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1. Introduction

The design of survivable networks is an important issue in
telecommunications. The aim is to conceive cheap, efficient and
reliable networks with specific characteristics and requirements
on the topology. Survivability is generally expressed in terms of
connectivity in the network. The level of connectivity depends on
the need of each telecommunication operator. We may have to
conceive several paths to link each pair of nodes to ensure the
transmission in case of disconnection or breakdown, all this at
the cheapest possible cost. As we can see in Grötschel, Monma,
and Stoer (1995) and Kerivin and Mahjoub (2015), the most fre-
quent and useful case in practice is the uniform topology. This
means that the nodes of the network have all the same importance
and it is required that between every pair of nodes there are at
least k edge- (node-) disjoint paths, where k is a fixed integer such
that k P 2. Thus the network will be still functional when at most
k� 1 edges fail. The underlaying problem is to determine, given
weights on the possible links of the network, a minimum weight
network satisfying the edge or the node connectivity. This paper
deals with the node connectivity of the problem.

A graph G ¼ ðV ; EÞ is called k-node (resp. k-edge) connected
ðk P 0Þ if for every pair of nodes i; j 2 V , there are at least k
node-disjoint (resp. edge-disjoint) paths between i and j. Given a
graph G ¼ ðV ; EÞ and a weight function c on E that associates with
an edge e 2 E a weight cðeÞ 2 R, the k-node-connected subgraph
problem (kNCSP for short) is to find a k-node-connected spanning
subgraph H ¼ ðV ; FÞ of G such that

P
e2FcðeÞ is minimum. The

kNCSP has applications in communication and transportation net-
works (Bendali, Diarrassouba, Didi Biha, Mahjoub, and Mailfert
(2010); Grötschel and Monma (1990); Grötschel, Monma, and
Stoer (1991, 1992, 1995)). The kNCSP is NP-hard for k P 2 (Garey
& Johnson, 1979). The edge version of the problem has been widely
studied in the literature (Bendali et al. (2010); Chopra (1994); Didi
Biha and Mahjoub (1996); Grötschel and Monma (1990); Grötschel
et al. (1991, 1992, 1995); Mahjoub (1994)). However, the kNCSP
has been particulary considered for k ¼ 2 (see Diarrassouba,
Kutucu, and Mahjoub (2016) and Mahjoub and Nocq (1999)). A lit-
tle attention has been given for the high connectivity case where
k P 3. The kNCSP has been studied by Grötschel et al. (1991,
1990, 1992, 1995) within a more general survivability model.
Grötschel et al. study the model from a polyhedral point of vue,
and propose cutting plane algorithms (Grötschel and Monma
(1990); Grötschel et al. (1992, 1995)).

Diarrassouba et al. (2016) consider the 2NCSP with bounded
lengths. Here it is supposed that each path does not exceed L edges
for a fixed integer L P 1. They investigate the structure of the asso-
ciated polytope when L 6 3 and propose a Branch-and-Cut algo-
rithm. Mahjoub and Nocq (1999) discuss the linear relaxation of
the 2NCSP(G). They describe some structral properties and charac-
terize which they called extreme points of rank 1.

In this article, we consider the kNCSP from a polyhedral point of
view. We introduce further classes of valid inequalities for the
associated polytope, discuss their facial aspect and devise a
Branch-and-Cut algorithm.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.03.007&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.03.007
mailto:meriem.mahjoub@dauphine.fr
http://dx.doi.org/10.1016/j.cie.2017.03.007
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie
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The paper is organised as follows. In the following section, we
give an integer programming formulation for the problem. In Sec-
tion 3 we investigate the kNCSP polytope and present several
classes of valid inequalities. Then, in Section 4, we discuss the con-
ditions under which these inequalities define facets of the poly-
tope. In Sections 5 and 6, we consider the polytope associated
with the linear relaxation of the problem and present some struc-
tural proporties as well as some reduction operations. Section 7 is
devoted to the Branch-and-Cut algorithm we have developed for
the problem and in Section 8 we give some experimental results.
Finally, in Section 9, we give some concluding remarks.

In the rest of this section, we give some notations. We will
denote a graph by G ¼ ðV ; EÞ where V is the node set and E is the
edge set. Given F# E; cðFÞ will denote

P
e2FcðeÞ. For W#V , we let

W ¼ V nW . If W � V is a node subset of G, then dGðWÞ will denote
the set of edges in G having one node in W and the other in W . We
will write dðWÞ if the meaning is clear from the context. ForW � V ,
we denote by EðWÞ the set of edges of G having both endnodes inW
and by G½W� the subgraph induced by W. Given node subsets
W1; . . . ;Wp � V ; p P 2, we denote by dGðW1; . . . ;WpÞ the set of
edges of G between the sets W1, . . ., Wp. For U � V ;W � V and
U \W ¼ £, the edge set ½U;W� will denote the set of edges
between U and W.

A matching of G is a set of pairwise nonadjacent edges.
Let F be an edge subset of E, then the incidence vector of F,

denoted by xF , is the 0� 1 vector defined by

xFðeÞ ¼ 1 if e 2 F

0 otherwise:

�

2. Formulation

Let F# E be an edge subset of G. Then F induces a solution of the
kNCSP for G, that is, the subgraph of G induced by F is k-node-
connected, if xF satisfies the following inequalities

xðeÞ P 0; e 2 E; ð1Þ
xðeÞ 6 1; e 2 E; ð2Þ
xðdGðWÞÞ P k; for all W(V with W –£; ð3Þ
xðdGnZðWÞÞ P k� jZj; for all Z#V such that 1 6 jZj 6 k� 1; and
all W(V n Z with W –£: ð4Þ

Conversely, any integer solution of the system above is the inci-
dence vector of the edge set of a k-node-connected subgraph of G.
Hence, the kNCSP is equivalent to

minfcxjx satisfies ð1Þ—ð4Þ and x 2 ZE
þg: ð5Þ

Constraints (3) and (4) are called cut and node-cut inequalities,
respectively. The convex hull of all integer solutions of (1)–(4),
Fig. 1. A solution of QðG;
denoted by kNCSP(G), will be called kNCSPðGÞ the k-node-
connected subgraph problem polytope.

We will also denote by PðG; kÞ the polytope described by con-
straints (1)–(4).

In what follows we give an alternative formulation for the prob-
lem. This consists in restricting the node-cut inequalities (4) to the
node sets Z � V such that jZj ¼ k� 1. We hence consider the fol-
lowing set of inequalities

xðdGnZðWÞÞ P 1;£– Z#V ; jZj ¼ k� 1; ð6Þ
£– W � V n Z:
Theorem 1. The kNCSP is equivalent to

minfcxjx satisfies ð1Þ—ð3Þ; ð6Þ and x 2 ZE
þg: ð7Þ
Proof. It suffices to show that any integer solution x of (1)–(3), (6)
also satisfies (4). For this we will show that if x satisfies all inequal-
ities xðdGnZðWÞÞ P k� jZj with jZj ¼ t for some t 2 fk� 1; . . . ;2g,
then x satisfies xðdGnZ0 ðW 0ÞÞ P k� jZ0j for all Z0 � V with
jZ0j ¼ t � 1 and W 0 � V n Z0. Indeed, first note that either
jV n ðW 0 [ Z0Þj P 2 or jW 0j P 2 or both. In fact, if
jV n ðW 0 [ Z0Þj ¼ jW 0j ¼ 1, then jZ0j ¼ n� 2ð¼ t � 1Þ. But this implies
that t ¼ n� 1, and, as t 6 k� 1, it follows that k P n, which is
impossible. In what follows we suppose, w.l.o.g., that
jV n ðW 0 [ Z0Þj P 2. We claim that there is at least one node, say
u, in V n ðW 0 [ Z0Þ such that xð½u;W 0�Þ P 1. In fact, let
u0 2 V n ðW 0 [ Z0Þ. Let Z ¼ Z0 [ fu0g. By our assumption,
xðdGnZðW 0ÞÞ P k� jZj ¼ k� t. As t 6 k� 1, it follows that
xðdGnZðW 0ÞÞ P 1. Therefore there is a node u in V n ðW 0 [ Z0Þ such
that xð½u;W 0�Þ P 1.

Now let u 2 V n ðW 0 [ Z0Þ xð½u;W 0�Þ P 1, Z� ¼ Z0 [ fug. We have
jZ�j ¼ t. Again, by our assumption, we have that
xðdGnZ� ðW 0ÞÞ ¼ xðdGnZ0 ðW 0ÞÞ � xð½u;W 0�Þ P k� jZ�j ¼ k� t. As

xð½u;W 0�Þ P 1, it then follows that
xðdGnZ0 ðW 0ÞÞ ¼ xðdGnZ� ðW 0ÞÞ þ xð½u;W 0�Þ P k� t þ 1 ¼ k� jZ0j. h

As before, we will denote by QðG; kÞ the polytope associated
with the linear relaxation of (7). Clearly, PðG; kÞ#QðG; kÞ. More-
over, the two polytopes may be different, that is PðG; kÞ – QðG; kÞ,
for some graph G and connectivity k. For example, consider the
graph and the solution of Fig. 1 for k ¼ 3. The solution satisfies
the cut inequalities and the node-cut inequalities with
jZj ¼ k� 1 ¼ 2, and violates a node-cut inequality with jZj ¼
k� 2 ¼ 1. Indeed, for Z ¼ fv7g and W ¼ fv1;v2;v3g;
xðdGnZðWÞÞ < 2. Thus, formulation (5) may produce a better linear
relaxation than (7). We will hence consider formulation (5) for
solving the kNCSP.
kÞ n PðG; kÞ for k ¼ 3.
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In the next sections, we investigate the polytope kNCSP(G) and
describe some valid inequalities.

3. Dimension and valid inequalities

In this section, we will discuss the polytope kNCSP(G). We will
establish its dimension and describe some classes of valid
inequalities.

3.1. Dimension

Let G ¼ ðV ; EÞ be a graph. An edge e is said to be essential if the
solutions set of kNCSP(G n e) is empty. Let E� be the set of essential
edges of kNCSP. We have the following result.

Theorem 2. dim(kNCSP(G))¼ jEj � jE�j.
Proof. Let e 2 E�. Then, xðeÞ ¼ 1 for every solution x of kNCSP(G).
Then dimðkNCSPðGÞÞ 6 jEj � jE�j. Now, observe that the edge sets
Se ¼ E n feg; e 2 E n E�, and E form jEj � jE�j þ 1 solutions of the
kNCSP. Moreover, the incidence vectors of these solutions are affi-
nely independent. Therefore, dimðkNCSPðGÞÞ P jEj � jE�j. Thus, the
result follows. h
Corollary 1. kNCSP(G) is full-dimensional if and only if G is ðkþ 1Þ-
node-connected.

Now we describe some classes of valid inequalities for kNCSP
(G). One can easily see that any solution of the kNCSP on G is also
solution of the kECSP on G. Thus, any valid inequality for the kECSP
polytope on G is also valid for kNCSP(G).

In the following, we introduce a notation that will be used
throughout the remainder of the paper. Given a partition
p ¼ ðV1; . . . ;VpÞ; p P 2, we will denote by Gp the subgraph induced
by p, that is, the graph obtained by contracting the sets
Vi; i ¼ 1; . . . ; p. We will denote by dGðV1; . . . ;VpÞ the set of edges
of Gp, that is, the edges that have their endnodes in different ele-
ments of p.

3.2. Node-partition inequalities

Grötschel et al. (1991) introduce a class of valid inequalities for
a more general version of the kNCSP as follows. Consider a subset
Z � V , such that jZj 6 k� 1, and let V1; . . . ;Vp; p P 2 be a partition
of V n Z. Then the inequality

xðdGnZðV1; . . . ;VpÞÞ P
pðk�jZjÞ

2

l m
if jZj 6 k� 2;

p� 1 if jZj ¼ k� 1;

(
ð8Þ

is valid for the kNCSP(G). Inequalities of type (8) are called node-
partition inequalities.

3.3. SP-node-partition inequalities

Now we introduce a class of inequalities called SP-node-
partition inequalities, which generalize the so-called SP-
partition inequalities introduced by Didi Biha and Mahjoub
(1996) for the kECSP(G), where kECSP(G) is the convex hull of
the solutions of the k-edge-connected subgraph problem. These
latter inequalities are defined as follows. Let p ¼ ðV1; . . . ;VpÞ be
a partition of V such that the graph Gp is series-parallel. Recall
that a graph is series-parallel if it is not contractible to K4, the
complete graph on four nodes. The SP-partition inequality asso-
ciated with p is given by
xðdGðV1; . . . ;VpÞÞ P k
2

� �
p� 1: ð9Þ

Didi Biha and Mahjoub (1996) showed that these inequalities are
valid for the kECSP(G), for every k P 1.

