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The survivable hierarchical telecommunications net-
work design problem consists of locating concentrators,
assigning user nodes to concentrators, and linking con-
centrators in a reliable backbone network. In this article,
we study this problem when the backbone is 2-edge
connected and when user nodes are linked to concen-
trators by a point-to-point access network. We formulate
this problem as an integer linear program and present
a facial study of the associated polytope. We describe
valid inequalities and give sufficient conditions for these
inequalities to be facet defining. We investigate the com-
putational complexity of the corresponding separation
problems. We propose some reduction operations to
speed up the separation procedures. Finally, we devise
a branch-and-cut algorithm based on these results and
present the outcome of a computational study. © 2011
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1. INTRODUCTION

Network design problems arising in telecommunications
applications have originated new challenges in the field of
optimization. Within the scope of this study is a two-layer
telecommunication network infrastructure. In such a net-
work, the traffic originating from the terminals (user nodes)
is communicated through access networks to concentrators
(switches or multiplexers) interconnected by a backbone
(core) network. The traffic then traverses the backbone net-
work and finally reaches the access network of its destination
terminal through multiplexing at the backbone (the inter-
ested reader is referred to the surveys of [12] and [20] and
the references therein). In the terminology of the hub loca-
tion literature, the backbone network, carrying large volume
of traffic at high speeds, takes the role of the hub network
which enables the communication of the terminals or the
demand centers. Because the backbone network is the pri-
mary means of providing communication between end-users,
a reliable topological design is essential. Klincewicz [20]
provides a classification of the underlying network design
problems based on the topology of the access and the back-
bone networks. Typical access network topologies include
stars, trees, and rings. Similarly, the backbone network may
be a star, tree, complete, mesh, or ring.

This study focuses on designs where the access networks
are stars and the backbone network is 2-edge connected. A
graph is called k-edge connected for a non-negative integer k
if it contains between any pair of distinct nodes at least k paths
that do not share any edge (edge-disjoint). Figure 1 depicts a
two level network with a 2-edge connected backbone network
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FIG. 1. An example of a 2-edge connected/star network.

and star access networks; here, the squares represent the
concentrators and the circles represent the terminals.

This article introduces an in depth analysis of the 2-
edge connected star subgraph problem (2ECSSP for short)
to the telecommunications network design literature. In par-
ticular, we seek the most cost effective way of designing a
backbone survivable telecommunications network by parti-
tioning a given set of nodes into terminals and concentrators
and establishing edges linking concentrators such that each
terminal gets assigned to a single concentrator and the edges
connecting the concentrators forming the backbone network
becomes 2-edge connected.

Our problem inherently has two subproblems, namely
the survivable network design problem and the concentra-
tor location problem. Individually, both problems have been
widely studied in the literature. Klincewicz [20] presents
a survey for such problems. In his classification terminol-
ogy of backbone network structure/access network structure,
2ECSSP becomes a 2-edge connected/star network design
problem. Gourdin et al. [12] review the studies within the
telecommunications context which include many variations
of the concentrator location problems. Labbé et al. [23] con-
sider the fully connected/star network design problem. Pirkul
and Nagarajan [28] and Lee et al. [24] analyze the tree/star
network design problem, whereas Gavish [11] studies the
star/tree variant. Chardaire et al. [4] analyze the star/star net-
work design problem. A path/path network design problem
studied by Current and Pirkul [5] is another example of the
two level network design approaches existing in the litera-
ture. However, except for the fully connected/star topology
design, none of these designs guarantee survivability.

Survivable network design problems have been exten-
sively studied; see for example [14, 16–18, 30] for surveys.
In particular, the 2-edge connected subgraph problem, which
is of close interest to 2ECSSP, is thoroughly investigated
in the literature. Studies including [14, 17, 18, 25, 30, 31]
but not restricted to this list consider the design of 2-edge
connected survivable networks. Mahjoub [25] studies the
polytope associated with the 2-edge connected subgraph
problem, investigates its facets and shows that the polytope

is completely described by the trivial and cut inequalities
when the underlying graph is series-parallel. Barahona and
Mahjoub [2] consider the 2-edge and 2-node connected sub-
graph problems on Halin graphs and provide the complete
descriptions of the associated polytopes. If the 2-edge con-
nected subgraph polytope is completely described by the cut
and trivial inequalities for a graph, then the graph is called
perfectly 2-edge connected and the problem can be solved in
polynomial time. Mahjoub [26] introduces new classes for
such graphs and provides sufficient conditions for a graph
to be perfectly 2-edge connected. Fonlupt and Mahjoub [7]
introduce and study the concept of critical extreme points for
the 2-edge connected subgraph polytope. In particular, they
characterize the perfectly 2-edge connected graphs.

Several extensions of the 2-edge connected subgraph
problem have been investigated in the literature. Kerivin et al.
[19] consider the (1,2)-survivable network design problem.
Here each node is assigned a connectivity type 1 or 2, and
the problem is to determine a subgraph such that between
every pair of nodes (s, t), there are at least min{r(s), r(t)}
edge-disjoint paths. This is a special case of a more general
model introduced by Grötschel et al. [14]. Vandenbussche and
Nemhauser [31] study the 2-edge connected subgraph prob-
lem on graphs when an edge may be used more than once.
Fortz et al. [8, 9] study the problem of designing 2-node-
connected networks with bounded meshes. The network to
be designed is 2-node connected and every edge of the net-
work must be contained in a cycle whose length is bounded
from above. They describe several classes of valid inequali-
ties and propose a branch-and-cut algorithm. Fortz et al. [10]
study a similar problem in which the network to be designed
is 2-edge connected. Further work on the k-edge connected
subgraph problem with (and without) hop constraints can be
found in [3, 6, 16].

Labbé et al. [21] study the ring/star network design prob-
lem which is of close kinship to the 2ECSSP. Indeed, this
problem is a restriction of the 2ECSSP as a ring is a 2-edge
connected network. The authors identify some facet defin-
ing inequalities of the associated polytope. A branch-and-cut
algorithm is developed based on these inequalities and com-
putational results are presented. We note here that as 2ECSSP
is a relaxation of the ring/star network design problem, any
valid inequality for the 2ECSSP polytope is also valid for the
ring/star polytope; however, the converse is not necessarily
true.

This work contributes to the two level network design lit-
erature by expanding it with the 2ECSSP, a special survivable
infrastructure that has not yet been analyzed in the literature.
The contribution includes a 0-1 model development and a
detailed polyhedral analysis of the associated polytope. For
the families of facet defining inequalities, the computational
complexity status of each separation problem is established
and exact and/or heuristic separation algorithms are designed.
To speed up the separation runtime, some reduction opera-
tions are proposed and analyzed. Finally, a branch-and-cut
algorithm which assembles all this theoretical development
is designed for the 2ECSSP.
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This article is organized as follows. In the following
section, we give an integer programming formulation for the
2ECSSP. In Section 3, the polytope associated with 2ECSSP
is analyzed and several classes of valid inequalities for the
2ECSSP are derived. We give necessary and sufficient condi-
tions for these inequalities to be facet defining. The reduction
operations are proposed in Section 4, and the separation algo-
rithms are discussed in Section 5. In Section 6, we present
the computational study and finally we give some concluding
remarks in Section 7.

2. NOTATION AND MATHEMATICAL MODEL

We first give some notation. We consider directed and
undirected graphs. We denote an undirected graph by G =
(V , E) where V is the node set and E is the edge set of G.
If e ∈ E is an edge between two nodes i and j, then we also
write e = ij or e = {i, j} to denote e. If V1 and V2 are two node
subsets such that V1 ∩V2 = ∅, then we denote by [V1, V2] the
set of edges having one node in V1 and the other in V2. Given
a set S ⊆ V , we let δG(S) = [S, V\S], that is the set of edges
having exactly one node in S. We will omit the subscript if the
context is clear. The edge set δ(S) is called a cut. For i ∈ V ,
we will write δ(i) instead of δ({i}).

A directed graph will be denoted by D = (V , A) where V
is the node set and A is the arc set. If a ∈ A is an arc from
node i to node j, then we also write a = (i, j) to denote a.
For S ⊆ V , we let G(S) (D(S)) denote the subgraph of G (D)
induced by S, that is the subgraph whose node set is S and
edge (arc) set is E(S) (A(S)), the set of edges (arcs) in G (D)
having both nodes in S.

Given a vector x ∈ R
|E| and F ⊆ E, we let x(F) =∑

e∈F xe.
We now proceed with a formal description of the 2ECSSP

to be followed with a 0-1 model. We assume that V =
{0, 1, . . . , n} is a given set of terminals. Node 0 is a special
concentrator corresponding to the root node in the two level
network infrastructure. Let E = {{i, j} : i ∈ V , j ∈ V\{i}}
represent the set of potential backbone links. Thus we assume
a complete graph in terms of edges. Associated with installing
a backbone link e ∈ E is a non-negative fixed setup cost
ce. Similarly, there is a non-negative assignment cost of dij

units associated with assigning terminal i ∈ V to concentrator
j ∈ V . In particular, dii corresponds to the cost of installing
a concentrator at node i ∈ V . Note that dij and dji might be
different.

Given V , 2ECSSP seeks a partition of V into C and T
such that 0 ∈ C, a set of backbone links E′ ⊆ E between
nodes in C such that the graph (C, E′) is 2-edge connected,
and an assignment of each node in T to one in C such that the
total cost of installing backbone links and concentrators and
assigning terminals to concentrators is minimum. 2ECSSP
is NP-hard since it possesses as a special case the 2-edge
connected subgraph problem, which is NP-hard [26].

Against this background, we define xe to be 1 if edge e ∈ E
is used in the backbone network and 0 otherwise and yij to be
1 if node i ∈ V is assigned to node j ∈ V and 0 otherwise. If a

concentrator is installed at node i ∈ V then node i is assigned
to itself, i.e., yii = 1.

Using these two sets of binary variables, we can model the
2ECSSP as follows:

z = min
∑
e∈E

cexe +
∑
i∈V

∑
j∈V

dijyij (1)

s.t.
∑
j∈V

yij = 1 ∀i ∈ V , (2)

yij + xij ≤ yjj ∀i, j ∈ V , i �= j, (3)

y00 = 1 (4)

x(δ(S)) ≥ 2
∑
j∈S

yij ∀S ⊆ V\{0}, i ∈ S, (5)

xe ∈ {0, 1} ∀e ∈ E, (6)

yij ∈ {0, 1} ∀i, j ∈ V . (7)

Constraints (2) and (3) ensure that either a concentrator is
installed at a given node or this node is assigned to exactly
one other node where a concentrator is installed. If an edge
becomes a backbone edge, then concentrators are installed at
both endpoints of this edge due to constraints (3). Constraint
(4) fixes the value of y00 to one and hence a concentrator is
installed at the root node 0. Constraints (5) ensure 2-edge
connectivity in the backbone network. Consider a node sub-
set S ⊆ V\{0} and a node i ∈ S. If i is assigned to some
node in set S, i.e., if

∑
j∈S yij = 1, then there is at least one

concentrator, say k in S, implying that i and k must be linked
by at least two edge-disjoint paths, and hence at least two
edges from δ(S) have to be included in the backbone net-
work. Finally, the objective function is the sum of the cost of
installing the backbone edges and the concentrators and that
of assigning the remaining nodes to concentrators.

2ECSSP is a relaxation of the ring/star network design
problem obtained by dropping the requirement that each con-
centrator is adjacent to exactly two backbone edges. The
formulation above is obtained by removing the degree con-
straints from the formulation of the ring/star network design
problem given in Labbé et al. [21].

The model above is based on the assumption of the exis-
tence of a root node that is a hub. This root node might be a
central unit to which other concentrators should be connected
or it might be desired to connect the backbone network to an
already existing higher level network at this point. In such
cases, the existence assumption of a root node is reasonable.
If there is no such node, then constraint (5) can be modified
as follows:

x(δ(S)) + 2
∑

j∈V\S

yij + 2
∑
j∈S

ykj

≥ 2 ∀S ⊂ V , ∀i ∈ V , ∀k ∈ V\{i}
These constraints force the model to install at least two edges
between sets S and V\S if at least one concentrator is installed
in each set.
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3. POLYHEDRAL ANALYSIS

In this section, we present a polyhedral analysis for the
convex hull of the solutions to the 2ECSSP. We first project
out some variables to make the analysis easier. From con-
straints (2), for i ∈ V\{0}, we can eliminate variable yii by
substituting yii = 1 − ∑

j∈V\{i} yij. Additionally, the vari-
ables related to the assignment of the root node can also be
dropped because their values are known (y00 = 1 and y0i = 0
for all i ∈ V\{0}). After substitution, constraint (3) becomes
xij + yij + ∑

k∈V\{j} yjk ≤ 1 for a given node pair i, j.
For the node pair 0, i we obtain the constraint x0i +
y0i + ∑

k∈V\{i} yik ≤ 1, whereas i, 0 yields x0i + yi0 +∑
k∈V\{0} y0k ≤ 1. Because y00 = 1 and y0i = 0 for all

i ∈ V\{0}, these two constraints become x0i +∑
k∈V\{i} yik ≤

1 and x0i + yi0 ≤ 1, respectively. Clearly, the first one
dominates the latter, so we only use the first inequality. Let
A = {(i, j) : i ∈ V\{0}, j ∈ V\{i}} and define d′

ij = dij − dii

for each (i, j) ∈ A. Now we obtain the following equivalent
formulation:

z =
∑
i∈V

dii + min
∑
e∈E

cexe +
∑

(i,j)∈A

d′
ijyij

s.t. xij + yij +
∑

k∈V\{j}
yjk ≤ 1 ∀(i, j) ∈ A : j �= 0 (8)

x0i +
∑

k∈V\{i}
yik ≤ 1 ∀i ∈ V\{0} (9)

x(δ(S)) + 2
∑

j∈V\S

yij ≥ 2 ∀S ⊆ V\{0}, i ∈ S

(10)

0 ≤ xe ≤ 1 ∀e ∈ E (11)

0 ≤ yij ≤ 1 ∀(i, j) ∈ A. (12)

xe integer ∀e ∈ E (13)

yij integer ∀(i, j) ∈ A. (14)

Inequalities (10) will be called cut inequalities and
inequalities (11)–(12) are called trivial inequalities. Let
X = {(x, y) ∈R|E|+|A| : (x, y) satisfies (8)–(14)} and P =
conv(X). The remaining part of this section is devoted to the
analysis of facets of the polytope P . We show that the con-
straints used in the model define facets of P . In doing this,
we investigate the relationship between some facets of a spe-
cial stable set polytope and the facets of P . Then, we extend
a known family of facet defining inequalities for the 2-edge
connected subgraph polytope to be valid for our model, and
prove that they are facet defining for P under some con-
ditions. Finally, we propose a new family of facet defining
inequalities.

To this end, we first introduce some more notation. For
e ∈ E, let χe be a unit vector of size |E| with the entry
corresponding to edge e equal to 1 and other entries equal to
0. Similarly, for (i, j) ∈ A, let γij be a unit vector of size |A|
with the entry corresponding to arc (i, j) equal to 1 and other
entries equal to 0. Hence, for a vector x ∈ {0, 1}|E| (resp.
y ∈ {0, 1}|A|), if F is the set of edges e (resp. arcs a) such that

xe = 1 (resp. ya = 1), then x (resp. y) can also be written as∑
e∈F χe (resp.

∑
a∈F γa).

In the sequel, we assume that |V | ≥ 5. If |V | < 5, then
the problem is easy to solve. Moreover, some of the inequal-
ities of the formulation do not define facets of the associated
polytope.

3.1. Dimension and Trivial Facets

We first investigate the dimension of P and study its trivial
facet defining inequalities.

