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Abstract. In this paper we study the extreme points of the polytope P(G), the linear relaxation of the 2-edge
connected spanning subgraph polytope of a graph G. We introduce a partial ordering on the extreme points
of P(G) and give necessary conditions for a non-integer extreme point of P(G) to be minimal with respect
to that ordering. We show that, if x̄ is a non-integer minimal extreme point of P(G), then G and x̄ can be
reduced, by means of some reduction operations, to a graph G′ and an extreme point x̄′ of P(G′) where G′
and x̄′ satisfy some simple properties. As a consequence we obtain a characterization of the perfectly 2-edge
connected graphs, the graphs for which the polytope P(G) is integral.
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1. Introduction

A graph G = (V , E) is called 2-edge connected if for every pair of nodes (u, v) there
are at least two edge-disjoint paths between u and v. Given a graph G = (V , E) and a
weight function w which associates to each edge e a weight w(e), the 2-edge connected
subgraph problem (TECSP) consits in finding a 2-edge connected subgraph H = (V , F )

of G, spanning all the nodes of G and such that
∑

e∈F w(e) is minimum. This problem
arises in the design of reliable transportation and communication networks [8], [34],
[26] [30]. It is NP-hard in general. It has been shown to be polynomial in series-parallel
graphs [36] and Halin graphs [35]. (A graph is called series-parallel if it can be obtained
from an edge by subdivisions and duplications of edges. A graph is said to be a Halin
graph if it consists of a cycle and a tree without nodes of degree 2 whose leaves are
precisely the nodes of the cycle.)

Given a graph G = (V , E) and an edge subset F ⊆ E, the 0 − 1 vector xF of R
E

such that xF (e) = 1 if e ∈ F and xF (e) = 0 if e ∈ E \ F is called the incidence vector
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of F . The convex hull of the incidence vectors of the edge sets of the connected span-
ning subgraphs of G, denoted by TECP(G), is called the 2-edge connected spanning
subgraph polytope of G.

Let G = (V , E) be a graph. Given b : E → R and F a subset of E, b(F ) will denote∑
e∈F b(e). For W ⊆ V we let W = V \ W . If W ⊂ V is a node subset of G, then the

set of edges that have only one node in W is called a cut and denoted by δ(W). (Note
that δ(W) = δ(W)). For v ∈ V , we will write δ(v) for δ({v}). An edge cutset F ⊆ E of
G is a set of edges such that F = δ(S) for some non-empty set S ⊂ V .

If xF is the incidence vector of the edge set F of a 2-edge connected spanning
subgraph of G, then xF satisfies the inequalities

x(e) ≥ 0 ∀ e ∈ E, (1.1)

x(e) ≤ 1 ∀ e ∈ E, (1.2)

x(δ(S)) ≥ 2 ∀ S ⊂ V, S 	= ∅. (1.3)

Inequalities (1.1) and (1.2) are called trivial inequalities and inequalities (1.3) are
called cut inequalities.

Given a graph G = (V , E) we will denote by P(G) the polytope given by inequalities
(1.1), (1.2), ( 1.3). The TECSP is then equivalent to the integer program

min{wx, x ∈ P(G), x integer}.
The TECSP is closely related to the widely studied traveling salesman problem. In fact,
as pointed out in [16], the problem of determining whether a graph contains a hamiltonian
cycle can be reduced to the TECSP.

The subtour polytope of the traveling salesman problem is the set of all solutions of
the system given by inequalities (1.1)–(1.3) together with the constraints x(δ(v)) = 2
for all v ∈ V . Clearly, the polytope P(G) is a relaxation of both the TECP(G) and the
subtour polytope. Thus minimizing wx over P(G) may provide a good lower bound for
both the TECSP and the traveling salesman problem.

Using network flows [14] [15], one can compute in polynomial time a minimum
cut in a weighted undirected graph. Hence the separation problem for inequalities (1.3)
(i.e. the problem that consists in finding whether a given solution ȳ ∈ R

|E| satisfies
inequalities (1.3) and if not to find an inequality which is violated by ȳ) can be solved
in polynomial time. This implies by the ellipsoid method [23] that the TECSP can be
solved in polynomial time on graphs G for which TECP(G) = P(G). Mahjoub [32]
called these graphs perfectly 2-edge connected graphs (perfectly-TEC). Thus an inter-
esting question would be to characterize these graphs. In [31], Mahjoub showed that
series-parallel graphs are perfectly-TEC. In [32] he described sufficient conditions for
a graph to be perfectly-TEC.