For the kNCSP, we introduce a similar type of inequalities. Let
Z � V such that jZj 6 k� 1 and k� jZj is odd, and consider a parti-
tion p ¼ ðV1; . . . ;VpÞ of V n Z such that ðG n ZÞp is series-parallel.
The SP-node-partition inequality associated with p is

xðdGnZðpÞÞ P k� jZj
2

� �
p� 1: ð10Þ
Theorem 3. The SP-node-partition inequalities (10) are valid for
kNCSP(G).
Proof. Let x 2 kNCSP(G) and consider x0 the restriction of x on
G n Z. As x0 2 ðk� jZjÞECSP(G n Z), and the SP-partition inequalities
(9) are valid for ðk� jZjÞECSPðG n ZÞ, we have

xðdGnZðV1; . . . ;VpÞÞ ¼ x0ðdGnZðV1; . . . ;VpÞÞ P k� jZj
2

� �
p� 1;

which proves the result. h

Chopra (1994) (see also Didi Biha and Mahjoub (1996))
described a lifting procedure for inequalities (10). This can be
easily extended to the SP-node-partition inequalities. Let
G ¼ ðV ; EÞ be a graph and k P 3 an odd integer. Consider the graph
G0 ¼ ðV ; E [ TÞ obtained from G by adding an edge set T. Let Z � V
and p ¼ ðV1; . . . ;VpÞ be a partition of V n Z such that ðG n ZÞp is
series-parallel. Then the lifted SP-node-partition inequality induced
by p is

xðdGnZðV1; . . . ;VpÞÞ þ
X

e2T\dG0 ðV1 ;...;VpÞ
aðeÞxðeÞ P k� jZj

2

� �
p� 1; ð11Þ

where aðeÞ is the length, that is to say the number of edges, of the
shortest path in ðG n ZÞp between the endnodes of e, for all
e 2 T \ dG0 ðV1; . . . ;VpÞ.

Chopra (1994) shows that inequalities (11) are valid for kECSP
(G). Therefore they are also valid for kNCSPðGÞ.

3.4. F-node-partition inequalities

Let G ¼ ðV ; EÞ be a graph and Z a node subset of V. Let
p ¼ ðV0;V1; . . . ;VpÞ be a partition of V n Z and F an edge subset of
dGnZðV0Þ. Let Zi � Z be the set of nodes of Z adjacent to the nodes
in Vi; i ¼ 1; . . . ; p. Suppose that jZij 6 k� 1, for i ¼ 1; . . . ; p, and
Z ¼ S

i¼1;...;pZi. The following inequality

xðdGnZðpÞ n FÞ P
Pp

i¼1ðk� jZijÞ � jFj
2

� �
ð12Þ

is called an F-node-partition inequality.

Theorem 4. F-node partition inequalities are valid for the kNCSP(G).
Proof. Consider the following valid inequalities

xðdGnZi ðViÞÞ P k� jZij; for all i ¼ 1; . . . ;p;
� xðeÞ P �1; for all e 2 F;

xðeÞ P 0; for all e 2 dGnZðV0Þ n F:
By summing these inequalities, we obtain

2xðdGnZðpÞ n FÞ P
Xp

i¼1

ðk� jZijÞ � jFj:
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By dividing by 2 and rounding up the right hand, we get inequality
(12). h
4. Facial aspect

In this section, we discuss the facial aspect of the kNCSP poly-
tope. Namely, we investigate the conditions under which the
inequalities presented in the previous section define facets of
kNCSP(G). In the following we assume that G is ðkþ 1Þ-node-
connected. By Corollary 1, kNCSP(G) is then full-dimensional.

Grötschel and Monma (1990) characterize when the trivial
inequalities define facets.

Theorem 5 Grötschel and Monma (1990).

1. Inequality (1) defines a facet for kNCSP(G) if and only if e does not
belong to a cut dGnZðWÞ for some Z � V containing exactly
kþ 1� jZj edges.

2. Inequalities (2) define facets for kNCSP(G) for every e 2 E.

The next theorem deals with conditions for the cut inequalities
to define facets. Before, we give the following remark that will be
helpful for proving the results below.

Remark 1. Let W and W be a partition of G such that
jWj P k; jWj P kþ 1 and G½W� and G½W� are both k-node-
connected. Let fe1; . . . ; ekg be edges of dGðWÞ forming a matching
of G. Let S ¼ EðWÞ [ EðWÞ [ fe1; . . . ; ekg. Then S is a solution of
kNCSP(G).
Theorem 6. The cut inequality (3), induced by a node set W � V,
defines a facet for kNCSP(G) if the following hold.

(i) G½W� and G½W� are (kþ 1)-node-connected.
(ii) A maximum cardinality matching M in dGðWÞ contains at least

kþ 1 edges.
Proof. Let us denote by ax P a the cut inequality induced by
W, and let F ¼ fx 2 kNCSPðGÞjax ¼ ag. Suppose there exists a
facet defining inequality bx P b such that F # F ¼
fx 2 kNCSPðGÞjbx ¼ bg. We will prove that there is a scalar q such
that b ¼ qa.By ii) there exists a matching M ¼ fe1; . . . ; epg;
p P kþ 1, in dGðWÞ of p edges such that ei ¼ uiv i; i ¼ 1; . . . ; p, with
ui 2 W and v i 2 W . Let U1 ¼ fu1; . . . ;upg and V1 ¼ fv1; . . . ;vpg. Let
T1 ¼ EðWÞ [ EðWÞ [ fe1; . . . ; ekg. As by i) G½W� and G½W� are (kþ 1)-
node-connected, by Remark 1, T1 is a solution of kNCSP(G). We will
show in what follows that the coefficients be are equal for all
e 2 dGðWÞ. First we show that bei ¼ bej for i; j 2 f1; . . . ; pg. Let
T2 ¼ ðT1 n fe1gÞ [ fekþ1g. Clearly T2 is a solution of kNCSP. As

xT1 ; xT2 2 F , we have that bxT1 ¼ bxT2 ¼ b. This implies that
be1 ¼ bekþ1

¼ q for some q 2 R. By symmetry, it follows that
bei ¼ q for all i ¼ 1; . . . ; p. As M has a maximum cardinality, any
edge e 2 dðWÞ nM is adjacent to M. Consider an edge f ¼
uiv 2 ½U1;W n V1�; i 2 f1; . . . ; pg. Let T3 ¼ ðT1 n feigÞ [ ffg. As xT1 ;

xT3 2 F � F, we have that bxT1 ¼ bxT3 ¼ b. This yields bf ¼ bei ¼ q.
Thus bf ¼ q for all f 2 ½U1;W n V1�. By symmetry we also have
bf ¼ q for all f 2 ½V1;W n U1�. Finally consider an edge
h ¼ uiv j; i; j 2 f1; . . . ; pg, with i– j. W.l.o.g., we suppose i; j 6 k.
Consider the subset T4 ¼ ðT1 n fei; ejgÞ [ fh; ekþ1g. We have that T4

is a solution of kNCSP(G), and xT4 2 F # F. Which implies that
bei þ bej ¼ bh þ bekþ1

. As bei ¼ bej ¼ bekþ1
¼ q, it follows that bh ¼ q.

Thus we obtain that be ¼ q for all e 2 dGðWÞ.
We will now show that be ¼ 0 for all e 2 E n dGðWÞ. As G½W� and
G½W� are (kþ 1)-node-connected, we have that T5 ¼ T1 n feg
induces a k-node-connected graph for all edge e 2 EðWÞ [ EðWÞ.
Moreover xT5 2 F # F. Hence be ¼ 0. Consequently, we have that
be ¼ q for all e 2 dGðWÞ, and be ¼ 0 for all e 2 E n dGðWÞ. Thus
b ¼ qa. h
Corollary 2. If the graph G is complete, the cut inequality (3) induced
by W � V is facet-defining for kNCSP(G) if jWj P kþ 2 and
jWj P kþ 2.

The following theorems give necessary conditions and sufficient
conditions for the node-cut inequalities to be facet-defining.

Theorem 7. The node-cut inequality (4), induced by a node-cut
dGnZðWÞ for some node sets W and Z, defines a facet for kNCSP(G) only
if j½W; Z�j P jZj þ 1 and j½V n ðW [ ZÞ; Z�j P jZj þ 1.
Proof. Suppose for instance that j½W; Z�j < jZj þ 1, the case where
j½V n ðW [ ZÞ; Z�j < jZj þ 1 is similar. Thus, if j½W; Z�j < jZj þ 1, then
for any solution x 2 kNCSPðGÞ we have that �xð½W; Z�Þ P �jZj,
and xðdGðWÞÞ P k. Hence we obtain that xðdGnZðWÞÞ ¼
xðdGðWÞÞ � xð½W; Z�Þ P k� jZj. In consequence, xðdGnZðWÞÞ P
k� jZj is redundant with respect to the cut and trivial inequalities,
and hence cannot define a facet. h
Theorem 8. The node-cut inequality (4) defines a facet for kNCSP(G)
if the following hold.

(i) G½W� and G½W� are (kþ 1)-node-connected.
(ii) A maximum cardinality matching C in dGðWÞ contains at least

kþ 1 edges such that jC \ ½Z;W�j ¼ jZj and there exists a node
in W which is not incident to the matching C and it is adjacent
to all the nodes of Z.
Proof. Let us denote by ax P a the node-cut inequality induced
by W, and let F ¼ fx 2 kNCSPðGÞjax ¼ ag. Suppose there exists a
facet defining inequality bx P b such that F # F ¼
fx 2 kNCSPðGÞjbx ¼ bg. We will prove that there is a scalar q such
that b ¼ qa. By ii) there exists a matching C ¼
fe1; . . . ; epg; p P kþ 1, in dGðWÞ, such that ei ¼ uiv i; i ¼ 1; . . . ;
p;ui 2 W and v i 2 W , and ek�tþj 2 ½W; Z�; j ¼ 1; . . . ; t, with jZj ¼ t.
Let U1 ¼ fu1; . . . ;upg and V1 ¼ fv1; . . . ;vpg. And let
T1 ¼ EðWÞ [ EðWÞ [ fe1; . . . ; ekg [ ½W; Z�. As by i), G½W� and G½W�
are (kþ 1)-node-connected, by Remark 1, T1 is a solution of
kNCSP(G). Hence xT1 2 F . Let T2 ¼ ðT1 n fe1gÞ [ fekþ1g (Recall that
p P kþ 1). Clearly, T2 is a solution of kNCSP. As xT1 ; xT2 2 F , we

have that bxT1 ¼ bxT2 ¼ b, implying that be1 ¼ bekþ1
¼ q for some

q 2 R. By symmetry, we obtain that bei ¼ q for all ei 2 C n ½W; Z�.
As C has a maximum cardinality, any edge e 2 dGnZðWÞ n C is adja-
cent to C. Consider an edge f ¼ uiv 2 ½U1;V n ðW [ Z [ V1Þ�. W.l.o.
g., we suppose i 2 f1; . . . ; k� tg. Let T3 ¼ ðT1 n feigÞ [ ffg. Set T3 is

a solution of kNCSP(G). Moreover xT3 2 F # F. Hence bxT1 ¼
bxT3 ¼ b, implying that bf ¼ bei ¼ q. Thus bf ¼ q for all
f 2 ½U1;V n ðW [ Z [ V1Þ�. By symmetry, we also have that bf ¼ q,
for all f 2 ½V1 n Z;W n U1�. Now let h ¼ uiv j; i – j; i; j 2
f1; . . . ; pg n fk� t þ 1; . . . ; kg. Consider T4 ¼ ðT1 n fei; ejgÞ[
fh; ekþ1g. Set T4 is a solution of kNCSP(G). Moreover xT4 2 F # F.
Hence bei þ bej ¼ bh þ bekþ1

. As bei ¼ bej ¼ bekþ1
¼ q, this implies that

bh ¼ q. Therefore we obtain that be ¼ q for all e 2 dGnZðWÞ. Now
consider an edge e 2 EðWÞ, and let T5 ¼ T1 n feg. As G½W� is
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(kþ 1)-node-connected, G½W� n feg is k-node-connected, and hence
T5 is a solution of kNCSP. Thus xT5 2 F # F, and

bxT1 ¼ bxT5 ¼ bxT1 � be. Which implies that be ¼ 0. Therefore
be ¼ 0 for all e 2 EðWÞ. Similarly, we have that be ¼ 0 for all
e 2 EðWÞ. Now let e 2 ½W; Z�. Let T6 ¼ T1 n feg. By ii), T6 contains a
matching of at least k edges in dðWÞ. Hence T6 is a solution of
kNCSP, which implies that be ¼ 0. Consequently, we obtain that
be ¼ q for all e 2 dGnZðWÞ and be ¼ 0 for all e 2 E n dGnZðWÞ. Thus,
b ¼ qa. Which ends the proof of the theorem. h
Corollary 3. If the graph G is complete, then the node-cut inequalities
(4) are facet-defining for kNCSP(G) if jWj P kþ 2 and jWj P kþ 2.

