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Abstract—In this paper we consider the k-node-connected

subgraph problem. We propose an integer linear programming

formulation for the problem and investigate the associated

polytope. We introduce further classes of valid inequalities

and discuss their facial aspect. We also devise separation

routines and discuss some structure properties and reduction

operations. Using these results, we devise a Branch-and-Cut

algorithm along with some computational results.

1. Introduction

The design of survivable networks is an important is-
sue in telecommunications. The aim is to conceive cheap,
efficient and reliable networks with specific characteristics
and requirements on the topology. Survivability is generally
expressed in terms of connectivity in the network. The level
of connectivity depends on the need of each telecommuni-
cation operator. We may have to conceive several paths to
link each pair of nodes to ensure the transmission in case of
disconnection or breakdown, all this at the cheapest possible
cost. As we can see in [14], [15], the most frequent and
useful case in practice is the uniform topology. This means
that the nodes of the network have all the same importance
and it is required that between every pair of nodes there
are at least k edge (node-) disjoint paths. Thus the network
will be still functional when at most k − 1 edges fail. The
underlaying problem is to determine, given weights on the
possible links of the network, a minimum weight network
satisfying the edge or the node connectivity. This paper deals
with the node connectivity of the problem.

A graph G = (V,E) is called k-node (resp. k-edge)
connected (k ≥ 0) if for every pair of nodes i, j ∈ V ,
there are at least k node-disjoint (resp. edge-disjoint) paths
between i and j. Given a graph G = (V,E) and a weight
function c on E that associates with an edge e ∈ E a
weight c(e) ∈ R, the k-node-connected subgraph problem

(kNCSP for short) is to find a k-node connected spanning
subgraph H = (V, F ) of G such that

∑

e∈F

c(e) is mini-

mum. The kNCSP has applications to the design of reliable
communication and transportation networks ( [1], [10], [11],
[12], [13]). The kNCSP is NP-hard for k ≥ 2 ( [9]). The
edge version of the problem has been widely studied in

the literature ( [1], [3], [4], [10], [11], [12], [13], [17]).
However, the kNCSP has been particulary considered for
k = 2 (see [6], [16]). A little attention has been given for the
high connectivity case where k ≥ 3. The kNCSP has been
studied by Grötschel et al. ( [10], [11], [12], [13]) within
a more general survivability model. In [11] Grötschel et al.
introduce the concept of connectivity types. With each node
s ∈ V of G it is associated a nonnegative integer rs, called
the type of s. A subgraph of G is said to be survivable if for
each pair of distinct nodes s, t ∈ V , the subgraph contains
at least rst = min{rs, rt} edge (node) disjoint (s, t)-paths.
Grötschel et al. study the problem from a polyhedral point of
vue, and propose cutting plane algorithms [11], [12], [13].

In [6], Diarrassouba et al. consider the 2NCSP with
bounded lengths. Here it is supposed that each path does
not exceed L edges for a fixed integer L ≥ 1. They inves-
tigate the polyhedral structure of the polytope and propose
a Branch-and-Cut algorithm. In [16], Mahjoub and Nocq
study the linear relaxation of the 2NCSP(G).
In this article, we consider the kNCSP from a polyhedral
point of view. We introduce further classes of valid inequal-
ities for the associated polytope, discuss their facial aspect
and devise a Branch-and-Cut algorithm.

We will denote a graph by G = (V,E) where V is the
node set and E is the edge set. Given F ⊆ E, c(F ) will
denote

∑

e∈F

c(e). For W ⊆ V , we let W = V \W . If W ⊂ V

is a node subset of G, then δG(W ) will denote the set of
edges in G having one node in W and the other in W . We
will write δ(G) if the meaning is clear from the context. For
W ⊂ V , we denote by E(W ) the set of edges of G having
both endnodes in W and by G[W ] the subgraph induced by
W . Given node subsets W1, ...,Wp ⊂ V , p ≥ 2, we denote
by δG(W1, ...,Wp) the set of edges of G between the sets
W1, ..., Wp.

2. Formulation

If xF is the incidence vector of the edge set F of a k-
node connected spanning subgraph of G, then xF satisfies
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the following inequalities (see [10]):

x(e) ≥ 0 for all e ∈ E, (1)

x(e) ≤ 1 for all e ∈ E, (2)

x(δG(W )) ≥ k for all ∅ 6= W ⊆ V, (3)

x(δG\Z(W )) ≥ k − |Z|
for all ∅ 6= Z ⊆ V,
|Z| ≤ k − 1; ∅ 6= W ⊆ V \Z.

(4)

Conversely, any integer solution of the system above
is the incidence vector of the edge set of a k-node-
connected subgraph of G. Constraints (3) and (4) are called
cut inequalities and node-cut inequalities, respectively. The
kNCSP is equivalent to the linear integer program

min{cx | x satisfies (1)− (4), x ∈ {0, 1}E}.

We will denote by kNCSP(G) the convex hull of all the
integer solutions of (1)-(4). It can be shown that it suffices
to suppose that |Z| = k − 1 for inequalities (4). It can also
be easily seen that if G is (k + 1)-node connected then
kNCSP(G) is full dimentional.

3. Valid inequalities

In this section, we describe some classes of valid in-
equalities for kNCSP(G). Given a partition π = (V1, ..., Vp),
p ≥ 2, we will denote by Gπ the subgraph induced by π, that
is, the graph obtained by contracting the sets Vi, i = 1, ..., p,
that is identifying all the nodes of Vi and preserving the
adjacencies. Note that δG(V1, ..., Vp) is the set of edges of
Gπ.