In [18], Fonlupt and Naddef studied the graphs for which the polyhedron given by
the inequalities (1.1) and (1.3) is the convex hull of the tours of G. ( Here a tour is
a cycle going through each node at least once). This is in connection with the graphi-
cal traveling salesman problem. They gave a characterization of these graphs in terms
of excluded minors. (A minor of a graph G is a graph obtained from G by deletions
and contractions of edges). A natural question that may arise here is whether or not
one can obtain a similar characterization for perfectly-TEC graphs. The answer to this
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question is, unfortunately, in the negative. If we add the constraints x(e) ≤ 1 for all
e ∈ E, the approach developed by Fonlupt and Naddef [18] would not be appropriate.
In fact, consider a non perfectly-TEC graph G (for instance a complete graph on four
nodes or more). Subdivide G by inserting a new node of degree 2 on each edge and let
G′ = (V ′, E′) be the resulting graph. Clearly, each edge e of G′ belongs to a 2-edge
cutset. So x(e) = 1 for all e ∈ E′ is the unique solution of P(G′) and hence G′ is
perfectly-TEC. However, the graph G, which is a minor of G′, is not.

In this paper we study the fractional extreme points of the polytope P(G). We
introduce an ordering on the extreme points of P(G) and give necessary conditions for
a non-integer extreme point of P(G) to be minimal with respect to that ordering. We
show that if x̄ is a minimal non-integer extreme point of P(G), then G and x̄ can be
reduced, by means of some reduction operations, to a graph G′ and an extreme point x̄′
of P(G′), where G′ and x̄′ satisfy some simple properties . As a consequence, we obtain
a characterization of perfectly-TEC graphs.

The polytope TECP(G) has seen much attention in the last few years. Grötschel and
Monma [24] and Grötschel, Monma and Stoer [25], [27], [28] consider a more general
model related to the design of minimum survivable networks. They discuss polyhedral
aspects of this model. In particular, they study the polytope, the extreme points of which
are the incidence vectors of the edge-sets of the k-edge connected subgraphs of a graph
G, where k is a fixed positive integer. In [27], they devise cutting plane algorithms along
with computational results are presented. A complete survey of that model can be found
in Stoer [34] (see also [26], [30]). In [5], [6] Chopra studies the minimum k-edge con-
nected spanning subgraph problem when multiple copies of an edge may be used. In
[5] he considers the problem in directed graphs, for k = 2. He shows how facets of
the associated polyhedron on undirected graphs can be obtained by projection and he
develops a cutting plane algorithm for that problem. In [6], he studies the problem for k

odd. In particular, he characterizes the associated polyhedron in this case, for the class
of outerplanar graphs. (A graph is called outerplanar if it can be drawn in the plane as
one cycle with noncrossing chords. Outerplanar graphs are also series-parallel.) In [12]
Didi Biha and Mahjoub give a complete description of the k-edge connected subgraph
polytope, for all k, when the graph is series-parallel. As a consequence, they show that
Chopra’s result remains true if the graph is series-parallel, which has also been indepen-
dently proved by Chopra and Stoer [7]. In [2], Barahona and Mahjoub characterize the
polytope TECP(G) for the class of Halin graphs. Baı̈ou and Mahjoub [1] characterize the
Steiner 2-edge connected subgraph polytope for series-parallel graphs. Boyd and Hao [4]
discuss a class of facets for the TECP(G) related to the the traveling salesman polytope.
Extensions of the TECSP are addressed in [19], [21] (see also [20]), [22], [29], [13].

Related work can be found in [9], [10], [11]. In [9] Cornuéjols, Fonlupt and Naddef
study the TECSP when multiple copies of an edge may be used. They showed that
when the graph is series-parallel, the associated polyhedron is completly described by
inequalities (1.1) and (1.3). In [10] Coullard et al. characterize the dominant of the
2-node connected subgraph polytope in the graphs which do not have W4 (the wheel
on 5 nodes) as a minor. In [11] they devise a linear algorithm for the Steiner 2-node
connected subgraph problem on Halin graphs and the graphs with no W4 as a minor.

