V × V a set of pairs of nodes, called
demands with |D| = d. If a pair {s, t} is a demand in D, we
call s and t demand nodes or terminal nodes. Let L ≥ 2 be
a fixed integer. If s and t are two nodes of V, an L-st-path in
G is a path between s and t of length at most L, where the
length is the number of edges (also called hops).

Given a weight function c : E → R, which associates the
weight c(e) to each edge e ∈ E and an integer k ≥ 2, the
k-edge-connected L-hop-constrained network design prob-
lem (kHNDP for short) consists in finding a minimum cost
subgraph of G having at least k edge-disjoint L-st-paths
between each demand {s, t} ∈ D.

The kHNDP has applications in the design of survivable
telecommunication networks where bounded-length paths
are required. Survivable networks must satisfy some con-
nectivity requirements; that is, the networks should still be
functional after the failure of certain links. As pointed out in
[33] (see also [31]), the topology that seems to be very effi-
cient (and needed in practice) is the uniform topology, that is
to say that corresponding to networks that survive after the
failure of k − 1 or fewer edges, for some k ≥ 2. However,
this requirement is often insufficient regarding the reliability
of a telecommunication network. In fact, the alternative paths
could be too long to guarantee an effective routing. In data
networks, such as the Internet, the elongation of the route of

NETWORKS—2016—DOI 10.1002/net

the information could cause a major loss in the transfer speed.
For other networks, the signal itself could be degraded by a
longer routing. In such cases, the L-path requirement guar-
antees exactly the needed quality of the alternative routes.
Moreover, in a telecommunication network, usually several
commodities have to be routed in the network between pairs
of terminals. To ensure an effective routing, there must exist
a sufficient number of hop-constrained paths between each
pair of terminals.

The kHNDP has been extensively investigated when there
is only one demand in the network (|D| = 1). In particular,
the associated polytope has received special attention. In [30],
Huygens et al. study the kHNDP for k = 2 and L = 2, 3. They
give an integer programming formulation for the problem
and show that the linear programming relaxation of this for-
mulation completely describes the associated polytope. From
this, they obtain a minimal linear description of that polytope.
They also show that this formulation is no longer valid when
L ≥ 4. In [11], Dahl et al. study the kHNDP when L = 2
and k ≥ 2. They give a complete description of the asso-
ciated polytope in this case and show that it can be solved
in polynomial time using linear programming. In [9], Dahl
considers the kHNDP for k = 1 and L = 3. He gives a com-
plete description of the dominant of the associated polytope.
Dahl and Gouveia [10] consider the directed hop-constrained
path problem. They describe valid inequalities and charac-
terize the associated polytope when L ≤ 3. Huygens and
Mahjoub [29] study the kHNDP when k = 2 and L ≥ 4. They
also study the variant of the problem where k node-disjoint
paths of length at most L are required between two terminals.
They give an integer programming formulation for these two
problems when L = 4.

In [7], Coullard et al. investigate the structure of the poly-
hedron associated with the st-walks of length L of a graph,
where a walk is a path that may go through the same node
more than once. They present an extended formulation of the
problem, and, using projection, they give a linear description
of the associated polyhedron. They also discuss classes of
facets of that polyhedron.

The kHNDP has also been studied when |D| ≥ 2. In
[12], Dahl and Johannessen consider the case where k = 1 and
L = 2. They introduce valid inequalities and develop a branch-
and-cut algorithm. The problem of finding a minimum cost
spanning tree with hop-constraints is also considered in
[21, 22, 24]. Here, the hop-constraints limit to a positive inte-
ger H the number of links between the root and any terminal in
the network. Dahl [8] studies the problem when H = 2 from
a polyhedral point of view, and gives a complete descrip-
tion of the associated polytope when the graph is a wheel.
Finally, Huygens et al. [28] consider the problem of find-
ing a minimum cost subgraph with at least two edge-disjoint
L-hop-constrained paths between each given pair of termi-
nal nodes. They give an integer programming formulation
of that problem for L = 2, 3 and present several classes of
valid inequalities. They also devise separation routines. Using
these, they propose a branch-and-cut algorithm and discuss
some computational results.

Besides hop-constraints, another reliability condition,
which is used in to limit the length of the routing, requires
that each link of the network belongs to a ring (cycle) of
bounded length. In [18], Fortz et al. consider the two-node
connected subgraph problem with bounded rings. This prob-
lem consists in finding a minimum cost 2-node connected
subgraph (V, F) such that each edge of F belongs to a cycle
of length at most L. They describe several classes of facet-
defining inequalities for the associated polytope and devise
a branch-and-cut algorithm for the problem. In [19], Fortz et
al. study the edge version of that problem. They give an inte-
ger programming formulation for the problem in the space
of the natural design variables and describe different classes
of valid inequalities. They study the separation problem for
these inequalities and discuss branch-and-cut algorithms.

The related k-edge-connected subgraph problem and its
associated polytope have also been the subject of extensive
research in the past years. Grötschel and Monma [25] and
Grötschel et al. [26, 27] study the k-edge-connected sub-
graph problem within the framework of a general survivable
model. They discuss polyhedral aspects and devise cutting
plane algorithms. Didi Biha and Mahjoub [14] study that
problem and give a complete description of the associated
polytope when the graph is series-parallel. In [15], Didi Biha
and Mahjoub study the Steiner version of that problem and
characterize the polytope when k is even. Chopra in [6] stud-
ies the dominant of that problem and introduces a class of
valid inequalities for its polyhedron. Barahona and Mahjoub
[2] characterize the polytope for the class of Halin graphs.
In [17], Fonlupt and Mahjoub study the fractional extreme
points of the linear programming relaxation of the 2-edge-
connected subgraph polytope. They introduce an ordering on
these extreme points and characterize the minimal extreme
points with respect to that ordering. As a consequence, they
obtain a characterization of the graphs for which the linear
programming relaxation of that problem is integral. Didi Biha
and Mahjoub [16] extend the results of Fonlupt and Mahjoub
[17] to the case k ≥ 3 and introduce some graph reduction
operations. Kerivin et al. [32] study that problem in the more
general case where each node of the graph has a specific con-
nectivity requirement. They present different classes of facets
of the associated polytope when the connectivity require-
ment of each node is at most 2 and devise a branch-and-cut
algorithm for the problem in this case. In [3], Bendali et al.
study the k-edge-connected subgraph problem for the case
k ≥ 3. They introduce several classes of valid inequalities and
discuss the separation algorithm for these inequalities. They
devise a branch-and-cut algorithm using the reduction oper-
ations of [16] and give some computational results for k = 3,
4, 5. A complete survey on the k-edge-connected subgraph
problem can be found in [31].

In this work, we introduce four new integer programming
formulations for the kHNDP when L = 2, 3 and k ≥ 2. The
paper is organized as follows. In Section 2, we present integer
programming formulations introduced in the literature and
which are defined on the original graph. Then, in Sections
3 and 4, we propose two new approaches for the problem

NETWORKS—2016—DOI 10.1002/net 149

that are based on directed layered graphs, when L = 2, 3 and
k ≥ 2. One approach (called the “separated” approach) uses
a layered graph for each hop-constrained subproblem and the
other (called the “aggregated” approach) uses a single layered
graph for the whole problem. These new approaches yield
new integer programming formulations for the problem when
L = 2, 3. In Section 5, we compare the different formulations
in terms of linear programming relaxation. Finally, in the last
section, we test these formulations using CPLEX and present
some computational results for k = 3, 4, 5 and L = 2, 3.

The rest of this section is devoted to more definitions and
notation. An edge e ∈ E with endnodes u and v is denoted by
uv. Given two node subsets W and W ′, we denote by [W , W ′]
the set of edges having one endnode in W and the other in
W ′. If W = {u}, we then write [u, W ′] for [{u} , W ′]. We also
denote by W the node set V \W . The set of edges having only
one node in W is called a cut and denoted by δ(W). We will
write δ(u) for δ({u}). Given two nodes s, t ∈ V , a cut δ(W)

such that s ∈ W and t ∈ W is called an st-cut.
We will also denote by H = (U, A) a directed graph where

U is the set of nodes and A is the set of arcs. An arc a with
origin u and destination v will be denoted by (u, v). Given
two node subsets W and W ′ of U, we will denote by [W , W ′]
the set of arcs whose origin is in W and whose destination is
in W ′. As before, we will write [u, W ′] for [{u} , W ′] and W
will denote the node set U \ W . The set of arcs having their
origin in W and their destination in W is called a cut or dicut
in H and is denoted by δ+(W). We will also write δ+(u) for
δ+({u}) with u ∈ U. If s and t are two nodes of H such that
s ∈ W and t ∈ W , then δ+(W) will be called an st-cut or
st-dicut in H. If W and W ′ are two node subsets of H, then
[W , W ′]+ will denote the set of arcs of H whose origins are
in W and destinations are in W ′. As for undirected graphs,
we will write [u, W ′]+ for [{u} , W ′]+.

Given an undirected graph G = (V , E) (resp. a directed
graph H = (U, A)) and an edge subset F ⊆ E (resp. an
arc subset B ⊆ A), we let xF ∈ R

E (resp. yB ∈ R
A) be the

incidence vector of F (resp. B), that is, the 0 − 1 vector such
that xF(e) = 1 if e ∈ F (resp. yB(a) = 1 if a ∈ B) and
0 otherwise. Given F a subset of E (resp. A) and a vector
x ∈ R

E (resp. y ∈ R
A), x(F) (resp. y(F)) will represent the

term
∑

e∈F x(e) (resp.
∑

e∈F y(e)).

2. ORIGINAL GRAPH-BASED FORMULATIONS

In this section, we present three integer programming
formulations for the kHNDP. The first one is the so-called
natural formulation which uses only the design variables. The
two other formulations use paths and flows variables in the
original space.

2.1. Natural Formulation

Let G = (V , E) be an undirected graph, D ⊆ V × V be
a demand set, and two integers k ≥ 2 and L ∈ {2, 3}. If an
edge subset F ⊆ E induces a solution of the kHNDP, that
is, a subgraph (V, F) containing k-edge-disjoint L-st-paths

for every {s, t} ∈ D, then its incidence vector x satisfies the
following inequalities.

x(δ(W)) ≥ k for all st-cuts δ(W), W ⊂ V , {s, t} ∈ D,
(2.1)

x(e) ≥ 0 for all e ∈ E, (2.2)

x(e) ≤ 1 for all e ∈ E. (2.3)

In [9], Dahl considers the problem of finding a minimum
cost path between two given terminal nodes s and t of length
at most L. He studies the polyhedron (the L-path polyhe-
dron) associated with that problem and introduces a class of
inequalities as follows.

Let {s, t} ∈ D and let a partition (V0, V1, . . . , VL+1) of
V be such that s ∈ V0 and t ∈ VL+1, and Vi 	= ∅ for all
i = 1, . . . , L. Let T be the set of edges e = uv, where u ∈
Vi, v ∈ Vj, and |i − j| > 1. Then the inequality

x(T) ≥ 1

is valid for the L-path polyhedron.
Using the same partition, this inequality can be general-

ized in a straightforward way to the
kHNDP polytope as

x(T) ≥ k. (2.4)

The set T is called an L-st-path-cut, and a constraint of type
(2.4) is called an L-st-path-cut inequality. See Figure 1 for
an example of an L-st-path-cut inequality with L = 3 and,
V0 = {s} and VL+1 = {t}.

Note that T intersects every L-st-path in at least one edge
and each st-cut δ(W) intersects every st-path.

Huygens et al. [28] show that the kHNDP can be formu-
lated as an integer program using the design variables when
L = 2, 3.

Theorem 2.1 ([28]). Let G = (V , E) be a graph, k ≥ 2 and
L ∈ {2, 3}. Then the kHNDP is equivalent to the following
integer program

min
{
cx; subject to (2.1)– (2.4), x ∈ Z

E}
. (2.5)

Formulation (2.5) is called the natural formulation and
is denoted by kHNDPNat . In [28], Huygens et al. study the
polytope associated with this formulation and introduce some
facet-defining inequalities for the problem. They also develop
a branch-and-cut algorithm for the kHNDP when k = 2 and
L = 2, 3.

In [4], Bendali et al. study the kHNDP when k ≥ 2, L = 2,
3 and |D| = 1. They study the polyhedral structure of that for-
mulation and give necessary and sufficient conditions under
which the L-st-path-cut inequalities (2.4) define facets. In
particular, they show that an L-st-path-cut inequality induced
by a partition (V0, . . . , VL+1), with s ∈ V0 and t ∈ VL+1, is
facet-defining only if |V0| = |VL+1| = 1. One can easily see
that this condition also holds even when |D| ≥ 2. Thus, we
have the following theorem.

Theorem 2.2. Let {s, t} ∈ D and let π = (V0, . . . , VL+1) be
a partition of V with s ∈ V0 and t ∈ VL+1. The L-st-path-cut

150 NETWORKS—2016—DOI 10.1002/net

FIG. 1. Support graph of a L-st-path-cut with L = 3, V0 = {s} , VL+1 = {t} and T formed by the solid edges.

inequality (2.4) induced by π defines a facet of the kHNDP
polytope only if |V0| = |VL+1| = 1.

Theorem 2.2 points out the fact that an L-st-path-cut
inequality induced by a partition (V0, . . . , VL+1) such that
|V0| ≥ 2 or |VL+1| ≥ 2, is redundant with respect
to those L-st-path-cut inequalities induced by partitions
(V ′

0, V ′
1, . . . , V ′

L, V ′
L+1) with V ′

0 = {s} and V ′
L+1 = {t}. There-

fore, in the remainder of the paper, the only L-st-path-cuts that
we will consider are those induced by partitions of the form
({s} , V1, . . . , VL, {t}).

2.2. Undirected Path-Based Formulation

A solution of the kHNDP can be modelled by a collection
of L-st-paths of G, for all {s, t} ∈ D.

For all {s, t} ∈ D, let Pst be the set of L-st-paths of G, and
let μst(P) be the 0 − 1 variable which equals 1 if the path
P ∈ Pst is chosen and 0 otherwise.

If an edge subset F ⊆ E induces a solution of the kHNDP,
then the following inequalities are satisfied by its incidence
vector xF and (μst(P), P ∈ Pst , for all {s, t} ∈ D).∑

P∈Pst

μst(P) ≥ k, for all {s, t} ∈ D, (2.6)

∑
P∈Pst , e∈P

μst(P) ≤ x(e), for all e ∈ E, {s, t} ∈ D, (2.7)

x(e) ≤ 1, for all e ∈ E, (2.8)

μst(P) ≥ 0, for all P ∈ Pst , {s, t} ∈ D. (2.9)

Inequalities (2.6) state that a solution of the problem contains
at least k L-st-paths of G, for all {s, t} ∈ D, while inequalities
(2.7) and (2.8) ensure that these L-st-paths are edge-disjoint.

We have the following theorem which follows from the
above remark.