Theorem 1. P is full dimensional.

Proof. Consider the solutions (
∑

e∈E χe, 0),
(
∑

e∈E\{e′} χe, 0) for e′ ∈ E and (
∑

e∈E\δ(i) χe, γij) for
(i, j) ∈ A. They are in P and are affinely independent. Hence
dim(P) = |E| + |A|. ■

Theorem 2. For e ∈ E, inequality xe ≥ 0 is facet defining
for P .

Proof. Let F = {(x, y) ∈ P : xe = 0}. The solu-
tions (

∑
e′∈E\{e} χe′ , 0), (

∑
e′′∈E\{e,e′} χe′′ , 0) for e′ ∈ E\{e},

(
∑

e′∈E\δ(k) χe′ , γkl) for (k, l) ∈ A with k ∈ e (k is an endpoint
of e), and (

∑
e′∈E\(δ(k)∪{e}) χe′ , γkl) for (k, l) ∈ A with k �∈ e

(k is not an endpoint of e), constitute a family of |E| + |A|
affinely independent solutions in F . ■

Theorem 3. For (i, j) ∈ A, inequality yij ≥ 0 is facet
defining for P .

Proof. Let F = {(x, y) ∈ P : yij = 0}. The
solutions (

∑
e∈E χe, 0), (

∑
e∈E\{e′} χe, 0) for e′ ∈ E and

(
∑

e∈E\δ(k) χe, γkl) for (k, l) ∈ A\{(i, j)} are in F and are
affinely independent. ■

Inequalities xij ≤ 1 and yij ≤ 1 are not facet defining as
they are implied by constraints (8) and (9).

3.2. Cut Inequalities

After establishing the dimension of P and its trivial facet
defining inequalities, we focus on the cut inequalities (10).
In the following theorem, we give necessary and sufficient
conditions for these inequalities to be facet defining for P .

Theorem 4. Let S ⊆ V\{0} such that S �= ∅ and i ∈ S.
Inequality (10) defines a facet of P if and only if |S| �= 2 and
|V\S| �= 2.

Proof. Suppose that |S| = 2 and S = {i, j}. Then
inequality (10) for this choice of S and i is

x(δ({i, j})) + 2
∑

k∈V\{i,j}
yik ≥ 2. (15)
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Summing the cut inequalities (10) for S = {i} and S = {j}
yields x(δ(i))+x(δ(j))+2

∑
k∈V\{i} yik +2

∑
k∈V\{j} yjk ≥ 4.

Substituting x(δ(i))+x(δ(j)) = x(δ({i, j}))+2xij and adding
constraint (8), −2xij −2yij −2

∑
k∈V\{j} yjk ≥ −2, we obtain

inequality (15), and hence (15) is not facet defining.
Now suppose that V\S = {0, j} and j ∈ V\{0, i}. Let

(x, y) ∈ X be a solution which satisfies the corresponding cut
inequality (10) at equality. If x0j = 1, because x induces a 2-
edge connected subgraph, we should have

∑
k∈S x0k ≥ 1 and∑

k∈S xjk ≥ 1. As inequality (10) for S = V\{0, j} is tight for
(x, y), it thus follows that

∑
k∈S x0k = 1 (and

∑
k∈S xjk = 1).

If x0j = 0, then one should have
∑

k∈S x0k = 2, and therefore∑
k∈S xjk = 0. In both cases (x, y) satisfies x0j − ∑

k∈S xjk =
0. As this equation is not a multiple of x(δ(V\{0, j}))+2(yi0+
yij) = 2, inequality (10) is not facet defining.

Now suppose that |S| > 2 and |V\S| > 2. Notice that as G
is complete, G(S) and G(V\S) are 2-edge connected. LetF =
{(x, y) ∈ P : x(δ(S))+2

∑
j∈V\S yij = 2}. Suppose that every

solution (x, y) in F also satisfies ax + by = β. We will show
that ax +by = β is a multiple of x(δ(S))+2

∑
j∈V\S yij = 2.

Consider solution (x, 0) where x = ∑
e∈E(S)∪E(V\S) χe +

χe1 + χe2 and e1 and e2 are any two edges in δ(S). Let e′ ∈
δ(S)\{e1, e2}. As (x, 0) and the solutions (x + χe′ − χe1 , 0)

and (x +χe′ −χe2 , 0) are both in F , we have ae1 = ae2 = ae′ .
Therefore ae′ = σ for all e′ ∈ δ(S) for some σ ∈ R.

Let e′ ∈ E(S) and let e1, e2 be two edges in δ(S) incident
to the two endpoints of e′ such that e1 ∩e2 ∩e′ = ∅. Consider
the solution (x, 0) where x = ∑

e∈E(S)∪E(V\S) χe +χe1 +χe2 .
As (x, 0) and the solution (x − χe′ , 0) are both in F , we
have ae′ = 0. We can show similarly that ae′ = 0 for all
e′ ∈ E(V\S).

Let j ∈ V\{i, 0} and let e1, e2 be two edges in δ(S)\δ(j)
with different endpoints in S if j ∈ S and with differ-
ent endpoints in V\S if j ∈ V\S. Consider (x, 0) where
x = ∑

e∈E(S)∪E(V\S) χe + χe1 + χe2 . This solution is in F .
Observe that, (x − ∑

e∈δ(j) xeχe, γjk) is also in F for any
k ∈ V\{j}. As ae = 0 for all e ∈ E(S) ∪ E(V\S) we have
bjk = 0.

Similarly, the solution (x, 0)where x = ∑
e∈E(S)∪E(V\S) χe

+ χe1 + χe2 and e1 and e2 are two edges in δ(S)\δ(i) is in F .
Let k ∈ S\{i}. As the solution (x − ∑

e∈δ(i) xeχe, γik) is also
in F , we have bik = 0.

Let j ∈ V\S and consider (x, 0) where x =∑
e∈E(S)∪E(V\S) χe + χe1 + χe2 and e1 and e2 are two edges

in δ(S). As (x − ∑
e∈E(S) χe − χe1 − χe2 ,

∑
k∈S γkj) is in F ,

bkj = 0 for every k �= i, ae = 0 for all e ∈ E(S), and
ae1 = ae2 = σ , we have bij = 2σ .

If |S| = 1 or |V\S| = 1, computation of a and b is almost
the same. The difference is that if |S| = 1, then E(S) = ∅,
there is not a node j ∈ S\{i} and there is not an arc (i, j) with
j ∈ S as S = {i}. Similarly, if |V\S| = 1, then E(V\S) = ∅
and there is not a node j ∈ V\(S ∪ {0}). So we do not cal-
culate the corresponding coefficients. Computation of other
coefficients is still valid.

Hence, ax + by = β is a multiple of x(δ(S)) +
2

∑
j∈V\S yij = 2 and F is a facet of P . ■

3.3. Stable Set Relaxation and Clique Inequalities

Let XS = {(x, y) ∈R|E|+|A| : (x, y) satisfies (8), (9), (13),
and (14)} and PS = conv(XS). The polytope PS is a stable
set polytope. As P ⊆ PS and P is full dimensional, PS is
also full dimensional. Let αx + βy ≤ β0 be a facet defining
inequality for P . If this inequality is valid for PS , then it
also defines a facet of PS . This implies that the inequalities
xe ≥ 0 for e ∈ E and yij ≥ 0 for (i, j) ∈ A are facet defining
for PS . The trivial inequalities xe ≤ 1 for e ∈ E and yij ≤ 1
for (i, j) ∈ A are implied by constraints (8) and (9) and hence
do not define facets of PS . Moreover, as XS is an indepen-
dence system, if αx + βy ≤ β0 is a nontrivial facet defining
inequality for PS , then α ≥ 0, β ≥ 0, and β0 > 0.

In the following two theorems, we investigate how some
of the facets of PS are related to those of P .

Theorem 5. Let e = {i, j} ∈ E with i �= 0 and j �= 0.
Suppose that inequality αexe + βy ≤ β0 is a nontrivial facet
defining inequality for PS . If

i. for all m ∈ V\{0, i, j} and l ∈ V\{0, i, j, m}, there exists a
node k ∈ V\{0, m, l} such that βkm = βkl = βk0 = 0,

ii. for m ∈ V\{0, i, j}, there exists a node k ∈ V\{0, i, j, m}
such that βkm = βki = βkj = βk0 = 0,

iii. for m ∈ V\{0, i, j}, there exist two distinct nodes k1, k2 ∈
V\{0, m} such that βk1m = βk10 = βk2m = βk20 = 0 and
|{k1, k2} ∩ {i, j}| ≤ 1,

iv. there exist two distinct nodes k1, k2 ∈ V\{0, i, j} such that
βk10 = βk1i = βk1j = βk20 = βk2i = βk2j = 0,

are all satisfied, then the inequality αexe + βy ≤ β0 also
defines a facet of P .

Proof. See the appendix. ■

Theorem 6. Let e = {0, i} ∈ E. Suppose that the inequality
αexe + βy ≤ β0 is facet defining for PS . If

i. for all m ∈ V\{0, i} and l ∈ V\{0, i, m}, there exists a node
k ∈ V\{0, i, m, l} such that βki = βkm = βkl = βk0 = 0,

ii. for m ∈ V\{0, i}, there exist two distinct nodes k1, k2 ∈
V\{0, i, m} such that βk1m = βk1i = βk10 = βk2m = βk2i =
βk20 = 0,

are all satisfied, then the inequality αexe + βy ≤ β0 also
defines a facet of P .

Proof. Similar to the proof of Theorem 5. ■

Consider the conflict graph, in which there is an edge
between two nodes if these two nodes cannot be found in
a solution simultaneously, associated with the set XS =
{(x, y) ∈R|E|+|A| : (x, y) satisfies (8), (9), (13), and (14)}. It
is known that a clique inequality is facet defining for the sta-
ble set polytope if and only if the underlying clique is maximal
[1]. Now, we investigate the maximal cliques in the conflict
graph associated with XS .
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Theorem 7. The only facet defining clique inequalities for
PS are constraints (8) and (9), and inequalities yij + yjk +
yki ≤ 1 for distinct nodes i, j, k ∈ V\{0}.

Proof. Consider a maximal clique in the conflict graph
associated with XS . Observe that this clique can contain at
most one xe variable. First suppose that xij is in the clique for
some {i, j} ∈ E such that i �= 0 and j �= 0. Then, the neighbors
of xij are nodes of the form yil for l ∈ V\{i} and yjk for
k ∈ V\{j}. Assume without loss of generality that the clique
contains a node yil for some l ∈ V\{i}. Then, there exists a
node of the form yjk for some k ∈ V\{j} in the clique only if
l = j. If l = j, then the clique contains all nodes of the form
yjk for k ∈ V\{j} and no other node. The corresponding clique
inequality is (8). Now suppose that the clique does not contain
any node of the form yjk for k ∈ V\{j}. Then, it contains all
nodes yil for l ∈ V\{i} and no other node. However, such a
clique cannot be maximal as it can be enlarged by adding the
node yji. Hence, we arrive at a contradiction.

Now suppose that x0i is in the clique for some i ∈ V\{0}.
The neighbors of x0i are nodes of the form yik for k ∈ V\{i}.
The node x0i together with the nodes yik for all k ∈ V\{i} form
a maximal clique and the corresponding clique inequality
is (9).

The remaining maximal cliques do not include any node of
the form xe for e ∈ E. Suppose that we have such a maximal
clique which includes a node yij for some (i, j) ∈ A. If the
clique also includes a node of the form yil for l ∈ V\{i, j},
then it can only include the other nodes yik for k ∈ V\{i, j, l}
and a node ymi for some m ∈ V\{0, i}. Such a clique cannot
be maximal as it can be extended by adding the node xmi. The
neighbors of yij other than those of the form xe for e ∈ E and
yil for l ∈ V\{i, j} are the nodes yjk for some k ∈ V\{j} if j �=
0. If j = 0, then there is no such neighbor. Suppose that j �= 0
and that the clique contains yij and yjk for some k ∈ V\{j}. If
the clique contains another node yjl for l ∈ V\{j, k}, then it
can only include the other nodes yjm for m ∈ V\{j, k, l} and
can be extended by adding the node xij. Hence, if a maximal
clique includes nodes yij and yjk and does not include any node
of the form xe, yil for l ∈ V\{i, j}, and yjl for l ∈ V\{j, k},
then it should contain the node yki. The associated clique
inequality is yij + yjk + yki ≤ 1. ■

The inequalities of type yij + yjk + yki ≤ 1 are also known
as the triangle inequalities. As consequences of Theorems
5–7, we have the following:

Corollary 1. Let (i, j) ∈ A with j �= 0. Then, inequality (8)
is facet defining for P .

Corollary 2. Let i ∈ V\{0}. Then, inequality (9) is facet
defining for P .

Corollary 3. Let i, j, and k be distinct nodes in V\{0}. Then,
inequality yij + yjk + yki ≤ 1 is facet defining for P .

Corollaries 1 and 2 together with Theorem 4 show that
all the constraints of the model are facet defining for the

FIG. 2. A fractional solution cut off by an F-partition inequality.

polytope P . In the sequel, we present two other families of
facet defining inequalities.

3.4. Extended F-Partition Inequalities

An important class of valid inequalities for the 2-edge
connected subgraph problem is the class of F-partition
inequalities, which are shown to be very effective for solving
large instances of the 2-edge connected subgraph problem
(see [19, 25]). In this section, we extend these inequali-
ties to be valid for the 2ECSSP polytope P , give some
sufficient conditions for these inequalities to be facet defining,
and investigate the complexity of the associated separation
problem.

We first give an example of a fractional solution (x, y)
and an extended F-partition inequality that cuts off this solu-
tion. Consider the solution (x, y) depicted in Figure 2. Let
V = {0, . . . , 9}. The edges and arcs with value 0 are omitted.
The positive values in (x, y) are either 0.5 or 1. The backbone
edges with value 1 are represented by bold lines and those
with value 0.5 are represented by dashed lines. The assign-
ments are as follows: yii = 1 for i ∈ V\{3, 4} (these nodes are
represented by rectangles) and y33 = y35 = y44 = y46 = 0.5
(these nodes are represented by triangles and the assignments
of 3 to 5 and 4 to 6 are represented by dashed lines with
arrows). The solution (x, y) satisfies all the clique (8) and
cut (10) inequalities and is an extreme point of the linear
relaxation of 2ECSSP.

Consider a partition of V into V0, . . . , V5 such that V0 =
{0, 8, 9}, V1 = {1}, V2 = {2}, V3 = {3, 5}, V4 = {4, 6},
and V5 = {7}. Let F = {{0, 7}, {2, 8}, {5, 9}}. Each set in
the partition has at least one node at which a concentrator
is installed. Hence, to have 2-edge connectedness among the
sets of the partition, we need to use at least 4 edges from the set
δ(V0, . . . , V5)\F. Hence, we need x(δ(V0, . . . , V5)\F) ≥ 4.
Notice that as the root node is in V0, there is a concentrator
installed in the set V0 in any fractional solution. This is not
necessarily true for the remaining sets of the partition. For
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instance if node 1 is assigned to another node, then there is no
concentrator installed in set V1 and we need 3 edges from the
set δ(V0, . . . , V5)\F for 2-edge connectedness. So we need
x(δ(V0, . . . , V5)\F) + ∑

j∈V\{1} y1j ≥ 4. We can repeat the
same argument for the remaining sets of the partition. Here
for sets that are not singletons, we can only use one node in
the inequality. Suppose that we pick node 3 for set V3 and
node 4 for set V4. We obtain the inequality

x(δ(V0, . . . , V5)\F) +
∑

j∈V\{1}
y1j +

∑
j∈V\{2}

y2j +
∑

j∈V\{3,5}
y3j

+
∑

j∈V\{4,6}
y4j +

∑
j∈V\{7}

y7j ≥ 4

which is a valid inequality. This inequality cuts off the
fractional solution (x, y) since

x(δ(V0, . . . , V5)\F) +
∑

j∈V\{1}
y1j +

∑
j∈V\{2}

y2j +
∑

j∈V\{3,5}
y3j

+
∑

j∈V\{4,6}
y4j +

∑
j∈V\{7}

y7j

= x13 + x16 + x17 + x25 + x26 + x47 = 3.5 < 4.