This paper is organized as follows. In the next section we give more notation and
definitions and present some preliminary results. In Section 3 we study an ordering
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relation on the extreme points of P(G), and introduce the concept of critical extreme
points of P(G). In Section 4 we prove our main result. In Section 5 we discuss some
applications and give some concluding remarks.

2. Notation, definitions and preliminary results

2.1. Notation and definitions

We assume familiarity with graphs and polyhedra. For specific details, the reader is
referred to [3] and [33], respectively. We consider finite, undirected and loopless 2-edge
connected graphs, which may have multiple edges. We denote a graph by G = (V , E)

where V is the node set and E the edge set. If e is an edge with endnodes u and v, then
we write e = uv. If W ⊆ V , we denote by G(W) the subgraph of G induced by W and
by E(W) the set of edges having both nodes in W . Given W , W ′ two disjoint subsets of
V , δ(W, W ′) will denote the set of edges of G having one endnode in W and the other
in W ′. If W = {v}, we will write δ(v, W ′) instead of δ({v}, W ′). If G is a graph and e is
an edge of E, then G − e will denote the graph obtained from G by removing e. A path
P of G is an alternate sequence of nodes and edges (u1, e1, u2, e2, . . . , uq−1, eq−1, uq)

where ei ∈ δ(ui, ui+1) for i = 1, . . . , q − 1. We will denote a path P by either its node
sequence (u1, . . . , uq) or its edge sequence (e1, . . . , eq−1). The length of a path is the
number of its edges. A path is said to be even (resp. odd) if its length is even (resp. odd).

A graph G = (V , E) is said to be contractible to a graph G′ if G′ can be obtained
from G by deletions and contractions of edges. The contraction of an edge e = uv con-
sists in deleting e, identifying u and v and in preserving all the adjacencies. If W ⊂ V ,
then the graph obtained by contracting W is the graph obtained by contracting all the
edges of E(W).

Throughout the paper, we will consider a graph G = (V , E) and an extreme point x̄

of P(G). We suppose that P(G) is not integral and x̄ is fractional. If x̄(f ) = 0 for some
edge f ∈ E, then the solution x̄′ such that x̄′(e) = x̄(e) for all e ∈ E \ {f } is an extreme
point of P(G − f ) if and only if x̄ is an extreme point of P(G). Therefore studying the
structure of x̄ on G is equivalent to studying that of x̄′ on G−f . Hence we will suppose,
w.l.o.g. that x̄(e) > 0 for all e ∈ E. We will denote by E0 (resp. E1) the subset of edges
e ∈ E such that 0 < x̄(e) < 1 (resp. x(e) = 1). The edges of E0 (resp. E1 ) will be
called fractional edges (resp. integer edges). We will denote by G0 = (V0, E0) (resp.
G1 = (V1, E1)) the subgraph induced by E0 (resp. E1). The graph G0 (resp. G1) will
be called the fractional graph (resp. integer graph). We will use the subscript 0 (resp.
1) for the notation which refer to G0 (resp. G1). For instance, if W ⊂ V , then δ0(W)

(resp. δ1(W)) will denote δ(W) ∩ E0 (resp. δ(W) ∩ E1), and if x is a solution of P(G),
then x0 will denote the restriction of x on E0. Hence x̄0 will denote the restriction of x̄

on E0.

2.2. Cuts and polytopes

Let δ(W)be a cut ofG. IfG(W) is not 2-edge connected, then the constraintx(δ(W)) ≥ 2
is redundant in the decription of P(G). In fact suppose G(W) is not 2-edge connected,
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and let W1, W2 be a partition of W such that |δ(W1, W2)| ≤ 1. From the cut constraints
corresponding to W1 and W2, we have x(δ(W1, W)) ≥ 1 and x(δ(W2, W)) ≥ 1. By
summing these inequalities, we get x(δ(W)) ≥ 2. Let S(G) be the set of subsets S of V

such that G(S) and G(V \ S) are both 2-edge connected. Thus P(G) can be written as

P(G)

{
0 ≤ x(e) ≤ 1 ∀ e ∈ E,

x(δ0(S)) + x(δ1(S)) ≥ 2 ∀ S ∈ S(G).

For S ⊆ V , let bS = 2 − |δ1(S)|. Let P0(G) be the polytope given by

P 0(G) =
{

0 ≤ x(e) ≤ 1 ∀e ∈ E0,

x(δ0(S)) ≥ bS ∀ S ∈ S(G).