3.1. F -node-partition inequalities

Theorem 1. Let Z ⊂ V with |Z| ≤ k − 1. Consider a
partition π = (V0, ..., Vp) of V \Z , and Zi = {z ∈
Z | ∃ e ∈ δ({z}, Vi)} for i = 1, ..., p, and let F

be a subset of δG\Z(V0) such that
p
∑

i=0

(k − |Zi|) − |F |

is odd. Then the inequality

x(δG\Z(π\F )) ≥ ⌈

p
∑

i=0

(k − |Zi|)− |F |

2
⌉ (5)

is valid for kNCSP(G).

3.2. SP-partition inequalities

In [3], Chopra introduces a class of valid inequalities
when the graph G is outerplanar and k is odd. In [3], Didi
Biha and Mahjoub extend this result as follows. Consider a
partition π = (V1, ..., Vp) of V . If Gπ is series-parallel and
k is odd, then the inequality

x(δG(V1, ..., Vp)) ≥ ⌈
k

2
⌉p− 1 (6)

is valid for the kNCSP(G). These inequalities are called
SP-partition inequalities.

3.3. Node-partition inequalities

In [10], Grötschel et al. introduce a class of valid
inequalities for kNCSP(G) as follows. Consider a subset
Z ⊂ V , such that |Z| ≤ k−1, and let V1, ..., Vp, p ≥ 2 be a
partition of V \Z . They show that if p(k− |Z|) is odd, then
the following inequality is valid for kNCSP(G).

x(δG\Z(V1, ..., Vp)) ≥

{

⌈p(k−|Z|)
2 ⌉ if |Z| ≤ k − 2

p− 1 if |Z| = k − 1.
(7)

4. Facial aspect

Theorem 2.
Let G = (V,E) be a graph and an integer k ≥ 3. Let
Z ⊂ V and Zi = {z ∈ Z | ∃ e ∈ δ({z}, Vi)}. Suppose
|Zi| ≤

2
3 (k − 1), and for all z ∈ Z , |δG({z})| ≥ k + 1.

Let π = (V0, V1, ..., Vp), with l ≥ 1, be a partition of
V \Z , such that

i) |Vi| = 1 or G[Vi] is (k+1)-node-connected, for
i = 0, ..., p,

ii) |Vi| = 1 or for all u ∈ Vi, |u, V \Vi]| ≤ 1, for
i = 0, ..., p,

iii) |[Vi, Vi+1]| ≥ 1, for i = 1, ..., p,
iv) |[V0, Vi]| ≥ k − |Zi| − 1, for i = 1, ..., p, (see

Figure 1) for an illustration with k = 4 and
p = 5)

Let Fi be an edge subset of [V0, Vi] such that |Fi| =

k − |Zi| − 1, i = 1, ..., p. Let F =
p
⋃

i=1

Fi. Then the

F -node-partition inequality

x(δG\Z(π\F )) ≥ ⌈

p
∑

i=0

(k − |Zi|)− |F |

2
⌉ (8)

induced by π and F , defines a facet of kNCSP(G).

Proof.

edge of F

edge of δG(π)\FZ

V1

V2

V0

V5

V4

V3

Figure 1. An F -node-partition configuration with k = 4

First observe that by Conditions i) - vi), G is (k+1)-
node-connected and hence kNCSP(G) is full dimensional.
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Let us denote the F -node-partition inequality by ax ≥ α
and let F = {x ∈ kNCSP (G)|ax = α}. Clearly,
F is a proper face of kNCSP(G). Now suppose that
there exists a defining facet inequality bx ≥ β such that
F ⊆ F = {x ∈ kNCSP (G)|bx = β}. We will show that
b = a.

Let ei be an edge of [Vi, Vi+1], i = 1, ..., p − 1. Let
E0 be the set of edges not in F and having both endnodes
in the same element of π and EZ = E(Z) ∪ δG(Z). First
we will show that b(e) = 0 for all e ∈ E0 ∪ F ∪ EZ . Let
i0 ∈ {1, ..., p}, and consider the edge sets

E1 = {ei0+2r, r = 0, ..., ⌊
p− 1

2
⌋}

T1 = E0 ∪E1 ∪ F ∪EZ

Claim 1. T1 induces a k-node-connected subgraph of G.

Proof. Let G1 be the subgraph of G induced by T1. Let
Z ′ ⊂ V with |Z ′| = k − 1. We will show that the graph
G1\Z ′ is connected. Let δG(U) be a cut in G1\Z ′.

If Z ′ ⊂ Z . By Conditions i)-iv) G1\Z ′ is connected.
Now suppose that Z ′ ⊂ Vi, , i = 1, ..., p. By conditions

i)-iv) we have that G[Vi]\Z ′ is connected and that there exist
k-node-disjoint paths between a node in Vi and the rest of
the graph. As |Z ′| = k−1, in G1\Z ′ there exist at least one
path connecting Vi to the rest of the graph. Hence G1\Z ′

is connected.
Now suppose that Z ′ ⊂ V0. As |Zi| ≤

2
3 (k− 1), |Z ′| ≤

2(k − |Zi| − 1), and hence there exists at least one path
between a node in Vi and V0 in G1\Z ′. Hence G1\Z ′ is
connected.

Suppose now that Z ′ ⊂ (Vi ∪ Vj), i 6= j. As |Z ′| ≤
2(k−|Zi|−1) and by Conditions i)-iv) we have that for all
u ∈ Vi there is at least one path between u and V0. Hence
G1\Z ′ is connected. Thus we have that G1\Z ′ is connected
for every subset Z ′ ⊂ V with |Z ′| = k − 1.

