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Abstract

The k edge-disjoint 2-hop-constrained paths problem consists in finding a minimum cost subgraph such that between two
given nodes s and t there exist at least k edge-disjoint paths of at most 2 edges. We give an integer programming formulation
for this problem and characterize the associated polytope.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G = (N, E) with s, t ∈ N , a 2-st-
path in G is a path between s and t of length at most 2,
where the length of a path is the number of its edges
(also called hops). Given a function c : E → R which
associates a cost c(e) to each edge e ∈ E, the k edge-
disjoint 2-hop-constrained paths problem (kHPP) is
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to find a minimum cost subgraph such that between s
and t there exist at least k edge-disjoint 2-st-paths.

In this paper, we give an integer programming for-
mulation for the kHPP and discuss its associated poly-
tope. In particular, we give a minimal complete linear
description of that polytope.

The kHPP arises within the framework of survivable
network design problems. Indeed, basic requirements,
like the 2-edge connectivity for example, are often not
sufficient to guarantee an effective survivable network.
In fact, for some types of networks (like ATM and IP
networks), a higher level of connectivity is required.
Also hop-constrained paths are needed to assure the
quality of the (re)routing.

Moreover, the kHPP can be seen as a special case
of the more general problem when more than one
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pair of terminals is considered. This is the case, for
instance, when several commodities have to be routed
in the network. Thus an efficient algorithm for solving
the kHPP would be useful to solve (or produce upper
bounds for) this more general problem.

Despite these interesting applications, we do not
have any knowledge of a previous study of the kHPP.
Huygens et al. [6] have already investigated the case
where k=2 and the bound L on the length of the paths
is 2 or 3. They present a complete and minimal linear
description of its associated polytope. There has been
however a considerable amount of research on many
related problems. In [3], Dahl and Johannessen con-
sider the 2-path network design problem which con-
sists of finding a minimum cost subgraph connect-
ing each pair of terminal nodes by at least one path
of length at most 2. In [1], Dahl considers the hop-
constrained path problem, that is the problem of find-
ing between two distinguished nodes s and t a mini-
mum cost path with no more than L edges when L is
fixed. He gives a complete description of the domi-
nant of the associated polytope when L�3. Thus this
hop-constrained path problem corresponds to the spe-
cial case k = 1 in kHPP. A main idea in the complete-
ness proof in [1] for the case L = 2 turns out to be
applicable to the case of a general k�1 (when L=2).
This is the basis for our completeness result stated in
Theorem 6 in Section 3. Dahl and Gouveia [2] con-
sider the directed hop-constrained path problem. They
describe valid inequalities and characterize the asso-
ciated polytope when L�3.

Given a graph G= (N, E) and an edge subset F ⊆
E, the 0 − 1 vector xF ∈ RE , such that xF (e) =
1 if e ∈ F and xF (e) = 0 otherwise, is called the
incidence vector of F. The convex hull of the incidence
vectors of the solutions to the kHPP on G, denoted
by Pk(G), will be called the kHPP polytope. Given a
vector w ∈ RE and an edge subset F ⊆ E, we let
w(F) = ∑

e∈F w(e). For two node subsets W1, W2 ⊂
N , we note [W1, W2] the set of edges having one node
in W1 and the other in W2. If W1 ={w1}, we will write
[w1, W2] for [{w1}, W2]. If W ⊂ N is a node subset
of G, we denote N\W by W . The set of edges that
have only one node in W is called a cut and denoted
by �(W). We will write �(v) for �({v}). A cut �(W)

such that s ∈ W and t ∈ W will be called an st-cut.
If xF is the incidence vector of the edge set F of

a solution to the kHPP, then clearly xF satisfies the
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Fig. 1. Support graph of a 2-path-cut inequality.

following inequalities:

x(�(W))�k for all st-cut �(W), (1)

1�x(e)�0 for all e ∈ E. (2)

Inequalities (1) will be called st-cut inequalities and
inequalities (2) trivial inequalities.

In [1], Dahl introduces a class of inequalities valid
for the dominant of the hop-constrained path problem.
For the special case of L = 2, they are as follows.

Let V0, V1, V2, V3 be a partition of N such that s ∈
V0, t ∈ V3 and Vi �= ∅ for i = 1, 2. Let T be the set
of edges e = uv where u ∈ Vi , v ∈ Vj and |i − j | > 1.
Then the inequality

x(T )�1

is valid for the 2-path polyhedron.
Using the same partition, this inequality can be

generalized in a straightforward way to the kHPP
polytope as

x(T )�k. (3)

The set T is called a 2-path-cut and a constraint of type
(3) is called a 2-path-cut inequality. See Fig. 1 for an
example of a 2-path-cut inequality with V0 = {s} and
V3 = {t}.
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Note that the 2-path-cut T intersects each 2-st-path
in exactly one edge. Let E1 be the set of edges involved
in a 2-st-path in G. Thus, E1 consists of the edges in
[s, t] and [s, v], [v, t] for all those nodes v for which G
contains these edges. Let G1=(N, E1) be the subgraph
of G induced by E1.