Now, we discuss sufficient conditions for the F-node-partition
and SP-node-partition inequalities to define facets of kNCSP(G).

Theorem 9. Let G ¼ ðV ; EÞ be a graph and an integer k P 2. Let
Z � V. Let Zi � Z, with jZij 6 k� 2, for i ¼ 1; . . . ; p, and
p ¼ ðV0;V1; . . . ;VpÞ be a partition of V n Z where p is odd. Suppose
that the following hold.
(i) G½Z� is a complete graph.
(ii) G½Vi� is ðkþ 1Þ-node-connected, for i ¼ 0;1; . . . ; p.
(iii) For i ¼ 1; . . . ; p, there exists a subset Si of kþ 1 edges of dðViÞ

such that

(1) jSi \ ½Zi;Vi�j ¼ jZij and covering all the nodes of Zi,
(2) jSi \ ½V0;Vi�j ¼ k� jZij � 1 and covering k� jZij � 1 nodes

of V0,
(3) jSi \ ½Vi;Vi�1�j ¼ jSi \ ½Vi;Viþ1�j ¼ 1,
where the indices are taken modulo p. Moreover, if jVij P 2, then Si
is a matching, for i ¼ 1; . . . ; p.
(iv) There exists a set U0 � V0 such that jU0j P kþ 1 and G½Z [ U0�

is complete.
(v) For i ¼ 1; . . . ; p; ½V0;Vi [ Viþ1� contains a set Ri # Si [ Siþ1 of

k� jZij þ 1 edges covering k� jZij þ 1 nodes of V0. Let
Fi ¼ Si \ ½V0;Vi�, for i ¼ 1; . . . ; p, and let F ¼ Sp

i¼1Fi. Then the
F-node-partition inequality (12), induced by p and F, defines
a facet of kNCSP(G).(see Fig. 2 for an illustration for k ¼ 4)
Proof. Remark that under these conditions we can easily see that
G is ðkþ 1Þ-node-connected, thus kNCSP(G) is full dimensional.
Also by Condition iv), jV0j P kþ 1. Let us denote the F-node-
partition inequality by ax P a and let F ¼ fx 2 kNCSPðGÞjax ¼ ag.
Clearly, F is a proper face of kNCSP(G). Now suppose that there
exists a facet defining inequality bx P b of kNCSP(G) such that
F #F0 ¼ fx 2 kNCSPðGÞjbx ¼ bg. We will show that b ¼ qa for
some scalar q 2 R. (See. Fig. 3)
Fig. 2. A F-node-partition configuration with k ¼ 4.
For this, first remark that the right hand side of inequality (12)
here is p

2

� �
. Let E0 be the set of edges in E n F having both endnodes

in the same element of p. Let C ¼ E0 [ F [ EðZÞ [ dðZÞ.
Let el be an edge of Sl \ ½Vl;Vlþ1�; l ¼ 1; . . . ; p. For l 2 f1; . . . ; pg

consider the edge set

Tl ¼ C [ elþ2r ; r ¼ 0; . . . ;
p� 1
2

� �
;

where the indices are taken modulo p. Observe that
xTl ðdGnZðpÞ n FÞ ¼ pþ1

2 . Moreover, we have the following. h
Claim 1. Tl induces a k-node-connected subgraph of G.
Proof. Let Gl be the subgraph of G induced by Tl. First, we give the
following remarks.

(a) jdGl
ðVjÞj ¼ k for j 2 f1; . . . ; pg n flg and jdGl

ðVlÞj ¼ kþ 1.
(b) Fi –£ since jZij 6 k� 2, for i 2 f1; . . . ; pg, and the graph

obtained from Gl by removing subsets from fZ;V1; . . . ;Vpg
is connected,

(c) The graph G�
l obtained from Gl by contracting the sets V0;V1,

. . ., Vp; Z, and replacing the multiple edges by a single edge,
and deleting the edges between Vi and Vj; i – j; i; j ¼
1; . . . ; p, is connected.

Let Z0 � V with jZ0j ¼ k� 1. We will show that the graph Gl n Z0

is connected.
Case 1. Z0 � Z or Z0 � Vi, for some i 2 f1; . . . ; pg. Suppose that

Z0 � Z. If jZj ¼ jZ0j ¼ k� 1, then by the Remark b) above, Gl n Z0 is
connected. So suppose jZj P k. As jZ0j ¼ k� 1 and G½Z� is complete,
the subgraph induced by Z n Z0 is connected. Moreover, by Condi-
tion iv), there exists at least one edge connecting Z n Z0 to V0. Since
Gl n Z is connected, we obtain that Gl n Z0 is also connected.

Now suppose Z0 � Vi for some i 2 f1; . . . ; pg. As G½Vi� is ðkþ 1Þ-
node-connected and jZ0j ¼ k� 1;G½Vi n Z0� is connected. Therefore,
using Condition iii), the proof can be done along the same line.

Case 2. Z0 � V0. As jZ0j ¼ k� 1, by Condition iv), it follows that
½Z;V0 n Z0�Gl

– £. We distinguish two cases. Suppose first that for
every s 2 f1; . . . ; pg such that ½Vs;Vsþ1�Gl

–£, at least one of the
sets Vs and Vsþ1 is adjacent to Z in Gl. Then the graph obtained from
Gl by removing V0 is connected. Moreover, since G½V0� is ðkþ 1Þ-
node-connected, we have that G½V0 n Z0� is connected. Therefore
Gl n Z0 is connected.

If this is not the case, then there is s 2 f1; . . . ; pg such that
½Vs; Z�Gl

¼ £ ¼ ½Vsþ1; Z�Gl
and ½Vs;Vsþ1�Gl

–£. We then have
Zs ¼ Zsþ1 ¼ £. Moreover, by Condition v), it follows that there is
Fig. 3. An SP-node-partition configuration for k ¼ 5 and jZj ¼ 2.
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a set of kþ 1 edges between V0 and Vs [ Vsþ1 that cover kþ 1
nodes of V0. As jZ0j ¼ k� 1, at least one edge remains linking V0 n Z0

to Vs [ Vsþ1. Thus for j ¼ 1; . . . ; p, if ½Vj;Vjþ1�Gl
– £, then at least

one of the sets ½V0 n Z0;Vj [ Vjþ1�Gl
and ½Z;Vj [ Vjþ1�Gl

is not empty.

As G½V0� is ðkþ 1Þ-node-connected and jZ0j ¼ k� 1;G½V0 n Z0� is
connected, and hence Gl n Z0 is connected.

Case 3. Z0 #
S

i2IVi, where I � f1; . . . ; pg. Note that jIj 6 k� 1. Let
I0 ¼ fi 2 IjjVij ¼ 1g. First note that, by Remark b) above, the graph
Gl n

S
i2IV i is connected. Also note that as jZ0j ¼ k� 1, and Z0 is not

contained in a single set, we have jZ0 \ Vij 6 k� 2 for i 2 I n I0. Since
G½Vi� is ðkþ 1Þ-node-connected, it follows that G½Vi n Z0� is con-
nected for i 2 I n I0. Also by construction, we have
j½Vi;V0 [ Z�Gl

j P k� 1 for i 2 I n I0. Moreover by Condition iii),

½Vi;V0 [ Z�Gl
contains a matching of k� 1 edges, for i 2 I n I0. So, if

no more than k� 2 nodes are removed from Vi, at least one edge
remains connecting Vi n Z0 to Z [ V0 for i 2 I n I0. Therefore Gl n Z0 is
connected.

Case 4. Z0 � V0 [ Z [ ðSi2IV iÞ where I# f1; . . . ; pg. Let
I0 ¼ fi 2 IjjVij ¼ 1g. Suppose first that Z0 \ Z –£; Z0 \ V0 – £ and
Z0 \S

i2IVi ¼ £. Consider the case where Z# Z0. Thus
jZ0 \ V0j ¼ k� 1� jZj. By Condition v), for i ¼ 1; . . . ; p;
j½Vi [ Viþ1;V0�Gl

j P k� jZij þ 1 and covers k� jZij þ 1 nodes of V0.

As jZij 6 jZj, there exists at least one edge linking V0 n Z0 and
Vi [ Viþ1. As Gl½V0 n Z0� is connected, Gl½ðV0 n Z0Þ [ ðSp

i¼1ViÞ� ¼ Gl n Z0

is then connected. Now suppose Z n Z0 –£. Since G½V0� is ðkþ 1Þ-
node-connected and G½Z� is a complete graph, it follows that
G½V0 n Z0� and G½Z n Z0� are connected. Moreover, by Condition iv),
½Z n Z0;V0 n Z0�Gl

–£. Also, by construction, at least one edge
remains connecting Vi to Viþ1 [ Vi�1, for i ¼ 2; . . . ; pþ 1, where
the indices are modulo p. By Condition iii) and v)
j½V0 [ Z;Vi [ Viþ1�Gl

j P kþ 1 and ½V0 [ Z;Vi [ Viþ1�Gl
covers kþ 1

nodes of V0 [ Z, for i ¼ 1; . . . ; p. As jZ0j ¼ k� 1, there exists at least
one edge linking ðV0 [ ZÞ n Z0 to Vi [ Viþ1, for i ¼ 1; . . . ; p. Thus
Gl n Z0 is connected.

Now suppose that Z0 \ Z –£; Z0 \ Vi –£, for i 2 I, and
Z0 \ V0 ¼ £. If Z � Z0, the proof is similar to the previous case.
Suppose that Z n Z0 –£. We have that jZ0 \ Zj 6 k� jIj � 1. Let
I0 ¼ fi 2 IjVi \ Z0 –£ and jVij ¼ 1g. Since G½Vi�, for i 2 I n I0, is
ðkþ 1Þ-node-connected and G½Z� is complete, it follows that
G½Z n Z0�, and G½Vi n Z0�, for i 2 I n I0, are connected. By Condition iv)
there exists at least one edge connecting Z n Z0 to V0. Also by
Condition iii), ½Vi;V0 [ Z�Gl

contains a matching of k� 1 edges, for

i 2 I n I0. So if no more than k� 2 nodes are removed from Vi [ Z, at
least one edge remains connecting Vi n Z0 to ðZ n Z0Þ [ V0. Thus
Gl n Z0 is connected.

Now, if Z0 \ V0 – £ and Z0 \ Vi –£, for i 2 I, and Z0 \ Z ¼ £,
then we have that jZ0 \ V0j 6 k� jIj � 1 and jZ0 \ Vij 6 k� jIj � 1 for
i 2 I. Since G½Vi�, for i 2 f0g [ ðI n I0Þ, is ðkþ 1Þ-node-connected, it
follows that G½Vi n Z0� is connected. By Condition iv) we have that
½V0 n Z0; Z� –£. Moreover by Condition iii), ½Vi;V0 [ Z�Gl

contains a
matching of k� 1 edges, for i ¼ 1; . . . ; p. So if no more than k� 2
nodes are removed from Vi [ V0 at least one edge remains
connecting Vi n Z0 to Z [ ðV0 n Z0Þ. Thus Gl n Z0 is connected.

Suppose now that Z0 \ Z –£; Z0 \ V0 – £ and Z0\ ðSi2IV iÞ –£.
We have that jZ0 \ Zj 6 k� jIj � 2 and jZ0 \ Vij 6 k� jIj � 2 for i 2 I.
If Z# Z0, the proof is similar to a previous case. Since G½Vi�, for
i 2 f0g [ I n I0, is ðkþ 1Þ-node-connected and G½Z� is complete, it
follows that G½Z n Z0� and G½Vi n Z0� are connected, for i 2 f0g [ I n I0.
By Condition iv), there exists at least one edge connecting Z n Z0 to
V0. Also by Condition iii), there is a matching of k� 1 edges
between Vi and Z [ V0. We claim that ½Vi [ Viþ1; Z [ V0�GlnZ0 –£,
for i ¼ 1; . . . ; p, where the indices are taken modulo p. This is clear
if ½Vi; Z [ V0�GlnZ0 –£. So suppose ½Vi; Z [ V0�GlnZ0 ¼ £, for some

i0 2 I n I0. As ½Vi0 ; Z [ V0�Gl
contains a matching of k� 1 edges and

jZ0j ¼ k� 1, this implies that Z0 � ðZ [ V0 [ Vi0 Þ. Thus jIj ¼ 1 and
jI0j ¼ 0. Moreover, Z0 \ Vi ¼ £ for i 2 f1; . . . ; pg n fi0g. Since
½Vi; Z [ V0�Gl

contains a matching of k� 1 edges for
i 2 f1; . . . ; pg n fi0g, and no more than k� 2 nodes are removed
from V0 [ Z, at least one edge remains connecting ðV0 [ ZÞ n Z0 to
Vi. Thus ½Vi [ Viþ1; Z [ V0�GlnZ0 –£, and the claim is proved. As a

consequence, we obtain that Gl n Z0 is connected. Hence Gl ¼ ðV ; TlÞ
is k-node-connected.