Theorem 2.3. The kHNDP for L = 2, 3 is equivalent to the
following integer program

min{cx; subject to (2.6) − (2.9), x ∈ Z
E+, μst ∈ Z

Pst+ ,

for all {s, t} ∈ D}. (2.10)

Formulation (2.10) is called the undirected path formu-
lation and is denoted by kHNDPU

Path. Note that, in many
combinatorial optimization problems, path-based formula-
tions imply an exponential number of variables, as the number
of paths in a graph is, in general, exponential. This requires
one to use appropriate methods like column generation to
solve the linear relaxation of the problem. However, for the
kHNDP, the number of L-st-paths is bounded by |V |L−1, for
each {s, t} ∈ D. Hence, the number of variables of kHNDPU

Path
is polynomial (with L = 2, 3) and its linear relaxation can be
solved by enumerating all the L-st-paths in a single linear
program.

2.3. Undirected Flow-Based Formulation

In this section, we introduce a flow-based model for the
problem using flow variables in the graph G. A similar for-
mulation has been proposed by Dahl and Gouveia [10] for
the kHNDP with k = 1 and |D| = 1, and, to the best of our
knowledge, this is the first time that such a formulation is
given for k ≥ 2 and |D| ≥ 2.

Let G′ = (V , A) be the directed graph obtained from G
by replacing each edge uv ∈ E by two arcs (u, v) and (v, u).
Given a demand {s, t} ∈ D, f st ∈ R

A is a flow vector on G′
between s and t of value k. Thus, for all {s, t} ∈ D, f st satisfies
the following constraints.

∑
a∈δ+(u)

f st(a) −
∑

a∈δ−(u)

f st(a) =
⎧⎨
⎩

k if u = s,
0 if u ∈ V \ {s, t} ,

−k if u = t,

⎫⎬
⎭ ,

for all u ∈ V , (2.11)

f st(u, s) = 0, for all (s, u) ∈ A, u 	= s, (2.12)

f st(t, v) = 0, for all (v, t) ∈ A, v 	= t, (2.13)

f st(u, v) + f st(v, u) ≤ x(uv), for all uv ∈ E, (2.14)

f st(u, v)
f st(v, u)

}
≥ 0, for all uv ∈ E, (2.15)

x(uv) ≤ 1, for all uv ∈ E. (2.16)

Note that constraints (2.12) and (2.13) remove the flow vari-
ables for every arc entering node s and leaving node t, for all

NETWORKS—2016—DOI 10.1002/net 151

FIG. 2. Illustration of the linking inequalities for an edge uv with u, v 	= s, t.

{s, t} ∈ D. In fact, it is not hard to see that these arcs will
never be used in an optimal solution of the problem. Thus the
corresponding flow variables are set to 0. Also inequalities
(2.14) are the linking inequalities which state that if an edge
is not taken in the solution, then the two corresponding arcs
have a flow equal to 0. They also indicate that for a given
demand {s, t} and an edge uv with u, v 	= s, t, if edge uv
is taken in the solution, then only one of the arcs (u, v) and
(v, u) can be used by the flow. This comes from the fact that
in an optimal solution, the edge uv may be used in an st-path
either from u to v (this is arc (u, v)) or from v to u (this is
arc (v, u)). In fact, if both arcs (u, v) and (v, u) are used in the
solution, then the solution in the original graph contains two
3-st-paths of the form (s, u, v, t) and (s, v, u, t) which share
the edge uv. However, by removing the edge uv, these two
st-paths are replaced by the two st-paths (s, u, t) and (s, v,
t), of length 2, with lower cost. An illustration is given in
Figure 2.

To represent the hop-constraint, we have to introduce
additional inequalities for all demands {s, t} ∈ D:

• when L = 2, it is sufficient to prevent in a solution the selection
of an “internal” arc (u, v) ∈ A, that is, an arc incident neither
to s nor to t, as follows:

f st(u, v) = 0 for all (u, v) ∈ A such that u 	= s, v 	= t.
(2.17)

• when L = 3, we have to add the following inequalities to the
system:∑

(u,v)∈A,v 	=t

f st(u, v) ≤ f st(s, u), for all (s, u) ∈ A, (2.18)

∑
(u,v)∈A,v 	=t

f st(u, v) ≤ 0, for all u ∈ V \ {s, t}

such that (s, u) /∈ A. (2.19)

Inequalities (2.18) indicate that if arc (s, u) is not in the solu-
tion, then any “internal” arc (u, v) cannot be in the solution.
Inequalities (2.19), in a similar way, express the fact that any
“internal” arc (u, v) cannot be in the solution when (s, u) does
not belong to A. Both inequalities are necessary and sufficient
to eliminate all paths of length greater than 3. Observe that,
when L = 3, constraints similar to (2.18) for arcs (v, t) are not
necessary as they can be obtained from (2.18) and the flow
conservation equations (2.11).

It can be easily seen that the solution set of the kHNDP is
completely described by inequalities (2.11)–(2.16), together
with integrality constraints, equations (2.17) for L = 2 and
inequalities (2.18)–(2.19) for L = 3.

Theorem 2.4. The kHNDP is equivalent to

min {cx; subject to (2.11)– (2.16), (2.17),
x ∈ Z

E+, f st ∈ Z
A+, for all {s, t} ∈ D

}
if L = 2, and to

min {cx; subject to (2.11)– (2.16), (2.18) − (2.19),
x ∈ Z

E+, f st ∈ Z
A+, for all {s, t} ∈ D

}
, if L = 3.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.20)

This formulation will be called the undirected flow for-
mulation and is denoted by kHNDPU

Flow.

3. DEMAND DECOMPOSITION BASED
FORMULATIONS

In this section, we will introduce three integer program-
ming formulations for the kHNDP for L = 2, 3 where we
use a directed layered graph to model each hop-constrained
subproblem. These formulations will be called separated
formulations.

In these layered digraphs, any dipath has at most 3 hops.
The idea of replacing hop-constrained path subproblems in
the original graph by unconstrained path subproblems in an
adequate graph has been first suggested in Gouveia [22] and
subsequently used in other related works (e.g., [5] and [23])
for more general hop-constrained network design problems.
However, the directed graphs proposed here are different
from the ones suggested in [22] when L = 3.

3.1. Graph Transformation

Given G = (V , E) and {s, t} ∈ D, let G̃st = (Ṽst , Ãst) be
the layered digraph obtained from G as follows:

• Ṽst = Nst ∪ N ′
st ∪ {s, t} with Nst = V \ {s, t} and N ′

st is a copy
of Nst (each node u ∈ Nst corresponds to a node u′ of N ′

st),
• Ãst is composed of four kinds of arcs:

• for all su ∈ E, (s, u) ∈ Ãst ,
• for all vt ∈ E, (v′, t) ∈ Ãst ,
• for all u ∈ Nst , we introduce min {|[s, u]|, |[u, t]|, k} arcs of

the form (u, u′) ∈ Ãst ,
• if L = 3, for all uv ∈ E \ {st} with u, v ∈ Nst , {(u, v′),

(v, u′)} ∈ Ãst (see Fig. 3 for an illustration with L = 3).

For an edge e = uv ∈ E, we denote by Ãst(e) the set of
arcs of G̃st corresponding to the edge e:

• when u = s (resp. v = t), Ãst(e) contains (s, v) (resp. (u′, t)),
• when u 	= s and v 	= t, if L = 3, Ãst(e) = {

(u, v′), (v, u′)
}

and,
if L = 2, Ãst(e) is empty.

152 NETWORKS—2016—DOI 10.1002/net

FIG. 3. Construction of graphs G̃st with D = {{s1, t1} , {s1, t2} , {s3, t3}} for L = 3 and k = 1.

Note that G̃st may have nodes different from u ∈ Nst ∪ N ′
st

with indegree or outdegree equal to zero. These nodes can be
removed from G̃st after its construction.

G̃st contains four layers: {s} , Nst , N ′
st , {t} and no circuit.

Also, any st-dipath in G̃st is of length no more than 3:

• the length is equal to 1 if the st-dipath is composed of the
single arc (s, t),

• the length is equal to 3 for both st-dipaths of the form
(s, u, u′, t) corresponding to path (s, u, t) of length 2 in G,
and st-dipaths of the form (s, u, v′, t) corresponding to path
(s, u, v, t), with u 	= v, of length 3 in G.

Moreover, notice that in G̃st there exist exactly min{|[s, u]|,
|[u, t]|, k} arcs between two vertices (u, u′), for every u ∈
V\{s, t}. If G is simple, that is, does not contain parallel edges,
then min {|[s, u]|, |[u, t]|, k} ≤ 1, for every u ∈ V \ {s, t},
and min {|[s, u]|, |[u, t]|, k} ≤ k for general graphs. If G is
simple and complete, then min {|[s, u]|, |[u, t]|, k} = 1, for
every u ∈ V \ {s, t}. The reason for adding such a number of
arcs between two vertices (u, u′) in G̃st is that, as mentioned
before, an st-dipath containing arc (u, u′) in G̃st corresponds
to a 2-st-path (s, u, t) going through vertex u in G. Moreover,
the number of edge-disjoint 2-st-paths of G going through
node u is less than or equal to min {|[s, u]|, |[u, t]|} (notice
that G may contain parallel edges). As at most k edge-disjoint
2-st-paths are chosen in a solution, we may then take at most
min {|[s, u]|, |[u, t]|, k} edge-disjoint 2-st-paths of G. Thus,
G̃st must contain at least min {|[s, u]|, |[u, t]|, k} arcs of the
form (u, u′), for every u ∈ V \ {s, t}. Obviously, it suffices to
have exactly min {|[s, u]|, |[u, t]|, k} arcs of the form (u, u′) in
G̃st , for every u ∈ V \ {s, t}.

Therefore, each L-st-path in G corresponds to an st-dipath
in G̃st and conversely. We have the following lemma, given
without proof. For the proof, the reader can refer to [13].

Lemma 3.1. Let L ∈ {2, 3} and {s, t} ∈ D.

(i). If two L-st-paths of G are edge-disjoint, then the corre-
sponding two st-dipaths in G̃st are arc-disjoint.

(ii). If two st-dipaths of G̃st are arc-disjoint, then the corre-
sponding two L-st-paths in G are edge-disjoint.

Note that each graph G̃st contains |Ṽst | = 2|V | − 2 (=
|Nst ∪N ′

st ∪{s, t} |) nodes and |̃Ast | ≤ |δ(s)|+|δ(t)|−|[s, t]|+
k(|V | − 2) arcs if L = 2 and |̃Ast | ≤ 2|E| − |δ(s)| − |δ(t)| +
|[s, t]| + k(|V | − 2) arcs if L = 3, for all {s, t} ∈ D.

As a consequence of Lemma 3.1, for L = 2, 3 and every
demand {s, t} ∈ D, a set of k edge-disjoint L-st-paths of G
corresponds to a set of k arc-disjoint st-dipaths of G̃st , and
k arc-disjoint st-dipaths of G̃st correspond to k edge-disjoint
L-st-paths of G. Therefore, we have the following corollary.

Corollary 3.1. Let H be a subgraph of G and let H̃st , {s, t} ∈
D, be the subgraph of G̃st obtained by considering all the arcs
of G̃st corresponding to an edge of H, plus the arcs of the form
(u, u′), u ∈ V\{s, t}. Then H induces a solution of the kHNDP
if H̃st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D.
Conversely, given a set of subgraphs H̃st of G̃st , {s, t} ∈ D, if
H is the subgraph of G obtained by considering all the edges
of G associated with at least one arc in a subgraph H̃st , then
H induces a solution of the kHNDP only if H̃st contains k
arc-disjoint st-dipaths, for every {s, t} ∈ D.

Corollary 3.1 suggests at once the following flow-based
formulation.

3.2. Separated Flow Formulation

Given a demand {s, t}, we let f st ∈ R
Ãst be a flow vector

on G̃st of value k between s and t.

NETWORKS—2016—DOI 10.1002/net 153

Then f st satisfies the flow conservation constraints (3.1),
given by

∑
a∈δ+(u)

f st
a −

∑
a∈δ−(u)

f st
a =

⎧⎨
⎩

k if u = s,
0 if u ∈ Ṽst \ {s, t} ,
−k if u = t,

⎫⎬
⎭ ,

for all u ∈ Ṽst , {s, t} ∈ D (3.1)

and

f st
a ≤ x(e), for all a ∈ Ãst(e), e ∈ E, {s, t} ∈ D. (3.2)

f st
a ≤ 1, for all a = (u, u′), u ∈ V \ {s, t} , {s, t} ∈ D. (3.3)

f st
a ≥ 0, for all a ∈ Ãst , {s, t} ∈ D. (3.4)

x(e) ≤ 1, for all e ∈ E. (3.5)

Inequalities (3.2) are also called linking inequalities. They
indicate that if an edge e ∈ E is not in the solution, then
the flow on every arc corresponding to e is 0. Inequalities
(3.4)–(3.5) are the trivial inequalities.

Thus, we have the following theorem.

Theorem 3.1. The kHNDP for L = 2, 3 is equivalent to the
following integer program

min
{

cx; subject to (3.1)– (3.5), x ∈ Z
E+, f st ∈ Z

Ãst+ ,

for all {s, t} ∈ D} . (3.6)

Formulation (3.6) will be called the separated flow formu-
lation and will be denoted by kHNDPSep

Flow.

3.3. Separated Path Formulation

As the well-known work by Rardin and Choe [34], it is
known that flows can also be modeled by paths. Every solu-
tion of the problem can, hence, be represented by directed
st-paths in graphs G̃st , for all {s, t} ∈ D.

For each demand {s, t} ∈ D, let P̃st be the set of st-dipaths
in G̃st and, for each P ∈ P̃st , let μst(P) be a binary variable
whose value is 1 if P is used in a solution and 0 if not.

If an edge subset F ⊆ E induces a solution of the kHNDP,
then xF and (μst(P), P ∈ P̃st , {s, t} ∈ D) satisfy the following
inequalities.

∑
P∈P̃st

μst(P) ≥ k, for all {s, t} ∈ D, (3.7)

∑
P∈P̃st ,a∈P

μst(P) ≤ x(e), for all a ∈ Ãst(e),

e ∈ E, {s, t} ∈ D, (3.8)

∑
P∈P̃st ,a∈P

μst(P) ≤ 1, for all a = (u, u′),

u ∈ V \ {s, t} , {s, t} ∈ D, (3.9)

x(e) ≤ 1, for all edge e ∈ E, (3.10)

μst(P) ≥ 0, for all P ∈ P̃st , {s, t} ∈ D. (3.11)

Inequalities (3.7) express the fact that the solution must con-
tain at least k st-dipaths. Inequalities (3.8) and (3.9) indicate
that these st-dipaths are arc-disjoint.

The following theorem gives an integer programming
formulation for the kHNDP using the path-based model
described above.