Observe that it is equivalent to consider the kHPP
on G and on G1. More precisely, an optimal solution
in G will consist of an optimal solution in G1, plus
the edges in E\E1 of negatives costs, if any.

Also, it is not hard to see that T (in G) corresponds
to the st-cut �(V0 ∪ V1) in G1. Therefore, we will
consider the inequalities

x(�G1(W))�k for all W ⊂ N, s∈W, t /∈W , (4)

where �G1(W) stands for the cut induced by W in
G1. Clearly, inequalities (4) dominate inequalities (1)
and (3).

Let Qk(G) be the solution set of the system given
by inequalities (2), (4). In the next section, we show
that inequalities (2), (4), together with the integrality
constraints, give an integer programming formulation
for the kHPP. In Section 3, we study the kHPP poly-
tope, Pk(G), and show that Pk(G) = Qk(G). In Sec-
tion 4, we discuss the polynomial time solvability of
the problem and give some concluding remarks.

2. Formulation

In this section, we show that the trivial inequalities
and inequalities (4), together with the integrality con-
straints, suffice to formulate the kHPP as a 0−1 linear
program. To this aim, we first give a lemma. Its proof
can be found in [6].

Lemma 1. Let G = (N, E) be a graph, and s, t two
nodes of N. Suppose that there do not exist k edge-
disjoint 2-st-paths in G, with k�2. Then there exists
a set of at most k − 1 edges that intersects every 2-st-
path.

Theorem 2. Let G = (N, E) be a graph and k�2.
Then the kHPP is equivalent to the integer program

Min
{
cx; x ∈ Qk(G), x ∈ {0, 1}E

}
.

Proof. To prove the theorem, it is sufficient to show
that every 0 − 1 solution x of Qk(G) induces a solu-
tion of the kHPP. Let us assume the contrary. Suppose
that x does not induce a solution of the kHPP. If x does
not satisfy an st-cut inequality, then clearly one of in-
equalities (4) is not satisfied. So suppose that x sat-
isfies the st-cut and trivial constraints. We will show
that x necessarily violates at least one inequality (4)
which corresponds to a 2-path-cut constraint. Let Gx

be the subgraph induced by x. As x is not a solution
of the problem, Gx does not contain k edge-disjoint
2-st-paths. It then follows, by Lemma 1, that there ex-
ists a set of at most k − 1 edges in Gx that intersects
every 2-st-path. Consider the graph G̃x obtained from
Gx by deleting these edges. Obviously, G̃x does not
contain any 2-st-path. We claim that G̃x contains at
least one st-path of length at least 3. In fact, as x is
a 0 − 1 solution and satisfies the st-cut inequalities,
Gx contains at least k edge-disjoint st-paths. Since at
most k − 1 edges were removed from Gx , at least one
path remains between s and t in G̃x . However, since
G̃x does not contain a 2-st-path, that path must be of
length at least 3.

Now consider the partition V0, . . . , V3 of N, with
V0 = {s}, Vi the set of nodes at distance i from s in
G̃x , for i = 1, 2, and V3 = N\(⋃2

i=0 Vi), where the
distance between two nodes is the length of a shortest
path between these nodes. Since there does not exist
a 2-st-path in G̃x , it is clear that t ∈ V3. Moreover, as,
by the claim above, G̃x contains an st-path of length at
least 3, the sets V1, V2 are nonempty. Furthermore, no
edge of G̃x is a chord of the partition (that is, an edge
between two sets Vi and Vj , where |i−j | > 1). In fact,
suppose that there exists an edge e = vivj ∈ [Vi, Vj ]
with |i − j | > 1 and i < j . Then vj is at distance i + 1
from s, a contradiction.

Thus, the edges deleted from Gx are the only edges
that may be chords of the partition in Gx . In conse-
quence, if T is the set of chords of the partition in G,
then x(T )�k − 1. But this implies that the 2-path-cut
inequality induced by T, and hence the corresponding
inequality (4), are violated by x. �

3. Facets and completeness

In this section, we will show that inequalities (2), (4)
completely describe the polytope Pk(G). In order to
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give a minimal system for this polytope, we first study
when these inequalities are facet defining. We suppose
familiarity with polyhedral theory. For specific details,
the reader is referred to [7].