In the following theorem, we define formally the family
of extended F-partition inequalities and prove its validity.

Let V0, . . . , Vp be a partition of V such that Vl �= ∅, for
l = 0, . . . , p and 0 ∈ V0. Let il ∈ Vl be a fixed node for
l = 1, . . . , p and F ⊆ δ(V0) such that |F| = 2k + 1 for some
k ≥ 0 and integer. Let δ(V0, . . . , Vp) be the set of edges whose
endpoints are in different sets of the partition. Consider the
inequality

x(δ(V0, . . . , Vp)\F) +
p∑

l=1

∑
j∈V\Vl

yil j ≥ p − k. (16)

Theorem 8. Inequality (16) is valid for P .

Proof. The following inequalities are valid for P:

x(δ(Vl)) + 2
∑

j∈V\Vl

yil j ≥ 2 l = 1, . . . , p

−xe ≥ −1 ∀e ∈ F

xe ≥ 0 ∀e ∈ δ(V0)\F.

Adding up these inequalities and dividing the resulting
inequality by 2 yields

x(δ(V0, . . . , Vp)\F) +
p∑

l=1

∑
j∈V\Vl

yil j ≥ p − |F|
2

As |F| is odd, rounding up the right hand side yields
inequality (16). ■

Inequalities of type (16) will be called extended F-
partition inequalities. Note that, if values of all assignment

variables are zero, i.e., if all nodes are selected as hubs,
then the extended F-partition inequalities are the same as
the F-partition inequalities of 2-edge connected subgraph
problem.

Next, we give sufficient conditions for the extended F-
partition inequalities to be facet defining for P . For A ⊆ A, let
XA = {(x, y) ∈ X : ya = 0 ∀a ∈ A\A} and PA = conv(XA).
Suppose that αx + βy ≥ ξ is a facet defining inequality for
PA. Let a ∈ A\A and A

′ = A ∪ {a}. Then the inequality

αx + βy + baya ≥ ξ

is facet defining for PA
′ where ba = ξ − θa(A

′
) and θa(A

′
) =

min{αx + βy : (x, y) ∈ XA
′ and ya = 1} [27].

Theorem 9. Inequality (16) defines a facet for P if the
following conditions are all satisfied

(a) G(Vl) is 3-edge connected for l = 0, . . . , p,
(b) |F ∩ δ(Vl)| ≤ 1 and F ∩ δ(j) = ∅ for l = 1, . . . , p and

j ∈ Vl\{il},
(c) |F ∩ δ(j)| ≤ 1 for j ∈ V0\{0}.

Proof. For simplicity, we use 	, L, and I to denote
δ(V0, . . . , Vp)\F, {1, . . . , p}, and {i1, . . . , ip}, respectively.
Without loss of generality we assume that δ(il) ∩ F �= ∅
for l = 1, . . . , 2k. Note that from Condition b), we have
2k + 1 ≤ p.

For A = ∅, PA reduces to the 2-edge connected subgraph
polytope. Because G(Vl) is 3-edge connected for l = 0, . . . , p
and G = (V , E) is complete, from [25] it follows that x(	) ≥
p − k is a facet defining inequality for PA.

If p > 2k + 1, we let E1 = ∪p
l=0E(Vl) ∪ {i1, i2k+1} ∪

{i2, ip}∪p−1
l=2k+1{il, il+1}∪k

l=2{i2l−1, i2l}∪F and x = ∑
e∈E1

χe.
Clearly, (x, 0) ∈ X. If p = 2k + 1, let E2 = ∪p

l=0E(Vl) ∪k
l=2{i2l, i2l+1} ∪ {i1, i2} ∪ {i2, i3} ∪ F. Then (

∑
e∈E2

χe, 0) ∈ X.
Here we give the proof for the case where p > 2k + 1. The
proof for the other case is similar.

Let A1 = {(u, v) ∈ A : u ∈ V\I , v ∈ V} ∪ {(u, v) ∈ A :
u = il for some l ∈ L, v ∈ Vl}. We first show that the lifting
coefficients of the variables associated with the arcs of A1 are
zero. The proof is by induction. Let (u, v) ∈ A1 be the first
arc in the lifting sequence. Then

buv = p − k − θ(u,v)({(u, v)}).
Inequality (16) implies that θ(u,v)({(u, v)}) ≥ p − k. Let x1 =
x − ∑

e∈δ(u) xeχe. Suppose that u �∈ I . Note that if u ∈ V0
and there exists f ∈ F with u ∈ f , then we can rearrange
the partition subsets so that f ∈ δ(V2k+1). Hence (x1, γuv) ∈
X{(u,v)}. If u ∈ I , then without loss of generality, we may
assume that u = i2k+1. Therefore (x1 + χi1v + χvi2k+2 , γuv) ∈
X{(u,v)}. In both cases, θ(u,v)({(u, v)}) = p − k and thus buv =
0. In consequence x(	) ≥ p − k is facet defining for P{(u,v)}.
Now, let A1 ⊆ A1 be the set of arcs for which the lifting
has already been done and (u, v) ∈ A1\A1. We assume that
ba = 0 for every a ∈ A1 and show that buv = 0. Here
buv = p−k −θ(u,v)(A1 ∪{(u, v)}). Clearly, by inequality (16)
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θ(u,v)(A1 ∪ {(u, v)}) ≥ p − k. Using the same approach as
above, we can similarly show that θ(u,v)(A1∪{(u, v)}) = p−k,
and thus buv = 0. Hence, x(	) ≥ p − k is facet defining
for PA1 .

Let A2 = A\A1. We show that the lifting coefficients of the
variables associated with the arcs of A2 are one. Let (u, v) ∈
A2 be the first arc in the sequence. Then

buv = p − k − θ(u,v)(A1 ∪ {(u, v)}).
Without loss of generality, we may assume that u = i2k+1.

Note that v ∈ V\V2k+1. First observe that by inequal-
ity (16) we have θ(u,v)(A1 ∪ {(u, v)}) ≥ p − k − 1. Let
x2 = x − ∑

e∈E(V2k+1)
χe − ∑

e∈δ(u) xeχe + χi1i2k+2 , and
y = ∑

i∈V2k+1\{u} γi0 + γuv. Then (x2, y) ∈ XA1∪{(u,v)}. So
θ(u,v)(A1 ∪ {(u, v)}) = p − k − 1 and thus buv = 1. Hence,
x(	) + yuv ≥ p − k is facet defining for PA1∪{(u,v)}. Let
A2 ⊆ A2 be the set of arcs for which the lifting has already
been done and (u, v) ∈ A2\A2. We assume that ba = 1 for
every a ∈ A2 and show that buv = 1. We have

buv = p − k − θ(u,v)(A1 ∪ A2 ∪ {(u, v)}).

By inequality (16), we have θ(u,v)(A1 ∪ A2 ∪ {(u, v)}) ≥
p − k − 1. In addition, (x2, y) ∈ XA1∪A2∪{(u,v)}. So θ(u,v)(A1 ∪
A2 ∪ {(u, v)}) = p − k − 1 and buv = 1. Therefore, x(	) +∑

l∈L

∑
j∈V\Vl

yil j ≥ p − k is facet defining for PA. ■

To conclude this section, we prove that the separation
problem associated with the extended F-partition inequalities
(16) is NP-hard. Here we consider the problem of finding a
most violated inequality. So we define the decision version of
the separation problem as follows. Given a graph G = (V , E),

a special node 0 ∈ V , a solution (x, y) ∈R|E|
+ ×R|V |2

+ , and a
positive number κ , does there exist a partition V0, V1, . . . , Vp

of V with 0 ∈ V0, F ⊆ δ(V0) with |F| = 2k + 1 for
some integer k ≥ 0, il ∈ Vl for l = 1, . . . , p such that
x(δ(V0, . . . , Vp)\F) + ∑p

l=1

∑
j∈V\Vl

yil j ≤ p − k − κ?
To establish the complexity status of the separation prob-

lem associated with the extended F-partition inequalities,
we will use a reduction from the decision version of the
uncapacitated concentrator location problem (decUCL). The
decUCL is defined as follows. Given a set of nodes I , cost
Cij for i ∈ I and j ∈ I and a positive scalar K , does there
exist a nonempty subset I ′ of I and a choice ji ∈ I ′ for each
i ∈ I\I ′ such that

∑
j∈I ′ Cjj + ∑

i∈I\I ′ Ciji ≤ K? This prob-
lem is NP-complete [22]. To avoid trivial cases, we consider
instances with maxi,j∈I Cij > K

|I| .

Theorem 10. The decision version of the separation prob-
lem associated with the extended F-partition inequalities (16)
is NP-complete.

Proof. It is easy to verify that the problem is in NP.
To show that the problem is NP-complete, we give a

polynomial time reduction of the decUCL to the decision
version of the separation problem. Given an instance of the

decUCL, consider the following instance of the separation
problem. Let κ = maxi,j∈I Cij|I| − K . Set V = {0} ∪ I ,
E = {{i, j} : i ∈ V , j ∈ V\{i}}, x = 0, yij = K+κ

|I| − Cji for
i ∈ I and j ∈ I . Observe that yij is non-negative for each i ∈ I
and j ∈ I . Let yi0 = y0i = 0 for all i ∈ I and y00 = 1.

Notice that as x = 0 and
∑

j∈V\Vl
yil j = 1 − ∑

j∈Vl
yil j for

il for l = 1, . . . , p, the extended F-partition inequality (16)
can be rewritten as

p∑
l=1

∑
j∈Vl

yil j ≤ k. (17)

Let V0, V1, . . . , Vp be a partition of V with 0 ∈ V0, F ⊆
δ(V0) with |F| = 2k + 1 for some integer k ≥ 0, il ∈ Vl

for l = 1, . . . , p such that the corresponding extended F-
partition inequality (17) is violated with violation at least as
large as κ . Now consider a new partition such that V ′

l = Vl

for l = 2, . . . , p, V ′
0 = {0}, and V ′

1 = V1 ∪ V0\{0}. Let F ′
be a subset of δ(0) with cardinality 1. The resulting extended
F-partition inequality (17) is also violated with violation at
least as large as κ . Hence, there exists an extended F-partition
inequality with violation at least κ if and only if there exists
an extended F-partition inequality with violation at least κ ,
V0 = {0}, and F ⊆ δ(0) with |F| = 1.

We claim that there exists a solution to the decUCL if and
only if there exists a partition of V into V0, V1, . . . , Vp with
V0 = {0} and F ⊆ δ(0) with |F| = 1, and a choice of nodes
i1, . . . , ip with il ∈ Vl for l = 1, . . . , p such that the inequality
(17) is violated with a violation of at least κ .

Given a solution of decUCL, let p = |I ′| and so I ′ =
{i1, . . . , ip}. For l = 1, . . . , p, let Vl = {i ∈ I\I ′ : ji =
il}∪{il}, V0 = {0} and F be any element of δ(0). The left- hand
side of the inequality,

∑p
l=1

∑
j∈Vl

yil j, is equal to
∑p

l=1 yilil
+∑p

l=1

∑
j∈Vl\{il} yilj = ∑

i∈I ′(
K+κ
|I| − Cii) + ∑

i∈I\I ′(
K+κ
|I| +

Ciji) = K + κ − (
∑

i∈I ′ Cii + ∑
i∈I\I ′ Ciji). As

∑
i∈I ′ Cii +∑

i∈I\I ′ Ciji ≤ K , we have
∑p

l=1

∑
j∈Vl

yil j ≥ κ and hence
the inequality (17) is violated with a violation of at least κ .

Given a partition of V into V0, V1, . . . , Vp with V0 = {0},
F ⊆ δ(0) with |F| = 1, and a choice of nodes i1, . . . , ip
with il ∈ Vl for l = 1, . . . , p such that the inequality (17) is
violated with a violation of at least κ , let I ′ = {i1, . . . , ip}, and
jk = il for k ∈ Vl and l ∈ {1, . . . , p}. We can show that this
is a solution to the decUCL following the steps above. ■

In Section 5, we propose several heuristic algorithms for
the separation of the extended F-partition (16) inequalities.

3.5. Star-Path Inequalities

In this section, we introduce a new family of facet defining
inequalities called the star-path inequalities. These general-
ize constraints (8). We first give an example of a fractional
solution and a star-path inequality that cuts off this solution.

Let V = {0, . . . , 5}. Consider the fractional point (x, y)
depicted in Figure 3. Here we omit the edges and arcs with
value equal to 0. The remaining edges and arcs have values
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FIG. 3. The backbone edges and assignment arcs in the fractional
solution (x, y).

0.5 or 1. The nodes i for which yii = 1 are represented by
rectangles, those with yii = 0.5 are represented by triangles,
and finally the nodes with yii = 0 are represented by ellipses.
The backbone edges with value 1 are represented by bold lines
and those with value 0.5 are represented by dashed lines. We
use dashed lines with arrows for the assignment arcs.

Consider nodes 1–3. Notice that for (x, y) ∈ X , if no con-
centrators are installed at nodes 2 and 3, i.e.,

∑
j∈V\{2} y2j = 1

and
∑

j∈V\{3} y3j = 1, then the edges {1, 2} and {2, 3} can-
not be used in the backbone network and node 1 cannot
be assigned to either of nodes 2 or 3, hence we must have
x12 + x23 + y12 + y13 = 0. If a concentrator is installed
at node 3 but not at node 2, i.e.,

∑
j∈V\{2} y2j = 1 and∑

j∈V\{3} y3j = 0, then as the edges {1, 2} and {2, 3} cannot be
in the backbone and node 1 cannot be assigned to node 2, we
have x12 +x23 +y12 = 0 and y13 can be 0 or 1. If the opposite
happens, i.e.,

∑
j∈V\{2} y2j = 0 and

∑
j∈V\{3} y3j = 1, then

x23 +y13 = 0 and x12 and y12 can be 0 or 1, but we must have
x12 + y12 ≤ 1. Finally, if concentrators are installed at both
nodes 2 and 3, i.e.,

∑
j∈V\{2} y2j = 0 and

∑
j∈V\{3} y3j = 0,

then x12 + y12 + y13 ≤ 1 and x23 can be 0 or 1. Hence, the
inequality

x12 + x23 + y12 + y13 +
∑

j∈V\{2}
y2j +

∑
j∈V\{3}

y3j ≤ 2 (18)

is valid for P .
Now notice that x12 + x23 + y12 + y13 + ∑

j∈V\{2} y2j +∑
j∈V\{3} y3j = 2.5 > 2. Hence, adding this inequality to the

formulation cuts off the fractional solution (x, y).
We remark here that x23, y24, y12, y13, y34 form an odd hole

of size 5 in the conflict graph associated with XS . Hence,
the odd hole inequality x23 + y24 + y12 + y13 + y34 ≤ 2
is valid for X and this odd hole inequality is violated by
(x, y). Inequality (18) can be obtained by lifting this odd hole

inequality sequentially with y2j for j ∈ V\{2, 4}, y3j for j ∈
V\{3, 4} and x12.