Theorem 3.2. The kHNDP for L = 2, 3 is equivalent to the
following integer program

min
{

cx; subject to (3.7) − (3.11), x ∈ Z
E+, μst ∈ Z

P̃st+ ,

for all {s, t} ∈ D} . (3.12)

Formulation (3.12) is called the separated path formula-
tion and is denoted by kHNDPSep

Path. Note that for each demand
{s, t} ∈ D, the number of st-paths in the graph G̃st is bounded
by |V |L−1, which is polynomial for L = 2, 3. Thus, this for-
mulation contains a polynomial number of variables while
the number of nontrivial inequalities is at most

d +
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2)

if L = 2,

d + 2d|E| −
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2)

if L = 3,

which is polynomial.
Hence, as for the undirected path-based formulation

kHNDPU
Path, its linear relaxation can be solved in polyno-

mial time using linear programming and by enumerating all
the variables and constraints of the problem.

Still using Rardin and Choe [34], it can be shown that the
separated flow and path formulations (3.6) and (3.12) provide
the same LP-bound.

Also, one can easily observe that Formulation (3.12) is
equivalent to Formulation (2.10), as L-st-paths in the original
graph G correspond to st-dipaths in the directed graphs G̃st ,
for all {s, t} ∈ D, and vice versa. Thus, these formulations
also produce the same LP-bound.

Proposition 3.1. Formulation (3.12) and Formulation
(2.10) are equivalent and produce the same LP-bound.

3.4. Separated Cut Formulation

The previous two models include constraints guaranteeing
that for each demand {s, t} ∈ D, there exists a flow of value

154 NETWORKS—2016—DOI 10.1002/net

k under the arc capacities given by x. By the Max flow-Min
cut theorem, such a flow exists if and only if the capacity of
any st-dicut, in each graph G̃st , is at least k. This observation
leads at once to the following formulation which provides
the same LP bound as the previous separated flow and path
formulations.

Let H ⊆ E be an edge subset which induces a solu-
tion of the kHNDP in G and let H̃st be the arc subset of
G̃st , {s, t} ∈ D, corresponding to H. Then, the incidence

vector xH of H and the vectors yH̃st
st , {s, t} ∈ D, satisfy the

following inequalities.

yst(δ
+(W̃)) ≥ k, for all st − dicut δ+(W̃) of G̃st ,

for all {s, t} ∈ D, (3.13)

yst(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, {s, t} ∈ D, (3.14)

yst(a) ≤ 1, for all a = (u, u′),
for all u ∈ V \ {s, t} , {s, t} ∈ D, (3.15)

yst(a) ≥ 0, for all a ∈ Ãst , {s, t} ∈ D, (3.16)

x(e) ≤ 1, for all e ∈ E. (3.17)

Inequalities (3.13) will be called directed st-cut inequali-
ties or st-dicut inequalities and inequalities (3.14) linking
inequalities. Inequalities (3.14) indicate that an arc a ∈ Ãst

corresponding to an edge e is not in H̃st if e is not taken in H.
Inequalities (3.15)–(3.17) are the trivial inequalities.

We have the following result which is given without proof
as it easily follows from the above discussion.

Theorem 3.3. The kHNDP for L = 2, 3 is equivalent to the
following integer program

min
{

cx; subject to (3.13) − (3.17), x ∈ Z
E+, yst ∈ Z

Ãst+ ,

for all {s, t} ∈ D} . (3.18)

This formulation is called the separated cut formulation
and is denoted by kHNDPSep

Cut . It contains a polynomial num-
ber of variables. Indeed, for L = 2, the number of variables
is

|E| +
∑

{s,t}∈D

|̃Ast | ≤ |E| +
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|)

+ dk(|V | − 2),

and for L = 3, it is

|E| +
∑

{s,t}∈D

|̃Ast | ≤ |E| + 2d|E|

−
∑

{s,t}∈D

(|δ(s)| + |δ(t)| − |[s, t]|) + dk(|V | − 2)

(recall that d = |D|).
However, the number of constraints is exponential as the

number of directed st-cuts is exponential in the size of G̃st ,

for all {s, t} ∈ D. As we will see in Section 6, its linear
programming relaxation can be solved in polynomial time
using a cutting plane algorithm.

In the next section, we introduce a further formulation for
the kHNDP also based on directed graphs. However, unlike
the separated formulations, this formulation is supported by
only one directed graph.

4. AGGREGATED FORMULATION FOR THE
k HNDP

We denote by SD and TD respectively the sets of source
and destination nodes of D. In the case where two demands
{s1, t1} and {s2, t2} are such that s1 = t2 = s, we keep a copy
of s in both SD and TD.

In this section, we will introduce a new formulation for
the kHNDP which is supported by a single directed graph
G̃ = (Ṽ , Ã) obtained from G as follows:

• Ṽ = SD ∪ N ′ ∪ N ′′ ∪ TD with N ′ and N ′′ two copies of V ; we
denote by u′ and u′′ the nodes of N ′ and N ′′ corresponding to
a node u ∈ V .

• Ã contains 6 kinds of arcs:
1. for each demand {s, t} ∈ D

• if st ∈ E, we add in Ã the arc (s, t′),
• if su ∈ E with u ∈ V \ {s, t}, we add an arc

(s, u′),
• if vt ∈ E with v ∈ V \{s, t}, we add an arc (v′′, t),

2. for each node u ∈ V , we add max{s,t}∈D{min{|[s, u]|,
|[u, t]|, k}} arcs of the form (u′, u′′),

3. for each t ∈ TD, we add min{k, max{|[s, t]|, s ∈ SD

with {s, t} ∈ D}} arcs of the form (t′, t),
4. if L = 3, for each edge e = uv ∈ E, we add two

arcs (u′, v′′) and (v′, u′′).

Figures 4 and 5 show examples for L = 2 and L = 3 with k = 1.
Notice that the digraph G̃ may have nodes u ∈ N ∪ N ′

with indegree or outdegree equal to zero. These nodes can be
removed from G̃ after its construction. Also, note that when
G is simple (that is with no parallel edges), |[u′, u′′]+| =
|[t′, t]+| ≤ 1, for every u ∈ V and every t ∈ TD, and
|[u′, u′′]+| = |[t′, t]+| = 1 if G is complete.

G̃ contains |Ṽ | = 2|V | + |SD| + |TD| nodes and |̃A| ≤
k|V | + ∑

s∈S |δ(s)| + ∑
t∈T |δ(t)| arcs if L = 2 and |̃A| ≤

2|E| + k|V | + ∑
s∈S |δ(s)| + ∑

t∈T |δ(t)| arcs if L = 3.
If G̃ = (Ṽ , Ã) is the digraph associated with G, then for

an edge e ∈ E, we denote by Ã(e) the set of arcs of G̃
corresponding to e.

Observe that G̃ is acyclic. Also note that for a given
demand {s, t} ∈ D, every st-dipath in G̃ contains at most
3 arcs. An L-st-path P = (s, u, v, t) of G, where u and v may
be the same, corresponds to an st-dipath P̃ = (s, u′, v′′, t) in
G̃. Conversely, every st-dipath P̃ = (s, u′, v′′, t) of G̃, where
u′ and v′′ may correspond to the same node of V, corresponds
to an L-st-path P = (s, u, v, t), where u and v may be the
same. Moreover G̃ does not contain any arc of the form (s, s′)
and (t′′, t), for every s ∈ SD and t ∈ TD. If a node t ∈ TD

appears in exactly one demand {s, t}, then [s′′, t] = ∅. In the

NETWORKS—2016—DOI 10.1002/net 155

FIG. 4. Construction of graph G̃ with D = {{s1, t1} , {s1, t2} , {s3, t3}}, L = 2 and k = 1.

FIG. 5. Construction of graph G̃ with D = {{s1, t1} , {s1, t2} , {s3, t3}}, L = 3 and k = 1.

remainder of this section we will suppose w.l.o.g. that each
node of TD is involved, as destination, in only one demand.
In fact, in general, if a node t ∈ TD is involved, as destination,
in more than one demand, say {s1, t} , . . . ,

{
sp, t

}
, with p ≥ 2,

then one may replace in TD t by p nodes t1, . . . , tp and in D
each demand {si, t} by {si, ti} , i = 1, . . . , p.

We have the following result, given without proof. For a
complete proof, the reader can refer to [13].

Lemma 4.1. Let L ∈ {2, 3}. If each node t ∈ TD appears in
exactly one demand, then for every {s, t} ∈ D,

(i). if two L-st-paths of G are edge-disjoint, then the corre-
sponding st-dipaths of G̃ are arc-disjoint.

(ii). if two st-dipaths of G̃ are arc-disjoint, then the cor-
responding st-paths in G contain two edge-disjoint
L-st-paths.

As a consequence of Lemma 4.1, the graph G contains k
edge-disjoint L-st-paths for a demand {s, t} if and only if G̃
contains at least k arc-disjoint st-dipaths. Thus, each solution
of the kHNDP in G corresponds to a solution of the so-called
Survivable Directed Network Design Problem (kSNDP for
short) in G̃ with demand set D. This latter problem consists
in finding in a directed graph, and for a given set of demands, a
subgraph containing k arc-disjoint st-dipaths for all demands
{s, t}. Hence, we have the following corollary.

Corollary 4.1. Let H be a subgraph of G and let H̃ be the
subgraph of G̃ obtained by considering all the arcs of G̃ cor-
responding to the edges of H together with the arcs of the form
(u′, u′′), u ∈ V, and (t′, t), for every t ∈ TD. Then H induces
a solution of the kHNDP if H̃ is a solution of the Survivable
Directed Network Design Problem (kSNDP). Conversely, if

156 NETWORKS—2016—DOI 10.1002/net

H̃ is a subgraph of G̃ and H is the subgraph of G obtained
by considering all the edges which correspond to at least one
arc of H̃, then H induces a solution of the kHNDP only if H̃
is a solution of the kSNDP.

By Menger’s Theorem, G̃ contains k arc-disjoint st-
dipaths if and only if every st-dicut of G̃ contains at least
k arcs. If F ⊆ E is a set of edges of G that induces a solution
of the kHNDP, then x ∈ R

E and y ∈ R
Ã+ satisfy the following

inequalities

y(δ+(W̃)) ≥ k, for all st − dicut δ+(W̃), {s, t} ∈ D, (4.1)

y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, (4.2)

y(a) ≥ 0, for all a ∈ Ã, (4.3)

x(e) ≤ 1, for all e ∈ E. (4.4)

We have the following theorem, which easily follows from
Corollary 4.1.

Theorem 4.1. The kHNDP for L = 2, 3 is equivalent to the
following integer program

min
{

cx; subject to (4.1)– (4.4), x ∈ Z
E+, y ∈ Z

Ã+
}

. (4.5)

Formulation (4.5) will be called the aggregated formula-
tion and is denoted by kHNDPAg. Inequalities (4.1) will be
called directed st-cut inequalities or st-dicut inequalities and
(4.2) will be called linking inequalities. The latter inequali-
ties indicate that an arc a, corresponding to an edge e, is not
chosen in the solution of kSNDP if e is not chosen in the
solution of kHNDP.

This formulation contains |E| + |̃A| ≤ |E| + k|V | +∑
s∈SD

|δ(s)|+∑
t∈TD

|δ(t)| variables if L = 2 and |E| + |̃A| ≤
3|E| + k|V | + ∑

s∈SD
|δ(s)| + ∑

t∈TD
|δ(t)| variables if L = 3.

The number of constraints is exponential as the st-dicuts are
exponential in number. But, as it will turn out, the separation
problem for inequalities (4.1) can be solved in polynomial
time and, hence, the linear programming relaxation of (4.5)
is also.

Notice that the graph transformations introduced in this
section do not work for L ≥ 4. In fact, first the natural formu-
lation is no longer valid for L ≥ 4. As shown by Huygens and
Mahjoub [29], further valid inequalities are required when
L = 4 to have a natural formulation. Also, for L ≥ 5, such a
formulation is still unknown. Conversely, these graph trans-
formations are valid only for L = 2, 3 and cannot be extended
to the case L ≥ 4. Indeed, as it has been seen above, each
L-st-path in the original graph is transformed into a dipath in
the transformed graph. The kHNDP then reduces to a Max
flow-Min cut problem when restricted to a single demand,
which is no longer valid when L ≥ 4. Also, the reduction to
a Max flow-Min cut problem does not hold for other graph
transformations like that proposed by [5].

In the next section, we present a comparative study of the
different formulations presented in the last section. In partic-
ular, we will show that the linear programming relaxation of

these formulations are as strong as the linear programming
relaxation of the natural formulation.

5. COMPARISON STUDY BETWEEN THE
DIFFERENT FORMULATIONS

In this section, we compare the different formulations we
have introduced before. We first focus on the number of
variables of the different extended formulations. As noticed
before, the undirected flow and separated flow formulations
as well as the undirected and separated path formulations
have a polynomial number of variables and constraints. How-
ever, the aggregated graph contains fewer arcs than occur
in the union of the separated graphs. Thus, the aggregated
formulation contains fewer variables than the separated and
undirected formulations.

Now, we compare the formulations in terms of LP-bound.
In fact, we will show that the extended formulations (undi-
rected flow and path, separated and aggregated formulations)
produce the same LP-bound, and this LP-bound is the same
as that of the natural formulation.

First, we compare the separated formulations. In fact, as
mentioned in Section 3.2, by the Max flow-Min cut Theorem,
the separated flow and cut formulations produce the same LP-
bound. Also, by Rardin and Choe [34], the separated flow and
path formulations are equivalent, and, hence, give the same
LP-bound. Moreover, as explained in Section 3.3, Formula-
tions (3.12) and (2.10) are equivalent and, hence, give the
same LP-bound. Therefore, we have the following theorem.

Theorem 5.1. The linear programming relaxations of For-
mulations (3.6, 3.12, 3.18), and (2.10) have the same optimal
value.

Now we compare the undirected flow and path formula-
tions. In fact, using the same argument as in [10] (see the
proof of Proposition 2.2) we can easily show that the undi-
rected flow formulation can be obtained by projecting the
undirected path formulation. For a detailed proof, the reader
can also refer to [13].

Theorem 5.2. The undirected flow formulation can be
obtained by projection of the undirected path formulation.

Theorem 5.2 implies that the linear programming relax-
ation of Formulations (2.20) and (2.10) have the same
optimal value, and, hence, produce the same LP-bound for
the kHNDP when L = 2, 3.

Now we turn our attention to the natural formulation (2.5).
We are going to show that the linear programming relaxation
of the natural formulation has the same value as that of the
separated cut formulation. To this end, we first introduce a
procedure which associates with every st-cut and L-st-path-
cut of G an st-dicut of G̃st , for every demand {s, t} ∈ D. This
procedure, called Procedure A, produces, from an edge set
C ⊆ E and a demand {s, t} ∈ D, an arc subset C̃ of G̃st

obtained as follows.

NETWORKS—2016—DOI 10.1002/net 157

Procedure A.

(i). For an edge st ∈ C, add the arc (s, t) in C̃;
(ii). for an edge su ∈ C, add the arc (s, u) in C̃, u ∈ Nst ;

(iii). for an edge vt ∈ C, add the arc (v′, t) in C̃, v′ ∈ N ′
st ;

(iv). for an edge uv ∈ C, u 	= v, u, v ∈ V \ {s, t},
(iv.a). if su ∈ C or vt ∈ C, then add (v, u′) in C̃,

with v ∈ Nst and u′ ∈ N ′
st ;

(iv.b). if su /∈ C and vt /∈ C, then add the arc (u, v′)
in C̃.