Note that P0(G) ⊂ R
E0 and dim(P0(G)) = |E0|. Since x̄ is an extreme point of P(G),

we have that x̄0 is an extreme point of P0(G). Moreover, if δ(S) contains no (resp.
contains one ) integer edge, then bS = 2 (resp. bS = 1). If δ(S) contains more than one
integer edge, then bS ≤ 0, and hence x(δ0(S)) ≥ bS is redundant in P0(G).

Given a solution x ∈ R
E , a constraint ax ≥ α is said to be tight for x if ax = α.

If δ(S) induces a cut inequality tight for x̄, then δ(S) will be called a tight cut. If
δ(S) is tight and δ0(S) 	= ∅, we will say that δ0(S) is tight for x̄0. We will denote by S0
the set of elements S ∈ S(G) such that δ0(S) is tight for x̄0. A cut δ(S) tight for x̄ will
be called a degree-cut if min(|S|, |S|) = 1. A node v ∈ V is said to be tight for x̄ (or
just tight) if it induces a degree-cut. A cut δ(W) is said to be proper if it is tight for x̄

and E0(W) 	= ∅ 	= E0(W). We will denote by Π the set of proper cuts.
The following result, due to Cornuéjols, Fonlupt and Naddef [9], will be useful in

the sequel.

Lemma 1. [9] Let δ(W)be a cut tight for x̄. Then the polytopeP(G)∩{x ∈ R
E; x(δ(W))

= 2} can be described by the following system of linear inequalities





0 ≤ x(e) ≤ 1 ∀ e ∈ E,

x(δ(S)) ≥ 2 ∀ S ⊂ W, S ∈ S(G),

x(δ(S)) ≥ 2 ∀ S ⊂ V \ W, S ∈ S(G),

x(δ(W)) = 2.

Given a node subset W ⊆ V we let Γ(W) = δ0(W) ∪ E0(W).
Let δ(W) be a tight cut for x̄0. As x̄0 is an extreme point of P0(G), it follows that x̄0

is an extreme point of the polytope P0(G) ∩ {x ∈ R
E0; x(δ0(W)) = 2}. From Lemma

1, it follows that this polytope is given by the inequalities





0 ≤ x(e) ≤ 1 ∀ e ∈ E0,

x(δ0(S)) ≥ bS ∀ S ⊂ W, S ∈ S(G),

x(δ0(S)) ≥ bS ∀ S ⊂ V \ W, S ∈ S(G),

x(δ0(W)) = bW .

As 0<x̄0(e)<1 for all e ∈ E0, we then have that x̄0 is the unique solution of the system

(L)






x(δ0(S)) = bS ∀ S ⊂ W, S ∈ S0,

x(δ0(S)) = bS ∀ S ⊂ V \ W, S ∈ S0,

x(δ0(W)) = bW .
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Let Ax = b (resp. Āx = b̄) be the equality system given by the first (resp. second)
set of equations of system (L). System (L) can then be written as

(L) = {x ∈ R
E0; Ax = b, Āx = b̄, x(δ0(W)) = bW }.

In the sequel we will denote by PW the polytope in R
Γ(W) given by

PW

{
0 ≤ x(e) ≤ 1 ∀ e ∈ Γ(W),

x(δ0(S)) ≥ bS ∀ S ⊆ W, S ∈ S0.

Given an edge subset F ⊆E and x ∈R
F , we will call extension of x the solution y ∈ R

E

given by y(e) = x(e) if e ∈ F and y(e) = 1 if e ∈ E \ F .

2.3. Redundant relations

Let δ(W) be a tight cut. Let Aix = bi, i = 1, . . . , k be the rows of the system Ax = b.
Let c be a row-vector of R

Γ(W) such that c(e) = 0 for all e ∈ E0(W). Suppose there is
a row-vector µ = (µ1, . . . , µk) such that c = µA. Then the equation

cx = δ,

where δ = µb, will be called a redundant relation produced by Ax = b. If the scalar µi

is uniquely defined, µi will be called the weight of Aix = bi in the redundant relation
cx = δ; note that in this case, the equation Aix = bi is linearly independent from the
other rows of the linear system Ax = b.