Next, we show that inequality (18) is a special case of
a more general family of valid inequalities. Let m ≥ 1 be
an integer and Im = {i0, . . . , im} be an ordered subset of
V\{0} consisting of distinct nodes. Let PI = {{il, il+1} ∈ E :
i = 0, . . . , m − 1}. Note that PI is a path between i0 and im.
Consider the inequality

x(PI) +
∑

i∈I\{i0}

∑
(i,j)∈A

yij +
∑

j∈I:(i0,j)∈A

yi0j ≤ m (19)

Theorem 11. Inequality (19) is valid for P .

Proof. We will prove the validity by induction on m =
|PIm |. If m = 1, the star-path inequality reduces to

xi0i1 +
∑

j∈V\{i1}
yi1j + yi0i1 ≤ 1

which is nothing but constraint (8) for (i0, i1) and hence it is
valid for P .

Now assume that the star-path inequalities are valid for
m ≤ k. By the induction hypothesis,

x(PIk ) +
k∑

l=1

∑
j∈V\{il}

yilj +
k∑

l=1

yi0il ≤ k

holds for any (x, y) ∈ P . If xik ik+1 + ∑
j∈V\{ik+1} yik+1j +

yi0ik+1 ≤ 1, then summing this with the above inequality gives
x(PIk+1) + ∑k+1

l=1

∑
j∈V\{il} yilj + ∑k+1

l=1 yi0il ≤ k + 1.
If xik ,ik+1 +∑

j∈V\{ik+1} yik+1j +yi0ik+1 ≥ 2, then, as we know
that xik ,ik+1 + ∑

j∈V\{ik+1} yik+1j ≤ 1 and
∑

j∈V\{ik+1} yik+1j +
yi0ik+1 ≤ 1, xik ,ik+1 = 1,

∑
j∈V\{ik+1} yik+1j = 0, and yi0ik+1 = 1.

This implies that xi0i1 = 0 and
∑k+1

l=1 yi0il = 1. Moreover, we
have that the inequalities xil ,il+1 + ∑

j∈V\{il} yilj ≤ 1 are valid
for l = 1, . . . , k. Summing up these inequalities together with
xi0i1 = 0,

∑k+1
l=1 yi0il = 1 and

∑
j∈V\{ik+1} yik+1j = 0 yields

x(PIk+1) + ∑k+1
l=1

∑
j∈V\{il} yilj + ∑k+1

l=1 yi0il ≤ k + 1. Hence,
inequality (19) is valid for P . ■

Inequalities of type (19) will be called star-path inequali-
ties. Observe that inequalities (8) represent a special case of
star-path inequalities. Moreover, by Corollary 1, the former
ones are facet defining for P .

Theorem 12. If |V\I| ≥ 3, then inequality (19) is facet
defining for P .

Proof. Let F = {(x, y) ∈ P : x(PI) +∑m
l=1

∑
j∈V\{il} yilj + ∑m

l=1 yi0il = m}. Assume that every
solution (x, y) ∈ F also satisfies ax + by = β. For
l = 0, . . . , m, define V0l = {i0, . . . , il}, Vlm = {il, . . . , im},
xl = ∑

e∈E(V\Vlm) χe, xl = ∑
e∈E(V\V0l)

χe.
Let x = ∑

e∈E χe. The solution (x, 0) is in F . Let e ∈
E\PI . As the solution (x−χe, 0) is also in F , we have ae = 0.
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Let j ∈ V\V0m and k ∈ V\{j}. The solution (x −∑
e∈δ(j) χe, γjk) is also in F . Hence bjk = 0.
Let k ∈ V\{im}. As both solutions (x, 0) and (xm, γimk) are

inF and ae = 0 for all e ∈ E\PI , we have aim−1im = bimk = σm

for all k ∈ V\{im} for some σm ∈ R.
Let l ∈ {1, . . . , m − 1} and k ∈ V\Vlm. As both solutions

(xl+1,
∑m

j=l+1 γij0) and (xl,
∑m

j=l+1 γij0 + γilk) are in F , we
can conclude that ail−1,il = bilk = σl for all k ∈ V\Vlm for
some σm ∈ R.

Let k ∈ V\V0m. As both solutions (x1,
∑m

j=1 γij0) and

(x0,
∑m

j=1 γij0 + γi0k) are both in F , we can conclude that
bi0k = 0 for all k ∈ V\V0m.

Let k ∈ V1m. Consider the solutions (x, 0) and (x0, γi0,k).
As both of these solutions are inF , we have bi0k = ai0,i1 = σ1.

Let l ∈ {1, . . . , m − 1} and k ∈ Vl+1,m. Solutions
(xl−1,

∑
j∈V0l−1

γij ,im) and (xl,
∑

j∈V0l−1
γij ,im + γilk) are both

in F . Hence ail ,il+1 = bil ,k = σl for all k ∈ Vl+1,m.
Now as ail−1,il = σl = ail ,il+1 for all l ∈ {1, . . . , m − 1},

we have σl = σ for all l ∈ {1, . . . , m}.
This proves that ax + by = β is a multiple of x(PI) +∑m
l=1

∑
j∈V\{il} yilj + ∑m

l=1 yi0il = m. ■

Next, we prove that the separation problem associated with
the star-path inequalities (19) is NP-hard. First, we remark
that inequality (19) can be rewritten as x(PI) − ∑m

l=1 yilil +∑m
l=1 yi0il ≤ 0 using the self assignment variables.
The decision version of the separation problem is then

defined as follows. Given a graph G = (V , E), K > 0, a

special node 0 ∈ V , a solution (x, y) ∈R|E|
+ ×R|V |2

+ , does there
exist a set of m + 1 distinct nodes i0, i1, . . . , im in V\{0} such
that x(PI) − ∑m

l=1 yilil
+ ∑m

l=1 yi0il
≥ K?

Theorem 13. The decision version of the separation
problem associated with the star-path inequalities (19) is
NP-complete.

Proof. NP membership is easily verifiable. To establish
the complexity status we give a reduction from the Hamilto-
nian path problem, which is defined as follows. Given a graph
G′ = (V ′, E′), does G′ contain a simple path consisting of
all the nodes in V ′? Given such an instance, consider the fol-
lowing instance of the separation problem. Set V = V ′ ∪ {0},
E = {{i, j} : i ∈ V , j ∈ V\{i}}xe = 1 for e ∈ E′, xe = 0 for
e ∈ E\E′, y = 0, and K = |V |−1. Now it is easy to conclude
that G′ has a Hamiltonian path if and only if the constructed
separation problem has a solution. ■

4. REDUCTION OPERATIONS

In this section, we are going to introduce some reduc-
tion operations, which will be used in our branch-and-cut
algorithm that will be discussed in the next section. These
operations use ideas developed by Fonlupt and Mahjoub [7]
for the 2-edge connected subgraph polytope.

Note that both an undirected graph G = (V , E) and a
directed graph D = (V , A) are associated with the problem
2ECSSP. The reduction operations may affect both. Given

e = uv ∈ E, contracting e means deleting e from E and
arcs (u, v), (v, u) from A, identifying u and v, deleting the
resulting loops, and keeping the new parallel edges and arcs.
Similarly contracting a set of nodes W ⊂ V means deleting
set of edges E(W) and set of arcs A(W), identifying W as a
single node, deleting the resulting loops and keeping the new
parallel edges and arcs.

Before describing these operations, we shall first introduce
some notation. We will denote by Q(G) the polytope given
by inequalities (8)–(12). That is to say, Q(G) is the linear
relaxation of 2ECSSP(G). Clearly, Q(G) is defined in terms
of both graphs G and D. However, as G and D are closely
related, we will only write Q(G) for Q(G, D). If (x, y) is a
solution of Q(G) we will denote by E0(x), E1(x), and Ef (x),
the set of edges e ∈ E such that x(e) = 0, x(e) = 1, and
0 < x(e) < 1, respectively. Similarly, we will denote by
A0(y), A1(y), and Af (y) the set of arcs a ∈ A with y(a) =
0, y(a) = 1, and 0 < y(a) < 1, respectively. We also use
�(x, y), T(x, y), ξ(x, y) to denote the set of arcs of A, nodes of
V\{0}, and pairs (S, i) for all S ⊆ V\{0}, i ∈ S, respectively,
for which the corresponding inequalities (8)–(10) are tight
for (x, y).

Let (x, y) be an extreme point of Q(G). Thus there is a set
of arcs �∗(x, y) ⊆ �(x, y), a set of nodes T∗(x, y) ⊆ T(x, y)
and a set ξ∗(x, y) ⊆ ξ(x, y) such that (x, y) is the unique
solution of the system

R(x, y) =




xij + yij + ∑
k∈V\{j} yjk = 1 (i, j) ∈ �∗(x, y),

x0i + ∑
k∈V\{i} yik = 1 i ∈ T∗(x, y),

x(δ(S)) + 2
∑

j∈V\S yij = 2 (S, i) ∈ ξ∗(x, y),
xij = 0 ij ∈ E0(x),
xij = 1 ij ∈ E1(x),
yij = 0 (i, j) ∈ A0(y),
yij = 1 (i, j) ∈ A1(y).

(20)

Note that the nontrivial equations of R(x, y) must have at
least two variables with fractional values (note that the right
hand side of each of these equations is integer). If all the
variables of one of these equations have value 0 or 1, then
that inequality would be redundant with respect to xij = 0,
ij ∈ E0(x), xij = 1, ij ∈ E1(x), yij = 0, (i, j) ∈ A0(y) and
yij = 1, (i, j) ∈ A1(y).

Let (x, y) be a solution of Q(G). Consider the following
operations with respect to (x, y):

• θ1: Delete an edge e with xe = 0.
• θ2: Delete an arc (i, j) with yij = 0.
• θ3: Delete a node i as well as all the edges and arcs incident

to it, if there is some j such that yij = 1.
• θ4: Contract a node set W such that G(W) is 2-edge

connected and xe = 1 for every e ∈ E(W).
• θ5: Contract an edge e if at least one of the endpoints of e

is incident to exactly two edges, and these two edges have
value 1 with respect to x.

Note that the edges and the arcs with fractional values are
preserved by all the reduction operations. Note also that θ1
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and θ2 modify only G, whereas the remaining ones affect
both G and D. Starting from G = (V , E) and D = (V , A)

and applying repeatedly θ1, . . . , θ5, we obtain reduced graphs
G′ = (V ′, E′), D′ = (V ′, A′) and a solution (x′, y′) ∈ Q(G′).
We remark that (x′, y′) is nothing but the restriction of (x, y)
in G′ and D′. We have the following:

Theorem 14. (x, y) is an extreme point of Q(G) if and only
if (x′, y′) is an extreme point of Q(G′).

Proof. Suppose (x, y) is an extreme point of Q(G). With-
out loss of generality, we may suppose that (x′, y′) is obtained
by the application of θ1, . . . , θ5 exactly once. It is clear that
if (x′, y′) is obtained by either operation θ1 or θ2, then (x′, y′)
is an extreme point of Q(G′). Now suppose that yij = 1 and
that (x′, y′) is obtained by the application of θ3 with respect
to node i. First observe that, by inequalities (8), we have
xil = 0 for all {i, l} ∈ E, yil = 0 for all (i, l) ∈ A with
l �= i, and yli = 0 for all (l, i) ∈ A with l �= i. Moreover,
it is clear that inequalities (8) and (9) with respect to G′ are
satisfied by (x′, y′). Now consider a cut δ(S′) of G′ and a
node k ∈ S′. Note that k �= i. As (x, y) ∈ Q(G) we have
2 ≤ x(δG(S′)) + 2

∑
l∈V\S′ ykl = x(δG′(S′)) + ∑

l∈S′ xil +
2

∑
l∈V ′\S′ ykl+2yki = x′(δG′(S′))+2

∑
l∈V ′\S′ y′

kl, and hence
the cut inequality (10) induced by (S′, k) in G′ is satisfied by
(x′, y′). Thus (x′, y′) is a solution of Q(G′). Moreover, all
the edges and arcs removed from the graph have integer val-
ues. Hence, they appear as trivial equations in system R(x, y).
Consequently, (x′, y′) is the unique solution of a subsystem
of R(x, y), and therefore it is an extreme point of Q(G′).

Now suppose (x′, y′) comes from the application of θ4

with respect to a node set W . First note that all the arcs with
both endnodes in W have value zero with respect to y. It is
easy to see that inequalities (8) and (9) remain satisfied by
(x′, y′) in G′. Let U ′ ⊆ V ′ and k ∈ U ′. Let w be the node
of V ′ which arises from the contraction of W and, without
loss of generality, suppose that w ∈ U ′. Let U = (U ′\{w})∪
W . As k ∈ U and (x, y) is a solution of Q(G), we have
2 ≤ x(δG(U))+2

∑
l∈V\U ykl = x(δG′(U ′))+2

∑
l∈V ′\U ′ ykl,

and hence the cut inequality (10) induced by (U ′, k) in G′ is
satisfied by (x′, y′). Therefore (x′, y′) is a solution of Q(G′).

Now suppose, on the contrary, that (x′, y′) is not an extreme
point of Q(G′). Thus there exist two solutions (x1′

, y1′
) and

(x2′
, y2′

) of Q(G′) such that (x′, y′) = 1
2 ((x1′

, y1′
)+(x2′

, y2′
)).

Consider the solution given by

xi
e =

{
xi′

e , for all e ∈ E\E(W)

1, for all e ∈ E(W)

and

yi
a =

{
yi′

a , for all a ∈ A′
0, otherwise

for i = 1, 2. Clearly, (xi, yi) ∈ Q(G) for i = 1, 2. Moreover,
(x, y) = 1

2 ((x1, y1)+ (x2, y2)). This contradicts the extremal-
ity of (x, y). The proof is similar for θ5. Repeating a similar
line of arguments, one can easily show the converse. ■

Theorem 14 is important from an algorithmic point of
view. It shows the correspondence between the extreme
points of Q(G) and those of Q(G′). Thus, any algorithm
for separating fractional extreme points of Q(G′) may also
be used for separating the corresponding fractional extreme
points of Q(G).

In what follows, we shall give algorithmic consequences
of the reduction operations.

Theorem 15. There is a cut inequality (10) violated by (x, y)
in G if and only if there is a cut inequality violated by (x′, y′)
in G′.

Proof. Let S ⊆ V , i ∈ S and suppose that the cut
inequality induced by (S, i) is violated by (x, y), that is to
say x(δ(S)) + 2

∑
j∈V\S yij < 2. We will show that there is a

node set S′ ⊆ V ′ and a node i′ ∈ S′ whose corresponding cut
inequality in G′ is violated by (x′, y′). First, it is clear that if
(x′, y′) is obtained by operation θ1 (resp. θ2) with respect to
an edge ij (resp. arc (i, j)) such that xij = 0 (resp. yij = 0),
then the same inequality is violated by (x′, y′) in G′. Sup-
pose (x′, y′) is obtained by θ3 with respect to an arc (u, w)

with yuw = 1. By inequality (8), we have xuv = 0 for all
v ∈ V\{u}, yuv = 0 for all v ∈ V\{u, w} and ywv = 0 for all
v ∈ V\{w}. If u �= i, then (S\{u}, i) (resp. (S, i)) induces a
violated cut inequality with respect to (x, y), if u ∈ S (resp
u /∈ S). That is to say we can take S′ = S and i′ = i if u /∈ S,
and S′ = S\{u} and i′ = i if u ∈ S. If u = i, as yuw = 1 and
the cut inequality induced by (S, u) is violated, it follows that
w ∈ S. By considering S′ = S\{u} and i′ = w, we have that
the cut inequality in G′ induced by (S′, i′) is violated.