Note that each arc of C̃ corresponds to a unique edge of C
and vice versa.

Also, observe that the arc set C̃ does not contain any arc
of the form (u, u′) with u ∈ Nst and u′ ∈ N ′

st . Also note that C̃
does not contain at the same time two arcs (u, v′) and (v, u′),
for an edge uv ∈ E with u, v ∈ V \ {s, t}.

Conversely, an arc subset C̃ of Ãst can be obtained from
an edge set C ⊆ E, using Procedure A, if C̃ does not contain
simultaneously two arcs (u, v′) and (v, u′), u, v ∈ Nst , u′, v′ ∈
N ′

st , and does not contain any arc of the form (u, u′) with
u ∈ Nst , u′ ∈ N ′

st .
Before going further, we give the following two lemmas

whose proof can be found in [4].

Lemma 5.1. Let L = 2, 3, {s, t} ∈ D and let C ⊆ E be an
edge set of G which is an st-cut or an L-st-path-cut induced
by a partition (V0, . . . , VL+1) such that |V0| = |VL+1| = 1.
Then, the arc set obtained from C by Procedure A is an st-dicut
of G̃st .

Proof. See the proof of Lemma 4.1 in [4]. ■

Lemma 5.2. Let x be a solution of the linear programming
relaxation of kHNDPNat and, for all {s, t} ∈ D, let yst ∈ R

Ãst

be the vector obtained from x by

yst(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(su) if a is of the form (s, u), u ∈ Nst ,

x(vt) if a is of the form (v′, t), v′ ∈ N ′
st ,

x(uv) if a is of the form (u, v′)or(v′, u),

u, v ∈ Nst , u′, v′ ∈ N ′
st , u 	= v, u′ 	= v′,

x(st) if a is of the form (s, t),

1 if a is of the form (u, u′), u ∈ Nst , u′ ∈ N ′
st .

Given a demand {s, t} ∈ D, let C̃ be an st-dicut of G̃st such that
C̃ does not contain an arc of the form (u, u′), u ∈ V \ {s, t}.
Then, there exists an st-cut or an L-st-path-cut C ⊆ E in G
such that x(C) ≤ yst(C̃).

Proof. See the proof of Lemma 4.2 in [4]. ■

We also give the following lemma which will be useful in
the remainder of this section.

Lemma 5.3. Let x be a solution of the linear programming
relaxation of kHNDPNat and, for all {s, t} ∈ D, let yst be the

vector of R
Ãst described in Lemma 5.2 and associated with x,

for all {s, t} ∈ D. Then, for every {s, t} ∈ D, every st-dicut C̃
of G̃st which contains an arc of the form (u, u′) has a weight
yst(C̃) ≥ k if every st-dicut C̃′ of G̃st which does not contain
an arc of the form (u, u′) is such that yst(C̃

′) ≥ k.

Proof. Consider a demand {s, t} ∈ D and an st-dicut
C̃ = δ+

G̃st
(W̃) of G̃st which contains at least one arc of the

form (u, u′), for some u ∈ V \{s, t}. Notice, that if C̃ contains
one arc of the form (u, u′), then [u, u′]+ ⊆ C̃. Moreover, by
the construction of G̃st , |[u, u′]+| = min {|[s, u]|, |[u, t]|, k}.

Now to prove the lemma, we show that either |[u, u′]+ ∩
C̃| = k or there exists an st-dicut of G̃st , not containing an
arc of the form (u, u′) and whose weight, with respect to yst ,
is lower than that of C̃.

Thus, suppose first that |[u, u′]+ ∩ C̃| = k, for some u ∈
V\{s, t} Then, as yst(a) = 1, for all a ∈ [u, u′]+, u ∈ V\{s, t},
we have yst(C̃) ≥ yst([u, u′]+) = |[u, u′]+| = k, and the
result holds.

Now suppose |[u, u′]+| < k, that is, |[u, u′]+| =
min {|[s, u]|, |[u, t]|, k} = min {|[s, u]|, |[u, t]|}, for all u ∈
V \ {s, t} with [u, u′]+ ⊆ C̃. We iteratively build an arc set
whose weight is lower than that of C̃ and which does not
contain an arc of the form (u, u′), for every u ∈ V \ {s, t}. For
this, we let u ∈ V \ {s, t} be a node such that [u, u′]+ ⊆ C̃
and build a node set W̃ ′ in the following way.

If min {|[s, u]|, |[u, t]|} = |[s, u]|, that is |[u, u′]+| =
|[s, u]| = |[s, u]+|, then let W̃ ′ = W̃ \ {u}. In this case, we
have

yst(δ
+
G̃st

(W̃ ′)) = yst(δ
+
G̃st

(W̃)) − yst([u, u′]+)

− yst([u, N ′
st \ {

u′}]+ ∩ C̃) + yst([s, u]+).

As by assumption, |[u, u′]+| = |[s, u]| = |[s, u]+| and as
yst(a) ≤ 1, for all a ∈ Ãst , we have yst([s, u]+) ≤ |[s, u]+| =
|[u, u′]+| = yst([u, u′]+). Thus,

yst(δ
+
G̃st

(W̃ ′)) ≤ yst(δ
+
G̃st

(W̃)).

Now if min {|[s, u]|, |[u, t]|} = |[u, t]|, that is |[u, u′]+| =
|[u, t]| = |[u, t]+|, then let W̃ ′ = W̃ ∪ {

u′}. In this case, we
have

yst(δ
+
G̃st

(W̃ ′)) = yst(δ
+
G̃st

(W̃)) − yst([u, u′]+)

− yst([Nst \ {u} , u′]+ ∩ C̃) + yst([u, t]).
As by assumption, |[u, u′]+| = |[u, t]| = |[u, t]+| and as
yst(a) ≤ 1, for all a ∈ Ãst , we have yst([u, t]+) ≤ |[u, t]+| =
|[u, u′]+| = yst([u, u′]+). Thus,

yst(δ
+
G̃st

(W̃ ′)) ≤ yst(δ
+
G̃st

(W̃)).

Therefore, the node set W̃ ′ obtained by the above procedure is
such that yst(δ

+
G̃st

(W̃ ′)) ≤ yst(δ
+
G̃st

(W̃)). Moreover, [u, u′]+ ∩
δ+

G̃st
(W̃ ′) = ∅. By repeating this procedure, one obtains a

node set, say W̃ ′′ ⊂ Ṽst , such that δ+
G̃st

(W̃ ′′) does not contain

158 NETWORKS—2016—DOI 10.1002/net

an arc of the form (u, u′), for every u ∈ V \ {s, t}. Notice
that the node set W̃ ′′ is obtained in at most |V | − 1 iterations.
Moreover,

yst(δ
+
G̃st

(W̃ ′′)) ≤ yst(δ
+
G̃st

(W̃)). (5.1)

Finally, if the weight of every st-dicut not containing an
arc of the form (u, u′) is greater than or equal to k, then
yst(δ

+
G̃st

(W̃ ′′)) ≥ k. This, together with inequality (5.1), yield

yst(δ
+
G̃st

(W̃)) ≥ k, which ends the proof of the lemma. ■

Now we give the following theorem which shows that the
linear programming relaxation of the natural and separated
cut formulations have the same values.

Theorem 5.3. Let ZNat and Z
Sep
Cut denote respectively the

optimal values of the linear programming relaxation of the

natural and separated cut formulations. Then, ZNat = Z
Sep
Cut.

Proof. First, we show that ZNat ≤ Z
Sep
Cut . To do this, we

consider an optimal solution � = (x, ys1t1
, . . . , ysd td

) of the

linear programming relaxation of kHNDP Sep
Cut . We are going

to show that x also induces a solution of kHNDPNat . For this,
let {s, t} ∈ D and C ⊆ E be an st-cut or an L-st-path-cut
induced by a partition (V0, . . . , VL+1), with |V0| = |VL+1| =
1, and let C̃ ⊆ Ãst be the arc set of G̃st obtained from C
and {s, t} by the application of Procedure A. By Lemma
5.1, C̃ is an st-dicut of G̃st . As each arc of C̃ corresponds
to a unique edge of C and vice versa, and as yst(a) ≤ x(e),
for all a ∈ Ãst(e), e ∈ E, we have x(C) ≥ y(C̃). As � is a
solution of the kHNDP Sep

Cut and, hence, yst satisfies the st-dicut
inequalities, we get x(C) ≥ k. This implies that x induces a
solution of the linear programming relaxation of kHNDPNat

yielding ZNat ≤ Z
Sep
Cut .

Now we show that ZNat ≥ Z
Sep
Cut . For this, we consider an

optimal solution x of the linear programming relaxation of
kHNDPNat . Let yst be the vector of R

Ãst described in Lemma
5.2 associated with x, for all {s, t} ∈ D. We will show in the
following that � = (x, ys1t1

, . . . , ysd td
) induces a solution of

kHNDP Sep
Cut . To do this, we consider an st-dicut C̃ of G̃st , for

a given demand {s, t} ∈ D. First, if C̃ does not contain any
arc of the form (u, u′), then by Lemma 5.2, one can obtain an
st-cut or an L-st-path-cut C of G with x(C) ≤ yst(C̃). Clearly,
as x is solution of kHNDPNat , we have k ≤ x(C) and, hence,
yst(C̃) ≥ k. Thus, every st-dicut C̃ not containing arcs of the
form (u, u′) satisfies yst(C̃) ≥ k. Therefore, by Lemma 5.3,
every st-dicut C̃ containing an arc of the form (u, u′) is such
that yst(C̃) ≥ k.

Thus, every st-dicut C̃ of G̃st satisfies yst(C̃) ≥ k, for
every {s, t} ∈ D. Also, it is not hard to see that � satisfies
inequalities (3.14) and (3.15), and, hence, induces a solution
of the linear programming relaxation of kHNDP Sep

Cut with cost

ZNat. Therefore, we get ZNat ≥ Z
Sep
Cut , which ends the proof

of the theorem. ■

Next, we compare the linear programming relaxation of
the aggregated formulation (4.5) and the natural formulation
(3.18). But first, we introduce a procedure, called Procedure
B, which transforms an edge set C ⊆ E to an arc set C̃ of
G̃. Let C ⊆ E and {s, t} ∈ D, and let C̃ be the arc set of G̃
obtained using the following procedure.

Procedure B.

(i). For an edge st ∈ C, add the arc (s, t′) in C̃;
(ii). for an edge su ∈ C, add the arc (s, u′) in C̃, u′ ∈ N ′;

(iii). for an edge vt ∈ C, add the arc (v′′, t) in C̃, v′′ ∈ N ′′;
(iv). for an edge uv ∈ C, u 	= v, u, v ∈ V \ {s, t},

(iv.a). if su ∈ C or vt ∈ C, then add (v′, u′′) in C̃,
with v′ ∈ N ′ and u′′ ∈ N ′′;

(iv.b). if su /∈ C and vt /∈ C, then add the arc (u′, v′′)
in C̃.

Observe that C̃ does not contain any arc of the form (u′, u′′)
with u′ ∈ N ′ and u′′ ∈ N ′′, or of the form (t′, t) for t ∈ TD.
Also note that C̃ does not contain at the same time two arcs
corresponding to the same edge of G.

Conversely, an arc subset C̃ of Ã can be obtained by Pro-
cedure B from an edge set C ⊆ E if C̃ does not contain
simultaneously two arcs corresponding to the same edge of
G, and any arc of the form (u′, u′′) with u′ ∈ N ′, u′′ ∈ N ′′ or
(t′, t), t ∈ TD.

We have the following two lemmas.

Lemma 5.4. Let (x, y) be a solution of the linear program-
ming relaxation of Formulation (4.5). Let C ⊆ E be an edge
set of G which is an st-cut or a L-st-path-cut induced by a
partition (V0, . . . , VL+1) such that |V0| = |VL+1| = 1, with
L ∈ {2, 3}. Then the arc set obtained from C and {s, t} by
Procedure B is an st-dicut of G̃.

Proof. See the proof of Lemma 4.1 in [4]. ■

Lemma 5.5. Let x be a solution of the linear programming
relaxation of kHNDPNat and let y ∈ R

Ã be the vector obtained
from x as

y(a) =

⎧⎪⎨
⎪⎩

x(e) if a ∈ Ã(e), for all e ∈ E,

1 if a is of the form (u′, u′′), u′ ∈ N ′, u′′ ∈ N ′′,
or of the form (t′, t), t ∈ TD.

Given a demand {s, t} ∈ D, let C̃ be an st-dicut of G̃ such
that C̃ does not contain any arc of the form (u′, u′′), u ∈ V,
or of the form (t′, t), t ∈ TD. Then, there exists an st-cut or
an L-st-path-cut C ⊆ E in G such that x(C) ≤ y(C̃).

Proof. The proof is similar to that of Lemma 4.2 in [4].
■

Also, we compare the aggregated formulation with the nat-
ural formulation, in terms of linear programming relaxation.
We show that their linear programming relaxations also have
the same value.

NETWORKS—2016—DOI 10.1002/net 159

Theorem 5.4. Let ZNat and ZAg denote respectively the
optimal values of the linear programming relaxations of the
natural and aggregated formulations. Then ZNat = ZAg.

Proof. We will show first that ZAg ≥ ZNat. For this,
we will consider an optimal solution (x, y) of the linear
programming relaxation of the kHNDPAg and show that x
induces a solution of the linear programming relaxation of
the kHNDPNat . Let {s, t} ∈ D, and let C ⊆ E be an st-cut or
an L-st-path-cut of G induced by a partition (V0, . . . , VL+1),
with |V0| = |VL+1| = 1. Also let C̃ be the arc set obtained
from C and {s, t} by application of Procedure B. By Lemma
5.4, the arc set C̃ induces an st-dicut of G̃. As each arc of
C̃ corresponds to a unique edge of C and vice versa, and as
y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, we have x(C) ≥ y(C̃).
Moreover, y satisfies all the st-dicut inequalities. Thus, we
have x(C) ≥ y(C̃) ≥ k, and x induces a solution of the linear
programming relaxation of kHNDPNat , yielding ZAg ≥ ZNat.

Now, we are going to show that ZNat ≥ ZAg. To this
end, we will show that an optimal solution x of the linear
programming relaxation of kHNDPNat induces a solution
of the linear programming relaxation of the kHNDPAg with
cost ZNat, implying that ZNat ≥ ZAg. Let y be the vector

of R
Ã obtained from x as described in Lemma 5.5, and let

� = (x, y). We claim that y satisfies all the st-dicut inequali-
ties (4.1). To prove this, we consider an st-dicut C̃ = δ+(W̃)

of G̃ and distinguish four cases. W.l.o.g., we will suppose
that W̃ ∩ SD = {s} and (Ṽ \ W̃) ∩ TD = {t}. Otherwise,
one can easily observe that the st-dicut inequality induced by
C̃ is redundant with respect to that induced by the node set
(W̃ \ (SD \ {s})) ∪ (TD \ {t}). ■

Case 1. If C̃ does not contain any arc of the form
(u′, u′′), u ∈ V , or of the form (t′, t), t ∈ TD, and does not
contain simultaneously two arcs corresponding to the same
edge, then C̃ can be obtained by application of Procedure B
for an edge set C ⊆ E. From Lemma 5.5, the edge set C is
either an st-cut or an L-st-path-cut, and x(C) ≤ y(C). As x is
a solution of kHNDPNat and, hence, x(C) ≥ k, we also have
y(C̃) ≥ k.