Thus xTl 2 F . h

Now we show that bðeÞ ¼ qaðeÞ for all e 2 E n C, for some q 2 R.

As xT1 ; . . . ; xTp belong to F , it follows that bxT1 ¼ . . . ¼ bxTp ¼ b.
Hence bðe1Þ ¼ . . . ¼ bðepÞ. As el is an arbitrary edge of
Sl \ ½Vl;Vlþ1�; l ¼ 1; . . . ; p, respectively, we obtain

bðeÞ ¼ q for all e 2 Sl \ ½Vl;Vlþ1�; l ¼ 1; . . . ; p, for some q 2 R.
Let rl be an edge of ½Vl;Vlþ1� n Sl, for l ¼ 1; . . . ; p. Consider the

edge set T 0
l ¼ Tl n felþ1g [ frlg. As rl is an arbitrary edge of

½Vl;Vlþ1� n Sl; l ¼ 1; . . . ; p, respectively, we obtain
bðeÞ ¼ q for all e 2 ½Vl;Vlþ1� n Sl; l ¼ 1; . . . ; p, for some q 2 R.
Let glþ1 be a fixed edge of ½Vlþ1;V0� n F, for l 2 f0; . . . ; p� 1g. Con-

sider the edge seteT l ¼ ðTl n felgÞ [ fglþ1g:

Similary, we can show that eT l induces a k-node-connected subgraph

of G. As xTl and xeT l belong to F , it follows in a similar way that
bðelÞ ¼ bðglþ1Þ. As bðelÞ ¼ bðelþ1Þ ¼ q, this yields bðglþ1Þ ¼ q. By
exchanging the roles of Vlþ1 and Vl; l ¼ 1; . . . ; p, we obtain that
bðeÞ ¼ q for all e 2 dGðV0Þ n F. In consequence, the bðeÞ, for all
e 2 E n C have the same value q.

Next, we will show that bðeÞ ¼ 0 for all e 2 C.
Note that there are kþ 1 edges incident to Vl in the graph

induced by Tl. By using Condition iii) we can show in a similar
way as in the claim above that for any edge
e 2 Fl; l 2 f0; . . . ; pg; T�

l ¼ Tl n feg also induces a k-node-connected
subgraph of G. As xTl and xT

�
l belong to F , it follows that

bxTl ¼ bxT
�
l ¼ b, implying that bðeÞ ¼ 0 for all e 2 Fl. As l is arbitrar-

ily chosen, we obtain that bðeÞ ¼ 0 for all f 2 F. Moreover, as the
subgraphs induced by V0; . . . ;Vp are all ðkþ 1Þ-node-connected,
the subgraph induced by Tl n feg, for all e 2 E0, is k-node-
connected. This yields as before bðeÞ ¼ 0 for all e 2 E0.

Now suppose that e 2 EðZÞ. By Conditions i) and iv) we can
clearly see that Tl n feg also induces a k-node-connected subgraph
of G. Implying that bðeÞ ¼ 0.

Let h be an edge of dðZÞ. We can show in a similar way as in the
claim above that Tl ¼ Tl n fhg also induces a k-node-connected

subgraph of G. As xTl belongs to F , it follows that bðhÞ ¼ 0. Conse-
quently bðeÞ ¼ 0 for all e 2 C.

Thus we obtain that b ¼ qa, which ends the proof of the theo-
rem.

Corollary 4. If the graph G is complete, then the F-node-partition
inequalities (4) are facet-defining for kNCSP(G) if either jVij ¼ 1 or
jVij P kþ 2, for i ¼ 1; . . . ; p, and jV0j P kþ 2.

Corollary 5. Suppose that Vi ¼ fuig, that is jVij ¼ 1, for all
i 2 f1; . . . ; pg; j½V0;Vi�j ¼ k� jZij � 1; j½Vi; Zi�j ¼ jZij, and the nodes
u1; . . . ; pp form an odd cycle C. Also, suppose that G½V0� is ðkþ 1Þ-
node-connected and G½V0 [ Z� is complete. Then the inequality
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xðCÞ P p
2

l m
is valid for kNCSPðGÞ, and defines a facet.

A graph is said to be outerplanar if it can be drawn in the plane
without crossings in such a way that all of the vertices belong to
the unbounded face of the drawing. That is, no vertex is totally sur-
rounded by edges.
Theorem 10 Diarrassouba and Slama (2007). Let G ¼ ðV ; EÞ be a
graph and an integer k P 2. Let Z � V, such that jZj 6 k� 1 and
k� jZj is odd. Let p ¼ ðV1; . . . ;VpÞ be a partition of V n Z such that
ðG n ZÞp is series-parallel. Then the SP-node-partition inequality (10)
associated with p defines a facet of kNCSP(G) only if ðG n ZÞp is
outerplanar and 2-node-connected.
Theorem 11. Let G ¼ ðV ; EÞ be a graph and an integer k P 2. Let
Z � V, such that jZj 6 k� 1 and k� jZj is odd. Let p ¼ ðV1; . . . ;VpÞ
be a partition of V n Z such that ðG n ZÞp is series-parallel. Then the
SP-node-partition inequality (10) associated with p defines a facet
of kNCSP(G) if the following conditions hold.

i) ðG n ZÞp is outerplanar and 2-node-connected.
ii) p P kþ 1.
iii) G½Vi� is ðkþ 1Þ-node-connected, for i ¼ 1; . . . ; p.
iv) G½Z� is complete.
v) For i ¼ 1; . . . ; p, there exists a subset Si � dðViÞ, with

jSij ¼ kþ 1; Si is a matching and such that

a) jSi \ ½Z;Vi�j ¼ jZj,
b) jSi \ ½Vi;Vi�1�j ¼ jSi \ ½Vi;Viþ1�j ¼ k�jZj

2

l m
,

where the indices are taken modulo p.
Proof. Let us denote the SP-node-partition inequality by ax P a
and let F ¼ fx 2 kNCSPðGÞjax ¼ ag. We start the proof by showing
that, under Conditions i)–v), the polytope kNCSPðGÞ is full dimen-
sional, and that F –£, that is F is a proper face of kNCSPðGÞ.

Let E0 ¼ Sp
i¼1EðViÞ and let Fi ¼ Si \ ½Vi;Viþ1�, for i ¼ 1; . . . ; p. Note

that by v) b) and the fact that k� jZj is odd, we have that

jFij ¼ k�jZjþ1
2 , for all i 2 f1; . . . ; pg. The indices are taken modulo p.

Now consider the edge set T0 ¼ ðSp
i¼1FiÞ [ E0 [ EðZÞ [ dGðZÞ. We will

show that the graph induced by T0 is ðkþ 1Þ-node-connected. h
Claim 2. The subgraph H induced by T0 is ðkþ 1Þ-node-connected.
Proof. Since ðG n ZÞp is outerplanar and 2-node-connected, its
nodes are on an elementary cycle. Let H denote the graph induced
by T0. We first show that H is ðkþ 1Þ-edge-connected. For this, let
p0 be a partition ðV1; . . . ;Vp; ZÞ of V. We can notice that the graph
Hp0 , induced by p0, is a wheel, with multiple edges, whose central
node z, that is the node of Hp0 corresponding to Z, and border nodes
v1; . . . ;vp, that are the nodes corresponding to node sets
Vi; i ¼ 1; . . . ; p. Clearly, jdHp0

ðv iÞj ¼ kþ 1, for all i ¼ 1; . . . ; p, and

jdHp0
ðzÞj ¼ pjZj. From this, we can observe that Hp0 is ðkþ 1Þ-

edge-connected. As p P kþ 1 and G½Z� is complete, by v) a), it fol-
lows that dHðUÞ P kþ 1 for all U � Z. Moreover, since in addition
subgraphs G½Vi�, for all i 2 f1; . . . ; pg, are ðkþ 1Þ-node-connected,
and hence ðkþ 1Þ-edge-connected, we get that H is ðkþ 1Þ-edge-
connected.

Now to show that H is ðkþ 1Þ-node-connected, it suffices to
show that for all Z0 #V with jZ0j ¼ k, the graph H n Z0 is connected,
that is jdHnZ0 ðWÞj P 1, for allW#V n Z0. Thus, let Z0 #V with jZ0j ¼ k
and W#V n Z0. Suppose first that W crosses at least one node set
Vi n Z0, with i 2 f1; . . . ; pg, that is W \ ðVi n Z0Þ–£ – ðVi n Z0Þ nW .
Since, G½Vi� is ðkþ 1Þ-node-connected, we have that G½Vi� n Z0 is
connected, and hence, j½W \ ðVi n Z0Þ; ðVi n Z0Þ nW�j P 1. Moreover,
½W \ ðVi n Z0Þ; ðVi n Z0Þ nW�# dHnZ0 ðWÞ, which implies that
jdHnZ0 ðWÞj P 1.

Suppose now that W does not cross any node set
Vi n Z0; i ¼ 1; . . . ; p. In this case, we have that dHnZ0 ðWÞ#
Ep0 n dHp0

ðZ0Þ;where Ep0 is the set of edges of Hp0 . We can easily

see that Ep0 ¼
Sp

i¼1Si, and that, since the edge sets Si; i ¼ 1; . . . ; p,
are matchings, removing the k nodes of Z0 from G yields removing
at most k edges from Hp0 . Thus, if L denotes the set of those edges,
we have that jdHnZ0 ðWÞj P jdHp0

ðWÞj � jLj P jdHp0
ðWÞj � k. Since, as

shown before, Hp0 is ðkþ 1Þ-edge-connected, we have that
jdHp0

ðWÞj P kþ 1, and obtain jdHnZ0 ðWÞj P 1.

Therefore, the graph H n Z0 is connected, yielding that H is
ðkþ 1Þ-node-connected. h

As T0 induces a spanning subgraph of G and is ðkþ 1Þ-node-
connected, G is also ðkþ 1Þ-node-connected, and hence kNCSP(G)
is full dimensional. Moreover, as a consequence, it follows that
Ti ¼ T0 n ff ig, for some f i 2 Fi; i 2 f1; . . . ; pg, induces a solution of
the kNCSP(G). Moreover, its incidence vector satisfies with equality
the SP-node-partition inequality induced by p and Z. Thus, F is a
proper face of kNCSP(G). Now, suppose that there exists a facet-
defining inequality bx P b of kNCSP(G) such that F #F0 ¼
fx 2 kNCSPðGÞjbx ¼ bg. We will show that b ¼ qa for some scalar
q 2 R.

First, let i 2 f1; . . . ; pg, and consider the edge set
Tiþ1 ¼ ðTi n ff iþ1gÞ [ ff ig, where f i and f iþ1 are edges of Fi and Fiþ1,
respectively. The indices are taken modulo p. As before, we can
see that Tiþ1 induces a solution of the kNCSP and its incidence vec-

tor satisfies axTiþ1 ¼ a ¼ axTi . Thus, bxTiþ1 ¼ bxTi ¼ b, and hence
bðf iÞ ¼ bðf iþ1Þ. As f i and f iþ1 are arbitrary edges of Fi and Fiþ1,
respectively, it follows that bðeÞ ¼ bðe0Þ for all e 2 Fi and e0 2 Fiþ1,
for all i 2 f1; . . . ; pg.