�

Note that there are k+1 node-disjoint paths connecting
Vi0 to the rest of the graph induced by T1. Now, observe
that for any edge e ∈ Fi0 , one can show, in a similar way
as in the claim above, that T2 = T1\{e} also induces a
k-node-connected subgraph of G. As xT1 and xT2 belong to
F , it follows that bxT1 = bxT2 = α, implying that b(e) = 0
for all e ∈ Fi0 . As i0 is arbitrarily chosen, we obtain that
b(e) = 0 for all e ∈ F . Moreover, as the subgraphs induced
by V0, ..., Vp are all (k + 1)-node-connected, the subgraph
induced by T1\{e}, for all e ∈ E0, is k-node-connected.
This yields as before b(e) = 0 for all e ∈ E0.

Now suppose that e ∈ EZ . As for every z ∈ Z
|δG({z})| ≥ k + 1, and by Condition ii) it follows that
T1\{e} also induces a k-node-connected subgraph of G.
Thus b(e) = 0 for all e ∈ EZ . And consequently b(e) = 0
for all e ∈ F ∪ E0 ∪ EZ .

Next, we will show that b(e) = a(e) for all e ∈
δG\Z′(π)\F .

Consider the edge set T3 = (T1\{ei0}) ∪ {ei0+1}.

We can show in a similar way as in the claim above that
T3 also induces a k-node-connected subgraph of G. More-
over, xT3 belongs to F , implying that bxT1 = bxT3 = α.
Hence b(ei0) = b(ei0+1). As ei0 and ei0+1 are arbitrary
edges of [Vi0 , Vi0+1] and [Vi0+1, Vi0+2], respectively, we
obtain that b(e) is the same for all e ∈ [Vi0 , Vi0+1] ∪
[Vi0+1, Vi0+2]. By exchanging the roles of Vi0 ,Vi0+1 and
Vi, Vi+1, for i = 1, ..., p − 1, we obtain by symmetry that
b(e) = ρ for all e ∈ [Vi, Vi+1], i = 1, ..., p, for some ρ ∈ R.

Let gi0+1 be a fixed edge of δG(V0)\F . Consider the
edge set T4 = (T1\{ei0}) ∪ {gi0+1}.

Similary, we can show that T4 induces a k-node-
connected subgraph of G. As xT1 and xT4 belong to F ,
it follows in a similar way that b(ei0) = b(gi0+1). As
b(ei0) = b(ei0+1) = ρ, we get b(gi0+1) = ρ. Here again, by
exchanging the roles of Vi0+1 and Vi, i = 1, ..., p, we obtain
that b(e) = ρ for all e ∈ [Vi, Vi+1]∪ δG(V0)\F , i = 1, ..., p.
In consequence, the edges of E\(E0 ∪ F ∪ EZ) have all
the same coefficient in bx ≥ α. Since axT1 = bxT1 = α,
this yields b(e) = 1 for all e ∈ E\(E0 ∪ F ∪ EZ).

Thus we obtain that b = a, which ends the proof of the
theorem.

�

Corollary 1. If G is a complete graph, the F -node-partition
inequalities defines facets only if |Vi| = 1, i = 1, ..., p.

5. Structural properties and reduction opera-

tions

In this section we discuss some structural properties of
the extreme points of the linear relaxation of the problem
and introduce some reduction operations with respect to
extreme points.

Let G = (V,E) be a graph. Let P (G, k) be the polytope
given by inequalities (1)-(4). Let x be an extreme point
of P (G, k). Let Ce(x) (resp. Cn(x)) be the set of cuts
δ(W ) (resp. node-cuts δG\Z(W )) tight for x, that is to say
x(δ(W )) = k (resp. x(δG\Z(W )) = k−|Z|). Then x is the
unique solution of a system of the form

(Q)











x(e) = 1, ∀ e such that x(e) = 1,
x(e) = 0, ∀ e such that x(e) = 0,
x(δG(W )) = k, ∀ δG(W ) ∈ C ∗

e (x),
x(δG\Z(W )) = k − |Z|, ∀ δG\Z(W ) ∈ C ∗

n (x),

where C ∗
e (x) (C ∗

n (x)) is a subset of Ce(x) (resp. Cn(x)).
Given a cut δ(W ) (resp. a node-cut δG\Z(W )) tight for

x, let Ce(x,W ) (resp. Cn(x,W )) be the set of cuts δ(S)
(node-cuts) δG\Z′(T )) tight for x such that either S ⊆ W
or S ⊆ W (T ⊆ W or T ⊆ W ) (resp. S ⊆ W or S ⊆
V \(W ∪Z) (T ⊆ W or T ⊆ V \(W ∪Z))). Let C (x,W ) =
Ce(x,W ) ∪ Cn(x,W ).

Proposition 1. Let δ(W ) (δG\Z(W )) be a cut (node-cut) of
G tight for x. Then system (Q) can be chosen so that
C ∗
e (x) ∪ C ∗

n (x)) ⊆ C (x,W ).

Proof.
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Let δ(W ) be a cut of Ce(x). We can easily show that
C ∗
e (x) may be considered as a subset of C (x,W ). So

consider a node-cut δG\Z(T ) ∈ Cn(x). We distinguish two

cases, either the subset Z is included in W or W , or Z
intersects W and W . Consider the first case, and suppose
W.l.o.g. that Z ⊂ W . Also suppose that T ∩ W 6= ∅ and
T 6⊂ W , W 6⊂ T and T ∪ W 6= V \Z . If this is not
the case, then δG\Z(T ) ∈ C (x,W ). Let T1 = T ∩ W ,

T2 = T ∩ W , T3 = W\T and T4 = W\(T ∪ Z). Thus
Ti 6= ∅ for i = 1, ..., 4. As δ(W ) ∈ Ce(x), we have that

k = x(δ(W )) = x(δ(T1, T2)) + x(δ(T1, T4))
+x(δ(T3, T2)) + x(δ(T3, T4))
+x(δ(T1, Z)) + x(δ(T3, Z)).