3.1. Facets

We first establish the dimension of Pk(G). An
edge e ∈ E will be called essential if e belongs ei-
ther to an st-cut of cardinality k, or to a 2-path-cut
of cardinality k. Let E∗ denote the set of essential
edges. Thus, Pk(G − e) = ∅ for all e ∈ E∗. We
have the following theorem, which is easily seen to
be true.

Theorem 3. dim(Pk(G)) = |E| − |E∗|.

Throughout this section, G = (N, E) is a complete
graph with |N |�k + 2, which may contain multiple
edges. Hence any st-cut and 2-path-cut of G contains
at least k + 1 edges. Therefore, by Theorem 3, Pk(G)

is full dimensional.

Theorem 4. (i) Inequality x(e)�1 defines a facet of
Pk(G) for all e ∈ E.

(ii) Inequality x(e)�0 defines a facet of Pk(G) if
and only if |N |�k + 3, or |N | = k + 2 and e does not
belong to either an st-cut or a 2-path-cut with exactly
k + 1 edges.

Proof. (i) As |N |�k + 2, and Pk(G) is full dimen-
sional, Ef =E\{f } is a solution for the kHPP for every
f ∈ E\{e}. Hence the sets E and Ef for f ∈ E\{e}
constitute a family of |E| solutions of kHPP. More-
over, their incidence vectors satisfy x(e) = 1, and are
affinely independent.

(ii) Suppose first that |N |�k + 3. Then G contains
k + 2 node-disjoint 2-st-paths (an edge of [s, t] and
k + 1 paths of the form (s, u, t), u ∈ N\{s, t}). Hence
any edge set E\{f, g}, f, g ∈ E, contains at least k
paths among these k + 2 2-st-paths. Consider the sets

Ef = E\{e, f } for all f ∈ E\{e}.
By the above remark, these sets induce solutions of
kHPP. Now, it is easy to see that the incidence vectors
of E\{e} and Ef , f ∈ E\{e}, all satisfy x(e) = 0 and
are affinely independent.

Now suppose that |N |=k +2. If e belongs to an st-
cut �(W) (resp. a 2-path-cut T) with k + 1 edges, then
x(e)�0 is redundant with respect to the inequalities

x(�(W))�k (resp. x(T )�k),

− x(f )� − 1 for all f ∈ �(W)\{e}
(resp. f ∈ T \{e}),

and hence, cannot be facet defining.
If e does not belong to neither an st-cut nor a 2-path-

cut with k+1 edges, then the edge sets E\{e} and Ef ,
f ∈ E\{e}, introduced above, are still solutions for
the problem. Moreover, their incidence vectors satisfy
x(e) = 0 and are affinely independent. �

Theorem 5. Constraints (4) define facets for Pk(G).

Proof. Let us denote inequality (4) by ax��, and let
bx�� be a facet defining inequality of Pk(G) such
that

{x ∈ Pk(G); ax = �} ⊆ {x ∈ Pk(G); bx = �}.
We will show that b = �a for some � > 0. Let T =
�G1(W), W1 =W\{s} and W2 =W\{t}. Let E=E\T .
As |N |�k + 2, |W1| + |W2|�k. So consider k nodes
v1, . . . , vk ∈ W1 ∪ W2. Suppose that v1, . . . , vq ∈ W1
and vq+1, . . . , vk ∈ W2 for some 0�q �k. Let ei ∈
[vi, t] for i = 1, . . . , q and ei ∈ [s, vi] for i = q +
1, . . . , k. Let

F1 = {e1, . . . , ek} ∪ E.

It is clear that F1 induces a solution of the kHPP. Let
e ∈ T \{e1, . . . , ek}. If e is parallel to one of the edges
ei , say e1, then clearly F ′

1=(F1\{e1})∪{e} still induces
a solution for the problem. Since axF1 = axF ′

1 = �, we
get b(e1) = b(e). This implies that

b(f ) = �i for every f parallel to ei

for some �i ∈ R for i = 1, . . . , k. (5)

If e is not parallel to any ej , then F ′
j = (F1\{ej })∪{e}

induces a solution for the kHPP, for j = 1, . . . , k. As
an edge of [s, t] is such an edge, this together with (5)
implies that, for some � ∈ R,

b(e) = � for every edge f ∈ T . (6)

Now we shall show that b(f ) = 0 for all f ∈ E.
Suppose f ∈ [s, W1]. If f is not incident to any node
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among v1, . . . , vq , then F1\{f } induces a solution of
the problem, and hence, b(e) = 0. If f ∈ [s, vi] for
some 1� i�q, then let

F̃1 = (F1\{f, ei}) ∪ {g},
where g is an edge of [s, t]. It is easy to see that
F̃1 still induces a solution of the kHPP. As, by (6),
b(ei) = b(g), it follows that b(f ) = 0. Similarly, we
can show that b(f ) = 0 for all f ∈ [W2, t]. If f ∈
[W1, W2] ∪ E(W1) ∪ E(W2), then obviously F1\{f }
is a solution of the problem, and hence, we obtain that
b(f ) = 0.