Now let ri be an edge of ½Vi;Viþ1� n Fi, for some i 2 f1; . . . ; pg, and
consider the edge set T 0

i ¼ Ti n ff iþ1g [ frig, with f iþ1 2 Fiþ1. Using
similar arguments as in Claim 2, we can show that T 0

i induces a
solution of the kNCSP. Moreover, its incidence vector satisfies

axT
0
i ¼ a. Thus, xT 0i 2 F0, and hence, bxT

0
i ¼ bxTi ¼ b. This implies that

bðriÞ ¼ bðf iþ1Þ. Since, ri is an arbitrary edge of ½Vi;Viþ1� n Fi, we have
that

bðeÞ ¼ q; for all e 2 ½Vi;Viþ1�; i 2 f1; . . . ;pg; and some q 2 R:

Now let h 2 ½Vi;Vj�, for some i; j 2 f1; . . . ; pg with ji� jj > 1, and
consider the edge set T 00

i ¼ ðTi n ff i�1gÞ [ fhg. As before, one can see
that T 00

i induces a solution of kNCSP, and its incidence vector satis-

fies axT
00
i ¼ a. Thus, xT 00i 2 F0 and bxT

00
i ¼ bxTi ¼ b, which implies that

bðhÞ ¼ bðf i�1Þ. Therefore,
bðeÞ ¼ q; for all e 2 Ep: ð13Þ

Finally, we show that bðeÞ ¼ 0, for all e 2 E0 [ EðZÞ [ dGðZÞ. For
this, consider an edge e 2 EðViÞ, for some i 2 f1; . . . ; pg. Since G½Vi�
is ðkþ 1Þ-node-connected, the edge set Ti n feg clearly induces a
solution of the kNCSP and its incidence vector satisfies ax P awith

equality. Thus, bxTinfeg ¼ bxTi ¼ b, implying bðeÞ ¼ 0. Now, for an
edge e 2 EðZÞ, by Conditions ii) and iv), we can clearly see that
Ti n feg, for some i 2 f1; . . . ; pg, induces a solution of the kNCSP.
Also, its incidence vector satisfies with equality ax P a, and, as
before, bðeÞ ¼ 0. Finally, let g be an edge of dGðZÞ. As before, the
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edge set Ti n fgg, for some i 2 f1; . . . ; pg, induces a solution of the
kNCSP, and its incidence vector satisfies with equality ax P a. It
follows that

bðeÞ ¼ q; for all e 2 e 2 E0 [ EðZÞ [ dGðZÞ: ð14Þ
Consequently, from (13) and (14), we obtain that b ¼ qa, which

ends the proof.

5. Structural properties

In this section, we discuss some structural properties of the
extreme points of the linear relaxation PðG; kÞ of the kNCSP
polytope. Recall that PðG; kÞ is the polytope given by inequalities
(1)–(4).

For this, we first give some notations and definitions. Let
x 2 PðG; kÞ be a solution. We say that an inequality ax P a is tight
for x if ax ¼ a. We will denote by E0ðxÞ; E1ðxÞ and Ef ðxÞ, the follow-
ing edge sets

� E0ðxÞ ¼ fe 2 E j xðeÞ ¼ 0g,
� E1ðxÞ ¼ fe 2 E j xðeÞ ¼ 1g,
� Ef ðxÞ ¼ fe 2 E j 0 < xðeÞ < 1g.

Also we let CPEðxÞ (resp. CPNðxÞ) be the set of cuts dðWÞ (resp.
node-cuts dGnZðWÞ) that are tight for x. If x is an extreme point of
PðG; kÞ, then x is the unique solution of the linear system

SðxÞ

xðeÞ ¼ 0; for all e 2 E0ðxÞ;
xðeÞ ¼ 1; for all e 2 E1ðxÞ;
xðdGðWÞÞ ¼ k; for all cuts dGðWÞ 2 C�

PEðxÞ;
xðdGnZðWÞÞ ¼ k� jZj; for all node-cuts dGnZðWÞ 2 C�

PNðxÞ;

8>>><>>>:
where C�

PEðxÞ (resp. C�
nðxÞ) is a subset of CPEðxÞ (resp. CPNðxÞ).

Lemma 1. Let x 2 PðG; kÞ and W#V such that the cut induced by W
is tight for x.

1. If for some R � V ; xðdðRÞÞ ¼ k, then xðdðW \ RÞÞ ¼ k and
xðdðW [ RÞÞ ¼ k.

2. If for some Z � V such that jZj 6 k� 1 and Z \W –£– Z \W,
and for T � V n Z, such that T \W –£; TåW;Wå T and
T [W – V n Z, we have xðdGnZðTÞÞ ¼ k� jZj, then xðdGnðZ\WÞ
ðW \ TÞÞ ¼ k� jZ \Wj, xðdGnðZ\WÞðW [ TÞÞ ¼ k� jZ \Wj,
xðdGnðZ\WÞðW \ TÞÞ ¼ k� jZ \Wj, xðdGnðZ\WÞðW [ TÞ ¼ k� jZ \Wj.
Proof.

1. The proof is similar to that of Cornuéjols, Fonlupt, and Naddef
(1985).

2. Let T1 ¼ T \W; T2 ¼ T \W; Z1 ¼ Z \W; Z2 ¼
Z \W; T3 ¼ W n ðT [ Z1Þ and T4 ¼ W n ðT [ Z2Þ. Thus Ti –£ for
i ¼ 1; . . . ;4. As dðWÞ 2 CPEðxÞ, we have that
k ¼ xðdðWÞÞ ¼ xðdðT1; T2ÞÞ þ xðdðT1; T4ÞÞ þ xðdðT3; T2ÞÞ
þ xðdðT3; T4ÞÞ þ xðdðT1; Z2ÞÞ þ xðdðT3; Z2ÞÞ
þ xðdðT2; Z1ÞÞ þ xðdðT4; Z1ÞÞ þ xðdðZ1; Z2ÞÞ: ð15Þ

And as dGnZðTÞ 2 CnðxÞ, we have that

k� jZj ¼ xðdGnZðTÞÞ ¼ xðdðT1; T3ÞÞ þ xðdðT1; T4ÞÞ þ xðdðT2; T3ÞÞ
þ xðdðT2; T4ÞÞ: ð16Þ

By considering the node-cuts dGnZ1 ðT1Þ; dGnZ2 ðT2Þ; dGnZ1 ðT3Þ and
dGnZ2 ðT4Þ, we have that
k�jZ1j6 xðdGnZ1 ðT1ÞÞ¼ xðdðT1;T2ÞÞþxðdðT1;T3ÞÞþxðdðT1;T4ÞÞ
þxðdðT1;Z2ÞÞ; ð17Þ

k�jZ2j6 xðdGnZ2 ðT2ÞÞ¼ xðdðT2;T1ÞÞþxðdðT2;T3ÞÞþxðdðT2;T4ÞÞ
þxðdðT2;Z1ÞÞ; ð18Þ

k�jZ1j6 xðdGnZ1 ðT3ÞÞ¼ xðdðT3;T1ÞÞþxðdðT3;T2ÞÞþxðdðT3;T4ÞÞ
þxðdðT3;Z2ÞÞ; ð19Þ

k�jZ2j6 xðdGnZ2 ðT4ÞÞ¼ xðdðT4;T1ÞÞþxðdðT4;T2ÞÞþxðdðT4;T3ÞÞ
þxðdðT4;Z1ÞÞ: ð20Þ

By adding (15) and (16) on one side and (18) and (19) (resp. (17)
and (20)) on the other side, and comparing the two resulting
constraints, as xðeÞ P 0 for all e 2 E, we obtain that (17) and
(20) (resp. (18) and (19)) must be tight and
xðdðT1; Z2ÞÞ ¼ xðdðT1; T4ÞÞ ¼ xðdðT4; Z1ÞÞ ¼ xðdðZ1; Z2ÞÞ ¼ 0 (resp.
xðdðT3; T2ÞÞ ¼ xðdðT3; Z2ÞÞ ¼ xðdðT2; Z1ÞÞ ¼ 0), which ends the
proof. h

From Lemma 1, we can show the following result. Its proof is
omitted since it follows the same lines as a similar result in
Cornuéjols et al. (1985).

Lemma 2. Let x be an extreme point of PðG; kÞ, and W � V such that
xðdðWÞÞ ¼ k. Then the system SðxÞ can be chosen so that
1. a cut dðRÞ 2 C�
PEðxÞ is such that R � W or R � W;

2. a node-cut dGnZðTÞ 2 C�
PNðxÞ is such that ðT [ ZÞ � W; ðT [ ZÞ � W;

T � W and Z � W, or T � W and Z � W.

6. Reduction operations

In this section we introduce some reduction operations defined
with respect to a solution x of PðG; kÞ. These operations will be con-
sidered in a preprocessing phase for separating violated inequali-
ties in our Branch-and-Cut algorithm. Let h1; h2; h3 and h4 be the
reduction operations defined as follows.

h1: Delete an edge e 2 E such that xðeÞ ¼ 0.
h2: Contract a node subset W#V such that G½W� is k-edge con-

nected, xðeÞ ¼ 1 for all e 2 EðWÞ and xðdðWÞÞ ¼ k.
h3: Contract a node subset W #V such that

jWj P k; jWj P k; xðeÞ ¼ 1 for all e 2 EðWÞ, and jdGðWÞj ¼ k.
h4: Replace a set of parallel edges by only one edge.

We have the following results.

Lemma 3. Let G0 ¼ ðV ; E0Þ be the graph obtained from G by the
application of Operation h1 and let x0 be the restriction of x to G0. Then
x0 is an extreme point of PðG0; kÞ if and only if x is an extreme point of
PðG; kÞ.
Proof. Easy. h
Lemma 4. Let G0 ¼ ðV 0; E0Þ and x0 be the graph and the solution
obtained from G and x by the application of Operation h2. Suppose that

(1) x0 2 PðG0; kÞ,
(2) for all Z � W; jZj 6 k� 1; dGnZðTÞ R CPNðxÞ for all T#W.
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Then x0 is an extreme point of PðG0; kÞ if x is an extreme point of
PðG; kÞ.
Proof. Let W be a node set of G contracted by Operation h2. As
dðWÞ 2 CPEðxÞ, by Lemma 2, the system SðxÞ can be chosen in such
a way that for every dðRÞ 2 C�

PEðxÞ (resp. dGnZT ðTÞ 2 C�
PNðxÞ) either

R#W or R#W (resp. ðT [ ZTÞ � W; T � W and ZT � W , or T � W
and ZT � W). As xðeÞ ¼ 1 for all e 2 EðWÞ and G½W� is k-edge con-
nected, this implies that C�

PEðxÞ# CPEðx0Þ. Moreover by (2) it follows
that if dGnZT ðTÞ is tight for x and ZT #W , then W \ T –£ and
W n ðZT [ TÞ–£. Let T1 ¼ W \ T and T2 ¼ W n ðZT [ TÞ. We have
that k� jZT j ¼ xðdGnZT ðTÞÞ P xðdðT1; T2ÞÞ P k, a contradiction. The
last inequality comes from the fact that G½W� is k-edge connected
and xðeÞ ¼ 1 for all e 2 EðWÞ. Inconsequence, all the node-cuts
dGnZT ðTÞ of C�

PNðxÞ are such that ZT � W . However these are at the
same time tight for x0. Thus C�

PNðxÞ � CPNðx0Þ. Let S0ðxÞ be the system
obtained from SðxÞ by deleting the equations xðeÞ ¼ 1 for all
e 2 EðWÞ. Then x0 is the unique solution of S0ðxÞ. As all the equations
of S0ðxÞ come from PðG0; kÞ and by 1) x0 2 PðG0; kÞ, it follows that x0is
an extreme point of PðG0; kÞ. h
Lemma 5. Let G0 ¼ ðV 0; E0Þ and x0 be the graph and the solution
obtained from G and x, respectively, by the application of Operation
h3. Then x0 is an extreme point of PðG0; kÞ.
Proof. Let W#V be a node set satisfying the conditions of Opera-
tion h3. First observe that as jdðWÞj ¼ k, we have that xðeÞ ¼ 1 for all
e 2 dðWÞ and xðdðWÞÞ ¼ k. Thus, by Lemma 2, SðxÞ can be chosen so
that for every node-cut dGnZðTÞ 2 C�

PN , we have ðT [ ZÞ � W;

ðT [ ZÞ � W; T � W and Z 2 W , or T � W and Z 2 W . We will show
that any cut dðRÞ 2 C�

PEðxÞ is such that R � W , and any node-cut
dGnZðTÞ 2 C�

PNðxÞ is such that ðT [ ZÞ � W . Suppose the contrary
and consider first that for some dðRÞ 2 C�

PEðxÞ;R(W . As xðeÞ ¼ 1,
for all e 2 EðWÞ [ dðWÞ, one can see that jdðRÞj ¼ k, and hence
xðdðRÞÞ ¼ k can be obtained from xðeÞ ¼ 1, for all e 2 dðRÞ, contra-
dicting the fact that dðRÞ 2 C�

PEðxÞ. Now suppose that for some
node-cut dGnZðTÞ 2 C�

PNðxÞ either ðT [ ZÞ � W or T#W and Z#W .
We can show similarily to the previous case that jdGnZðTÞj ¼
k� jZj and that xðdGnZðTÞÞ ¼ k� jZj can be obtained from xðeÞ ¼ 1,
for all e 2 dGnZðTÞ, which yields a contradiction.