Case 2. If C̃ does not contain any arc of the form
(u′, u′′), u ∈ V , or of the form (t′, t), t ∈ TD, but contains
two arcs corresponding to the same edge, then, as C̃ is an
st-dicut, these two arcs are either (s, u′) and (s′, u′′) or (v′, t′′)
and (v′′, t), for some edge su or vt, with u, v ∈ V \ {s, t}.
If C̃ contains two arcs (s, u′) and (s′, u′′), then

{
s, s′} ⊆ W̃ ,

and W̃ ′ = W̃ \ {
s′} induces an st-dicut. As by construction

of G̃, [s, s′]+ = ∅, we have δ+(W̃ ′) = C̃ \ {
(s′, u′′)

}
. If C̃

contains two arcs (v′, t′′) and (v′′, t), then
{
v′, v′′} ⊆ W̃ and

t′′ /∈ W̃ . As before, the node set W̃ ′′ = W̃ ∪{
t′′

}
induces an st-

dicut, and as [t′′, t]+ = ∅, we have δ+(W̃ ′′) = C̃ \ {
(v′, t′′)

}
.

By repeating this procedure for every pair of arcs of C̃
corresponding to the same edge, we obtain a minimal arc
set C̃′ ⊂ C̃, which does not contain any arc of the form
(u′, u′′), u ∈ V or of the form (t′, t), t ∈ TD, and which does

not contain two arcs corresponding to the same edge of G.
Thus, from Case 1, we have y(C̃′) ≥ k. As C̃′ ⊂ C̃, we have
y(C̃) ≥ y(C̃′) and, hence, get y(C̃) ≥ k.

Case 3. Now suppose that C̃ contains an arc of the form
(u′, u′′), for some u ∈ V , but no arc of the form (t′, t), for
every t ∈ TD. If |[u′, u′′]+| = k, then, as y(a) = 1, for all
a ∈ [u′, u′′]+, we have y(C̃) ≥ k.

If |[u′, u′′]+| = max{s,t}∈D {min {|[s, u]|, |[u, t]|, k}} < k,
then

min {|[s, u]|, |[u, t]|, k} = min {|[s, u]|, |[u, t]|} ≤ |[u′, u′′]+|,
for all {s, t} ∈ D.

Now if min {|[s0, u]|, |[u, t0]|} = |[s0, u]|, for some s0 ∈ W̃ ∩
SD and t0 /∈ W̃ , then by considering W̃ ′ = W̃ \ (

{
u′} ∪ (W̃ ∩

SD \ {s0})), we have

y(δ+
G̃

(W̃ ′)) = y(δ+
G̃

(W̃)) + y([s0, u′]+) − y([u′, u′′]+)

− y(δ+
G̃

(u′) ∩ (C̃ \ [u′, u′′]+))

− y([W̃ ∩ (SD \ {s0}), Ṽ \ W̃]+).

As |[s0, u]| = min {|[s0, u]|, |[u, t0]|} ≤ |[u′, u′′]+|, 0 ≤
y(a) ≤ 1, for all a ∈ Ã, and y(a) = 1, for all a = (u′, u′′), we
have y([s0, u′]+) ≤ |[s0, u′]+| ≤ |[u′, u′′]+| = y(|[u′, u′′]+|).
Therefore,

y(δ+
G̃

(W̃ ′)) ≤ y(δ+
G̃

(W̃)).

Moreover, δ+
G̃

(W̃ ′) does not contain any arc of the form (t′, t).
If min {|[s0, u]|, |[u, t0]|} = |[u, t0]|, then one can consider

node set W̃ ′ = W̃ ∪ {
u′′} ∪ ((Ṽ \ W̃) ∩ (TD \ {t0}), and using

similar arguments as before, one obtains

y(δ+
G̃

(W̃ ′)) ≤ y(δ+
G̃

(W̃)).

Notice that here also, δ+
G̃

(W̃ ′) does not contain any arc of the
form (t′, t).

By repeating this procedure, one gets a node set W̃ ′′ whose
induced arc set δ+

G̃
(W̃ ′′) does not contain any arc of the form

(u′, u′′) and of the form (t′, t), and such that

y(δ+
G̃

(W̃)) ≥ y(δ+
G̃

(W̃ ′′)).

Thus, from Cases 1 and 2, we have

y(δ+
G̃

(W̃)) ≥ y(δ+
G̃

(W̃ ′′)) ≥ k.

Case 4. Finally suppose that C̃ = δ+
G̃

(W̃) contains an arc

of the form (t′, t). If |[t′, t]+| = k, then we have y(C̃) ≥ k. If
|[t′, t]+| = maxs∈SD,{s,t}∈D {|[s, t]|} = |[s0, t]| < k, for some
s0 ∈ SD, then by considering node set W̃ ′ = W̃ \(

{
t′
}∪(W̃ ∩

(SD \ {s0}))) and using similar arguments as in Case 3, we
get

y(δ+
G̃

(W̃)) ≥ y(δ+
G̃

(W̃ ′)).

160 NETWORKS—2016—DOI 10.1002/net

FIG. 6. Comparison of LP-bounds of all the formulations.

By repeating this procedure one obtains a node set, say
W̃ ′′ ⊂ Ṽ , such that δ+

G̃
(W̃ ′′) does not contain any arc of the

form (t′, t), and such that

y(δ+
G̃

(W̃)) ≥ y(δ+
G̃

(W̃ ′′)),

Thus, by Cases 1, 2, and 3, we get

y(δ+
G̃

(W̃)) ≥ y(δ+
G̃

(W̃ ′′)) ≥ k.

Therefore, y satisfies every st-dicut inequality (4.1) and, as
y(a) = x(e), if a ∈ Ã(e), for all e ∈ E, and y(a) = 1, other-
wise, (x, y) is solution of the linear programming relaxation
of kHNDPAg, whose value is ZNat. Thus, ZNat ≥ ZAg, which
ends the proof of the theorem.

One may notice that Theorems 5.3 and 5.4 point out the
fact that the separated and aggregated formulations produce
the same LP-bound as the natural formulation. Also, by The-
orems 5.1 and 5.2, the undirected path and flow formulations
produce the same LP-bound as the separated formulation.

As a consequence, the undirected formulations, the sep-
arated and aggregated formulations produce the same LP-
bound as the natural formulation, and all the formulations
produce the same LP-bound. These results are summarized
in Corollary 5.1 and Figure 6.

Corollary 5.1. Formulations (2.5), (2.10), (2.20), (3.6),
(3.12), (3.18), and (4.5), produce the same LP-bound for the
kHNDP.

6. COMPUTATIONAL RESULTS

In this section, we present a computational study of the
different formulations introduced in the paper. The main
objective is to check their efficiency for solving the problem
for large scale instances, and compare them to each other
from a computational point of view.

We solve each formulation using CPLEX 12.5 and Concert
Technology, implemented in C++, on a DELL Workstation
T3500 with an Intel Xeon Quad-Core 2.26GHz and 3Gb of
RAM. For our computational experiments, we use instances
from TSPLIB [35] (euclidean complete graphs) with ran-
domly generated demand sets. We consider single-source

multi-destination instances and multisource multidestination
instances. The number of nodes of the graphs varies from 21
to 52. The number of demands, in turn, varies from 15 to 50,
for the rooted case and from 10 to 26 for the arbitrary case.

The following tables give computational results for the
separated flow and path formulations, the aggregated formu-
lation and natural formulation. We do not give the results
for the separated cut formulation. We will discuss this
formulation later.

Note that the linear programming relaxations of the sep-
arated flow and path formulations are solved using a linear
program, as they contain a polynomial number of variables
and constraints. For the aggregated and natural formulations,
we use a cutting plane algorithm to solve their linear pro-
gramming relaxation, as they both contain an exponential
number of constraints (st-cut (2.1) and L-st-path-cut inequal-
ities (2.4) for the natural formulation, and st-dicut inequalities
(4.1) for the aggregated inequalities). The separation prob-
lem associated with these constraints reduces to a maximum
flow problem and can be solved in polynomial time (see for
example [3] and [19]).

The results given in the following tables are obtained for
k = 3 and L = 2, 3.

Each instance is described by the number of nodes and the
type of the demand set, indicated by “r” for rooted demands
and “a” for arbitrary demands. The other entries of the various
tables are:

|V | : number of nodes,
|D| : number of demands,
COpt : weight of the best upper bound obtained,
Gap : the relative error between the best upper bound

(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node (LPRoot) of the branch-and-cut tree,
that is, Gap = (COpt − LPRoot)/COpt,

NSub : number of subproblems in the branch-and-cut tree,
TT : total CPU time in h:min:s

In all the tables, the instances indicated with “*” are
instances for which the algorithm has reached the maximum

NETWORKS—2016—DOI 10.1002/net 161

TABLE 1. Results for separated flow formulation with k = 3

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 7,138 3.36 98 00:00:01
r 21 17 7,790 5.15 178 00:00:01
r 21 20 8,762 6.66 1,993 00:00:02
a 21 10 8,313 0.00 1 00:00:01
a 21 11 8,677 0.00 1 00:00:01
r 30 15 12,512 0.00 1 00:00:01
r 30 20 14,215 1.19 84 00:00:01
r 30 25 15,610 2.83 365 00:00:02
a 30 10 12,124 2.31 115 00:00:01
a 30 15 15,868 1.43 139 00:00:01
r 48 20 21,586 2.07 94 00:00:02
r 48 30 29,326 8.12 15,260 00:00:22
r 48 40 37,458 14.42 84,70,79 00:13:09
a 48 15 32,097 0.54 34 00:00:01
a 48 20 44,400 0.34 269 00:00:02
a 48 24 52,619 0.14 77 00:00:02
r 52 20 14,093 1.57 71 00:00:01
r 52 30 17,643 4.66 3,736 00:00:06
r 52 40 21,041 8.08 75,187 00:01:21
r 52 50 24,619 8.89 2,11,817 00:08:54
a 52 20 18,480 0.88 374 00:00:01
a 52 26 24,125 0.51 360 00:00:01

(b) Results for L = 3
r 21 15 54,72 6.70 954 00:00:26
r 21 17 58,64 7.97 24,72 00:00:50
r 21 20 64,66 8.95 53,972 00:22:39
a 21 10 66,75 8.43 20,292 00:03:45
a 21 11 6,770 6.54 1,612 00:00:39
r 30 15 10,109 5.68 2,023 00:01:19
r 30 20 11,182 6.89 32,625 00:30:13
*r 30 25 12,482 9.72 2,18,700 05:00:00
a 30 10 10,254 5.08 3,482 00:00:44
**a 30 15 1,33,04 7.28 10,25,10 01:21:12
r 48 20 16,684 9.10 62,793 04:52:49
*r 48 30 21,415 15.21 27,834 05:00:00
*r 48 40 27,546 19.54 2,823 05:00:00
**a 48 15 25,171 17.54 19,357 02:56:47
** a 48 20 34,569 22.52 9,341 04:59:60
*a 48 24 41,347 23.99 4,690 05:00:00
r 52 20 11,154 7.88 36,720 01:53:47
**r 52 30 13,792 11.40 6,662 03:01:02
**r 52 40 16,797 16.42 4,812 04:50:15
*r 52 50 19,592 18.94 2,463 05:00:00
**a 52 20 16,049 9.47 9,273 03:25:50
*a 52 26 21,095 14.98 3,905 05:00:00

CPU time, 5 h, while instances with “**” are those for which
the algorithm runs out of resources (lack of memory). For all
these instances, we give, in italics, the best results obtained
at the end of the execution of the algorithm.

Note that, according to Corollary 5.1, the linear relax-
ations of all the formulations tested here have the same
value. However, the computation of the LP-value obtained
at the root node of the Branch-and-Cut tree also uses CPLEX
general-purpose cutting planes. Thus, this LP-value may be
different from one formulation to another and, consequently,
the Gap achieved by the Branch-and-Cut algorithm for all the
formulations may be different from one another.

TABLE 2. Results for separated path formulation with k = 3

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 7,138 0.00 1 00:00:01
r 21 17 7,790 0.00 1 00:00:01
r 21 20 8,762 7.38 1322 00:00:02
a 21 10 8,313 0.00 1 00:00:01
a 21 11 8,677 0.00 1 00:00:01
r 30 15 12,512 1.74 129 00:00:01
r 30 20 14,215 1.68 247 00:00:02
r 30 25 15,610 2.78 145 00:00:03
a 30 10 12,124 3.33 103 00:00:01
a 30 15 15,868 1.12 54 00:00:01
r 48 20 21,586 2.59 153 00:00:03
r 48 30 29,326 8.10 10829 00:00:20
r 48 40 37,458 12.86 1203056 00:19:24
a 48 15 32,097 0.09 3 00:00:01
a 48 20 44,400 0.24 196 00:00:02
a 48 24 52,619 0.15 61 00:00:02
r 52 20 14,093 1.20 22 00:00:01
r 52 30 17,643 5.82 3,722 00:00:13
r 52 40 21,041 8.47 91,633 00:02:05
r 52 50 24619 9.97 56,27,02 00:18:48
a 52 20 18,480 0.85 333 00:00:01
a 52 26 24,125 0.32 65 00:00:01

(b) Results for L = 3
r 21 15 5,472 7.74 4,755 00:00:36
r 21 17 5,864 7.75 6,033 00:01:45
r 21 20 6,466 9.32 21,323 00:06:37
a 21 10 6,675 8.34 30,167 00:04:19
a 21 11 6,770 6.62 8,917 00:02:16
r 30 15 10,109 5.94 3,892 00:02:09
r 30 20 11,182 7.60 12,189 00:09:17
**r 30 25 12,488 10.13 76,177 01:50:47
a 30 10 10,254 5.47 10,404 00:01:28
**a 30 15 13,518 8.82 55,720 00:30:35
**r 48 20 16,856 10.27 19,132 01:32:57
*r 48 30 21,162 14.12 24,142 05:00:00
**r 48 40 27,893 20.50 5,404 03:35:16
**a 48 15 25,515 18.65 15,251 01:39:31
**a 48 20 34,457 22.27 13,824 04:35:36
*a 48 24 41,122 23.57 5,010 05:00:00
r 52 20 11,154 8.43 25,113 01:23:41
*r 52 30 13,689 10.83 26,583 05:00:00
*r 52 40 16,291 13.67 9,629 05:00:00
*r 52 50 19,292 17.78 4,991 05:00:00
**a 52 20 15,837 8.31 9,023 02:33:18
*a 52 26 20,405 12.31 5,219 05:00:00

Table 1(a) and 1(b) give the results for the separated flow
formulation for L = 2 and L = 3, respectively, and k = 3.