(9)

And as δG\Z(T ) ∈ Cn(x), we have that

k − |Z| = x(δG\Z(T )) = x(δ(T1, T3)) + x(δ(T1, T4))
+x(δ(T2, S3)) + x(δ(T2, T4)).

(10)

Moreover, by considering the cuts δ(T1), δ(T3), and the
node-cuts δG\Z(T2) and δG\Z(T4), we have that

k ≤ x(δ(T1)) = x(δ(T1, T2)) + x(δ(T1, T3))
+x(δ(T1, T4)) + x(δ(T1, Z)),

(11)

k − |Z| ≤ x(δG\Z(T4)) = x(δ(T4, T1))
+x(δ(T4, T2)) + x(δ(T4, T3)).

(12)

As x(e) ≥ 0 for all e ∈ E, by (9) and (10) together with
(11) and (12), it follows that

x(δ(T2, T3)) = 0, x(δ(T3, Z)) = 0. (13)

By symmetry we also get

x(δ(T1, T4)) = 0, x(δ(T1, Z)) = 0. (14)

In consequence, from (9), (10), (11), (12) together with
(13) and (14), it follows that the cuts δ(T1) , δ(T3) as well
as the node-cuts δG\Z(T2) and δG\Z(T4) are all tight for x.

Now observe that the equation x(δG\Z(T )) = k − |Z|
is redundant with respect to the equations x(δ(T3)) = k,
x(δ(T1)) = k, x(δG\Z(T2)) = k − |Z|, x(δG\Z(T4)) =
k − |Z| and the trivial equations. Moreover all these cuts
are in C (x,W ).

Now suppose that Z ∩W 6= ∅ 6= Z ∩W . Also suppose
that T ∩W 6= ∅ and T 6⊂ W , W 6⊂ T and T ∪W 6= V \Z .

Let T1 = T ∩W , T2 = T ∩W , Z1 = Z ∩W , Z2 = Z ∩W ,
T3 = W\(T ∪Z1) and T4 = W\(T ∪Z2). Thus Ti 6= ∅ for
i = 1, ..., 4. As δ(W ) ∈ Ce(x), we have that

k = x(δ(W )) = x(δ(T1, T2)) + x(δ(T1, T4))
+x(δ(T3, T2)) + x(δ(T3, T4)) + x(δ(T1, Z2))
+x(δ(T3, Z2)) + x(δ(T2, Z1)) + x(δ(T4, Z1))
+x(δ(Z1, Z2)).

(15)

And as δG\Z(T ) ∈ Cn(x), we have that

k − |Z| = x(δ(T )) = x(δ(T1, T3)) + x(δ(T1, T4))
+x(δ(T2, T3)) + x(δ(T2, T4)).

(16)

By considering the node-cuts δG\Z1
(T1) and δG\Z2

(T4),
we have that

k − |Z1| ≤ x(δG\Z1
(T1)) = x(δ(T1, T2))

+x(δ(T1, T3)) + x(δ(T1, T4)) + x(δ(T1, Z2)),
(17)

k − |Z2| ≤ x(δ(T4)) = x(δ(T4, T1))
+x(δ(T4, T2)) + x(δ(T4, T2)) + x(δ(T4, Z1)).

(18)

As x(e) ≥ 0 for all e ∈ E, by (15) and (16) together
with (17) and (18), it follows that

x(δ(T2, T3)) = 0, x(δ(T3, Z2)) = 0,
x(δ(T2, Z1)) = 0, x(δ(Z1, Z2)) = 0.

(19)

By symmetry we also have that

x(δ(T1, T4)) = 0, x(δ(T1, Z2)) = 0,
x(δ(T4, Z1)) = 0.

(20)

Now from (15), (16), (17), (18) together with (19), (20),
it follows that the node-cuts δG\Z1

(T1) and δG\Z2
(T4) are

tight for x. Along the same line we obtain that the node-cuts
δG\Z1

(T3) and δG\Z2
(T2) are also tight for x. As a conse-

quence we obtain that the equation x(δG\Z(T )) = k − |Z|
is redundant with respect to the equations x(δG\Z1

(T1)) =
k − |Z1|, x(δG\Z2

(T4)) = k − |Z2|, x(δ(W )) = k together
with the trivial equations x(e) = 0 for all e such that
x(e) = 0. Moreover all these cuts are in C (x,W ).

If we consider a node-cut x(δG\Z(W )) ∈ C ∗
n (x)) we

can show along the same line that the cuts of system (Q)
can be chosen among those of C (x,W ).

�

In what follows we consider some reduction operations
defined with respect to a solution x of P (G, k).

θ1: Delete an edge e ∈ E such that x(e) = 0.
θ2: Contract a node subset W ⊆ V such that G[W ]

is k-edge connected, x(e) = 1 for all e ∈ E(W )
and x(δ(W )) = k.

θ3: Contract a node subset W ⊆ V such that |W | ≥
2, |W | ≥ 2, |δG(W )| = k.

θ4: Replace a set of parallel edges by only one edge.
θ5: Contract a node subset W such that x(e) = 1

for all e ∈ E(W ) and |δG(W )| ≤ k + 1.
θ6: Contract a node subset T ∪ Z such that

|δG\Z(T )| = k − |Z| and x(e) = 1 for all
e ∈ E(T ∪ Z).