Let Cx = d be a linear system of R
δ0(W) that generates all the redundant relations of

Ax = b, that is any redundant relation of Ax = b can be written as a linear combination
of equations of Cx = d . Such a system will be called a redundant system for Ax = b.
Note that the affine subspace {x ∈ R

δ0(W); Cx = d} is nothing but the projection of the
affine subspace {x ∈ R

δ0(W); Ax = b} onto R
δ0(W). We have the following lemma.

Lemma 2. i) If y ∈ R
δ0(W) is a solution of Cx = d, then there exists a unique solu-

tion x̃ ∈ R
Γ(W) of Ax = b (resp. x̃′ ∈ R

Γ(W) of Āx = b̄) such that x̃(e) = y(e) for
all e ∈ δ0(W) (resp. x̃′(e) = y(e) for all e ∈ δ0(W)).

ii) Let y0 be the restriction of x̄0 on Γ(W). Then y0 is the unique solution of the system

(L′)






Āx = b̄,

Cx = d,

x(δ0(W)) = bW .

iii) If PW is integral, then there exists at least one redundant relation of Ax = b different
from x(δ0(W)) = bW .

Proof. i) We prove the statement for Ax = b, the proof for Āx = b̄ is similar. W.l.o.g.,
we may suppose that Ax = b is nonsingular. Hence, by elementary linear algebra
operations, Ax = b can be written as a system of the form

Ix1 + A′′x2 = b′,
Cx2 = d,
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where x1 and x2 are the restrictions of x on E0(W) and δ0(W), respectively, and
I is the identity matrix. As y is a solution of Cx2 = d, clearly, there is a unique
solution y1 ∈ R

E0(W) such that Iy1 + A′′y = b′. Hence x̃ such that x̃(e) = y1(e)

if e ∈ E0(W) and x̃(e) = y(e) if e ∈ δ0(W) is the desired solution.
ii) Suppose there are two solutions y1 and y2 of system (L′). Let y′

1 and y′
2 be the

restrictions of y1 and y2 on δ0(W), respectively. As y′
1 (resp. y′

2) is a solution of
Cx = d, by i) there is a solution x′

1 ∈ R
E0(W) (resp. x′

2 ∈ R
E0(W)) such that the

solution x̃1 (resp. x̃2) given by x̃1(e) = x′
1(e) if e ∈ E0(W) and x̃1(e) = y′

1(e) if
e ∈ δ0(W) (resp. x̃2(e) = x′

2(e) if e ∈ E0(W) and x̃2(e) = y′
2(e) if e ∈ δ0(W))

is a solution of Ax = b. Let x̄1 (resp. x̄2) be the solution such that x̄1(e) = x′
1(e)

if e ∈ E0(W) and x̄1(e) = y1(e) if e ∈ �(W) (resp. x̄2(e) = x′
2(e) if e ∈ E0(W)

and x̄2(e) = y2(e) if e ∈ �(W)). We then have that x̄1 and x̄2 are both solutions of
system (L). As y1 	= y2 and hence x̄1 	= x̄2, this contradicts the fact that x̄0 is the
unique solution of (L).

iii) Suppose that PW is integral. If system Ax = b does not produce any redundant rela-
tion different from δ0(W) = bW , then by ii), the solution y0 is the unique solution
of the system

{
Āx = b̄,

x(δ0(W)) = bW .

But this implies that y0 is an extreme point of PW . As δ0(W) is tight for x̄0, and
therefore y0 is fractional, this is a contradiction. �

2.4. Basic linear systems

Definition 2.1. Let δ(W) be a tight cut. Consider a partition of Ax = b into two sub-
systems A1x = b1 and Ã1x = b̃1. We say that A1x = b1 is a basic system for W if the
following conditions hold:

i) x ∈ R
�(W) is a solution of Ax = b if and only if x is a solution of {A1x = b1;

x(δ0(W)) = bW }.
ii) The solutions set of the system {A1x = b1; x(δ0(W)) > bW } is non-empty, and any

solution x of this system also satisfies Ã1x > b̃1.

If the equation x(δ0(W)) = bW is not a redundant relation of Ax = b, then Ax = b is
itself a basic linear system. If this is not the case, then there exists a proper subsystem
A1x = b1 of Ax = b in which x(δ0(W)) = bW is not redundant. Also a solution x

satisfies Ax = b if and only if x satisfies {A1x = b1, x(δ0(W)) = bW }.
Let A1x = b1 be a basic system for W . Let C1x = d1 be a redundant system for

A1x = b1. We will now establish a lemma which will allow us to deal with A1x = b1
instead of Ax = b.