Suppose (x′, y′) is obtained by θ4 with respect to a node
set W ⊂ V . Let w be the node that arises from the contraction
of W . Because (W , E(W)) is 2-edge connected and xe = 1
for all e ∈ E(W), we should have either W ⊆ S or W ⊆ V\S,
for otherwise, the cut inequality induced by (S, i) would not
be violated.

If W ⊆ S, then set S′ = (S\W) ∪ {w} and i′ = w (resp.
i′ = i), if i ∈ W (resp. i ∈ S\W ).

If W ⊆ V\S, then set S′ = S and i′ = i.
In both cases, (S′, i′) induces a cut inequality in G′ which

is violated by (x′, y′).
Finally, suppose (x′, y′) is obtained by θ5 with respect to

two edges uv and vw with xuv = xvw = 1 and v with degree
two. As the cut induced by (S, i) is violated by (x, y), at most
one of the edges uv and vw can be in δ(S). Suppose, without
loss of generality, that uv ∈ δ(S), u ∈ S, v ∈ V\S and i �= u.
Set S′ = (S\{u})∪{v} and i′ = i where v is the node that arises
from the contraction of uv. We have x(δ(S))+2

∑
j∈V\S yij =

x′(δ(S′)) + 2
∑

j∈V\S′ y′
ij < 2. Therefore, (S′, i′) induces a

violated cut inequality.
Conversely, let S′ ⊆ V ′ and i′ ∈ S′ be such that the cut

inequality induced by (S′, i′) is violated by (x′, y′). If (x′, y′)
is obtained by either θ1, θ2 or θ3 then by setting S = S′ and
i = i′ we have that the cut induced by (S, i) is violated by
(x, y).
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Suppose (x′, y′) is obtained by θ4 with respect to a node set
W ⊆ V\{0}. Let w be the node arising from the contraction
of W . If w ∈ S′ and i′ �= w (resp. i′ = w), then let S =
(S′\{w}) ∪ W and i = i′ (resp. i = v for some v ∈ W ).

If w /∈ S′, let S = S′ and i = i′.
In both cases, the cut induced by (S, i) in G is violated by

(x, y).
Finally, suppose (x′, y′) is obtained by θ5 with respect to

two edges uv and vw such that xuv = xvw = 1. Let v be the
node arising from the contraction of uv. If v /∈ S′, we can set
S = S′ and i = i′. If v ∈ S′ and i′ = v (resp. i �= v) one can
set S = (S′\{v}) ∪ {u} and i = u (resp. i = i′). In both cases,
the cut induced by (S, i) is violated by (x, y). ■

Before examining the extended F-partition (16) inequal-
ity, we give two lemmas.

Lemma 1. Let (V0, . . . , Vp) be a partition and e ∈ δ(V0)

with xe = 1. If there is a violated extended F-partition
inequality (16) for this partition, then there is a violated
extended F-partition inequality such that e ∈ F.

Proof. Suppose (V0, . . . , Vp) induces a violated extended
F-partition inequality, for some F ⊆ δ(V0), that is,
x(δ(V0, . . . , Vp)\F) + ∑p

l=1

∑
j∈V\Vl

yil j < p − k. If e ∈ F,
then the lemma holds. So assume that e /∈ F. Let f be an edge
of F. Exchanging f by e in F yields an extended F-partition
inequality with a violation not less than the initial one. ■

Lemma 2. Let (V0, . . . , Vp) be a partition and (u, w) ∈ A
with yuw = 1. If there is a violated extended F-partition
inequality (16) for this partition, then there is a vio-
lated extended F-partition inequality such that u /∈ I =
{i1, . . . , ip}, i.e., u is not a node fixed in a subset of the
partition.

Proof. Suppose (V0, . . . , Vp) induces a violated extended
F-partition inequality, for some F ⊆ δ(V0), that is,
x(δ(V0, . . . , Vp)\F) + ∑p

l=1

∑
j∈V\Vl

yil j < p − k. If u /∈ I ,
the lemma holds. So assume that u ∈ I . Without loss of gen-
erality, assume that u = i1. If w ∈ V1, then choosing w as
the fixed node of V1, we obtain another violated extended F-
partition inequality. So suppose w /∈ V1. If V1\{u} �= ∅, then
one can choose another node k ∈ V1\{u} to be a fixed node
in V1. Note that the left hand side of the extended F-partition
inequality will not increase as

∑
j∈V\V1

ykj ≤ ∑
j∈V\V1

yuj.
Hence (V0, . . . , Vp), F, and (I\{u}) ∪ {k} yield another vio-
lated extended F-partition inequality. If V1\{u} = ∅, then
we can put V1 into V0. As we know that x(δ(V1)) = 0
due to constraints (8), we have x(δ(V0, V2, . . . , Vp)\F) +∑p

l=2

∑
j∈V\Vl

yil j < p − k − 1. So this operation results
in a violated extended F-partition inequality. So the lemma
holds. ■

Theorem 16. There is an extended F-partition inequality
(16) violated by (x, y) in G if and only if there is an extended
F-partition inequality violated by (x′, y′) in G′.

Proof. Let (V0, . . . , Vp) be a partition denoted by P1,
F ⊂ δ(V0) and I = {i1, . . . , ip} with il ∈ Vl for l =
1, . . . , p. Suppose that the extended F-partition inequality
induced by P1, F and I is violated by (x, y), that is to say
x(δ(V0, . . . , Vp)\F) + ∑p

l=1

∑
j∈V\Vl

yil j < p − k. We will
show that there is a partition of V ′, an edge set F ′ and a node
set I ′ whose corresponding extended F-partition inequality
in G′ is violated by (x′, y′). First observe that if xe = 0 for
some edge e ∈ F, and the cut inequalities are satisfied by x,
then the extended F-partition inequality cannot be violated
by x. Thus, we will suppose, without loss of generality, that
xe > 0 for all e ∈ F. If (x′, y′) is obtained by operation θ1

with respect to an edge e with xe = 0 and e /∈ F, then the
same inequality is violated by (x′, y′) in G′. It is clear that
if (x′, y′) is obtained by operation θ2 with respect to an arc
a such that ya = 0, then the same inequality is violated by
(x′, y′) in G′. Suppose (x′, y′) is obtained by θ3 with respect to
an arc (u, w) with yuw = 1. By Lemma 2, we can assume that
u /∈ I . Let u ∈ Vk for some k ∈ {0, . . . , p}. For l = 0, . . . p, let
V ′

l = Vl if k �= l and V ′
l = Vl\{u} otherwise. It can be seen

that (V ′
0, . . . , V ′

p), F and I induce an extended F-partition
inequality violated by (x′, y′) in G′.

Suppose (x′, y′) is obtained by θ4 with respect to a node set
W ⊂ V . Let w be the node that arises from the contraction
of W . Suppose first W ⊆ Vk for some k ∈ {0, . . . , p}. For
l = 0, . . . , p, let V ′

l = Vl if k �= l and V ′
l = (Vl\W) ∪ {w}

otherwise, and let I ′ = (I\{ik}) ∪ {w} if k > 0 and I ′ =
I otherwise. We can see that (V ′

0, . . . , V ′
p), F and I ′ induce

an extended F-partition inequality violated by (x′, y′) in G′.
Suppose now that W is not a subset of a subset of the partition.
Without loss of generality, assume that W ∩ Vi �= ∅ for i =
1, . . . , k. Because G(W) is 2-edge connected and xe = 1 for
all e ∈ E(W), x(δ(V1, . . . , Vk)) ≥ k. So we can contract
V1, . . . , Vk , and choose a new fixed node for the resulting
set. In this case, the right-hand side of the inequality reduces
by k − 1, whereas the left-hand side decreases by at least
k, which yields an extended F-partition inequality violated
by (x′, y′) in G′. If W ∩ V0 �= ∅, then by Lemma 1, we can
assume that every e ∈ δ(W) ∩ δ(V0) is also in F, implying
that |F ∩ E(W)| ≥ 2. Note that x(δ(V1, . . . , Vk)) ≥ k − 1.
Let V ′

0 = ∪k
i=0Vi, F ′ = F ∩ δ(V ′

0), and I ′ = I\{i1, . . . , ik}.
Note that |F ′| ≤ |F|−2. It is not hard to see that the extended
F-partition inequality induced by (V ′

0, Vk+1, . . . , Vp), F ′, and
I ′ is violated by (x′, y′) in G′.

Finally, suppose (x′, y′) is obtained by θ5 with respect to
two edges uv and vw with xuv = xvw = 1 and v with degree
two. Let v be the node that arises from the contraction of
uv. Suppose uv ∈ E(Vk) for some k ∈ {0, . . . , p} (the case
vw ∈ E(Vk) is similar). For l = 0, . . . , p, let V ′

l = Vl if
k �= l and V ′

l = (Vl\{u, v}) ∪ {v} otherwise and let I ′ =
(I\{ik}) ∪ {v} if k > 0 and I ′ = I otherwise. It is easily seen
that (V ′

0, . . . , V ′
p), F and I ′ induce an extended F-partition

inequality violated by (x′, y′) in G′. If u, v, w are in different
subsets or if u, w ∈ Vj and v ∈ Vk with j �= k, then by
contracting the subsets intersecting {u, v, k} and choosing a
new fixed node for the new set we obtain a violated extended
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F-partition inequality. Therefore we do not need to consider
such cases.

Conversely, let (V ′
0, . . . , V ′

p) be a partition of V ′ denoted
by P′

1, F ′ ⊂ δ(V ′
0) and I ′ = {i′1, . . . , i′p} with i′l ∈ V ′

l for
l = 1, . . . , p. Suppose that the extended F-partition inequality
induced by P′

1, F ′ and I ′ is violated by (x′, y′), that is to
say x′(δ(V ′

0, . . . , V ′
p)\F ′) + ∑p

l=1

∑
j∈V ′\V ′

l
y′

i′l j
< p − k. If

(x′, y′) is obtained by either θ1 or θ2 then P′
1, F ′, and I ′ also

induce an extended F-partition inequality violated by x, y in
G. If (x′, y′) is obtained by θ3 with respect to an arc (i, j)
then (V ′

0 ∪{i}, V ′
1, . . . , V ′

p), F ′ and I ′ also induce an extended
F-partition inequality violated by (x, y) in G.

Suppose (x′, y′) is obtained by θ4 with respect to a node
set W . Let w be the node arising from the contraction of
W and assume that w ∈ V ′

k for some k ∈ {0, . . . , p}.
Then (V0, . . . , V ′

p), F ′ and I ′ induce an extended F-partition
inequality violated by (x, y) in G, where Vi = V ′

i if i �= k,
and Vi = (V ′

i \{w}) ∪ W otherwise.
Finally, suppose (x′, y′) is obtained by θ5 with respect to

two edges uv and vw such that xuv = xvw = 1. Let v be
the node arising from the contraction of uv and assume that
v ∈ V ′

k for some k ∈ {0, . . . , p}. Then (V0, . . . , Vp), F ′ and
I ′ induce an extended F-partition inequality violated by x, y
in G, where Vi = V ′

i if i �= k, and Vi = (V ′
i \{v}) ∪ {u, v}

otherwise. ■

We turn now our attention to the star-path inequalities (19).
We first give a lemma.

Lemma 3. An ordered set I cannot yield a violated star-path
(19) inequality if there is an edge e ∈ PI with xe = 1.

Proof. Let I = {i0, . . . , im} and e = {il, il + 1}. Assume
that e ∈ PI and xe = 1. This implies that yilj = 0
for all j ∈ V\{il} and yil+1,j = 0 for all j ∈ V\{il+1}.
Hence,

∑
j∈V\{il} yilj+

∑
j∈V\{il+1} yil+1j = 0. As (x, y) satisfies

inequalities (8) the following hold:

xi0i1 +
m∑

j=1

yi0ij ≤ xi0i1 + yi1i0 +
∑

k∈V\{i0}
yi0k ≤ 1

...

xil−1il +
∑

j∈V\{il−1}
yil−1j ≤ xil−1il + yilil−1 +

∑
j∈V\{il−1}

yil−1j ≤ 1

xilil+1 +
∑

j∈V\{il}
yilj +

∑
j∈V\{il+1}

yil+1j = 1

xil+1il+2 +
∑

j∈V\{il+2}
yil+2j ≤ xil+1il+2 + yil+1il+2

∑
j∈V\{il+2}

yil+2j ≤ 1

...

xim−1im +
∑

j∈V\{im}
yimj ≤ xim−1im + yim−1im

∑
j∈V\{im}

yimj ≤ 1

Note that we obtain the expressions on the left hand
side by omitting some of the terms of the left hand sides

of inequalities (8). Summing them we obtain x(PI) +∑
i∈I\{i0}

∑
(i,j)∈A yij +∑

j∈I:(i0,j)∈A yi0j ≤ m which is the star-
path inequality induced by I , showing that the inequality is
not violated. ■

Theorem 17. There is a star-path inequality (19) violated
by (x, y) in G if and only if there is a star-path inequality
violated by (x′, y′) in G′ .

Proof. Let I = {i0, . . . , im} be an ordered set inducing
a star path inequality violated by (x, y). First, it is clear that
if (x′, y′) is obtained by either θ1 or θ2, then I still induces a
star path inequality violated by (x′, y′) in G′. Also by Lemma
3, if xe = 1, then e /∈ PI . Thus θ4 and θ5 do not affect I and
hence the star path inequality induced by I remains violated
by (x′, y′) in G′. Now, suppose yuv = 1 for some (u, v) ∈ A.
Without loss of generality, we may assume that u = il ∈ I .
Hence, y′

ilk
= 0 for all k ∈ V\{il, v}, and x′

ilk
= 0 for all k ∈

V\{il}. As the star-path inequality induced by I is violated,
z = x(PI) + ∑

i∈I\{i0}
∑

(i,j)∈A yij + ∑
j∈I:(i0,j)∈A yi0j > m.

Let I ′ = I\{il}. To obtain the star-path inequality induced by
I ′ from the one induced by I , we need to remove the terms
related to node il from the left-hand side and add xil−1il+1 .
Decreasing the right-hand side by one we obtain the new star-
path inequality induced by I ′. Because z−1+xil−1,il+1 > m−1,
this new star-path inequality is also violated by (x′, y′). So
there is a violated star-path inequality in G′ after reduction
by θ3, if there is one in G.

The converse of the theorem can be easily seen to be true.
■

5. SEPARATION ALGORITHMS

In this section, we shall describe our separation algo-
rithms. For a given fractional solution (x∗, y∗), we define the
following sets Vh = {i ∈ V :

∑
j∈V\{i} y∗

ij = 0} ∪ {0}, Vph =
{i ∈ V :

∑
j∈V\{i} y∗

ij > 0 and x∗(δ(i)) > 0}, Vu = {i ∈
V : x∗(δ(i)) = 0 and ∃j ∈ V\{i} such that y∗

ij = 1} and
Vpu = {i ∈ V\Vu : x∗(δ(i)) = 0}. We call the elements of
these sets hubs, partial hubs, users, and partial users, respec-
tively. Note that Vh, Vph, Vu, Vpu form a partition of V . We
also define V∗ = Vh ∪ Vph, E∗ = {{i, j} ∈ E : x∗

ij > 0} and
A∗ = {(i, j) ∈ A : 0 < y∗

ij < 1}. G∗ = (V∗, E∗) is our sup-

port graph and it may be disconnected. Let Gi = (Vi, Ei) for
i = 0, . . . , r be the ith connected component of G∗. Without
loss of generality, we assume 0 ∈ V0. Clearly G0 = G∗ if
G∗ is connected. Violated clique inequalities (8) are found by
complete enumeration and for the cut (10), star-path (19) and
extended F-partition inequalities (16) the separation algo-
rithms are described in the following sections. We want to
note that all the separation procedures described are per-
formed on the graphs obtained by the reduction operations
unless otherwise specified. Then the inequalities found by the
separation algorithms are lifted as described below to obtain
the inequalities to be added to the model. Let W (V ) be the
set of nodes that arises from θ4 (θ5) and |W | = q (|V | = r).
Let Wi be the contracted node set and wi the corresponding
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node for i = 1, . . . , q. Similarly, let uivi be the contracted
edge and vi be the corresponding node for i = 1, . . . , r.