Proposition 2.
Let G′ = (V ′, E′) and x′ be the graph and the solution
obtained from G and x, respectively, by the application
of Operation θ2. Suppose that

1) x′ ∈ P (G′, k),
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2) for all Z ⊂ W , |Z| ≤ k − 1, δG\Z(T ) /∈
Cn(x) for all T ⊆ W .

Then x′ is an extreme point of P (G′, k).

Proof. As δ(W ) ∈ Ce(x), by Proposition 1, system (Q)
can be chosen in such a way that for every δ(S) ∈ C ∗

e (x)
(resp. δG\Z(T ) ∈ C ∗

n (x)) either S ⊆ W or S ⊆ W (resp.

T ⊆ W or T ⊆ W ). As x(e) = 1 for all e ∈ E(W )
and G[W ] is k-edge connected, this implies that C ∗

e (x) ⊆
Ce(x

′). Moreover by 2) it follows that if δG\Z(T ) is tight
for x and Z ⊆ W , then W ∩ T 6= ∅ and W\(Z ∪ T ) 6= ∅.
Let T1 = W ∩ T and T2 = W\(Z ∪ T ). We have that

k − |Z| = x(δG\Z(T )) ≥ x(δ(T1, T2)) ≥ k,

a contradiction. The last inequality comes from the fact that
G[W ] is k-edge connected and x(e) = 1 for all e ∈ E(W ).
In consequence, all the node-cuts δG\Z(T ) of C ∗

n (x) are

such that Z ⊂ W . However these are at the same time
tight for x′. Thus C ∗

n (x) ⊂ Cn(x
′). Let (Q’) be the system

obtained from (Q) by deleting the equations x(e) = 1 for
all e ∈ E(W ). Then x′ is the unique solution of (Q’). As
all the equations of (Q’) come from P (G′, k) and by 1)
x′ ∈ P (G′, k), it follows that x′ is an extreme point of
P (G′, k).

�

Proposition 3.
Let G′ = (V ′, E′) be the graph obtained from G by the
application of Operation θ4. Let E0 be the set of parallel
edges of G and e0 the edge replacing E0 in G′. Let x′

be the solution given by x′(e) = x(e) if e ∈ E\E0 and
x′(e) = 1 if e = e0. Then x′ is an extreme point of
P (G′, k).

Proof.

Observe that for every cut δ(W ) (node-cut δG\Z(W ))
either E0 ⊆ δ(W ) (E0 ⊂ δG\Z(W )) or E0 ∩ δ(W ) = ∅
(E0 ∩ δG\Z(W ) = ∅). Moreover, E0 cannot contain more
than two edges with fractional value. Indeed, if e1, e2 ∈ E0

and 0 < x(e1) < 1 and 0 < x(e2) < 1, let x∗ be the solution
given by x∗(e) = x(e) if e ∈ E\{e1, e2}, x∗(e) = x(e)+ǫ if
e = e1 and x∗(e) = x(e)− ǫ if e = e2, where ǫ is a positive
scalar sufficiently small. We then have that x∗ is also a
solution of (Q), which is a contradiction. We claim that E0

does not contain any edge with fractional value. Suppose,
on the contrary that h is such an edge. Then x(E0) > 1.
Therefore there exists a cut or a node-cut of system (Q)
containing h. Let v be an extremity of h. Let δ(S) be a cut of
C ∗
e (x) that contains h. Thus E0 ⊂ δ(S). Suppose W.l.o.g.,

that v ∈ S. Consider the node-cut δG\v(S). We have that
x(δG\v(S)) ≤ x(δ(S)\E0) < k − 1, a contradiction. Now
consider a node-cut δG\Z(T ) of C ∗

n (x) that contains h and
hence E0. As x(E0) > 1, one must have |Z| < k − 1.
So suppose that |Z| < k − 1. Suppose W.l.o.g., that
v ∈ V \(T ∪Z). Let Z ′ = Z∪{v}. We have x(δG\Z′(T )) ≤
x(δG\Z(T ))− 1− x(h) = k− (|Z|+1)− x(h) < k− |Z ′|,
a contradiction. Consequently, x(e) = 1 for all e ∈ E0.
From the development above we also deduce that neither
a cut of C ∗

e (x) nor a node-cut of C ∗
n (x) intersects E0.

Hence C ∗
e (x) ∪ C ∗

n (x) ⊂ C (x′). Moreover, we have that
x′ ∈ P (G′, k). Obviously, x′ satisfies the trivial inequalities
as well as the cut and node-cut inequalities that do not
contain h. Let δ(W ) be a cut that contains h. Suppose
v ∈ W . We have x′(δ(W )) = x′(h) + x′(δ(W )\{h}) =
1 + x(δ(W )\E0) = 1 + x(δG\v(W )) ≥ k. Consider now
a node-cut δG\Z(T ) containing h. If |Z| = k − 1, as
x′(h) = 1 and h ∈ δG\Z(T ) we have that x′(δG\Z(T )) ≥ 1.
If |Z| < k − 1, then let Z ′ = Z ∪ {v}. We have that
x′(δG\Z(T )) ≥ 1 + x′(δG\Z′(T )) ≥ 1 + k − |Z ′| =
1 + k − |Z| − 1 = k − |Z|.

�

We can also show that the solution x′ obtained by
application of the other operations is an extreme point of
P (G′, k) subject to some conditions, where G′ is the graph
that results from the operations.

We will use operations θ1, ..., θ6 as a preprocessing for
the separation procedures in our Branch-and-Cut algorithm.