We consider now a node-cut dGnZðTÞ 2 C�PNðxÞ such that T#W
and Z#W . Notice that, as jWj P k, we have that W n Z –£. If
T ¼ W , then xðdGnZðTÞÞ ¼ xðdðW n Z; TÞÞ ¼ jdðW n Z; TÞj ¼ k� jZj.
Thus, xðdGnZðTÞÞ ¼ k� jZj can be obtained from the equations
xðeÞ ¼ 1, for all e 2 dGnZðTÞ, contradicting the fact that

dGnZðTÞ 2 C�PNðxÞ. Thus, W n T –£. For convenience, we let

T1 ¼ W n Z and T2 ¼ W n T. First, note that

xðdGnZðTÞÞ ¼ xðdðT; T1ÞÞ þ xðdðT; T2ÞÞ ¼ k� jZj: ð21Þ
Eq. (21) together with the cut inequality induced by T yields

xðdðT; ZÞÞ P jZj: ð22Þ
Also, as by the assumption jdðWÞj ¼ k, we have that

xðdðT; T1ÞÞ þ xðdðT; ZÞÞ þ xðdðT2; T1ÞÞ þ xðdðT2; ZÞÞ ¼ k: ð23Þ
This equation, together with the node-cut inequality induced by
dGnZðT2Þ implies that

xðdðT; ZÞÞ þ xðdðT2; ZÞÞ 6 jZj: ð24Þ
Thus, by inequalities (22) and (24), we have that xðdðT; ZÞÞ ¼ jZj

and xðdðT2; ZÞÞ ¼ 0, and hence
xðdðTÞÞ ¼ xðdðT; T1ÞÞ þ xðdðT; ZÞÞ þ xðdðT; T2ÞÞ ¼ k: ð25Þ
Moreover, as xðeÞ ¼ 1, for all e 2 dðWÞ, we have that

xðdðT; ZÞÞ ¼ jZj ¼ jdðT; ZÞj. Therefore, xðdGnZðTÞÞ ¼ k� jZj can be
obtained from (25) and the xðeÞ ¼ 1, for all e 2 dðT; ZÞ, and hence,
can be replaced in SðxÞ by Eq. (25).

Consequently, the system SðxÞ can be chosen so that R#W for
every cut dðRÞ 2 C�PEðxÞ and T [ Z#W for every node-cut
dGnZðTÞ 2 C�PNðxÞ. This also implies that C�PEðxÞ [ C�PNðxÞ#
C�PEðx0Þ [ C�PNðx0Þ. Thus, x0 is the unique solution of a subsystem of
SðxÞ. As all the equations of that subsystem correspond to
constraints of PðG nW; kÞ, this implies that x0 is an extreme point
of PðG nW; kÞ. h
Lemma 6. Let G0 ¼ ðV 0; E0Þ be the graph obtained from G by the appli-
cation of Operation h4. Let E0 be the set of parallel edges of G and e0 the
edge replacing E0 in G0. Let x0 be the solution given by x0ðeÞ ¼ xðeÞ if
e 2 E n E0 and x0ðeÞ ¼ 1 if e ¼ e0. Then x0 is an extreme point of PðG0; kÞ.
Proof. Observe that for every cut dðWÞ (node-cut dGnZðWÞ) either
E0 # dðWÞ (E0 � dGnZðWÞ) or E0 \ dðWÞ ¼ £ (E0 \ dGnZðWÞ ¼ £).
Moreover, E0 cannot contain more than two edges with fractional
value. Indeed, if e1; e2 2 E0 and 0 < xðe1Þ < 1 and 0 < xðe2Þ < 1, let
x� be the solution given by x�ðeÞ ¼ xðeÞ if e 2 E n fe1; e2g; x�ðeÞ ¼
xðeÞ þ � if e ¼ e1 and x�ðeÞ ¼ xðeÞ � � if e ¼ e2, where � is a positive
scalar sufficiently small. We then have that x� is also a solution of
SðxÞ, which is a contradiction. We claim that E0 does not contain
any edge with fractional value. Suppose, on the contrary that h is
such an edge. Then xðE0Þ > 1. Therefore there exists a cut or a
node-cut of system SðxÞ containing h. Let v be an extremity of h.
Let dðSÞ be a cut of C�

eðxÞ that contains h. Thus E0 � dðSÞ. Suppose
w.l.o.g., that v 2 S. Consider the node-cut dGnv ðSÞ. We have that
xðdGnv ðSÞÞ 6 xðdðSÞ n E0Þ < k� 1, a contradiction. Now consider a
node-cut dGnZðTÞ of C�

nðxÞ that contains h and hence E0. As
xðE0Þ > 1, one must have jZj < k� 1. So suppose that jZj < k� 1.
Suppose w.l.o.g., that v 2 V n ðT [ ZÞ. Let Z0 ¼ Z [ fvg. We have
xðdGnZ0 ðTÞÞ 6 xðdGnZðTÞÞ � 1� xðhÞ ¼ k� ðjZj þ 1Þ � xðhÞ < k� jZ0j, a
contradiction. Consequently, xðeÞ ¼ 1 for all e 2 E0. From the devel-
opment above we also deduce that neither a cut of C�

eðxÞ nor a
node-cut of C�

nðxÞ intersects E0. Hence C�
eðxÞ [ C�

nðxÞ � Cðx0Þ. More-
over, we have that x0 2 PðG0; kÞ. Obviously, x0 satisfies the trivial
inequalities as well as the cut and node-cut inequalities that do
not contain h. Let dðWÞ be a cut that contains h. Suppose v 2 W .
We have that x0ðdðWÞÞ ¼ x0ðhÞ þ x0ðdðWÞ n fhgÞ ¼ 1þ xðdðWÞn
E0Þ ¼ 1þ xðdGnv ðWÞÞ P k. Consider now a node-cut dGnZðTÞ contain-
ing h. If jZj ¼ k� 1, as x0ðhÞ ¼ 1 and h 2 dGnZðTÞ, we have that
x0ðdGnZðTÞÞ P 1. If jZj < k� 1, then let Z0 ¼ Z [ fvg. We have that
x0ðdGnZðTÞÞP 1þ x0ðdGnZ0 ðTÞÞP 1þk�jZ0j ¼ 1þk�jZj�1¼ k� jZj. h
As we will see later, the reduction operations h1; . . . ; h4 can be
used as a preprocessing for the separation procedures in our
Branch-and-Cut algorithm.

7. Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm for the
kNCSP. The algorithm is based on the theoretical results presented
in the previous sections. We will first present the general frame-
work of the algorithm, then we will address the main issues of
our algorithm, that are the separation procedures for the various
inequalities we will use, and a primal heuristic.
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We will consider a graph G ¼ ðV ; EÞ and a weight vector c 2 RE

associated with the edges of G. We let k P 1 be the connectivity
requirement.

7.1. General framework

To start the optimization we consider the following linear pro-
gram consisting in the cut constraints induced by node sets fug, for
every u 2 V together with the trivial inequalities, that is

min
X
e2E

cðeÞxðeÞ

xðdGðuÞÞ P k for all u 2 V ;

0 6 xðeÞ 6 1 for all e 2 E:

If the optimal solution y 2 RE of the above LP is feasible for the
kNCSP, that is, it is integer and it satisfies all the cut and node-cut
inequalities, then it is optimal for the problem. Usually, y is not fea-
sible for the kNCSP. Thus, we need to generate further valid
inequalities for the problem which are violated by y. This is done
by addressing the separation problem associated with the cut
and node-cut inequalities, respectively, and the other families of
inequalities we consider in our algorithm. Recall that the separation
problem associated with y and a family of inequalities F is to say if
y satisfies or not all the inequalities of F , and if not, exhibit at least
one inequality of F which is violated by y. An algorithm solving a
separation problem is called a separation algorithm. In our algo-
rithm, we use the inequalities that we described in the previous
sections and perform their separation in the following order

1. cut inequalities,
2. node-cut inequalities,
3. SP-node-partition inequalities,
4. F-node-partition inequalities,
5. node-partition inequalities.

We move to a class of inequalities when the separation algo-
rithm for the previous class of inequalities has not found any vio-
lated inequality. We may add several inequalities at the same time
in the Branch-and-Cut algorithm. Moreover, all the inequalities are
global, that is they are valid for all the nodes of the Branch-and-Cut
tree.

Remark that the separations are done on the graph obtained
after repeated applications of the reduction operations h1; . . . ; h4
to the graph G and solution y. If G0 is the reduced graph and y0 is
the restriction of y to G0, then by Lemmas 3–6, y0 is an extreme
point of PðG0; kÞ if y is an extreme point of PðG; kÞ. Moreover, we
have the following results which are easily seen to be true.

Lemma 7. Let a0x P a be an F-node-partition inequality (respectively
node-partition inequality) valid for kNCSP(G0), induced by a partition
p0 ¼ ðV 0

0;V
0
1; . . . ;V

0
pÞ; p P 2 and an edge set F (respectively p0 ¼

ðV 0
1; . . . ;V

0
pÞ; p P 3) of V 0 n Z, with Z � V. Let p ¼ ðV0;V1; . . . ;VpÞ;

p P 2 (respectively p ¼ ðV1; . . . ;VpÞ; p P 3) be the partition of V
obtained by expanding the elements of p0. Let ax P a be the inequality
such that
aðeÞ ¼
a0ðeÞ for all e 2 E0;

1 for all e 2 ðE n E0Þ \ dGðpÞ;
0 otherwise:

8><>:
Then ax P a is valid for kNCSP(G). Moreover, if a0x P a is violated by
y0, then ax P a is violated by y.
Lemma 8. Let a0x P a be an SP-node-partition inequality valid for
kNCSP(G0), induced by a partition p0 ¼ ðV 0

1; . . . ;V
0
pÞ; p P 3 of V 0 n Z,

with Z � V such that jZj 6 k� 1. Let p ¼ ðV1; . . . ;VpÞ; p P 3 be the
partition of V n Z obtained by expanding the subsets V 0

i of p0. Let
ax P a be the lifted SP-node-partition inequality obtained from
a0x P a by application of the lifting procedure described in Section
3.3 for the edges of E n E0. Then ax P a is violated by y, if a0x P a is
violated by y0.

Lemmas 7 and 8 show that the separation of F-node-partition,
SP-node-partition and node-partition inequalities can be done in
the reduced graph associated with any fractional solution of
PðG; kÞ.

7.2. Separation algorithms

Now we describe the separation algorithms we have devised for
the cut, node-cut, SP-node-partition, F-node-partition and node-
partition inequalities.

We start by the separation of the cut inequalities (3). It is well
known that the separation of the cut inequalities (3) reduces to
computing a minimum weight cut in G with respect to weight vec-
tor y. Indeed, there is a violated cut inequality (3) if and only if the
minimum weight of a cut, w.r.t. weight vector y, is < k. One can
compute a minimum weight cut in polynomial time by using any
minimum cut algorithm, and especially by using the Gomory-Hu
algorithm Gomory and Hu (1961) which computes the so-called
Gomory-Hu cut tree. This algorithm consists in jV j � 1 maximum
flow computations.

Now we discuss the separation of the node-cut inequalities (4).
In what follows, we show that these inequalities can be separated
in polynomial time. In fact, Grötschel et al. (1995) present a sepa-
ration algorithm for inequalities (4) based on a transformation of

the graph G into a directed graph eG ¼ ðeV ; eAÞ. This transformation

is presented as follows. For each node u 2 V , we add in eV two
copies u� and uþ of u. The arc set is built in the following way. First,
for each edge uv 2 E, we add two arcs ðvþ;u�Þ and ðuþ;v�Þ. Finally,
for every node u 2 V , we add an arc of the form ðu�;uþÞ. We also letey 2 R

eA be a weight vector given by

eyðaÞ ¼ yðuvÞ for a ¼ ðuþ;v�Þ and a ¼ ðvþ;u�Þ;
1 if a ¼ ðu�;uþÞ for all nodes u 2 V :

�
One can see that a cut dðWÞ in G corresponds to a dicut which

does not contain an arc of the form ðu�;uþÞ. Conversely, a dicut

dþeGðfW Þ of eG which does not contain any arc of the form ðu�;uþÞ cor-
responds to a cut of G. Also, a node-cut dGnZðWÞ of G corresponds to

a dicut of eG which contains jZj arcs of the form ðu�;uþÞ. Conversely,
a dicut of eG which contains at least one arc of the form ðu�;uþÞ cor-
responds to a node-cut of G. The corresponding node set Z is given

by the nodes u 2 V such that ðu�; uþÞ 2 dþeGðfW Þ, and the edges of

dGnZðWÞ are given by the arcs of dþeGðfW Þ of the form ðuþ;v�Þ with

uþ 2 fW ;v� 2 eV n fW .