By observing Table 1(a), we notice that for L = 2, the prob-
lem is solved to optimality by the separated flow formulation
for all the instances. The CPU time is less than 1 min in
almost all cases, and the gap between the LP-root node and
the optimal solution is low (less than 5% for 16 instances
over 22, and between 5% and 10% for 5 instances). For L = 3
(Table 2(b)), the separated flow formulation solves to opti-
mality only 10 instances. For the remaining instances, upper
bounds are obtained by CPLEX, with a relative gap of at most
23.99%.

162 NETWORKS—2016—DOI 10.1002/net

TABLE 3. Results for aggregated formulation with k = 3

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 1,042 7,138 9.51 78 00:00:03
r 21 17 1,144 7,790 9.35 77 00:00:04
r 21 20 1,569 8,762 11.61 514 00:00:19
a 21 10 208 8,313 3.55 89 00:00:03
a 21 11 254 8,677 3.53 115 00:00:03
r 30 15 1,734 1,2512 5.56 134 00:00:10
r 30 20 2,596 1,4215 6.84 276 00:00:27
r 30 25 3,034 15,610 8.58 576 00:00:60
a 30 10 336 12,124 5.21 270 00:00:14
a 30 15 501 15,868 3.69 1,200 00:01:16
r 48 20 4,881 21,586 8.17 234 00:01:39
*r 48 30 44,027 29,329 15.23 20,961 05:00:00
**r 48 40 59,913 37,821 17.52 10,012 03:54:46
a 48 15 1,134 32,097 3.09 987 00:04:33
*a 48 20 2,838 44,466 57.89 5,3910 05:00:00
*a 48 24 3,409 52,828 4.39 39,101 05:00:00
r 52 20 6,111 14,093 6.21 166 00:01:52
r 52 30 18,798 17,643 10.72 5,607 00:56:01
**r 52 40 50,569 21,160 13.40 12,513 04:09:06
*r 52 50 45,205 24,739 13.76 10,801 05:00:00
a 52 20 937 18,480 3.44 2,013 00:12:23
a 52 26 2,064 24,125 4.12 16,539 02:36:53

(b) Results for L = 3
r 21 15 9,187 5,472 8.34 890 00:03:21
r 21 17 15,790 5,864 8.25 1,622 00:09:15
r 21 20 48,679 6,466 9.54 11,806 02:10:33
*a 21 10 66,978 6,708 9.05 7,754 05:00:00
a 21 11 46,649 6,770 6.80 2,620 01:56:15
r 30 15 18,767 10,109 58.95 904 00:19:06
r 30 20 36,292 11,182 7.98 8,501 02:38:41
**r 30 25 71,352 12,569 11.69 7,739 04:37:07
*a 30 10 44,501 10,287 6.03 6,495 05:00:00
*a 30 15 57,828 14,116 12.92 3,566 05:00:00
*r 48 20 60,270 17,154 12.45 2,742 05:00:00
*r 48 30 72,513 23,075 66.08 1,943 05:00:00
*r 48 40 68,534 29,332 24.56 2,007 05:00:00
*a 48 15 35,396 – – 313 05:00:00
*a 48 20 32,177 – – 87 05:00:00
*a 48 24 26,715 – – 31 05:00:00
*r 52 20 49,816 11,207 9.45 2,441 05:00:00
*r 52 30 71,167 14,272 15.06 1,375 05:00:00
*r 52 40 68,627 16,963 17.45 1,528 05:00:00
*r 52 50 6,1504 20,604 23.51 2,040 05:00:00
*a 52 20 3,4627 – – 251 05:00:00
*a 52 26 28,028 – – 73 05:00:00

The problem seems to be easier for this formulation when
L = 2 than when L = 3. The same observation applies to the
other formulations. More instances are solved to optimality
within 5 h when L = 2 than when L = 3. This observation con-
firms the idea that the kHNDP is easier when L = 2 than when
L = 3.

Subsequently, we focus on the comparison of each formu-
lation to the others in terms of CPU time and in terms of best
solution. The following tables give the results for the sep-
arated path, the aggregated and the natural formulation for
L = 2, 3 and k = 3.

TABLE 4. Results for natural formulation with k = 3

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 900 7,138 9.51 150 00:00:02
r 21 17 1,056 7,790 9.35 118 00:00:02
r 21 20 1,282 8,762 11.61 819 00:00:09
a 21 10 245 8,313 3.55 236 00:00:02
a 21 11 248 8,677 3.53 157 00:00:02
r 30 15 1,654 1,2512 5.56 61 00:00:04
r 30 20 4,408 14,215 43.37 763 00:00:29
r 30 25 2,826 15,610 8.58 631 00:00:20
a 30 10 287 12,124 5.21 359 00:00:04
a 30 15 482 15,868 3.69 1,207 00:00:17
r 48 20 4,447 21,586 8.17 209 00:00:44
r 48 30 4,8160 29,326 15.22 19,516 04:05:33
**r 48 40 61,444 37,798 58.44 10,678 02:13:37
a 48 15 1,187 32,097 3.09 1,602 00:02:02
*a 48 20 2,832 44,527 4.43 15,5033 05:00:00
*a 48 24 3,276 52844 49.53 12,14,86 05:00:00
r 52 20 6,096 14,093 6.21 229 00:01:06
r 52 30 26,416 17,643 10.72 4,056 00:30:42
**r 52 40 58,080 21,079 13.06 11,018 02:23:08
**r 52 50 51060 24877 14.24 12,868 02:37:38
a 52 20 1,112 18,480 3.44 3,783 00:04:52
a 52 26 2,031 24,125 4.12 16,444 00:34:43

(b) Results for L = 3
r 21 15 8,782 5,472 8.34 946 00:01:45
r 21 17 12,072 5,864 8.25 1,525 00:03:47
r 21 20 44,595 6,466 9.54 13,837 01:22:47
*a 21 10 70,023 6,675 8.60 8,416 05:00:00
a 21 11 58,300 6770 6.80 3,496 03:41:11
r 30 15 14,483 10,109 6.87 791 00:06:58
r 30 20 43,112 11,182 29.65 6,527 01:54:40
**r 30 25 73,513 12,585 11.80 7,433 02:58:31
a 30 10 44,462 10,254 5.73 7,627 03:50:46
*a 30 15 67,886 13,730 10.47 4,271 05:00:00
*r 48 20 73,929 17,417 45.89 2,872 05:00:00
*r 48 30 86,009 22,310 18.69 2,331 05:00:00
* r 48 40 92,333 28,720 22.95 2,260 05:00:00
*a 48 15 42,475 – – 409 05:00:00
*a 48 20 35,387 – – 127 05:00:00
*a 48 24 29,533 – – 53 05:00:00
*r 52 20 58,213 11,254 9.83 3,244 05:00:00
*r 52 30 90,777 14,205 14.66 2,182 05:00:00
*r 52 40 94,667 17,202 18.60 2,493 05:00:00
*r 52 50 95,905 19,153 17.71 3,691 05:00:00
*a 52 20 44,549 – – 341 05:00:00
*a 52 26 33,201 – – 145 05:00:00

We start the comparison by considering L = 2. The com-
parison between Tables 1(a), 2(a), 3(a), and 4(a) shows first
that, for L = 2, the separated flow and path formulations pro-
duce quite similar results, and that they achieve better results
than the aggregated and natural formulations. The formula-
tions having results in the first two tables are able to solve
to optimality 100% of the instances, while the aggregated
and natural formulations solve 77.27% and 72.72% of the
instances to optimality, respectively. Also, for the instances
solved to optimality, the total CPU time for the separated flow
and path formulations is better than that for the aggregated

NETWORKS—2016—DOI 10.1002/net 163

TABLE 5. Comparison between best upper bounds for L = 3 and k = 3

|V | |D| GSPath GAgg GNat

r 30 25 6 87 103
a 30 15 214 812 426
r 48 20 172 470 733
r 48 30 2727 1660 895
r 48 40 347 ∞ 1174
a 48 15 344 ∞ ∞
a 48 20 −112 ∞ ∞
a 48 24 −225 ∞ ∞
r 52 30 −103 480 413
r 52 40 −506 166 405
r 52 50 −300 1012 −439
a 52 20 −212 ∞ ∞
a 52 26 −690 ∞ ∞

and natural formulations. This can be explained by the fact
that these latter formulations contain an exponential num-
ber of constraints and their linear programming relaxation is
solved using the cutting plane method. Thus, the difference
of CPU time mainly is the time spent by the algorithm for the
separation of the cut constraints (4.1) and (2.1), and (2.4).

Now, we turn our attention to the case where L = 3. As
mentioned before, the problem becomes harder in this case.
We compare the different formulations in terms of upper
bound. For this, we choose the results 1(b) of the separated
flow formulation as reference. The following table gives,
for some instances and for each formulation, the difference
between the upper bound achieved for a given formulation
and the one achieved by the separated flow formulation, that
is, Gi = COpti– COptSFlow, where i is SPath, Agg, or Nat,
standing, respectively, for separated path formulation, aggre-
gated and natural formulation. Notice that the results given
below measure the ability of CPLEX to efficiently solve each
formulation.

The instances reported in the table are those for which at
least one formulation does not give the optimal solution.

A negative value in Table 5 for a given formulation indi-
cates that the formulation gives a better bound than that
obtained by the separated flow formulation while a positive
value indicates a greater bound. From this table, we can see
that the separated path formulation produces, for many cases,
a better bound than the separated flow formulation. Also, this
formulation produces, in most cases, better bounds than the
natural and aggregated formulations.

The comparison between the natural and aggregated for-
mulations in Table 5 shows inconclusive results. For 3
instances of 7, the aggregated formulation outperforms the
natural formulation, while it is the contrary for the 4 others.

We conclude this series of experiments by making a com-
ment on the separated cut formulation. This formulation
produces poor results in terms of CPU time and in terms of
upper bound. For several instances, the algorithm is not able
to solve the linear programming relaxation of the root node
of the branch-and-cut tree after 5 h of CPU time, and this,
even for L = 2. And for all of these instances, the algorithm

TABLE 6. Results for separated flow formulation with k = 4

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 8,931 0.00 1 00:00:01
r 21 17 9,818 3.15 35 00:00:01
r 21 20 10,953 3.63 323 00:00:02
a 21 10 10,915 0.00 1 00:00:01
a 21 11 11,664 0.30 48 00:00:01
r 30 15 16,235 0.22 6 00:00:01
r 30 20 18,011 0.00 1 00:00:01
r 30 25 19,830 1.81 1,034 00:00:02
a 30 10 16,097 0.00 1 00:00:01
a 30 15 21,333 0.00 1 00:00:01
r 48 20 27,476 0.85 74 00:00:01
r 48 30 37,118 7.29 7,949 00:00:15
r 48 40 47,305 10.73 17,3605 00:03:10
a 48 15 42,503 0.11 14 00:00:01
a 48 20 57,508 0.00 1 00:00:01
a 48 24 68,370 0.00 1 00:00:01
r 52 20 17,887 0.00 1 00:00:01
r 52 30 22,545 3.82 2,409 00:00:04
r 52 40 26,633 6.63 20,834 00:00:34
r 52 50 31,457 7.62 27,5803 00:07:05
a 52 20 24,586 0.17 16 00:00:01
a 52 26 32,175 0.13 8 00:00:01

(b) Results for L = 3
r 21 15 72,73 2.85 668 00:00:18
r 21 17 78,24 4.22 1,996 00:00:35
r 21 20 8,556 4.77 48,970 00:17:11
a 21 10 8,929 5.96 89,237 00:13:38
a 21 11 9,232 6.05 10,03,99 00:22:04
r 30 15 13,963 3.83 7,797 00:05:57
r 30 20 15,041 3.54 16,574 00:15:02
r 30 25 16,268 4.91 16,55,47 04:10:20
a 30 10 14,058 2.51 11,415 00:01:55
**a 30 15 18,138 6.05 80,473 01:05:29
*r 48 20 22,063 5.58 79,488 05:00:00
*r 48 30 27,910 11.02 28,363 05:00:00
*r 48 40 35128 14.19 8578 05:00:00
*a 48 15 32,588 14.04 45,352 05:00:00
**a 48 20 45,234 20.76 9,324 04:37:53
*a 48 24 55,307 24.08 4,927 05:00:00
*r 52 20 14,979 5.43 10,33,72 05:00:00
*r 52 30 18,172 7.56 23,061 05:00:00
* r 52 40 21,265 10.09 7,077 05:00:00
*r 52 50 24,679 11.60 2,698 05:00:00
*a 52 20 21,206 6.45 16,947 05:00:00
*a 52 26 28,350 13.48 4,061 05:00:00

does not produce an upper bound. This is explained by the
long time spent by the algorithm in the separation of the cut
constraints (3.13).

Our next series of experiments concerns the kHNDP when
k = 4 and k = 5. For each case, we have solved the problem
when L = 2 and L = 3. All the instances previously tested for
k = 3 have been solved for k = 4 and k = 5. The results are given
only for large size instances, that is, with graphs having 48
or 52 nodes. They are presented in Tables 6–9 for k = 4 and
Tables 10–13 for k = 5.

The first observation is that, for k = 4 (Tables 6–9), almost
all the instances are solved to optimality when L = 2 while

164 NETWORKS—2016—DOI 10.1002/net

TABLE 7. Results for separated path formulation with k = 4

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 8,931 0.00 1 00:00:01
r 21 17 9,818 0.00 1 00:00:01
r 21 20 10,953 4.17 403 00:00:01
a 21 10 10,915 0.00 1 00:00:01
a 21 11 11,664 0.00 1 00:00:01
r 30 15 16,235 0.09 5 00:00:01
r 30 20 18,011 0.19 3 00:00:01
r 30 25 19,830 1.25 386 00:00:02
a 30 10 16,097 0.00 1 00:00:01
a 30 15 21,333 0.00 1 00:00:01
r 48 20 27,476 0.87 73 00:00:01
r 48 30 37,118 7.66 6,722 00:00:16
r 48 40 47,305 10.65 17,1625 00:02:50
a 48 15 42,503 0.00 1 00:00:01
a 48 20 57,508 100.00 4 00:00:01
a 48 24 68,370 100.00 2 00:00:01
r 52 20 17,887 0.00 1 00:00:01
r 52 30 22545 4.60 3,059 00:00:04
r 52 40 26,633 5.92 38,675 00:00:51
r 52 50 31,457 7.40 40,37,77 00:09:03
a 52 20 24,586 0.14 13 00:00:01
a 52 26 32,175 100.00 4 00:00:01

(b) Results for L = 3
r 21 15 7,273 3.50 4,961 00:00:27
r 21 17 7,824 4.29 6,267 00:01:31
r 21 20 8,556 5.19 24,448 00:06:20
a 21 10 8,929 6.20 73,604 00:10:36
a 21 11 9,232 6.45 14,2836 00:27:48
r 30 15 13963 4.30 10,861 00:04:51
r 30 20 15041 3.82 15,990 00:08:47
r 30 25 16,268 4.91 11,99,54 02:25:47
a 30 10 14,058 2.49 5,221 00:01:08
**a 30 15 18,066 5.73 97,960 01:00:08
*r 48 20 22,044 5.68 79,943 05:00:00
*r 48 30 27,744 10.59 36,252 05:00:00
*r 48 40 34,732 13.17 13,286 05:00:00
**a 48 15 33,819 16.92 15,462 01:45:17
**a 48 20 44,080 18.68 13,841 04:50:50
*a 48 24 52,719 20.35 5,226 05:00:00
**r 52 20 14,979 5.47 31,689 01:44:28
*r 52 30 18,139 7.57 22,907 05:00:00
*r 52 40 20,961 8.59 12,208 05:00:00
*r 52 50 24,576 11.16 4,416 05:00:00
**a 52 20 21,347 7.03 10,554 03:18:19
*a 52 26 27,920 12.19 4,504 05:00:00

most of them are not solved to optimality within the CPU
time limit when L = 3. The observation is the same for k = 5
(Tables 10–13). This leads to the conclusion that the kHNDP
appears to be easier when L = 2 than when L = 3 also in the
case where k > 3.