6. Branch-and-Cut algorithm

We now present our Branch-and-Cut algorithm for the
kNCSP. The algorithm has been implemented in C++ using
CPLEX 12.5 with the default settings. All experiments were
run on a 2.10GHzx4 Intel Core(TM) i7-4600U running linux
with 16 GB of RAM. We fixed the maximum CPU time to
5 hours. We have tested our approach on several instances
derived from SNDlib1 and TSPlib2 based topologies. The
test set consists in complete graphs whose edge weights are
the rounded euclidian distance between the edge’s vertices.
The tests were performed for k = 3, 4, 5. In all our ex-
periments, we have used the reduction operations described
above. To start the optimization we consider the following
linear program

min
∑

e∈E

c(e)x(e)

x(δG(u)) ≥ k for all u ∈ V,

x(δG\Z(u)) ≥ 1 for all u ∈ V ;Z ⊆ V ; |Z| = k − 1,

0 ≤ x(e) ≤ 1 for all e ∈ E.

The inequalities previously described are separated in the
following order: cut inequalities (3), node-cut inequalities
(4), SP-partition inequalities (6), F -partition inequalities (8)
and node-partition inequalities (7). The experimental results
are summerized in the following tables.

1. http://sndlib.zib.de/home.action.

2. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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Instance #EC #NC #FNPC #SPC #NPC COpt Gap(%) NSub CPU

schema1 8 0 284 0 1 2 146 0.00 1 0:00:01

dfn bwin 10 0 0 0 0 0 44 0.00 1 0:00:01

di-yuan 11 4 92 4 3 1 2731 0.00 1 0:00:01
dfn gwin 12 17 693 6 6 3 47 0.00 1 0:00:05

polska 12 7 121 0 5 0 51 0.00 1 0:00:04

abilene 12 20 1699 3 8 3 214 0.00 1 0:00:06
burma 14 19 3332 8 3 1 62 0.03 5 0:00:30

nobel-us 14 11 837 6 6 9 219 0.05 13 0:00:28

atlanta 15 23 34 10 2 3 3265 0.00 1 0:00:30
newyork 16 19 58 3 4 4 3809 0.00 1 0:00:39

ulysses16 16 22 5844 24 8 5 132 0.00 1 0:02:20

nobel germany 17 40 1283 5 8 4 53 0.00 1 0:01:46
geant 22 78 2851 36 16 5 375 0.14 59 0:53:49

ulysses22 22 44 22444 8 7 9 141 0.00 1 0:13:33

ta1 24 46 520 11 7 2 3035 0.02 8 0:27:35
france 25 71 807 8 14 1 3254 0.39 17 1:03:55

janos-us 26 60 29258 42 13 3 282 0.01 12 1:40:27

sun 27 51 936 15 6 0 4771 0.02 8 1:12:58
norway 27 48 1214 52 7 6 6864 2.32 2 2:02:07

bays 29 66 227 22 8 6 14791 3.1 6 2:03:52

india 35 18 270 9 3 0 489 1.45 2 2:04:21
pioro 40 11 546 0 2 1 5637 0.00 1 0:42:07

berlin 52 95 914 14 83 0 16524 0.09 6 3:14:23

eil 76 85 1674 9 142 1 - 0.12 6 5:00:00

TABLE 1. RESULTS FOR k = 3

Instance #EC #NC #FNPC #SPC #NPC COpt Gap(%) NSub CPU

schema1 8 0 0 0 - 0 207 0.00 1 0:00:01

dfn bwin 10 0 0 0 - 0 44 0.00 1 0:00:01
di-yuan 11 4 92 4 - 1 2731 0.00 1 0:00:01

dfn gwin 12 0 116 2 - 0 65 0.00 1 0:00:02

polska 12 0 1276 14 - 0 72 0.00 1 0:00:02
abilene 12 0 1252 6 - 2 305 0.00 1 0:00:03

burma 14 0 3966 3 - 0 85 0.00 1 0:00:12

nobel-us 14 0 6168 9 - 0 288 0.00 1 0:00:14
atlanta 15 0 72 2 - 0 4615 0.00 1 0:00:25

newyork 16 0 60 4 - 0 5462 0.00 1 0:00:20

ulysses16 16 0 45865 0 - 3 185 0.05 4 0:01:39
nobel germany 17 20 4632 10 - 0 73 0.00 1 0:03:51

geant 22 4 118126 0 - 0 521 0.00 1 0:11:50

ulysses22 22 0 185103 0 - 0 196 0.00 1 0:09:46
ta1 24 18 5986 8 - 0 4387 0.00 1 0:37:00

france 25 4 0 1 - 0 4692 0.39 14 0:06:44

janos-us 26 24 15859 12 - 0 390 0.00 1 1:22:40
sun 27 0 9172 74 - 0 6867 0.00 1 0:21:31

norway 27 12 25377 6 - 5 8257 0.00 1 1:36:20

bays 29 4 12178 36 - 0 20945 0.00 1 1:00:38
india 35 25 4165 7 - 0 547 6.45 2 2:01:59

pioro 40 18 598 4 - 0 8096 0.00 1 0:31:14

berlin 52 145 1045 19 - 0 18268 0.05 3 3:14:23
eil 76 34 1832 8 - 0 971 0.07 2 2:24:32