Lemma 3. i) Ifx(δ0(W)) = bW is not a redundant equation ofAx = b, thenC1x = d1
is also a redundant system for Ax = b,

ii) If x(δ0(W)) = bW is a redundant equation of Ax = b, then the linear system
{C1x = d1; x(δ0(W)) = bW } is a redundant system for Ax = b.
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Proof. i) This easily follows from the fact that A1x = b1 is a basic system for W .
ii) Since {A1x = b1; x(δ0(W)) = bW } generates the whole system Ax = b, any

redundant equation produced by Ax = b can also be obtained from {A1x =
b1; x(δ0(W)) = bW }. The result then follows.

�

3. Critical extreme points of P (G)

In this section we introduce the concept of critical extreme points and give our main
result.

Let x be a fractional extreme point of P(G). Let x′ be a solution obtained by replacing
some (but at least one) non-integer components of x by 0 or 1 (and keeping all the other
components of x unchanged). If x′ is a point of P(G), then x′ can be written as a convex
combination of extreme points of P(G). If y is such an extreme point, then y is said
to be dominated by x and we write x � y. Note that an extreme point of P(G) may
dominate more than one extreme point of P(G). Also note that if x dominates y, then
{e ∈ E; 0 < y(e) < 1} ⊂ {e ∈ E; 0 < x(e) < 1}, and if x(e) is integer, then y(e) is
so.

The relation � defines a partial ordering on the extreme points of P(G). The minimal
elements of this ordering (i.e. the extreme points x of P(G) for which there is no extreme
point y 	= x such that x � y ) correspond to the integer extreme points of P(G). In
what follows we are going to define, in a recursive way, a rank function on the extreme
points of P(G).

The minimal extreme points of P(G) will be said extreme points of rank 0. An
extreme point x of P(G) will be said of rank k, for fixed k, if x dominates only extreme
points of rank ≤ k − 1 and if x dominates at least one extreme point of rank k − 1.

The maximum of the ranks of the extreme points of P(G) will be called the rank of
P(G).

In this paper we will be mainly interested in the study of the extreme points of P(G)

of rank 1. Note that if x is an extreme point of P(G) of rank 1 and if we replace one
fractional component of x by 1, keeping unchanged all the other components, we obtain
a feasible point x′ of P(G) which can be written as a convex combination of integer
extreme points of P(G).

In [32], Mahjoub introduced the following operations:

θ1: Delete an edge.
θ2: Contract an edge whose both endnodes are of degree two.
θ3: Contract a node subset W such that G(W) is 2-edge connected.

And he proved the following.

Theorem 1. [32] If G = (V , E) is perfectly-TEC and G′ is a graph obtained by repeated
applications of the operations θ1, θ2, θ3, then G′ is perfectly-TEC.

Now we are going to consider somewhat similar operations but defined with respect
to a given solution x of P(G).
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θ ′
1: Delete an edge e with x(e) = 0.

θ ′
2: Contract an edge e whose one of its endnodes is of degree 2.

θ ′
3: Contract a node subset W such that G(W) is 2-edge connected and x(e) = 1

for all l e ∈ E(W).

In contrast with operations θ1 and θ ′
1 (θ3 and θ ′

3) which are similar, operations θ2 and
θ ′

2 are quite different. Suppose for instance that G contains a path P of length k ≥ 3
whose internal nodes are of degree two. Using θ2 one can replace P by a path P ′ of
length ≥ 2. However, by θ ′

2, P can be replaced by only one edge. This is because with
θ ′

2 we do not only deal with the graph G (which is the case of θ2) but we are also dealing
with a feasible solution x of P(G). If P = (e1, . . . ek), then we have x(ei) = 1, for
i = 1, . . . , k. And by replacing P by only one edge, say ek , and assigning again the
value 1 to x(ek), we keep a record of the values of the variables x(e) on the edges of P .

Starting from a graph G and a solution x of P(G), and applying operations θ ′
1, θ

′
2, θ

′
3

one obtains a reduced graph G′ and a solution x′ ∈ P(G′). The following lemmas estab-
lish the relation between x and x′. The proof of the first lemma is omitted because it is
similar to that of Theorem 1.