Thus we have that

b(e) = � if e ∈ T ,

b(e) = 0 if not.

Since ax�� is not a trivial inequality, we have that
� > 0, and hence, that b = �a. �

3.2. The polytope Pk(G)

We now consider the polytope Pk(G) and we give a
complete linear description of this polytope. As men-
tioned in the Introduction we may use an idea in [1]
which was used to find a complete linear description
of the dominant of P1(G). The idea is based on the
fact that the only edges e ∈ E that can lie in a 2-st-
path are those in [s, t], and [s, v], [v, t] for v �= s, t ,
that is, the edges of E1. Thus, essentially, the remain-
ing edges play no role. Our proof uses this reduction
combined with a well-known result on edge-disjoint
paths.

A linear system Ax�b is totally dual integral
(TDI) if the minimum in the LP duality relation
max

{
cT x : Ax�b

} = min
{
yT b : yT A = cT , y�0

}
has an integral optimal solution for all integral c such
that the minimum is finite. In what follows, we give
a TDI system that characterizes Pk(G).

Theorem 6. The system given by (2) and (4) com-
pletely describes the polytope Pk(G). Moreover, this
system is TDI.

Proof. Observe first that Pk(G) is the product of the
polytope Pk(G1), with G1 = (N, E1) as defined in the
Introduction, and [0, 1]E\E1 . Moreover, in G1 every
st-path is a 2-st-path. Thus, Pk(G1) equals the solution

set of the system

x(�G1(W))�k for all W ⊆ N, s ∈ W, t /∈ W,

0�x(e)�1 for all e ∈ E.

This is a direct consequence of a well-known result on
edge-disjoint paths (a recent reference is [8, p. 204]).
Moreover, the system is TDI. The theorem now fol-
lows by noting that the TDI property extends to the
product of the two polytopes (this is immediate from
the definition of TDI). �

From Theorems 4–6 we have the following.

Corollary 7. If G=(N, E) is complete and |N |�k+
2, a minimal system describing Pk(G) is the following.

x(�G1(W))�k for all W ⊂ N, s ∈ W, t /∈ W,

x(e)�1 for all e ∈ E,

x(e)�0 for all e ∈ E satisfying condition
(ii) of Theorem 4.

4. Solvability and concluding remarks

The separation problem for a system of inequalities
consists in verifying whether a given solution x∗ ∈
RE satisfies the system and, if not, in finding an in-
equality of the system that is violated by x∗. The sep-
aration problem for inequalities (4) can be solved in
polynomial time using any polynomial max-flow algo-
rithm (e.g., [5]). Therefore, the kHPP can be solved in
polynomial time using a cutting plane algorithm. Note
that, if the graph has no parallel edges, the problem
can also be solved polynomially by enumerating the
(at most) |N |−1 different 2-st-paths in G and picking
the k of these paths with smallest cost.

Also note that the polynomial cutting plane algo-
rithm can be used for solving the node-disjoint case,
that is to find a minimum cost subgraph containing at
least k node-disjoint 2-st-paths. In fact, for this prob-
lem, we can suppose that the underlying graph does
not contain multiple edges. In consequence, two 2-st-
paths are node-disjoint if and only if they are edge-
disjoint. Therefore, the system given in Theorem 7 is
also a minimal description of the associated polytope.

A natural extension of the kHPP is to consider paths
of length at most L where L is a fixed integer. The case
studied in this paper corresponds to the case where
L = 2. Inequalities (3) can be easily extended to the
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case L�3 (see, [1]). Moreover, as it is shown in [4],
they can be separated in polynomial time when L�3.
In [6], it is shown that these inequalities and the st-
cut inequalities, together with the trivial inequalities,
completely describe the corresponding polytope when
k = 2 and L = 2, 3. It would be interesting to study
the polytope associated with the kHPP when L = 3,
and see whether these inequalities suffice to describe
the polytope in this case.

Another generalization to consider is when k edge-
disjoint paths of length at most L are required relatively
to several demands. Once again, the results obtained
here will initiate our approach to this new problem.
For example, the formulation can be derived directly
by writing the previous constraints for each demand
together. Our goal is to determine new classes of facet
defining inequalities for this more general problem
in order to solve it with an efficient Branch and Cut
algorithm.
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