Also, we note that for k = 4 and k = 5, the separated flow
and path formulations outperform the aggregated and natural
formulations. For example, for k = 4 and L = 2, the CPU time
is less than one minute for the separated flow and path for-
mulations and for almost all the instances. However, the CPU
time is much higher for the aggregated and natural formula-
tions. A similar observation applies for L = 3 and k = 4 and for

TABLE 8. Results for aggregated formulation with k = 4

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 576 8,931 3.55 31 00:00:02
r 21 17 568 9,818 4.09 10 00:00:02
r 21 20 719 10,953 5.72 71 00:00:04
a 21 10 92 10,915 15.04 7 00:00:01
a 21 11 239 1,1664 2.13 133 00:00:03
r 30 15 1,053 16,235 0.66 12 00:00:03
r 30 20 1,417 18,011 1.21 50 00:00:07
r 30 25 1,788 19,830 3.34 195 00:00:19
a 30 10 124 16,097 0.40 7 00:00:02
a 30 15 238 21,333 1.18 38 00:00:05
r 48 20 3,284 27,476 2.97 111 00:00:51
r 48 30 21,913 37,118 10.43 47,87 00:51:19
**r 48 40 46,101 47,397 12.13 1,4389 04:02:21
a 48 15 647 42,503 0.47 44 00:00:27
a 48 20 915 57,508 0.26 42 00:00:40
a 48 24 936 68,370 0.24 21 00:00:33
r 52 20 4,778 17,887 0.73 47 00:01:07
r 52 30 10,891 22,545 6.67 1,196 00:11:52
r 52 40 34,527 26,633 8.13 14,150 04:09:54
*r 52 50 28,687 31,553 9.83 17,024 05:00:00
a 52 20 468 24,586 0.44 69 00:00:50
a 52 26 739 32,175 0.87 73 00:01:16

(b) Results for L = 3
r 21 15 3,383 7,273 3.93 439 00:00:50
r 21 17 7,638 7,824 4.54 1,459 00:03:57
r 21 20 28,466 8,556 38.85 16,885 01:35:12
**a 21 10 66,386 9,128 8.30 9,682 04:33:56
**a 21 11 66,713 9,297 7.19 9,820 04:09:36
r 30 15 18,218 13,963 46.66 1,664 00:23:07
r 30 20 45,563 15,041 4.20 9,195 03:30:04
**r 30 25 60,852 16,302 5.49 9,494 04:10:04
a 30 10 26,949 14,058 2.81 3,730 01:43:48
*a 30 15 52,978 18,079 5.82 3,151 05:00:00
*r 48 20 55,157 22,680 53.26 2,945 05:00:00
*r 48 30 66,314 28,522 13.13 2,216 05:00:00
*r 48 40 66,868 34,560 12.85 2,142 05:00:00
*a 48 15 35,986 – – 463 05:00:00
*a 48 20 31,374 – – 95 05:00:00
*a 48 24 28,236 – – 39 05:00:00
*r 52 20 56,345 15,216 7.16 2,715 05:00:00
*r 52 30 58,776 18,890 11.48 2,623 05:00:00
*r 52 40 67,966 21,254 10.21 1,551 05:00:00
*r 52 50 57,261 24,402 10.73 2,465 05:00:00
*a 52 20 38,017 – – 283 05:00:00
*a 52 26 28,081 – – 93 05:00:00

k = 5 and L = 2, 3. Considering these two latter formulations,
we remark that, as for k = 3, neither of them outperforms the
other.

Another observation for k = 4, 5 and all the formulations
is that the gap achieved between the best upper bound and
the LP-root node in most of the cases, is better than that
obtained for k = 3 and for the same instances. Moreover, one
can notice that some instances have been solved to opti-
mality for k = 4, 5 and not for k = 3. For example, instance
r30 − 25 (that is, |V | = 30, rooted set of demands and
|D| = 25) has been solved to optimality by the separated
flow formulation for k = 4, 5 and L = 3, while it has not

NETWORKS—2016—DOI 10.1002/net 165

TABLE 9. Results for natural formulation with k = 4

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 426 8,931 3.55 26 00:00:01
r 21 17 462 9,818 4.09 16 00:00:01
r 21 20 708 1,0953 5.72 142 00:00:02
a 21 10 83 10,915 0.31 4 00:00:01
a 21 11 280 11,664 2.13 198 00:00:02
r 30 15 956 16,235 0.66 26 00:00:02
r 30 20 1,105 18,011 1.21 54 00:00:03
r 30 25 2,687 19,830 32.07 578 00:00:17
a 30 10 70 16,097 0.40 6 00:00:01
a 30 15 221 21,333 1.18 60 00:00:02
r 48 20 2,896 27,476 2.97 174 00:00:27
r 48 30 19,618 37,118 10.43 3,920 00:19:55
**r 48 40 42,894 47,348 12.04 15,572 02:05:02
a 48 15 536 42,503 0.47 39 00:00:06
a 48 20 827 57,508 43.36 42 00:00:10
a 48 24 961 68,370 0.24 52 00:00:18
r 52 20 3,892 17,887 0.73 19 00:00:22
r 52 30 9,777 22,545 6.67 896 00:03:45
**r 52 40 35,089 26,698 42.80 21,312 02:44:36
**r 52 50 49,525 31,546 9.81 14,482 02:44:12
a 52 20 476 24,586 0.44 82 00:00:11
a 52 26 685 32,175 0.99 86 00:00:15

(b) Results for L = 3
r 21 15 3,886 7,273 3.93 581 00:00:28
r 21 17 8,175 7,824 4.54 1,622 00:02:29
r 21 20 37,918 8,556 5.32 19,320 01:23:06
**a 21 10 58,118 8,987 6.86 11,841 03:38:50
*a 21 11 74,430 9,509 9.25 10,822 05:00:00
r 30 15 37,818 13,963 4.31 4,587 01:10:27
r 30 20 31,405 15,041 4.20 4,419 00:51:58
**r 30 25 68,478 16,309 5.53 8,960 02:56:51
a 30 10 19,901 14,058 2.81 3,586 00:35:19
*a 30 15 63,324 18,594 8.43 5,667 05:00:00
*r 48 20 73,416 22,462 7.94 3,842 05:00:00
**r 48 30 85,854 28,785 13.92 3,679 04:59:09
*r 48 40 94,810 35,016 13.98 2,635 05:00:00
*a 48 15 44,783 – – 653 05:00:00
*a 48 20 33,680 – – 145 05:00:00
*a 48 24 29,990 – – 49 05:00:00
*r 52 20 72,672 15,343 31.36 3,508 05:00:00
*r 52 30 76,392 18,570 9.96 3,452 05:00:00
*r 52 40 93,699 21,431 10.95 2,923 05:00:00
**r 52 50 85,126 24,748 11.98 3,787 03:39:22
*a 52 20 37,328 – – 333 05:00:00
*a 52 26 32,565 – – 135 05:00:00

been solved to optimality for k = 3 within the CPU time
limit.

Now comparing the formulations for k = 4 and k = 5, it
appears that the problem is easier for k = 5 as both the gap
and CPU time are, in general, better for k = 5 than for k = 4.
For example, instance r48 − 40 could not be solved to opti-
mality by the natural formulation for k = 3, 4 and L = 2,
whereas it has been solved in less than 3 hours for k = 5.
The same observation applies for other instances and other
formulations.

From all these observation, we believe that the kHNDP
becomes easier as k increases for L = 2, 3. This has already

TABLE 10. Results for separated flow formulation with k = 5

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 10,805 0.00 1 00:00:01
r 21 17 12,030 0.00 1 00:00:01
r 21 20 13,288 0.96 72 00:00:01
a 21 10 14,345 0.39 17 00:00:01
a 21 11 14,690 0.00 1 00:00:01
r 30 15 20,926 0.00 1 00:00:01
r 30 20 22,880 0.00 1 00:00:01
r 30 25 24,609 0.28 94 00:00:01
a 30 10 21,324 0.00 1 00:00:01
a 30 15 27,513 0.44 50 00:00:01
r 48 20 34,287 0.31 16 00:00:01
r 48 30 44,411 3.04 1,479 00:00:04
r 48 40 56,200 5.97 16,536 00:00:35
a 48 15 54,554 0.09 16 00:00:01
a 48 20 74,317 0.16 556 00:00:02
a 48 24 88,147 0.12 209 00:00:02
r 52 20 22,869 0.27 29 00:00:01
r 52 30 27,611 2.08 506 00:00:02
r 52 40 31,942 2.38 5,073 00:00:19
r 52 50 37,649 3.44 11,167 00:00:43
a 52 20 31,854 0.31 294 00:00:01
a 52 26 42,145 0.38 745 00:00:02

(b) Results for L = 3
r 21 15 9,505 2.19 1,951 00:00:27
r 21 17 10,048 1.71 775 00:00:20
r 21 20 10,982 2.84 21,006 00:09:22
a 21 10 11,313 4.40 11,37,86 00:16:29
a 21 11 11,510 3.42 57,306 00:12:18
r 30 15 18,278 2.96 27,538 00:14:37
r 30 20 19,939 3.07 12,09,66 01:40:03
r 30 25 21,112 3.02 63,120 02:09:15
a 30 10 18,491 1.82 11,994 00:01:22
**a 30 15 23,011 4.07 53,273 00:36:27
r 48 20 27,818 3.30 76,367 03:31:20
*r 48 30 34,353 6.52 32,924 05:00:00
*r 48 40 42,815 9.88 10,038 05:00:00
**a 48 15 41,616 14.58 13,061 01:47:21
**a 48 20 54,001 16.51 10,308 04:14:42
* a 48 24 66,251 20.42 4,620 05:00:00
**r 52 20 19,482 5.59 12,038 01:05:45
*r 52 30 22,833 5.71 24,710 05:00:00
*r 52 40 26,094 6.12 8,072 05:00:00
*r 52 50 30,596 8.00 2,893 05:00:00
**a 52 20 27,307 6.78 8,160 03:13:54
*a 52 26 35,133 9.98 4,681 05:00:00

been mentioned by Bendali et al. [3] for the k-edge-
connected subgraph problem (kECSP) (which corresponds
to the kHNDP with L = |V | and D = V × V). The compu-
tational study they conducted for this latter problem showed
that the problem becomes easier as k increases.

Also, Gabow et al. [20] considered the minimum size
kECSP and the LP relaxation associated with its natural
formulation in both directed and undirected graphs. They
showed that the ratio of the total weight of fractional edges
over all the edges in a minimum size solution is bounded, in
undirected graphs, by 1 + 3

k , for k odd, and by 1 + 2
k , for

k even, and, in directed graphs, by 1 + 2
k . Clearly, this ratio

166 NETWORKS—2016—DOI 10.1002/net

TABLE 11. Results for separated path formulation with k = 5

|V | |D| COpt Gap NSub TT

(a) Results for L = 2
r 21 15 10,805 0.00 1 00:00:01
r 21 17 12,030 0.00 1 00:00:01
r 21 20 13,288 0.61 63 00:00:01
a 21 10 14,345 0.32 18 00:00:01
a 21 11 14,690 0.00 1 00:00:01
r 30 15 20,926 0.00 1 00:00:01
r 30 20 22,880 0.00 1 00:00:01
r 30 25 24,609 0.31 43 00:00:01
a 30 10 21,324 0.00 1 00:00:01
a 30 15 27,513 100.00 2 00:00:01
r 48 20 34,287 0.23 8 00:00:01
r 48 30 44,411 3.07 1,671 00:00:05
r 48 40 56,200 5.37 22,309 00:00:50
a 48 15 54,554 0.14 25 00:00:01
a 48 20 74,317 0.25 938 00:00:02
a 48 24 88,147 0.15 155 00:00:02
r 52 20 22,869 0.38 17 00:00:01
r 52 30 27,611 2.23 372 00:00:02
r 52 40 31,942 2.92 6,614 00:00:24
r 52 50 37,649 3.27 10,074 00:00:40
a 52 20 31,854 0.34 398 00:00:01
a 52 26 42,145 0.33 920 00:00:03

(b) Results for L = 3
r 21 15 9,505 2.33 4,948 00:00:59
r 21 17 10,048 1.85 3,435 00:00:53
r 21 20 10,982 2.88 15,114 00:04:14
a 21 10 11,313 4.51 98,096 00:11:59
a 21 11 11,510 3.51 43,873 00:08:22
r 30 15 18,278 3.09 10,681 00:04:02
r 30 20 19,939 3.15 68,118 00:41:33
r 30 25 21,112 2.94 66,468 01:53:35
a 30 10 18,491 2.11 11,995 00:01:23
**a 30 15 22,929 3.72 68,444 00:50:43
r 48 20 27,818 3.40 30,902 01:59:50
*r 48 30 34,516 6.98 38,927 05:00:00
*r 48 40 42,210 8.58 14,034 05:00:00
**a 48 15 40,473 11.96 15,175 01:41:33
**a 48 20 54,303 16.98 11,170 03:57:55
*a 48 24 64,744 18.57 5,499 05:00:00
*r 52 20 19,236 4.34 64,073 05:00:00
*r 52 30 22,841 5.82 38,089 05:00:00
*r 52 40 26,095 6.15 13,250 05:00:00
*r 52 50 30,276 6.99 4,562 05:00:00
*a 52 20 27,486 7.26 22,709 05:00:00
*a 52 26 35,317 10.48 4,864 05:00:00

decreases as k increases, implying that an LP-rounding-based
heuristic for the minimum size kECSP would become more
efficient in finding near minimal solution when k increases.
This argument also suggests that the probability of find-
ing a fractional solution, in a branch-and-cut framework,
decreases when k increases (implying a higher probabil-
ity of finding integer feasible solutions). This could also
explain the fact that the kHNDP is easier to solve when k
increases. In fact, by the graph transformations, as it has
been seen, the kHNDP reduces to the kECSP in directed
graphs.