Let (S′, i′) be a pair inducing a violated cut inequality (10)
in G′. Without loss of generality, say w1, . . . , wj ∈ S′ for some
j ∈ {1, . . . , q} and v1, . . . , vk ∈ S′ for some k ∈ {1, . . . , r}.
Let S = S′\(∪j

l=1wl ∪k
l=1 vl) ∪ (∪j

l=1Wl ∪k
l=1 Vl) and

i =



i′ if i′ /∈ W ∪ V ,
vl if i′ = vl for some l = 1, . . . , k,
any node in Wl if i′ = wl for some l = 1, . . . , j.

Then (S, i) induce a violated cut inequality in G.
For extended F-partition inequalities (16) we define Y

to be the set of nodes deleted by θ3. Let (V ′
0, . . . , V ′

p),
F ′ and i′1, . . . , i′p define a violated extended F-partition
inequality in G′. Set Vi = V ′

i \(∪1≤l≤q:wl∈V ′
i
{wl} ∪1≤l≤r:vl∈V ′

i

{vl}) ∪ (∪1≤l≤q:wl∈V ′
i
Wl ∪1≤l≤r:vl∈V ′

i
V l) for i = 1, . . . , p

and V0 = V ′
0\(∪1≤l≤q:wl∈V ′

0
{wl} ∪1≤l≤r:vl∈V ′

0
{vl}) ∪

(∪1≤l≤q:wl∈V ′
0
Wl ∪1≤l≤r:vl∈V ′

0
Vl)∪Y . The fixed nodes should

also be updated as follows:

is =




i′s if i′s /∈ W ∪ V ,
vl if i′s = vl for some l = 1, . . . , k,

for s = 1, . . . , p
any node in Wl if i′s = wl for some l = 1, . . . , j.

Then (V0, . . . , Vp), F ′ and i1, . . . , ip induce a violated
extended F-partition inequality (16) in G.

For the star-path inequalities as the reduction operations
do not affect the ordered set of nodes defining the violated
star-path inequality, the ordering can also be used in G. Now
we can give our separation algorithms for each class of valid
inequalities.

5.1. Cut Inequalities

A cut inequality (10) is defined by a node set S ⊆ V\{0}
and a fixed node i ∈ S. For a given i ∈ V\{0}, it is possible
to check if there exists a subset S ⊆ V\{0} with i ∈ S for
which the cut inequality is violated by solving a minimum cut
problem. Let G∗

i = (V∗ ∪ {i}, E∗
i ) where E∗

i = E∗ ∪ {{i, j} :
j ∈ V∗ and (i, j) ∈ A∗}. Set the capacity of edge e to x∗

e if
i /∈ e, and to x∗

ij + 2y∗
ij otherwise. Labbé et al. [21] showed

that a maximum violated cut inequality with fixed node i can
be found by solving a minimum cut problem on this graph
separating nodes i and 0. If the minimum cut capacity is
less than 2, then there is a violated cut inequality. Therefore
cut inequalities can be separated exactly by solving |V | − 1
minimum cut problems. We also use the separation method
of [21] together with a heuristic algorithm to speed up the
separation.

Our separation algorithm works in three phases. We
first use the connected components of the support graph
to generate violated cut inequalities. For a given connected
component Gi = (Vi, Ei) we compute the violation of
the cut inequality defined by every j ∈ Vi and node set
Vi ∪ {k ∈ Vu ∪ Vph : y∗

jk > 0}. As x∗(δ(Vi)) = 0, it is very

likely that we find a violated inequality this way. The most
violated cut inequality is selected for i = 1, . . . , r. If r > 1
we perform the same operations for ∪q

i=1Vi for q = 2, . . . , r.
Second, we use our heuristic on G0. The heuristic is based

on the algorithm of Hao and Orlin [15] which finds a global
minimum cut, i.e., a cut with the minimum capacity among
all cuts of a graph. In this algorithm, n−1 minimum cut prob-
lems, where n is the number of nodes of the graph, are solved.
Let si be the source node of the ith minimum cut problem and
t the sink node at the beginning. In the ith step, the minimum
cut between si and {t, s1, . . . , si−1} is found. Hao and Orlin
[15] show that the cut with the minimum capacity among the
ones found in the algorithm is the global minimum cut of the
graph. Moreover, they select the source nodes in such a way
that the running time of the algorithm is equivalent to that
of a single minimum cut problem. We apply their algorithm
on G0 with the capacity of each edge e ∈ E0 being equal to
x∗

e . Our root node is the initial sink for the algorithm. Using
this we obtain |V0| − 1 cut sets, say S1, . . . , S|V 0|−1. Since y∗
values are ignored in edge capacities, there are three possible
outcomes for every cutset. If the capacity of the cut is greater
than or equal to 2 then there is no violated cut inequality
associated with this cut. If the capacity is less than 2, then the
violation must be calculated by taking y∗ values into account
for a given fixed node to see if the corresponding cut inequal-
ity is really violated. Therefore, for i = 1, . . . , |V0| − 1 such
that the capacity of [Si, V0\Si] is less than 2, we calculate
the violation of the cut inequality defined by Si and j for
every j ∈ Si ∪ Vu ∪ Vph. If there is at least one violated cut
inequality, we choose the one with the maximum violation.
If there is more than one fixed node with the same violation,
then we choose the one which is used less often in previ-
ous cut inequalities. We can keep track of this information
using an array. If there is still a tie, we break it arbitrarily.
Note that if the fixed node, say j ∈ Vu ∪ Vpu, is chosen for a
given cutset S, the cutset must be extended as S ∪ {j} since
j /∈ S.

There are two advantages of this method. First, it is very
fast. Second, if the minimum cut capacities are all greater
than or equal to 2, then we can conclude that there is no
violated cut inequality. Notice that we are not interested in
the nodes of Vu ∪ Vpu in minimum cut computations as there
is no adjacent edge to them in the support graph. These nodes
are put together with node 0. But if the fixed node of a given
cut inequality is assigned to a user or partial user node j then
we move it from V\S to S. This operation does not affect the
first term of the cut inequality but reduces the second term
and hence the violation increases.

As finding a minimum cut between i and 0 provides the
most violated cut inequality with fixed node i, we need to
solve minimum cut problems for every node of the backbone
network except for the root node. This is necessary as the cut
inequalities are in the model formulation and must be sepa-
rated exactly. However, as we use a heuristic step first, we can
eliminate some nodes from consideration in the exact separa-
tion phase. This is possible because either some violated cut
inequality is found for the fixed node in the heuristic phase or
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from the information obtained from the first step we expect
that there is no violated cut inequality with this fixed node.
So we define C to be the set of nodes i in Vpu ∪ Vph such
that i is not used as a fixed node in the inequalities added by
the heuristic. The nodes of C will be referred to as candi-
date nodes and are the nodes which are not eliminated from
consideration after the heuristic phase. We remark that nodes
in Vh ∪ Vu are excluded from this candidate list due to the
following reasons. Let i ∈ Vh and S ⊆ V\{0} be such that
i ∈ S. If x∗(δ(S)) < 2, then there is a violated cut inequal-
ity and i gives the maximum violation as

∑
j∈V\S y∗

ij = 0.
So if a violated cut inequality with fixed node i is not found
in the heuristic phase we can say that either there is no vio-
lated cut inequality with fixed node i or another inequality
with the same cutset but with a different fixed node is found.
Therefore, we do not include hubs in C. A similar reason-
ing can be done for the users. Besides, there is no guarantee
we will find a different cut for this node by using the exact
separation if we find a violated cut inequality for some i in
the heuristic phase. So we do not include such nodes in C,
either.

If at least one cut with capacity less than 2 is found in
the heuristic phase and C �= ∅ we pass to the last step, the
exact separation phase. In this phase we solve a minimum cut
problem between i and 0 on G∗

i for every i ∈ C.
The Goldberg-Tarjan algorithm [13] is used to solve the

minimum cut problems. Our separation procedure is given
in Algorithm 1. As it turns out during our experimentation,
the heuristic part significantly improves the CPU time of our
branch-and-cut algorithm.

5.2. Extended F-Partition Inequalities

We use two heuristic methods to find violated extended F-
partition inequalities (16). The first one is based on searching
odd fractional cycles in G∗. A set of nodes {v1, . . . , vp} which
induces an odd cycle is determined, if one exists. Let V0 =
V\{v1, . . . , vp}. The edges in δ(V0) with values greater than
1
2 are included in F in such a way that |F| becomes odd. The
corresponding inequality is checked for violation.

The second heuristic is based on finding a maximum cut
in a graph. Because the maximum cut problem is NP-hard,
it is solved heuristically as follows. We associate with each
edge e a capacity equal to 1 − x∗

e . We use the algorithm of
Hao and Orlin [15] on G0 to find |V0| − 1 minimum cuts.
Let S be a cutset obtained by this algorithm such that 0 ∈ S
and V0 = S ∪ Vu ∪ Vpu. Let V0\S = {v1, . . . , vp}. Then our
partition is (V0, V1, . . . , Vr , v1, . . . , vp). We construct F as
we did in the first heuristic. For the strong component Gi,
node j ∈ Vi with the largest

∑
k∈V\V i y∗

jk value is selected as
the fixed node for i = 1, . . . , r. We check the extended F-
partition inequality induced by this partition and fixed nodes
to see if it is violated.

Note that we included the connected components as sepa-
rate node sets while forming the partition. This is because
doing so increases the violation of a given extended F-
partition inequality. Consider a connected component Gi.

Algorithm 1. Cut inequality separation

Input: (x∗, y∗), Gi = (Vi, Ei) for i = 0, . . . , r,
G∗

i = (V0 ∪ {i}, E∗
i ) for i ∈ Vpu ∪ (Vph ∩ V0)

begin1

C ← Vu ∪ (Vph ∩ V0)2

if r > 0 then3

for i = 1 to r do4

forall k ∈ Vi ∪ Vu ∪ Vpu do5

zk = 2 − 2
∑

j∈V ∗\V i y∗
kj

j ← argmaxk∈V i∪Vu∪Vpu
{zk}6

if zj > 0 then7

Vi ∪ {k ∈ Vu ∪ Vpu : y∗
jk > 0} and j8

form a violated cut ineq.
C ← C\{j}9

if r > 1 then10

for i = 2 to r do11

forall k ∈ ∪i
j=1Vj ∪ Vu ∪ Vpu do12

zk = 2 − 2
∑

j∈V ∗\∪i
l=1V l y∗

kj

l ← argmaxk∈∪i
j=1V j∪Vu∪Vpu

{zk}13

if zl > 0 then14

∪i
j=1Vj ∪ {k ∈ Vu ∪ Vpu : y∗

lk > 0}15

and l form a violated cut ineq.
C ← C\{l}16

Use Hao-Orlin algorithm on G0 and find |V0| − 117

cutsets denoted by S1, . . . , S|V 0|−1

for l = 1 to |V0| − 1 do18

if capacity of [Sl, V0\Sl] is less than 2 then19

forall i ∈ Sl ∪ Vu ∪ Vpu do20

zi = 2 − x∗(δ(Sl)) − 2
∑

j∈V ∗\Sl y∗
ij

k ← argmaxi∈Sl∪Vu∪Vpu
{zi}21

if zk > 0 then22

S ∪ {j ∈ Vu ∪ Vpu : y∗
kj > 0} and k form23

a violated cut inequality
C ← C\{k}24

forall i ∈ C do25

Find minimum cut [S, V∗\S] between i and 026

on G∗
i

if capacity of [S, V0\S] is less than 2 then27

S ∪ {j ∈ Vu ∪ Vpu : y∗
uj > 0} and i form a

violated cut inequality

end28

Because x∗(δ(Vi)) = 0 and
∑

k∈V\V i y∗
jk ≤ 1 for any fixed

node j ∈ Vi, the increase in the left hand side of the
inequality is at most 1. But the right-hand side increases
exactly by one when we include the connected component
in the partition. Therefore, using a connected component, we
can increase the violation of a given extended F-partition
inequality.
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Algorithm 2. Extended F-partition inequality separation

Data: (x∗, y∗), Gi = (Vi, Ei) for i = 0, . . . , r
begin1

repeat2

Find a fractional odd cycle v1, . . . , vp such that3

vi ∈ V0\{0} for i = 1, . . . , p
V0 ← V\{v1, . . . , vp}4

Construct F ⊆ {e ∈ δ(V0) : x∗
e > 0.5} so that5

|F| is odd
Compute the violation for F and the partition6

(V0, v1, . . . , vp)

until no fractional odd cycle is found ;7

if no violated extended F-partition inequality is8

found above then
Use algorithm of Hao and Orlin on G0

9

foreach cut [S, V0\S] such that 0 ∈ S found in10

the algorithm do
V0 ← S ∪ Vu ∪ Vpu11

Construct F ⊆ {e ∈ δ(V0) : x∗
e > 0.5} so12

that |F| is odd
Compute the violation for F and the13

partition (V0, V1, . . . , Vr , v1, . . . , vp) where
V0\S = {v1, . . . , vp}

end14

5.3. Star-Path Inequalities

Because the separation problem for the star-path inequali-
ties (19) is NP-complete, we developed a heuristic algorithm.
Assuming that all clique inequalities (8) are satisfied, it can
be seen that a star-path inequality can be violated only if the
x terms of the inequality are positive. Moreover, we observed
that violated star-path inequalities are frequently induced by
paths which include nodes to which the initial node s is
assigned. For this reason we restrict our search for paths on
these nodes. For some initial node s, let Vs = {i ∈ V∗\{0} :
y∗

si > 0}∪{s} and Es = {ij : i ∈ Vs, j ∈ Vs, x∗
ij < 1}. Note that

we omitted the edges with values 1 by Lemma 3. The edges
of Es are ordered in a decreasing way and edges are selected
from this list until a simple path starting at node s and cover-
ing all nodes of Vs is obtained. After finding such a path we
analyze the nodes to see if their removal increases the amount
of violation of the inequality. We restrict the heuristic to the
search of star-path inequalities with more than 4 nodes as the
3 and 4 node star-path inequalities are generated by enumer-
ation. Using the necessary conditions stated in Lemma 3 for
a star-path inequality to be violated, the enumeration can be
performed very efficiently.