Thus, cuts and node-cuts of G corresponds to dicuts of eG which
does not contain arcs of the form ðu�;uþÞ, and vice versa. Moreover,
we have that

� if dðWÞ in G and dþeGðfW Þ in eG are corresponding cuts, then

yðdðWÞÞ ¼ eyðdþeGðfW ÞÞ;
� if dGnZðWÞ in G and dþeGðfW Þ in eG are corresponding cuts, then

yðdGnZðWÞÞ þ jZj ¼ eyðdþeGðfW ÞÞ.
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Thus, there is a cut or node-cut inequality violated by y if and

only if there exists a dicut dþeGðfW Þ in eG whose weight with respect

to ey is < k. Notice that, if we assume the cut inequalities to be all
satisfied by y, finding violated node-cut inequalities then reduces

to compute a minimum weight cut in eG w.r.t. weight vector ey.
Consequently, our separation algorithm for node-cut inequali-

ties is as follows. First, we assume that the cut inequalities are

all satisfied by y. We build the graph eG and compute a minimum

weight cut, say dþeGðfW �Þ, w.r.t. ey. If eyðdþeGðfW �ÞÞ P k, then every

node-cut inequality is satisfied by y, and the algorithm stops. IfeyðdþeGðfW �ÞÞ < k, then there is a violated node-cut inequality induced

by a node-cut dGnZðWÞ with Z#V ; jZj 6 k� 1, and W#V n Z. The
node sets Z and W are given by

Z ¼ fu 2 V such that ðu�;uþÞ 2 dþeGðfW �Þg;

W ¼ fu 2 V such that u�;uþ 2 fW or uþ 2 fW and u� 2 eV n fWg:

Finally, computing a minimum weight cut in eG can be done in
polynomial time by computing, for every pair of nodes

ðs; tÞ 2 V � V , with s – t, a maximum flow in eG from source node
sþ to destination t�. This, hence, reduces our algorithm to

jV jðjV j � 1Þ=2 maximum flow computations in fW , which is
polynomial.

Finally, we consider the separation problems for node-partition,
SP-node-partition and F-node-partition inequalities. First notice
Table 1
Results for SNDLIB instances with k ¼ 3.

Instance #EC #NC #SPC #FNPC

atlanta_15 15 606 1 17
geant_22 72 1990 19 28
france_25 80 7500 15 36
norway_27 68 4448 10 55
sun_27 42 2582 8 28
india_35 62 2231 5 26
cost266_37 135 10,726 30 775
giul_39 62 2760 7 32
pioro_40 11 2866 0 2
germany_50 42 13,094 5 14
ta2_65 124 7597 10 106

Table 2
Results for TSPLIB instances with k ¼ 3.

Instance #EC #NC #SPC #FNPC

bays_29 74 3709 11 39
dantzig_42 137 9156 12 32
att_48 138 13,995 14 47
eil_51 55 4680 7 30
berlin_52 133 9518 26 95
eil_76 80 15,321 8 84
gr_96 174 330 19 6
rat_99 112 294 9 19
kroA_100 169 305 24 13
rd_100 186 303 21 3
kroB_100 145 300 12 52
lin_105 214 317 15 6
gr_120 90 332 10 0
bier_127 136 364 16 2
pr_124 179 403 12 0
ch_130 122 371 10 0
kroA_150 130 415 1 2
�u_159 112 429 3 7
that the separation problem of node-partition inequalities is NP-
Hard even when Z ¼ £. For our purpose, we consider these
inequalities in the case where Z ¼ £. Thus, the corresponding
node-partition, SP-node-partition and F-node-partition inequali-
ties also correspond to partition, SP-partition and F-partition
inequalities, which are valid for the kECSP on G. Therefore, to sep-
arate these inequalities, we use the separation heuristics devel-
oped in Bendali et al. (2010) for these latter inequalities. These
algorithms are applied on the graph G0 and solution y0 obtained
by the application of the reduction operations to G and y. As men-
tioned before, by Lemmas 7 and 8, any violated node-partition, SP-
node-partition and F-node-partition inequality found in G0 by the
separation procedure is valid for kNCSP(G) and is also violated by y.

7.3. Primal heuristic

Next, we discuss a primal heuristic for the problem. The aim of
this heuristic is to produce, for a given instance, good upper
bounds of the optimal solution of the problem. Such upper bounds
are used by the Branch-and-Cut algorithm to prune unrelevant
branches of the Branch-and-Cut tree. This also ensures that
Branch-and-Cut algorithm produces a feasible solution, even if it
reaches the maximum CPU time.

The primal heuristic we have developed for our purpose con-
sider a fractional solution y obtained at the end of the cutting plane
phase, at the root node of the Branch-and-Cut tree. The aim of the
heuristic is to transform y into a feasible solution for the problem.
To do this, we first build the graph G ¼ ðV ; EÞ obtained by removing
from G every edge e 2 E with yðeÞ ¼ 0. Then, we iteratively remove
#NPC COpt Gap1 NSub1 CPU1

1 3265 0.01 3 0:00:01
6 375 1.07 60 0:00:26
7 3254 0.08 37 0:00:32
5 5730 0.76 15 0:00:43
0 4771 0.04 7 0:00:31
6 452 0.33 8 0:00:53
7 275 0.9 13 0:18:01
1 5878 0.03 5 0:02:19
0 5637 0.00 1 0:00:09
2 112 0.01 4 0:02:37
4 5334 0.07 9 0:43:55

#NPC COpt Gap1 NSub1 CPU1

8 14,815 1.01 19 0:01:10
16 1232 0.03 42 0:14:14
10 17,527 0.02 48 0:42:11
1 745 0.02 4 0:06:41
10 12,644 0.22 30 0:27:05
4 947 0.11 8 0:48:05
0 915 0.6 2 2:03:11
0 2105 0.3 32 2:02:26
1 36,492 0.21 2 2:04:35
0 13,391 0.13 21 2:01:03
1 37,341 1.6 12 2:03:58
6 24,870 2.4 35 2:01:44
0 11,562 0.6 2 2:26:57
0 199,863 3.2 23 2:42:41
0 99,696 0.29 3 2:28:01
0 10,571 7.1 12 2:48:25
0 44,952 2.6 23 2:49:56
0 71,772 8.9 59 5:00:00
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from G all the edges uv such that u and v are both incident in G to at
least kþ 1 edges. We denote by G0 ¼ ðV ; E0Þ the resulting graph, and
by z the incidence vector of G0. Next, we check if G0 is k-node-
connected. We do this by calling the separation algorithms for
the cut and node-cut inequalities described in the previous section
on z and G0. If there is a cut (resp. node-cut) inequality induced by a
cut dG0 ðWÞ (resp. node-cut dG0nZðWÞ), which is violated by z, then we

add in G0 an edge e 2 dGðWÞ n E0 (resp. e 2 dGnZðWÞ n E0) whose
weight cðeÞ is minimum. If there is no cut and node-cut inequality
violated by z, then G0 is feasible for the kNCSP. We repeat this pro-
cedure until the graph G0 is k-node-connected.

Finally, the algorithm computes and returns the weight of the
graph G0 obtained at the end of the previous step. The whole pro-
cedure is summarized by Algorithm 1 below.
8. Computational results

Now we present the computational results we have obtained
with our Branch-and-Cut algorithm for the kNCSP. The algorithm
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has been implemented in C++ using CPLEX 12.5 (IBM) and Concert
Technology library. All the experiments have been done on a com-
puter equiped with a 2.10 GHz x4 Intel Core(TM) i7-4600U proces-
sor and running under linux with 16 GB of RAM. We have set the
maximum CPU time to five hours. We have tested our algorithm
on several instances composed of graphs taken from SNDLIB
(SNDLIB) and TSPLIB (TSPLIB). These are complete graphs where
each node is given coordinates in the plane. The weight of each
edge uv is the rounded euclidian distance between the vertices u
and v. The graphs we have considered have up to 65 nodes for
SNDLIB graphs and up to 150 nodes for TSPLIB graphs.

The tests have been performed for k ¼ 3;4;5, and in all the
experiments, we have used the reduction operations described in
the previous sections, unless specified.

For each instance, we have run the algorithm three times. The
first run (Run 1) is performed with all the inequalities presented
before and the reduction operations included in the algorithm.
The second run (Run 2) is performed without the reduction opera-
tions. The third run (Run 3) is performed with the reduction oper-
ations and with only the cut and node-cut inequalities. The results
are given in Tables 2–8. Each instance is given by its name followed
by the number of nodes of the graph. The other entries of the tables
are:

Algorithm 1. Primal Heuristic Algorithm for the kNCSP.
#EC
 the number of generated cut inequalities

#NC
 the number of generated node-cut inequalities

#SPC
 the number of generated SP-node-partition

inequalities

#NFPC
 the number of generated F-node-partition

inequalities

#NPC
 the number of generated node-partition inequalities

COpt
 the value of the optimal solution

Gap1
 the relative error between the best upper bound
and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 1
Gap2
 the relative error between the best upper bound

and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 2
Gap3
 the relative error between the best upper bound

and the lower bound obtained at the root node of the

Branch-and-Cut tree during Run 3
NSub1
 the number of nodes in the Branch-and-Cut tree
obtained at Run 1
NSub2
 the number of nodes in the Branch-and-Cut tree
obtained at Run 2
NSub3
 the number of nodes in the Branch-and-Cut tree
obtained at Run 3
CPU1
 the total CPU time in hh:mn:sec achieved at Run 1

CPU2
 the total CPU time in hh:mn:sec achived at Run 2

CPU3
 the total CPU time in hh:mn:sec achived at Run 3
The gaps are all given in percentage. The instances indicated
with ”⁄” are those for which the maximum CPU time has been
reached by the Branch-and-Cut algorithm.

We start our experiments by running the algorithm with k ¼ 3,
for both SNDLIB and TSPLIB graphs, and using all the inequalities
and the reduction operations, that is Run 1. The results are given
in Tables 1,2.

We first observe that all the SNDLIB instances of Table 1 have
been solved to optimality within the CPU time limit. For TSPLIB
graphs, all the instances have been solved to optimality, except
one, u_159. The CPU time for the instances solved to optimality
is less than 45 min for SNDLIB instances and less than 2h50min
for TSPLIB instances. We also observe that the gap between the
optimal solution and the lower bound achieved at the root node
of the Branch-and-Cut tree is less than 1% for all the SNDLIB
instances except one, geant_22, for which the gap is 1.07%. For
TSPLIB graphs, the gap is less than 1%, except for 6 instances
for which the gap is less than 7.1%. We can also notice that
the number of nodes in the Branch-and-Cut tree is quite small,
less than 60 nodes, for all the instances. Our separation proce-
dures have also detected several inequalities of each type (cut,
node-cut, F-node-partition, SP-node-partition and node-partition
inequalities), especially the cut and node-cut inequalities. More-
over, a large number of F-node-partition and SP-node-partition
inequalities are generated while few node-partition inequalities
have been generated. From these observations, we conclude that
our Branch-and-Cut algorithm is efficient for solving the kNCSP
with k ¼ 3.

We have also run the algorithm, during Run 1, with k ¼ 4 and
k ¼ 5. The results for k ¼ 4 are given by Table 3, for SNDLIB
instances, and by Table 4 for TSPLIB instances. Note that when k
is even, the SP-node-partition and partition inequalities we have
considered in our algorithm are redundant with respect to the
cut inequalities. Thus, they are not used in the Branch-and-Cut
algorithm for k ¼ 4 and do not appear in Tables 3, 4.

We can first observe that for k ¼ 4 all the SNDLIB instances are
solved to optimality, in less than 2 min, and this, at the root node of
the Branch-and-Cut tree. For TSPLIB instances, the problem is
solved in less than 2h30 for all the instances with few nodes (less
than 23) in the Branch-and-Cut tree. For these latter instances, 11
of them over 17 instances are solved at the root node of the
Branch-and-Cut tree. As for k ¼ 3, several cut and node-cut
inequalities have been generated, and few F-node-partition
inequalities are generated. The comparison with k ¼ 3 shows that
the problem seems easier when k ¼ 4, since the optimal solutions
are obtained faster when k ¼ 4 for all the instances. For example,
ta_65 is solved in 43min55sec with 9 nodes in the Branch-and-
Cut tree when k ¼ 3, while it is solved in 2 min at the root node
of the Branch-and-Cut tree when k ¼ 4. Moreover, instance
u_159 is solved to optimality in 4h38min14sec when k ¼ 4,
whereas it is not solved to optimality within 5 h when k ¼ 3.