TABLE 12. Results for aggregated formulation with k = 5

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 339 10,805 0.00 1 00:00:01
r 21 17 456 12,030 1.65 8 00:00:01
r 21 20 450 13,288 2.23 18 00:00:02
a 21 10 266 14,345 3.08 498 00:00:10
a 21 11 196 14,690 1.22 40 00:00:02
r 30 15 836 20,926 0.00 1 00:00:02
r 30 20 1,143 22,880 0.20 7 00:00:04
r 30 25 1,259 24,609 0.84 18 00:00:06
a 30 10 242 21,324 2.17 224 00:00:11
a 30 15 434 27,513 1.87 774 00:00:52
r 48 20 2,669 34,287 0.96 26 00:00:30
r 48 30 7,108 44,411 5.89 670 00:05:02
r 48 40 15,840 56,200 7.16 4,513 00:46:31
a 48 15 1,079 54,554 41.80 1,933 00:07:40
*a 48 20 2,480 74,434 2.27 56,096 05:00:00
*a 48 24 3,088 88,398 2.33 40,654 05:00:00
r 52 20 4,023 22,869 0.45 56 00:00:57
r 52 30 7,061 27,611 3.74 304 00:03:56
r 52 40 11,102 31,942 4.06 1,260 00:16:43
r 52 50 16,367 37,649 5.42 5,282 01:33:54
a 52 20 1,169 31,854 2.00 14,586 01:25:37
*a 52 26 2,163 42,166 2.41 35,514 05:00:00

(b) Results for L = 3
r 21 15 4,779 9505 2.68 1,003 00:02:01
r 21 17 2,588 10048 2.15 316 00:00:43
r 21 20 7,617 10982 3.12 4,783 00:10:09
**a 21 10 49,393 11,548 6.56 13,863 03:04:51
**a 21 11 51,753 11,776 5.90 12,832 03:12:27
r 30 15 40,608 18,278 3.39 3,701 01:40:08
**r 30 20 67,356 19,939 3.40 9,943 04:31:03
**r 30 25 61,629 21,119 3.14 9,685 04:02:44
a 30 10 18,735 18,491 2.30 7,231 01:29:05
*a 30 15 53,657 23,506 6.22 5,167 05:00:00
*r 48 20 51,656 27,819 4.09 3,576 05:00:00
*r 48 30 63,706 35,363 9.48 2,548 05:00:00
*r 48 40 65,905 42,890 10.14 2,568 05:00:00
*a 48 15 38,014 – – 611 05:00:00
*a 48 20 30,907 – – 145 05:00:00
*a 48 24 27,600 – – 39 05:00:00
*r 52 20 60,832 19848 7.51 2,623 05:00:00
*r 52 30 58,346 23,357 8.02 2,915 05:00:00
*r 52 40 61,595 26,263 6.94 1,921 05:00:00
*r 52 50 52,968 30,486 7.76 2,591 05:00:00
*a 52 20 33,367 – – 493 05:00:00
*a 52 26 29,925 – – 93 05:00:00

7. CONCLUDING REMARKS

In this article, we have studied the k-edge-connected hop-
constrained network design problem when k ≥ 3 and L = 2,
3. We have presented four integer programming formulations
based on the transformation of the initial graph into directed
layered graphs. We have also compared the linear program-
ming relaxation of these formulations and shown that all of
them give the same LP-bound.

We have also compared these formulations in a computa-
tional study for k = 3, 4, 5, which shows that, as expected, the

NETWORKS—2016—DOI 10.1002/net 167

TABLE 13. Results for natural formulation with k = 5

|V | |D| NCut COpt Gap NSub TT

(a) Results for L = 2
r 21 15 376 10,805 16.27 11 00:00:01
r 21 17 373 12,030 1.65 12 00:00:01
r 21 20 376 13,288 2.23 17 00:00:01
a 21 10 305 14,345 3.08 527 00:00:03
a 21 11 324 14,690 1.22 126 00:00:02
r 30 15 680 20,926 0.00 1 00:00:01
r 30 20 868 22,880 0.20 4 00:00:01
r 30 25 1,050 24,609 0.84 20 00:00:02
a 30 10 273 21,324 2.17 213 00:00:04
a 30 15 505 27,513 1.87 855 00:00:15
r 48 20 1,920 34,287 0.96 31 00:00:10
r 48 30 6,152 44,411 5.89 810 00:02:04
r 48 40 24,912 56,200 45.48 29,096 02:57:39
a 48 15 1,096 54,554 1.37 1,640 00:02:10
* a 48 20 2,849 74,420 38.61 15,89,59 05:00:00
* a 48 24 2,737 88,176 2.08 13,40,58 05:00:00
r 52 20 3,586 22,869 0.45 43 00:00:23
r 52 30 6,214 27,611 3.74 252 00:01:08
r 52 40 8,697 31,942 4.06 1,055 00:04:19
r 52 50 15,074 37,649 5.42 6,115 00:29:50
a 52 20 1,280 31,854 2.00 13,490 00:19:43
*a 52 26 2,577 42,162 2.40 14,64,19 05:00:00

(b) Results for L = 3
r 21 15 5,488 9,505 11.12 1,575 00:01:24
r 21 17 3,152 10,048 2.15 489 00:00:24
r 21 20 7,179 10,982 3.12 4,776 00:04:41
**a 21 10 48,459 11,572 6.76 14,318 02:02:36
**a 21 11 56,306 11,605 4.52 16,604 03:41:42
r 30 15 41,281 18,278 3.39 4,433 01:22:52
**r 30 20 71,202 19,982 3.61 9,622 02:34:53
**r 30 25 62,966 21,296 3.96 9,788 02:19:40
a 30 10 16,702 18,491 2.30 6,750 00:35:13
*a 30 15 63,972 23,282 5.31 6,984 05:00:00
*r 48 20 65,829 27,860 4.23 4,196 05:00:00
**r 48 30 82,400 35,193 9.04 3,301 04:34:24
**r 48 40 87,271 43,227 10.84 3,688 04:15:30
*a 48 15 45,494 – – 879 05:00:00
*a 48 20 35,193 – – 155 05:00:00
*a 48 24 32,428 – – 81 05:00:00
*r 52 20 76,674 19,358 5.17 3,127 05:00:00
**r 52 30 75,920 23,222 7.48 3,342 03:52:52
**r 52 40 78,823 26,419 7.49 3,351 04:22:07
**r 52 50 77,399 30,838 8.80 4,830 03:35:56
*a 52 20 38,898 – – 521 05:00:00
*a 52 26 32,260 – – 151 05:00:00

resolution of the problem is significantly easier when L = 2.
It also shows that the flow-based and path-based formula-
tions produce better results than the other formulations when
L = 2. For L = 3, the path-based formulation outperforms the
other formulations in terms of obtaining upper bounds and
the aggregated formulation produces, in some cases, good
results. The results also show that the separated cut formu-
lation achieves poor results for both L = 2 and L = 3 and is,
apparently, unusable from a practical point of view. Finally,
the computational study shows that the problem seems to be
easier when k increases, corroborating a similar observation
previously made for the k-edge-connected subgraph problem.

The experiments conducted in this article show that the
aggregated formulation is less effective in solving the kHNDP
than the separated flow and path formulations. This result is
quite surprising as, in general, aggregated formulations for
network design problems (like the kECSP) outperform flow-
based ones, especially for large size instances. In our case, this
unusual result can be explained by the fact that CPLEX 12.5
uses several and effective tools for solving the separated flow
and path formulations while not for the aggregated formu-
lation. In fact, for problems formulated with an exponential
number of constraints and when these contraints are han-
dled using cutting plane algorithms (like st-cut constraints
(4.1)) CPLEX does not use some of the improvement tools
it uses for flow-based formulations. However, we believe
that the aggregated formulation outperforms the separated
flow and path formulations if we consider very large scale
instances. For this, we would probably need to use other tools
like additional valid inequalities to strengthen the aggregated
formulation.

Also, this work indicates that some improvement may be
needed in the resolution of the problem, especially for L = 3
(gaps relatively high) and for all the formulations. Hence,
it would be interesting to use other techniques to solve the
problem, like Benders decomposition-based algorithm (as in
[5]), or improve the branch-and-cut algorithms using further
valid inequalities in the cutting plane phase.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their comments that permitted us to considerably improve
the presentation of the paper.

REFERENCES

[1] IBM, IBM ILOG CPLEX Optimization Studio 12.5 Doc-
umentation. Available at: http://www-01.ibm.com/support/
knowledgecenter/SSSA5P_12.5.1/maps/ic-homepage.html.

[2] F. Barahona and A.R. Mahjoub, On two-connected subgraph
polytopes, Discrete Math 147 (1995), 19–34.

[3] F. Bendali, I. Diarrassouba, M. Didi Biha, A.R. Mahjoub,
and J. Mailfert, A Branch-and-cut algorithm for the k-edge
connected subgraph problem, Networks 55 (2010), 13–32.

[4] F. Bendali, I. Diarrassouba, A.R. Mahjoub, and J. Mailfert,
The k-edge-disjoint 3-hop-constrained paths polytope, Dis-
crete Optim 7 (2010), 222–233.

[5] Q. Botton, B. Fortz, L. Gouveia, and M. Poss, Benders
decomposition for the hop-constrained survivable network
design problem, INFORMS J Comput 25 (2013), 13–26.

[6] S. Chopra, The k-edge connected spanning subgraph poly-
hedron, SIAM J Discrete Math 7 (1994), 245–259.

[7] C.R. Coullard, A.B. Gamble, and J. Lui, “The k-walk polyhe-
dron”, Advances in optimization and approximation, noncon-
vex optimization application 1, D-Z Du and J. Sun (Editors),
Kluwer Academic Publishers, Dordrecht, The Netherlands,
1994, pp. 9–29.

[8] G. Dahl, The 2-hop spanning tree problem, Oper Res Lett 23
(1999), 21–26.

168 NETWORKS—2016—DOI 10.1002/net

[9] G. Dahl, Notes on polyhedra associated with hop-constrained
paths, Oper Res Lett 25 (1999), 97–100.

[10] G. Dahl and L. Gouveia, On the directed hop-constrained
shortest path problem, Oper Res Lett 32 (2004), 15–22.

[11] G. Dahl, D. Huygens, A.R. Mahjoub, and P. Pesneau, On the
k-edge-disjoint 2-hop-constrained paths polytope, Oper Res
Lett 34 (2006), 577–582.

[12] G. Dahl and B. Johannessen, The 2-path network problem,
Networks 43 (2004), 190–199.

[13] I. Diarrassouba, V. Gabrel, L. Gouveia, P. Pesneau, and
A.R. Mahjoub, Integer programming formulations for the
k-edge-connected 3-hop-constrained network design prob-
lem, Technical report No 358, LAMSADE, Université Paris
Dauphine, France, 2014.

[14] M. Didi Biha and A.R. Mahjoub, k-edge connected polyhedra
on series-parallel graphs, Oper Res Lett 19 (1996), 71–78.

[15] M. Didi Biha and A.R. Mahjoub, Steiner k-edge connected
subgraph polyhedra, J Comb Optim 4 (2000), 131–134.

[16] M. Didi Biha and A.R. Mahjoub, The k-edge connected
subgraph problem I: Polytopes and critical extreme points,
Linear Algebra Appl 381 (2004), 117–139.

[17] J. Fonlupt and A.R. Mahjoub, Critical extreme points of the 2-
edge connected spanning subgraph polytope, Math Program
105 (2006), 289–310.

[18] B. Fortz, M. Labbe, and F. Maffioli, Solving the two-
connected network with bounded meshes problem, Oper Res
Lett 48 (2000), 866–877.

[19] B. Fortz, A.R. Mahjoub, S.T. McCormick, and P. Pesneau,
Two-edge connected subgraphs with bounded rings: Polyhe-
dral results and Branch-and-Cut, Math Program 105 (2006),
85–111.

[20] H.N. Gabow, M.X. Goemans, E. Tardos, and D. Williamson,
Approximating the smallest k-edge connected spanning sub-
graph by LP-rounding, Networks 53 (2009), 345–357.

[21] L. Gouveia, Multicommodity flow models for spanning trees
with hop constraints, Eur J Oper Res 95 (1996), 178–190.

[22] L. Gouveia, Using variable redefinition for computing lower
bounds for minimum spanning and Steiner trees with hop
constraints, INFORMS J Comput 10 (1998), 180–188.

[23] L. Gouveia, L. Patricio, and P.F. Sousa, “Compact models for
hop-constrained node survivable network design: An appli-
cation to MPLS,” Telecommunications network planning:

Innovations and pricing, network design and management,
G. Anandaligam and S. Raghavan (Editors), Springer, 2005,
pp. 167–180.

[24] L. Gouveia and C. Requejo, A new Lagrangean relaxation
approach for the hop-contrained minimum spanning tree
problem, Eu J Oper Res 132 (2001), 539–552.

[25] M. Grötschel and C.L. Monma, Integer polyhedra arising
from certain network design problems with connectivity
constraints, SIAM J Discrete Math 3 (1990), 502–523.

[26] M. Grötschel, C.L. Monma, and M. Stoer, “Polyhedral
approches to network survivability,” Reliability of computer
and communication networks 5, F. Roberts, F. Hwang, and
C.L. Monma (Editors), Discrete Mathematics and Computer
Science, AMS/ACM, 1991, pp. 121–141.

[27] M. Grötschel, C.L. Monma, and M. Stoer, Polyhedral and
computational investigations arising for designing communi-
cation networks with high survivability requirements, Oper
Res 43 (1995), 1012–1024.

[28] D. Huygens, M. Labbe, A.R. Mahjoub, and P. Pesneau, The
two-edge connected hop-constrained network design prob-
lem: Valid inequalities and branch-and-cut, Networks 49
(2007), 116–133.

[29] D. Huygens and A.R. Mahjoub, Integer programming formu-
lation for the two 4-hop-constrained paths problem, Networks
49 (2007), 135–144.

[30] D. Huygens, A.R. Mahjoub, and P. Pesneau, Two edge-
disjoint hop-constrained paths and polyhedra, SIAM J Dis-
crete Math 18 (2004), 287–312.

[31] H. Kerivin and A.R. Mahjoub, Design of survivable net-
works: A survey, Networks 46 (2005), 1–21.

[32] H. Kerivin, A.R. Mahjoub, and C. Nocq, “(1,2)-survivable
networks: Facets and branch-and-Cut,” The sharpest cut, M.
Grötschel (Editor), MPS-SIAM Series in Optimization, 2004,
pp. 121–152.

[33] C.-W. Ko and C.L. Monma, Heuristics for designing highly
survivable communication networks, Technical report, Bell-
core, Morristown, NJ, 1989.

[34] R. Rardin and U. Choe, Tighter relaxations of fixed charge
network flow problems, Technical report J-79-18, Georgia
Institute of Technology, Atlanta, Georgia, 1979.

[35] TSPLIB, webpage. Available at: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/.

NETWORKS—2016—DOI 10.1002/net 169

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 801.000]
>> setpagedevice