TABLE 2. RESULTS FOR k = 4

Instance #EC #NC #FNPC #SPC #NPC COpt Gap(%) NSub CPU

schema1 8 0 576 0 0 0 284 0.00 1 0:00:01
dfn bwin 10 0 2600 0 0 0 81 0.00 1 0:00:01

dfn gwin 12 9 5129 11 0 0 88 0.00 1 0:00:19

polska 12 0 15456 0 1 0 96 0.02 3 0:00:21
abilene 12 0 21027 0 0 2 437 0.05 6 0:00:39

burma 14 6 41956 2 0 2 111 0.01 3 0:01:52

nobel-us 14 13 50884 1 1 3 409 0.12 5 0:02:59
atlanta 15 15 32080 20 0 1 6239 0.00 1 0:13:44

newyork 16 0 44184 0 0 0 7422 0.00 1 0:01:31

ulysses16 16 0 133950 2 2 4 244 0.00 1 0:08:48
nobel germany 17 16 66232 68 0 0 100 0.12 5 1:50:34

ulysses22 22 2 186516 0 1 2 258 0.02 2 2:07:16

ta1 24 0 435920 0 0 0 5915 0.00 1 0:47:17
france 25 0 21284 0 0 0 6439 0.91 5 2:23:00

janos-us 26 1 786529 0 0 0 52 5.5 6 2:40:41

sun 27 0 29916 1 0 0 9341 0.06 7 2:23:55
norway 27 0 29946 1 0 0 11149 0.65 7 2:23:55

bays 29 2 40972 0 0 0 28411 1.3 2 2:12:12

india 35 0 41344 0 0 0 638 2.91 4 1:46:04
pioro 40 8 1342 7 0 0 11756 0.25 4 0:58:24

berlin 52 76 3451 25 0 0 21763 0.15 5 4:14:23

st 70 4 847 21 0 0 - 9.12 1 5:00:00

TABLE 3. RESULTS FOR k = 5

Each instance is given by its name followed by an
extension representing the number of nodes of the graph.
The other entries of the table are: The connectivity (k), the
number of generated cuts, for inequalities (3) (#EC) and
(4) (#NC), respectively, the number of generated F -node-
partition inequalities (8) (#FNPC), the number of generated
SP-partition inequalities (6) (#SPC), the number of gener-
ated node-partition inequalities (7) (#NPC), the weight of
the optimal solution obtained (COpt), the Gap, that is the

relative error between the best upper bound (the optimal
solution if the problem has been solved to optimality) and
the lower bound obtained at the root node of the Branch-
and-Cut tree, without using the additional valid inequali-
ties (Gap 1), and by using them (Gap 2), the number of
subproblems in the Branch-and-Cut tree (NSub), the total
CPU time in h:min:sec, without using the valid inequalities
(CPU 1), and by using them (CPU 2).

We have tested our Branch-and-Cut algorithm for differ-
ents connectiviy types. We first considered the case where
k = 3. The results are summarized in Table 1. We can
see from Table 1 that our Branch-and-Cut solved all the
instances to optimality within the time limit of 5 hours
except the last one. Moreover most of the instances have
been solved in the cutting plane phase. We also notice that
the relative error between the lower bound at the root node of
the Branch-and-Cut tree and the best upper bound (Gap) is
less than 1% for most of the instances. We also observe that
our separation procedures detected an important number of
violated SP-partition and specially F -partition inequalities,
which are very efficient in the resolution of the problem.

Our second series of experiments concerns the kNCSP
with k = 4, 5. The results are given in Table 2 for k = 4 and
Table 3 for k = 5. When k is even, the SP-partition inequal-
ities are redundant with respect to the cut inequalities (3).
Thus we don’t consider these inequalities in the resolution
process for k = 4, and therefore they do not appear in Table
2.

First we can see that for k = 4, the CPU time is smaller
than the one when k = 3. Moreover 19 instances over 24
have been solved in the cutting plane phase. A few number
of violated node-partition inequalities are detected. However
a large number of F -partition inequalities is generated. Thus
these inequalities are very efficient for solving the kNCSP
when k is even. Thus it appears that the kNCSP is easier
to solve when k is even, and this is also confirmed by the
results of Table 3. We can remark that the CPU time for all
the instances when k = 5 is higher than that when k = 4.
For instance, the test problem france 25 has been solved in
2h 23mn when k = 5, whereas only 6 minutes were needed
to solve it for k = 4.

Instance Gap1(%) Gap2(%) Gap ECSP(%) CPU 1 CPU 2 CPU ECSP

schema1 8 0.02 0.00 - 0:00:06 0:00:01 -

polska 12 0.05 0.00 - 0:00:28 0:00:04 -
burma 14 0.12 0.03 0.00 0:01:54 0:00:30 0:00:01

nobel germany 17 2.37 0.00 - 0:08:01 0:01:46 -

geant 22 4.14 0.14 - 0:01:11 0:53:49 -
ta1 24 3.21 0.02 0.01 1:01:51 0:27:35 0:00:01

france 25 2.94 0.39 0.02 1:51:46 1:03:55 0:00:02

janos-us 26 1.83 0.01 - 2:02:08 1:40:27 -
norway 27 6.51 2.32 - 2:44:36 2:02:07 -

india 35 5.43 1.45 0.13 3:33:12 2:04:21 0:00:02

pioro 40 3.43 0.00 - 2:42:51 0:42:07 -
berlin 52 4.76 0.09 0.45 5:00:00 3:14:23 0:00:03

eil 76 5.92 0.12 0.06 5:00:00 5:00:00 0:00:03

TABLE 4. COMPARISON OF RESULTS FOR k = 3

Figures 2, 3 and 4 give the optimal solutions of the
instance ”france 25” when k = 3, 4, 5, respectively.