We have also run our algorithm for k ¼ 5. The results are given
in Tables 5, 6.

Here also, we can see that several instances are solved to opti-
mality at the root node of the Branch-and-Cut tree for both SNDLIB
and TSPLIB instances. The comparison with k ¼ 3 also shows that
the problem seems easier when k ¼ 5. Indeed, for SNDLIB graphs,
8 instances over 11 have been solved at the root node of the
Branch-and-Cut tree when k ¼ 5 whereas only one instance has
been solved at the root node for k ¼ 3. The observation is the same
for TSPLIB instances. Here, 5 instances have been solved at the root
node when k ¼ 5 whereas no instance has been solved at the root
node when k ¼ 3. Also the CPU time is, in general, better when
k ¼ 5. For example, instance gr_120 is solved in 2h26min57sec
when k ¼ 3 and in 1h09min03sec when k ¼ 5. All these observa-
tions suggest that the kNCSP becomes easier when k increases.

A comparison between the case k ¼ 4 and k ¼ 5 shows that the
problem seems easier when k ¼ 4. Indeed, the CPU time is in gen-
eral better when k ¼ 4 and fewer nodes are generated in the
Branch-and-Cut tree when k ¼ 4. We can say from this that the
problem is harder when k is odd than when k is even. The remarks
made here are similar to those made by Bendali et al. (2010) for the
kECSP. They also concluded from their experiments that the kECSP
is harder when k is odd, and that the kECSP becomes easier when k
increases with the same parity.



Table 4
Results for TSPLIB instances with k ¼ 4.

Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

bays_29 4 897 0 20,945 0.00 1 0:00:01
dantzig_42 10 1858 9 1776 0.00 1 0:00:11
att_48 20 2458 5 17,380 0.00 1 0:01:15
eil_51 0 2544 0 1051 0.00 1 0:00:12
berlin_52 6 2860 2 18,351 0.00 1 0:00:54
eil_76 0 5981 2 1350 0.00 1 0:03:24
gr_96 62 438 76 1314 1.6 6 2:00:03
rat_99 29 10,135 14 3045 0.00 1 0:49:33
kroA_100 22 15,223 6 53,111 0.00 1 0:32:25
rd_100 81 451 32 20,341 1.9 4 2:02:38
kroB_100 95 5012 31 55,182 2.5 8 0:45:09
lin_105 33 11,339 4 36,430 0.00 1 0:36:58
gr_120 6 14,765 6 18,714 0.00 1 0:48:40
pr_124 69 7553 16 144,715 3.5 2 2:12:59
bier_127 30 16,447 0 283,154 0.00 1 0:34:22
ch_130 26 532 10 15,123 2.3 23 2:06:45
kroA_150 19 595 4 68,281 5.3 22 2:24:45
u_159 13 630 6 104,664 7.2 15 4:38:14

Table 5
Results for SNDLIB instances with k ¼ 5.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

atlanta_15 14 326 0 12 0 6239 0.00 1 0:00:01
geant_22 2 1193 0 0 2 717 0.35 12 0:00:04
france_25 25 832 0 40 1 6478 0.00 1 0:00:20
norway_27 27 944 0 47 0 11,217 0.00 1 0:00:51
india_35 30 2023 0 21 0 864 0.17 1 0:00:51
sun_27 27 1296 0 46 0 9383 0.34 4 0:00:32
cost266_37 37 1677 0 149 1 527 0.19 4 0:04:38
giul_39 39 1838 0 75 0 11,264 0.00 1 0:03:41
pioro_40 0 1728 0 4 0 10,952 0.00 1 0:00:12
germany_50 9 2651 0 4 0 206 0.00 1 0:00:31
ta2_65 67 4723 0 103 0 10,276 0.00 1 0:45:20

Table 3
Results for SNDLIB instances with k ¼ 4.

Instance #EC #NC #FNPC COpt Gap1 NSub1 CPU1

atlanta_15 0 246 2 4615 0.00 1 0:00:01
geant_22 0 912 0 521 0.00 1 0:00:01
france_25 0 594 0 4692 0.00 1 0:00:01
norway_27 0 793 4 8257 0.00 1 0:00:03
sun_27 0 696 0 6867 0.00 1 0:00:01
india_35 4 1324 2 640 0.00 1 0:00:08
cost266_37 0 1326 0 392 0.00 1 0:00:03
giul_39 0 1602 2 8314 0.00 1 0:00:07
pioro_40 0 1711 3 8137 0.00 1 0:00:15
germany_50 0 2610 0 156 0.00 1 0:00:12
ta2_65 0 4417 4 7631 0.00 1 0:02:01
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The next series of experiments concerns the efficiency of the
reduction operations h1; . . . ; h4. For this, we have run the Branch-
and-Cut algorithm with k ¼ 3 and without the reduction opera-
tions (Run 2).The results are given by Table 7.

We can observe from Table 7 that, for the considered instances,
the performances of the Branch-and-Cut algorithm are decreased
when the reduction operations are not used. One can see that both
the CPU time and the number of nodes in the Branch-and-Cut tree
are increased when the reduction operations are not used in the
algorithm. Also, the gap increases for all the instances, which indi-
cates that a fewer number of inequalities or less efficient inequal-
ities are generated during the separation phases. Moreover, one
instance, eil_76 which is solved to optimality at Run 1 is not solved
to optimality within 5 h without the reduction operations. This
clearly proves the efficiency of the reduction operations on the res-
olution process.

Our last series of experiments aims to check the efficiency of the
F-node-partition, SP-node-partition and node-partition inequali-
ties in solving the kNCSP. For this, we have run the Branch-and-
Cut algorithm in Run 3 with only the cut and node-cut inequalities.
The results are presented in Table 8.

Here also, the comparison between Run 1 and Run 3 shows that
the performances are decreased when F-node-partition, SP-node-
partition and node-partition inequalities are not used in the



Table 7
Comparison of results for k ¼ 3 with and without the reduction operations.

Instance Gap1 Gap2 NSub1 NSub2 CPU1 CPU2

atlanta_15 0.01 0.02 3 15 00:00:01 00:00:32
geant_22 1.07 1.94 60 77 00:00:26 00:01:21
france_25 0.08 0.09 37 57 00:00:32 00:01:48
norway_27 0.76 1.78 15 34 00:00:43 00:02:05
india_35 0.33 2.05 8 24 00:00:53 00:02:08
giul_39 0.03 1.4 5 11 00:02:19 00:15:34
ta2_65 0.07 1.7 9 35 00:43:55 02:42:37

dantzig_42 0.03 0.79 42 74 00:14:14 01:37:37
att_48 0.02 2.4 48 68 00:42:11 02:39:38
eil_76 0.11 3.4 8 53 00:48:05 05:00:00
gr_96 0.6 7.8 2 41 02:03:11 03:24:57

Table 8
Comparison of results for k ¼ 3 with and without the F-node-partition, SP-node-partition and node-partition inequalities.

Instance Gap1 Gap3 NSub1 NSub3 CPU1 CPU3

atlanta_15 0.01 0.03 3 9 00:00:01 00:00:45
geant_22 1.07 2.1 60 84 00:00:26 00:02:09
france_25 0.08 0.17 37 43 00:00:32 00:02:33
norway_27 0.76 1.97 15 60 00:00:43 00:02:51
india_35 0.33 1.71 8 17 00:00:53 00:04:14
giul_39 0.03 1.8 5 14 00:02:19 00:17:57
ta2_65 0.07 1.2 9 21 00:43:55 01:18:37

dantzig_42 0.03 1.64 42 57 00:14:14 00:45:52
att_48 0.02 1.9 48 71 00:42:11 01:34:59
eil_76 0.11 6.5 8 64 00:48:05 02:54:35
gr_96 0.6 13.2 2 34 02:03:11 05:00:00

Table 6
Results for TSPLIB instances with k ¼ 5.

Instance #EC #NC #SPC #FNPC #NPC COpt Gap1 NSub1 CPU1

bays_29 30 1066 0 64 0 28,504 0.00 1 0:01:09
dantzig_42 25 1989 1 4 2 1931 0.00 1 0:00:36
att_48 59 2597 0 25 4 17,945 0.21 19 0:05:10
eil_51 51 3012 0 187 0 1435 0.21 6 0:27:27
berlin_52 28 5401 0 17 4 24,913 0.05 1 0:04:41
eil_76 0 6030 0 3 0 1792 0.00 1 0:04:27
gr_96 48 14,203 3 32 4 1792 0.16 6 1:38:50
rat_99 62 561 0 37 0 4113 1.2 4 2:01:15
kroA_100 61 10,496 0 82 4 72,119 0.14 9 2:03:22
rd_100 73 10,485 0 60 8 27,273 0.07 9 2:02:07
kroB_100 44 581 0 55 6 75,143 0.31 8 2:01:37
lin_105 35 588 0 16 0 50,669 0.6 12 2:00:50
gr_120 0 14,814 0 9 2 23,135 0.00 1 1:09:03
pr_124 45 629 0 15 2 199,713 3.4 2 2:03:39
bier_127 65 763 0 14 0 391,092 4.1 2 2:01:48
ch_130 8 595 0 12 0 21,618 3.8 2 2:09:41
kroA_150 13 681 0 8 0 88,237 2.6 25 2:22:03
�u_159 5 630 0 2 0 75,915 9.3 91 5:00:00

Table 9
Comparison between of the best solutions of kECSP and the kNCSP for k ¼ 3.

Instance COpt_3ECSP COpt_3NCSP Gap

dantzig_42 1210 1232 1.82
att_48 17,499 17,527 0.16
berlin_52 12,601 12,644 0.34
eil_76 876 947 8.11
rat_99 2029 2105 3.75
kroA_100 36,337 36,492 0.43
kroB_100 37,179 37,341 0.44
rd_100 13,284 13,391 0.81
gr_120 11,442 11,562 1.05
bier_127 198,184 199,863 0.85
ch_130 10,400 10,571 1.64
kroA_150 44,718 44,952 0.52
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algorithm. The CPU time, the number of nodes in the Branch-and-
Cut tree and the gap are increased for all the instances of Table 8.
Also, instance gr_96 is not solved to optimality within 5 h when F-
node-partition, SP-node-partition and node-partition inequalities
are not used, while it is in Run 1. This also shows the efficiency
of the above inequalities in solving the kNCSP.

We conclude this computational study by comparing the opti-
mal solutions obtained here for the kNCSP with those of the kECSP
obtained by Bendali et al. (2010). The aim is to know how often
optimal solutions of the kECSP and kNCSP are equal. The next table,
Table 9, presents, for some TSPLIB instances, the optimal solutions
of the kECSP, those of the kNCSP for k ¼ 3 and the gap between the
two solutions, given by
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Gap ¼ COpt 3NCSP� COpt 3ECSP
COpt 3ECSP

:

From Table 9, we can see that the optimal solutions of the two
problems are different for all the considered instances. However,
we can see that the gap between the two solutions is relatively
small for most of them. This let us conclude that the best solutions
obtained by Bendali et al. (2010) for the 3ECSP are good upper
bounds of the optimal solutions of the 3NCSP. Clearly, this remark
cannot be generalized since we may find graphs for which the gap
between the optimal solutions of the kNCSP and the kECSP is more
important, but solving the kECSP could produce a good approxima-
tion of the kNCSP.

9. Conclusion

In this paper we have studied the k-node-connected subgraph
problem with high connectivity requirement, that is, when k P 3.
We have presented some classes of valid inequalities and described
some conditions for these inequalities to be facet defining for the
associated polytope. We have also investigated the structural prop-
erties of the extreme points of the linear relaxation of the problem
and presented some reduction operations. Using these results, we
have devised a Branch-and-Cut algorithm for the problem. The
computational results we have obtained have shown that the
F-node-partition, SP-node-partition and partition inequalities are
effective for solving the problem. Also, the reduction operations
we have used are shown to be efficient in the separation phase
of the Branch-and-Cut algorithm. The experiments also show that,
as for the kECSP, the kNCSP becomes easier when k increases, and
is harder when k is odd than when k is even.

The study presented in this paper shows the efficiency of some
valid inequalities, namely F-node-partition, SP-node-partition and
partition inequalities, in solving the kNCSP. It would be interesting
to investigate the polytope of the problem in a deeper way and
identify cases in which these inequalities completely define the
polytope of the problem.

Also, one can consider the k-node-connectivity in other surviv-
able network design problems. For instance, one can consider the
design of k-node-connected networks with hop-constraints, that
is when the length of the paths between the nodes does not exceed
a given positive integer L. The kNCSP with hop-constraints may be
more challenging than the kNCSP itself. The investigations on this
problem will be the subject of future works.
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