6. COMPUTATIONAL RESULTS

Based on our polyhedral analysis and the separation algo-
rithms described earlier, we developed a branch-and-cut

Algorithm 3. Star-Path Inequality

Data: (x∗, y∗), S = {i ∈ V : ∃j|0 < y∗
ij < 1}

begin1

forall s ∈ S do2

Vs = {i ∈ V∗\{0} : y∗
si > 0} ∪ {s}3

Es = {ij : i ∈ Vs, j ∈ Vs, x∗
ij < 1}4

Gs = (Vs, Es)5

if |Vs| > 4 then6

Find the longest path starting from s on Gs7

by a greedy method
Let P = v0, . . . , vp be the path8

violation = ∑p−1
i=0 x∗

vivi+1
+ ∑p

i=1 y∗
v0vi

+∑p
i=1

∑
j∈V\{vi} y∗

vij
− p

repeat9

for i = 1 to p do zi = 1 + x∗
vi−1vi+1

−10

x∗
vivi+1

− x∗
vi−1vi

− y∗
v0vi

− ∑
j∈V\{vi} y∗

vij

k ← argmaxi=1,...,p{zi}11

δ ← zk12

if δ >= 0 then13

violation ← violation + δ14

Remove vk from P15

until δ < 0 or |P| ≤ 4 ;16

if violation > 0 then P induces a violated17

star-path inequality

Find violated 3 and 4 node star-path inequalities by18

enumeration
end19

algorithm for the 2ECSSP. We start the optimization by
solving the following linear program:

min
∑
ij∈E

cijxij +
∑

(i,j)∈A

d′
ijyij

s.t.

x0i +
∑

j∈V\{i}
yij ≤ 1 ∀i ∈ V\{0}

x(δ(i)) +
∑

j∈V\{i}
yij ≥ 2 ∀i ∈ V\{0}

0 ≤ xij ≤ 1 ∀ij ∈ E

0 ≤ yij ≤ 1 ∀(i, j) ∈ A

The solution (x, y) of this initial subproblem is feasible for
2ECSSP if it satisfies the cut inequalities, the clique inequal-
ities and integrality constraints. Therefore, at each iteration
of the branch-and-cut algorithm, we solve the separation
problems to determine if there are violated inequalities. The
different inequalities are separated in the following order:
clique (8), cut (10), F-partition (16), and star-path (19)
inequalities. We generate up to 200 violated valid inequal-
ities at each iteration and look for a violated inequality only
if we cannot find a violated inequality of a previous class
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and found less than 200 inequalities. Note that if a solution
is integral and there is no violated cut or clique inequality,
then we do not need to solve the separation problems for the
F-partition and the star-path inequalities.

We adapt the instance generation method of Labbé et al.
[21]. Our test problems are based on TSP instances from
TSPLIB 2.1 [29]. To compute the backbone link setup costs
and assignment costs we use the following formulas, cij =
�αlij� and dij = �(10 − α)lij� where lij denotes the distance
between nodes i and j in the TSPLIB instances and α ∈
{3, 5, 7, 9}. We set dii = 0 for all i ∈ V\{0}. Note that as α

decreases, assignment costs increase, whereas backbone link
setup costs decrease, i.e., the problem gets closer to the 2-edge
connected subgraph problem. Conversely, as α increases the
number of nodes chosen to be hubs decreases and the problem
gets farther from the 2-edge connected subgraph problem.

A construction heuristic is used to find an initial solu-
tion at the beginning of the algorithm. We start from node
0 and apply the nearest neighbor TSP heuristic to obtain a
cycle that includes all nodes of the graph. As this cycle is 2-
edge connected, it forms a feasible solution. Throughout the
branch-and-cut algorithm, we also use an LP based improve-
ment heuristic. The edges are ranked in a decreasing order
according to their values in the fractional solution. We start
with an empty set and add the edges one by one until we
obtain a cycle. The remaining nodes which are not included
in the cycle are assigned to a node in the cycle with minimum
assignment cost.

We implemented our algorithm in C++ using ABACUS
3.0 as the framework and CPLEX 11.0 as the LP solver.
Computational analysis is performed on a workstation with
2.66 GHz xeon processor and 8 Gb of ram. We use best first
search as the search strategy and strong branching as the
branching strategy. Tailing off control is used; we branch if
the improvement in the objective function value is small in
10 subsequent iterations. We do not use pool separation, and
added inequalities are removed if they are not active in 5
subsequent iterations.

Our computational results are provided in Tables 1–6.
In all the tables, the first two columns denote the name of
the instance and the α value, respectively. The number of
nodes in the instance is also included in the name of the
instance. The other columns given in the tables are explained
below:

NClq, number of generated clique inequalities;
NCut, number of generated cut inequalities;
NFP, number of generated F-partition inequalities;
NSP, number of generated star-path inequalities;
Opt, optimal objective function value;
NNode, number of branch-and-cut nodes evaluated;
Cpu, total CPU time in seconds (rounded to the nearest

integer);
Gap1, the relative error between the optimal solution value

and the lower bound obtained at the root node of the
branch-and-cut tree;

Gap2, the relative error between the best upper bound (the
optimal solution value if the problem is solved to opti-
mality) and the lower bound obtained at the end of the
branch-and-cut algorithm.

In Table 1, only clique and cut inequalities are used in
solving the instances. In Table 2, we present the results
obtained using extended F-partition inequalities together
with the basic inequalities. The last three columns show the
improvement in the gap, CPU time, and the number of branch-
and-cut nodes attained by adding the extended F-partition
inequalities, respectively. Here, a negative value means the
performance gets worse after adding the extended F-partition
inequalities. If an instance is not solved to optimality using
only clique and cut inequalities, then it is not possible to com-
pute the improvement for CPU time; we denote such cases
with ∗∗. Table 3 includes the results obtained using both
extended F-partition and star-path inequalities together with
the basic inequalities, and its columns are similar to those of
Table 2 except that the improvement columns give the com-
parisons between Tables 2 and 3. Finally, the instances are
solved with all the valid inequalities without using the reduc-
tion operations and the results are given in Table 4. The last
three columns of this table present information about com-
parisons made between Tables 3 and 4, and a positive value
indicates that the algorithm performs better with reduction
operations.

We solved 28 instances, 10 of which reached optimality at
the root node. We observe that the number of branch-and-cut
nodes exploited tends to decrease as α increases. The opti-
mal solution is found at the root node when α = 9 even if the
F-partition and star-path inequalities are not used. However,
when α = 3 and no F-partition and star-path inequalities are
used, the number of nodes increases to an extent that the algo-
rithm terminates before reaching the optimal solution due to
memory problems. When only the clique and cut inequalities
are used, 8 instances could not be solved to optimality due to
memory problems and these are denoted with ∗ in the CPU
column of Table 1. For such instances, Gap2 could be as large
as 23% and the average Gap2 is around 8.75%. The average
Gap1 is 0.41%. For the instances which could not be solved
to optimality, Gap2 is greater than Gap1. This is because we
used the optimal solution values obtained from Table 2 to
compute Gap1 for these instances, whereas the best feasible
solution values were used in the computation of Gap2.

When we also use the extended F-partition inequalities,
optimal solutions could be found for all instances. Gap1
decreased as well. The average Gap1 reduced to 0.22% and 2
more instances could be solved at the root node. This shows
that extended F-partition inequalities are important for the
success of the branch-and-cut algorithm. For a few instances,
the CPU time increased slightly, but for most of the instances,
especially for the instances with α ∈ {3, 5}, improvement in
solution time is significant.

Adding the star-path inequalities, we can say that the per-
formance of the algorithm gets better on average. Although
there are a few instances on which the algorithm performs
worse, the improvements are more significant. The average
Gap1 reduced to 0.19%. We can see that optimal solutions
are found for all of the instances in less than 21 min. Without
F-partition and star-path inequalities, 651 branch-and-cut
nodes are necessary to reach the optimal solution on average
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TABLE 1. Results with only clique and cut inequalities.

Instance α Opt Gap1 Gap2 NClq NCut Cpu NNode

kroA150 3 79,572 0.85 0 170 1,131 111 1,109
kroA150 5 125,435 0.08 0 224 320 1 5
kroA150 7 140,961 0.25 1.2 718 3,652 ∗ 2,641
kroA150 9 113,080 0 0 1,866 4,085 231 1
kroB150 3 78,180 1.26 9.18 1,112 5,014 ∗ 2,856
kroB150 5 122,875 1.19 2.28 1,959 170,593 ∗ 2,832
kroB150 7 135,382 0 0 690 2,002 10 1
kroB150 9 108,885 0 0 1,906 4,229 227 1
u159 3 126,240 0.37 0 52 116 11 69
u159 5 204,250 0.54 0 306 3,939 50 113
u159 7 235,221 0 0 724 2,993 17 1
u159 9 199,552 0 0 2038 5,161 281 1
rat195 3 6,957 0.85 13.97 626 2,047 ∗ 1,692
rat195 5 11,320 0.3 0 608 6,640 168 523
rat195 7 12,319 0.02 0 1,004 6,470 113 3
rat195 9 8,977 0 0 2,849 8749 872 1
d198 3 47,340 0.43 0 178 1,237 387 1,943
d198 5 76,945 2.18 2.54 3,970 532,153 ∗ 1,629
d198 7 94,300 0.19 0 1,132 9,739 465 209
d198 9 96,088 0 0 2,864 12,565 1,099 1
kroA200 3 87,951 0.86 23.27 1,052 3,740 ∗ 1,606
kroA200 5 138,885 0.53 6.15 1,793 133,500 ∗ 1,593
kroA200 7 158,227 0.37 0 1,256 35,163 2,639 185
kroA200 9 122,594 0 0 2,586 7,170 761 1
kroB200 3 88,311 0.92 11.37 616 2,239 ∗ 1,607
kroB200 5 138,905 0.3 0 449 13,661 240 253
kroB200 7 15,6638 0 0 886 3,210 31 1
kroB200 9 124,043 0 0 2,628 6,675 819 1

TABLE 2. Results with the extended F-partition inequalities.

Instance α Opt Gap1 NFP Cpu NNode gapimp cpuimp nodeimp

kroA150 3 79,572 0.54 427 31 159 36.59 72.07 85.66
kroA150 5 125,435 0 58 0 1 100 100 80
kroA150 7 140,961 0.24 53 70 19 2.59 ∗∗ 99.28
kroA150 9 113,080 0 10 266 1 0 −15.15 0
kroB150 3 78,180 0.83 633 44 331 34.01 ∗∗ 88.41
kroB150 5 122,875 0.72 1,415 207 413 39.12 ∗∗ 85.42
kroB150 7 135,382 0 9 10 1 0 0 0
kroB150 9 108,885 0 12 211 1 0 7.05 0
u159 3 126,240 0.21 71 2 15 43.44 81.82 78.26
u159 5 204,250 0.16 547 51 95 69.48 −2 15.93
u159 7 235,221 0 10 16 1 0 5.88 0
u159 9 199,552 0 12 270 1 0 3.91 0
rat195 3 6,957 0.62 1,398 128 191 27.12 ∗∗ 88.71
rat195 5 11,320 0.14 162 35 59 52.94 79.17 88.72
rat195 7 12,319 0 6 76 1 100 32.74 66.67
rat195 9 8,977 0 3 938 1 0 −7.57 0
d198 3 47,340 0.28 421 114 397 34.8 70.54 79.57
d198 5 76,945 0.5 507 83 23 76.92 ∗∗ 98.59
d198 7 94,300 0.13 51 372 155 33.01 20 25.84
d198 9 96,088 0 36 1,095 1 0 0.36 0
kroA200 3 87,951 0.59 3,970 476 1,217 30.82 ∗∗ 24.22
kroA200 5 138,885 0.22 518 194 69 57.92 ∗∗ 95.67
kroA200 7 158,227 0.19 118 305 35 49.41 88.44 81.08
kroA200 9 122,594 0 8 748 1 0 1.71 0
kroB200 3 88,311 0.28 378 48 131 69.36 ∗∗ 91.85
kroB200 5 138,905 0.22 469 136 73 25.12 43.33 71.15
kroB200 7 156,638 0 7 39 1 0 −25.81 0
kroB200 9 124,043 0 11 778 1 0 5.01 0
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TABLE 3. Results with the extended F-partition and star-path inequalities.

Instance α Opt Gap1 NSP Cpu NNode gapimp cpuimp nodeimp

kroA150 3 79,572 0.54 0 31 159 0 0 0
kroA150 5 125,435 0 0 0 1 0 0 0
kroA150 7 140,961 0.24 640 48 17 0 31.43 10.53
kroA150 9 113,080 0 1,128 225 1 0 15.41 0
kroB150 3 78,180 0.83 0 44 331 0 0 0
kroB150 5 122,875 0.72 34 136 291 −0.23 34.3 29.54
kroB150 7 135,382 0 515 7 1 0 30 0
kroB150 9 108,885 0 1,874 224 1 0 −6.16 0
u159 3 126,240 0.21 0 2 15 0 0 0
u159 5 204,250 0.15 6 25 31 5.95 50.98 67.37
u159 7 235,221 0 482 12 1 0 25 0
u159 9 199,552 0 1,823 299 1 0 −10.74 0
rat195 3 6,957 0.62 0 128 191 0 0 0
rat195 5 11,320 0.14 2 35 59 0 0 0
rat195 7 12,319 0 534 59 1 0 22.37 0
rat195 9 8,977 0 181 728 1 0 22.39 0
d198 3 47,340 0.28 0 114 397 0 0 0
d198 5 76,945 0.08 2 29 13 84.5 65.06 43.48
d198 7 94,300 0.13 1,778 339 123 0 8.87 20.65
d198 9 96,088 0 3,197 1,258 1 0 −14.89 0
kroA200 3 87,951 0.59 0 476 1,217 0 0 0
kroA200 5 138,885 0.22 4 194 69 0 0 0
kroA200 7 158,227 0.16 668 349 73 16.72 −14.43 −108.57
kroA200 9 122,594 0 1,023 850 1 0 −13.64 0
kroB200 3 88,311 0.28 0 47 131 0 2.08 0
kroB200 5 138,905 0.22 32 116 83 0 14.71 −13.7
kroB200 7 156,638 0 448 38 1 0 2.56 0
kroB200 9 124,043 0 556 830 1 0 −6.68 0

TABLE 4. Results without reduction operations.

Instance α Gap1 Cpu NNode gapimp cpuimp nodeimp

kroA150 3 0.53 49 297 −0.71 36.7 46.5
kroA150 5 0 1 1 0 100.0 0.0
kroA150 7 0.24 52 17 0 7.7 0.0
kroA150 9 0 230 1 0 2.2 0.0
kroB150 3 0.83 54 337 0 18.5 1.8
kroB150 5 0.72 203 343 −0.45 33.0 15.2
kroB150 7 0.01 13 3 100 46.2 66.7
kroB150 9 0 226 1 0 0.9 0.0
u159 3 0.2 9 13 −3.14 77.8 −15.4
u159 5 0.17 53 55 9.46 52.8 43.6
u159 7 0.01 30 3 100 60.0 66.7
u159 9 0 299 1 0 0.0 0.0
rat195 3 0.62 133 191 0 3.8 0.0
rat195 5 0.11 63 65 −23.08 44.4 9.2
rat195 7 0 57 1 0 −3.5 0.0
rat195 9 0 728 1 0 0.0 0.0
d198 3 0.28 133 415 0 14.3 4.3
d198 5 0.1 93 49 20 68.8 73.5
d198 7 0.15 253 67 10.52 −34.0 −83.6
d198 9 0 1,255 1 0 −0.2 0.0
kroA200 3 0.59 602 1,207 0 20.9 −0.8
kroA200 5 0.23 126 55 2.22 −54.0 −25.5
kroA200 7 0.17 182 19 7.09 −91.8 −284.2
kroA200 9 0 838 1 0 −1.4 0.0
kroB200 3 0.28 67 195 −2.88 29.9 32.8
kroB200 5 0.22 81 59 0 −43.2 −40.7
kroB200 7 0 31 1 0 −22.6 0.0
kroB200 9 0 830 1 0 0.0 0.0
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TABLE 5. Results of larger instances.