To evaluate the impact of the F -node-partition inequal-
ities and the other additional inequalities, we tried to solve
the kNCSP by only separating the basic inequalities. Figure
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Instance Gap1(%) Gap2(%) Gap ECSP(%) CPU 1 CPU 2 CPU ECSP

schema1 8 0.03 0.00 - 0:00:04 0:00:01 -

polska 12 0.01 0.00 - 0:00:04 0:00:02 -

burma 14 0.15 0.00 0.00 0:00:28 0:00:12 0:00:01
nobel germany 17 0.62 0.00 - 0:04:21 0:03:51 -

geant 22 0.76 0.00 - 0:15:31 0:11:50 -

ta1 24 0.93 0.00 - 0:45:41 0:37:00 -
france 25 0.89 0.39 0.00 0:26:17 0:06:44 0:00:02

janos-us 26 3.62 0.00 0.00 2:00:01 1:22:40 0:00:02

norway 27 1.09 0.00 0.00 2:03:57 1:36:20 0:00:01
india 35 13.64 6.45 0.00 2:45:19 2:01:59 0:00:01

pioro 40 4.98 0.00 0.00 2:00:01 0:31:14 0:00:03

berlin 52 9.36 0.05 0.00 4:23:49 3:14:23 0:00:01
eil 76 6.48 0.07 - 5:00:00 2:24:32 -

TABLE 5. COMPARISON OF RESULTS FOR k = 4

Instance Gap1(%) Gap2(%) Gap ECSP(%) CPU 1 CPU 2 CPU ECSP

schema1 8 0.02 0.00 - 0:00:03 0:00:01 -
polska 12 0.03 0.02 - 0:00:58 0:00:21 -

burma 14 0.02 0.01 0.00 0:03:22 0:01:52 0:00:01

nobel germany 17 0.34 0.12 - 2:03:37 1:50:34 -
ta1 24 0.27 0.00 - 0:59:57 0:47:17 -

france 25 1.22 0.91 0.00 2:31:21 2:23:00 0:00:01

janos-us 26 6.02 5.5 - 2:58:38 2:40:41 -
sun 27 0.92 0.06 - 3:52:14 2:23:55 -

norway 27 2.68 0.65 0.00 2:54:37 2:23:55 0:00:01

india 35 4.82 2.91 0.00 2:37:19 1:46:04 0:00:01
pioro 40 3.29 0.25 - 2:04:37 0:58:24 -

berlin 52 2.62 0.15 0.00 5:00:00 4:14:23 0:00:01

TABLE 6. COMPARISON OF RESULTS FOR k = 5

5 presents a fractional solution obtained at the root node
using additional valid inequalities, whereas Figure 6 gives
the solutions without these inequalities. We can see that
without the valid inequalities, we have more edges with
fractional values. Thus without additional constraints, the
problem needs more branching. Moreover, the computional
time is higher as it can be seen in Tables 4, 5 and 6. CPU 1
is more important that CPU 2, and Gap 1 is higher than
Gap 2.

Instance #EC #NC #FNPC #SPC #NPC COpt Gap(%) NSub CPU

abilene 12 20 2211 0 3 2 214 1.29 12 0:00:18

nobel-us 14 29 775 4 7 7 219 0.57 44 0:01:15
atlanta 15 16 143 16 1 1 3265 0.15 3 0:01:03

nobel germany 17 83 5607 217 24 17 53 1.3 21 0:14:52

ulysses22 22 49 22633 5 10 15 141 0.74 10 0:21:08
janos-us 26 42 35782 26 2 0 282 1.45 26 3:14:53

sun 27 41 910 29 8 0 4771 0.87 6 3:31:11

norway 27 48 1214 52 7 6 6864 2.32 2 2:02:07
bays 29 66 227 22 8 6 14791 3.1 6 2:03:52

india 35 18 270 9 3 0 489 1.45 2 2:04:21

pioro 40 33 725 1 5 2 - 7.25 14 5:00:00

TABLE 7. RESULTS FOR k = 3 WITHOUT REDUCTION OPERATIONS

We also evaluated the impact of the reduction operations
θ1, ..., θ6 on the separation procedures. We tried to solve
the kNCSP, for k = 3, without using these operations. The
results are given in Table 7. Observe that the CPU time
increased for most of the instances. For instance, without the
reduction operations, the instance pioro 40 has been solved
to optimality after 5 hours. Whereas with the operations, it
has been solved in 42mn 07s. Also, the CPU time for the
instances janos-us 26 and sun 27 increased from 1 hour to
more than 3 hours. Moreover, we remark that when we use
the reduction operations, we generate more SP-partition, F -
partition and node-partition inequalities and less nodes in the
Branch-and-Cut tree than when we use them. This proves
that our heuristics, used to separate the valid inequalities,
are less efficient without the reduction operations. It then
appears that the reduction operations play an important role
in the resolution of the problem. They permit to much

Figure 2. Solution of the kNCSP for k = 3

Figure 3. Solution of the kNCSP for k = 4

accelerate its resolution.
We also compared the results of the kNCSP with those

of the k-Edge Connected Subgraph Problem (kECSP). Both
problems are easier to solve when k is even. However,
although the kECSP is easier to solve when k increases with
the same parity, the kNCSP is not. This can be explaned
by the fact that our separation procedure for the additional
node-cut inequalities requires Ck−1

|V | |V | − 1 maximum flow

computations, it will then take more time to run through the
combination of k− 1 nodes of the graph when k increases.

7. Conclusion

In this paper we have studied the k-node-connected
subgraph problem with high connectivity requirement, that
is, when k ≥ 3. We have presented some classes of valid
inequalities and described some conditions for these in-
equalities to be facet defining for the associated polytope.
Using this, we devised a Branch- and-Cut algorithm for the
problem. This algorithm uses some reduction operations,
and has been tested on SNDlib and TSPlib based instances.
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Figure 4. Solution of the kNCSP for k = 5

Figure 5. Fractional solution with valid inequalities

For future work, we can more investigate the structural
properties of the linear relaxation and study the problem
when a bound is considered on the connectivity paths.
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