Instance α Opt Gap1 NClq NCut NFP NSP Cpu Nnode

pr226 3 241,107 0.04 70 209 131 0 5 5
pr226 5 383,055 0.69 429 762 192 9 10 5
pr226 7 469,493 0.01 981 4,393 12 743 85 3
pr226 9 470,711 0 2,638 7,537 17 1,254 596 1
gr229 3 401,445 0.28 92 597 732 0 121 259
gr229 5 622,905 0.07 382 2,617 189 7 44 11
gr229 7 680,052 0.02 1,084 4,620 22 154 121 9
gr229 9 509,687 0 3,148 8,848 11 793 1,756 1
gil262 3 7,116 0.2 118 370 319 0 53 111
gil262 5 11,235 0.07 454 982 211 3 22 13
gil262 7 12,497 0 1,279 8,125 14 742 139 1
gil262 9 9,749 0 3,958 12,226 11 1,794 3,764 1
lin318 3 126,087 0.17 182 400 277 0 75 49
lin318 5 202,140 0.15 618 16,769 957 24 490 87
lin318 7 229,449 0 1,545 9,973 9 660 340 1
lin318 9 177,089 0 4,547 18,835 7 411 6,299 1

while only 115 nodes are required if F-partition and star-path
inequalities are used.

When we compare the results obtained using the extended
F-partition and the star-path inequalities together with the
results obtained by only using the extended F-partition
inequalities, there is a slight improvement on average in terms
of the number of nodes and the solution time. We also observe
that violated extended F-partition inequalities can be found
for all values of α while violated star-path inequalities could

TABLE 6. Results without heuristic cut separation.

Instance α Cpu NNode cpuimp

kroA150 3 65 495 110
kroA150 5 1 1 0
kroA150 7 67 17 40
kroA150 9 254 1 13
kroB150 3 141 915 220
kroB150 5 409 363 201
kroB150 7 11 1 22
kroB150 9 231 1 3
u159 3 3 21 50
u159 5 27 5 8
u159 7 19 1 58
u159 9 306 1 2
rat195 3 823 2,765 543
rat195 5 76 55 117
rat195 7 75 1 27
rat195 9 928 1 27
d198 3 1,397 3,235 1,125
d198 5 319 73 1,000
d198 7 443 43 31
d198 9 1,295 1 3
kroA200 3 642 1,165 35
kroA200 5 315 73 62
kroA200 7 548 53 57
kroA200 9 860 1 1
kroB200 3 425 1,047 804
kroB200 5 242 65 109
kroB200 7 51 1 34
kroB200 9 884 1 7

not be found for α = 3. This is consistent with our theoreti-
cal findings as most of the nodes are selected as hubs when
α = 3. The number of the star-path inequalities is also small
for α = 5. They are mainly violated when α ∈ {7, 9}. But for
such cases, the optimal solution is found at the root node, so
the effect of the star-path inequalities is not as much as the
effect of the extended F-partition inequalities.

The results obtained by not using the reduction operations
are given in Table 4. It is seen that the solution times improved
13% on average with reduction. In 17 instances the solution
time improved, whereas in 8 instances we have longer solu-
tion times. It can also be seen that the reduction operations
are more effective for α ∈ {3, 5}.

In Table 5, we provide the results of some larger instances.
From this table, it can be seen that instances with up to 318
nodes could be solved to optimality in less than 2 hours.

Finally, in Table 6, we provide the computational results
in which the heuristic phase of cut inequality (10) separa-
tion is not used. Looking at the solution times, it can be
seen that the CPU times increase significantly. The CPU time
is 164% higher on average if the heuristic part is not used.
Moreover, for some instances, the CPU times are about 11
times larger without the heuristic cut separation. Hence, our
heuristic separation for the cut inequalities seems to be very
efficient.

7. CONCLUSIONS

In this article, we studied 2ECSSP, which is a special
case of a survivable hierarchical telecommunications network
design problem. We presented some valid inequalities for the
associated polytope and described the conditions for them
to be facet defining. The separation problems for the valid
inequalities and some reduction operations are discussed.
We proposed some heuristic algorithms for separation prob-
lems. Based on these findings, a branch-and-cut algorithm is
developed.

Our computational analysis showed that the extended
F-partition and star-path inequalities are important for the
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success of the branch-and-cut algorithm. It is also observed
that the heuristic algorithms used for separation problems
and the reduction operations are effective in the branch-and-
cut algorithm. Our experiments showed that the number of
branch-and-cut nodes is higher when α is smaller, but it also
takes less time to find the optimal solution in this case.

In this article, we only studied survivability of the back-
bone network in a two level telecommunications network.
It may be interesting to incorporate survivability for local
access networks. Another interesting extension may be to
include the installation of capacities for routing the demands
in the network in addition to the survivability aspect.

APPENDIX

Proof of Theorem 5

Let e = {i, j} ∈ E with i �= 0 and j �= 0. Suppose that
the inequality αexe + βy ≤ β0 is a nontrivial facet defining
inequality for PS and that conditions (i)–(iv) are satisfied.
Define FS = {(x, y) ∈ PS : αexe + βy = β0} and F =
{(x, y) ∈ P : αexe + βy = β0}. Suppose that all solutions
(x, y) ∈ F also satisfy ax + by = b0. We will show that
ax + by = b0 is a multiple of αexe + βy = β0. Let e′ =
{m, l} ∈ E\{e}. There exists a solution (x, y) ∈ FS such that
xe′ = 1. Let V ′ = {v ∈ V :

∑
k∈V\{v} yvk = 0} ∪ {0}, i.e., V ′

is the set of backbone nodes.
Suppose that m ∈ V\{0, i, j} and l ∈ V\{0, i, j, m}. As

xe′ = 1, we know that |V ′| ≥ 3. If |V ′| = 3, then
V ′ = {0, m, l}. By (i), there exists k ∈ V\{0, m, l} such
that βkm = βkl = βk0 = 0. The solution (x′, y′) with
x′ = x + ∑

e′′∈E(V ′∪{k})(1 − xe′′)χe′′ and y′ = y − ykmγkm −
yklγkl − yk0γk0 is in F . Also the solution (x′ − χe′ , y′) is in
F . Hence ae′ = 0. If |V ′| ≥ 4 then both solutions (x′, y) with
x′ = x + ∑

e′′∈E(V ′)\{e}(1 − xe′′)χe′′ and (x′ − χe′ , y) are in F
implying that ae′ = 0.

Suppose that m ∈ V\{0, i, j} and l = i or l = j. Assume
that l = i. Again, we know that |V ′| ≥ 3 and if |V ′| = 3 then
V ′ = {0, i, m}. By (ii), there exists k ∈ V\{0, m, i, j} such that
βkm = βki = βk0 = 0. Let x′ = x+∑

e′′∈E(V ′∪{k})(1−xe′′)χe′′

and y′ = y − ykmγkm − ykiγki − yk0γk0. As both solu-
tions (x′, y′) and (x′ − χe′ , y′) are in F we can conclude
that ae′ = 0. If |V ′| = 4 and V ′ = {0, m, i, v} for some
v ∈ V\{0, m, i, j} or |V ′| ≥ 5 then both solutions (x′, y) with
x′ = x + ∑

e′′∈E(V ′)\{e}(1 − xe′′)χe′′ and (x′ − χe′ , y) are in F .
Hence ae′ = 0. The only remaining case is V ′ = {0, m, i, j}.
By (ii), there exists k ∈ V\{0, m, i, j} such that βkm = βki =
βk0 = βkj = 0. Let x′ = x + ∑

e′′∈E(V ′∪{k})\{e}(1 − xe′′)χe′′

and y′ = y−ykmγkm −ykiγki −ykjγkj −yk0γk0. As (x′, y′) and
(x′ − χe′ , y′) are both in F , we have ae′ = 0. The case with
l = j is the same.

Suppose that e′ = {0, m} with m ∈ V\{0, i, j}. This time,
we know that |V ′| ≥ 2. If |V ′| = 2, then V ′ = {0, m}.
Condition (iii) implies that there exist two distinct nodes
k1, k2 ∈ V\{0, m} such that βk1m = βk10 = βk2m =
βk20 = 0. Consider the solution (x′, y′) with x′ = x +∑

e′′∈E(V ′∪{k1,k2})\{e}(1 − xe′′)χe′′ and y′ = y − yk1mγk1m −

yk10γk10−yk2mγk2m−yk20γk20. As (x′, y′) and (x′−χe′ , y′) are in
F we can conclude that ae′ = 0. If |V ′| = 3 and V ′ = {0, m, v}
for some v ∈ V\{0, m, i, j}, then by (i), we know that there
exists k ∈ V\{0, m, v} such that βkm = βkv = βk0 = 0. Let
x′ = x + ∑

e′′∈E(V ′∪{k})(1 − xe′′)χe′′ and y′ = y − ykmγkm −
ykvγkv − yk0γk0. Then as (x′, y′) and (x′ − χe′ , y′) are both
in F , we have ae′ = 0. If |V ′| = 3 and V ′ = {0, m, v} for
some v ∈ {i, j}, say without loss of generality that v = i, then
by (ii), we know that there exists k ∈ V\{0, m, i, j} such that
βkm = βki = βk0 = 0. Let x′ = x+∑

e′′∈E(V ′∪{k})(1−xe′′)χe′′

and y′ = y−ykmγkm−ykiγki−yk0γk0. As both solutions (x′, y′)
and (x′ − χe′ , y′) are in F , we can conclude that ae′ = 0. If
|V ′| ≥ 4, then (x′, y) with x′ = x +∑

e′′∈E(V ′)\{e}(1 − xe′′)χe′′

and (x′ − χe′ , y) are in F . Hence ae′ = 0.
Suppose that e′ = {0, i}. If |V ′| = 2, then V ′ = {0, i}.

By (iv), there exist k1, k2 ∈ V\{0, i, j} such that βk1i =
βk10 = βk2i = βk20 = 0. Both solutions (x′, y′) with
x′ = x +∑

e′′∈E(V ′∪{k1,k2})(1− xe′′)χe′′ and y′ = y − yk1iγk1i −
yk10γk10 − yk2iγk2i − yk20γk20 and (x′ − χe′ , y′) are in F . Thus
we have ae′ = 0. If |V ′| = 3 and V ′ = {0, i, v} for some
v �= j then by (ii), there exists k ∈ V\{0, i, v, j} such that
βki = βkv = βk0 = 0. Let x′ = x +∑

e′′∈E(V ′∪{k})(1−xe′′)χe′′

and y′ = y − ykiγkm − ykvγkv − yk0γk0. Then both solutions
(x′, y′) and (x′ − χe′ , y′) are in F . So ae′ = 0. If |V ′| = 3
and V ′ = {0, i, j}, then by (iv), there exist k1, k2 ∈ V\{0, i, j}
such that βk1i = βk10 = βk1j = βk2i = βk20 = βk2j = 0.
Let x′ = x + ∑

e′′∈E(V ′∪{k1,k2})\{e}(1 − xe′′)χe′′ and y′ =
y−yk1iγk1i −yk1jγk1j −yk10γk10 −yk2iγk2i −yk2jγk2j −yk20γk20.
As the solutions (x′, y′) and (x′ − χe′ , y′) are in F , ae′ = 0.
If |V ′| = 4 and V ′ = {0, i, j, v}, then by (ii), there exists
k ∈ V\{0, i, v, j} such that βki = βkv = βkj = βk0 = 0. Let
x′ = x + ∑

e′′∈E(V ′∪{k})\{e}(1 − xe′′)χe′′ and y′ = y − ykiγki −
ykvγkv−ykjγkj−yk0γk0. Both solutions (x′, y′) and (x′−χe′ , y′)
are in F . So ae′ = 0. If |V ′| = 4 and j �∈ V ′ or if |V ′| ≥ 5,
then solutions (x′, y) with x′ = x +∑

e′′∈E(V ′)\{e}(1 − xe′′)χe′′

and (x′ − χe′ , y) are in F . Hence, ae′ = 0.
We proved that ax + by = b0 is equal to aexe + by = b0.
Let (m, l) ∈ A with βml = 0 and (x, y) ∈ FS be such

that yml = 1. Let V ′ = {v ∈ V :
∑

k∈V\{v} yvk = 0} ∪ {0}.
If |V ′| = 1, then V ′ = {0} and l = 0. If m �= i, j then
by (iii), there exist two distinct nodes k1, k2 ∈ V\({0, m})
such that |{k1, k2} ∩ {i, j}| ≤ 1 and βk10 = βk20 = 0. If
m = i or m = j, then by (iv), there exist two distinct nodes
k1, k2 ∈ V\({0, i, j}) such that βk10 = βk20 = 0. In both cases,
the solution (x′, y′) where x′ = x +∑

e′∈E({0,k1,k2})(1−xe′)χe′

and y′ = y − yk10γk10 − yk20γk20 is in F . Also the solution
(x′ + ∑

e′∈E({0,k1,k2,m}) χe′ , y′ − γm0) is in F . Hence, we have
bm0 = 0. If |V ′| = 2, then suppose V ′ = {0, v} for some
v ∈ V\{0, m} such that l ∈ V ′. If v �= i, j, then by (i), there
exists a node k ∈ V\{0, m, v} such that βk0 = βkv = 0. If
v ∈ {i, j}, then by (ii), there exists a node k ∈ V\{0, m, i, j}
such that βk0 = βkv = 0. The solution (x′, y′) where x′ =
x+∑

e′∈E({0,k,v})(1−xe′)χe′ and y′ = y−yk0γk0 −ykvγkv is in
F . As the solution (x+∑

e′∈E({0,k,v,m})\{e} χe′ , y′−γml) is also
in F , we have bml = 0. If |V ′| = 3 and V ′ = {0, i, j}, then
by (ii), there exists a node k ∈ V\{0, m, i, j} such that βk0 =
βki = βkj = 0. Let x′ = x +∑

e′∈E({0,i,j,k})\{e}(1 − xe′)χe′ and
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y′ = y − yk0γk0 − ykiγki − ykjγkj. Both solutions (x′, y′) and
(x + ∑

e′∈E({0,i,j,k,m})\{e} χe′ , y′ − γml) are in F , so we have
bml = 0. Finally, if |V ′| = 3 and |{i, j} ∩ V ′| ≤ 1 or |V ′| ≥ 4,
then (x′, y) and (x′ + ∑

e′∈E(V ′∪{m})\{e} χe′ , y − γml) are both
in F , where x′ = x + ∑

e′∈E(V ′)\{e}(1 − xe′)χe′ . So we can
conclude that bml = 0. Hence, bml = 0 for all (m, l) ∈ A with
βml = 0.

Now assume that there exists (x, y) ∈ FS such that aexe +
by �= b0. Let V ′ = {v ∈ V :

∑
k∈V\{v} yvk = 0} ∪ {0}.

Unless |V ′| = 2 or V ′ = {0, i, j} and xe = 0, the solution
(x′, y) where x′ = x + ∑

e′∈E(V ′)\{e}(1 − xe′)χe′ is in F and
aex′

e + by �= b0. Hence, either |V ′| = 2 or V ′ = {0, i, j} and
xe = 0. First suppose that |V ′| = 2 and that V ′ = {0, m}. If
m �= i, j, then by (iii), there exists a node k ∈ V\{0, m} such
that βkm = βk0 = 0. If m ∈ {i, j}, then by (iv), there exists a
node k ∈ V\{0, i, j} such that βkm = βk0 = 0. In both cases,
the solution (x′, y′) where x′ = x + ∑

e′∈E({0,m,k})(1 − xe′)χe′

and y′ = y−yk0γk0−ykmγkm is in F and aex′
e+by′ �= b0. Now

suppose that V ′ = {0, i, j} and xe = 0. By (iv), there exists a
node k ∈ V\{0, i, j} such that βki = βkj = βk0 = 0. Now the
solution (x′, y′) where x′ = x + ∑

e′∈E({0,i,j,k})\{e}(1 − xe′)χe′

and y′ = y − yk0γk0 − ykiγki − ykjγkj is in F and aex′
e +by′ �=

b0, a contradiction. So we can conclude that all solutions
(x, y) ∈ FS satisfy aexe + by = b0. Hence, aexe + by = b0
is a multiple of αexe + βy = β0.
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