Lemma 4. The solution x is an extreme point of P(G) if and only if x′ is an extreme
point of P(G′).

Lemma 5. The solution x is an extreme point of P(G) of rank 1 if and only if x′ is an
extreme point of P(G′) of rank 1.

Proof. Suppose that x is an extreme point of P(G) of rank 1. By Lemma 4, x′ is an
extreme point of P(G′). If x′ is not of rank 1, then there must exist a fractional extreme
point x′′ of P(G′) that is dominated by x′. Let y ∈ R

E be the solution such that

y(e) =






x′′(e) if e ∈ E′,
1 if x(e) = 1 and e ∈ E \ E′,
0 if x(e) = 0 and e ∈ E \ E′.

Note that x′′ can be obtained from y using the same operations as x′ from x. By Lemma
4, y is then an extreme point of P(G). Moreover, we have that x � y. As y is fractional,
this contradicts the fact that x is of rank 1.
If x′ is of rank 1, we can prove in a similar way that x is also of rank 1. �

An extreme point of P(G) will be called critical if it is of rank 1 and if none of
the operations θ ′

1, θ
′
2, θ

′
3 can be applied for it. By Lemma 5, the characterization of the

extreme points of rank 1 reduces then to that of the critical extreme points of P(G). In
the rest of the paper we restrict ourselves to that class of extreme points. Our aim is to
give necessary conditions for an extreme point of P(G) to be critical.

Definition 3.1. Given a graph G = (V , E) and a solution x ∈ P(G), the pair (G, x)

is called a basic pair if the following hold.

i) V = V 1 ∪ V 2 with V 1 ∩ V 2 = ∅,
E = E1 ∪ E2 with E1 ∩ E2 = ∅ ,
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Fig. 1. Basic pairs

(V 1, E1) is an odd cycle,
(V , E2) is a forest whose set of pending nodes is V 1, and such that all the
nodes of V 2 have degree at least 3,

ii) x(e) = 1
2 for e ∈ E1,

x(e) = 1 for e ∈ E2, and
iii) x(δ(W)) > 2 for any cut δ(W) such that |W | ≥ 2 and |W | ≥ 2.

Note that by the last condition of Definition 3.1, if (G, x) is a basic pair, then G

is 3-edge connected. Figure 1 shows some examples of basic pairs. In Figure 1 (a) the
forest is a star, Figure 1 (b) shows an example where one component of the forest is an
edge. In Figure 1 (c) the forest is a tree but not a star.

Lemma 6. If (G, x) is a basic pair, then x is an extreme point of P(G).

Proof. First note that conditions ii) and iii) of Definition 3.1 ensure that x is a solution of
P(G). Moreover, since (V 1, E1) is an odd cycle, x is the unique solution of the system

{
x(e) = 1 ∀ e ∈ E2,

x(δ(v)) = 2 ∀ v ∈ V 1.

This implies that x is an extreme point of P(G). �
We can now state the main result of the paper.

Theorem 2. If x̄ is a critical extreme point of P(G), then (G, x̄) is a basic pair.

The proof of Theorem 2 will be given in the next section. In what follows we give,
as a consequence of Theorem 2, a characterisation of the perfectly-TEC graphs.

Let � be the class of graphs G = (V , E) such that G can be obtained from a graph
satisfying condition i) of Definition 3.1 by replacing some edges of E2 by paths of
length two. Note that the graphs of � are not perfectly-TEC. In fact, let G̃ = (Ṽ , Ẽ) and
x̃ ∈ R

Ẽ form a basic pair and G = (V , E) be a graph of � obtained from G̃ by inserting
nodes of degree two on some edges of the forest of G̃. Let x ∈ R

E be the solution of
P(G) such that x(e) = x̃(e) if e ∈ Ẽ and x(e) = 1 if e ∈ E \ Ẽ. As by Lemma 6 x̃ is
an extreme point of P(G̃), x is an extreme point of P(G). Since x is fractional, G is not
perfectly-TEC.

A consequence of Theorem 2 is the following.
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Corollary 1. A graph G is perfectly-TEC if and only if G is not reducible to a graph of
� by means of the operations θ1, θ2, θ3.

Proof. Assume that G = (V , E) reduces to a graph G′ = (V ′, E′) of � by means of
the operations θ1, θ2, θ3. By Lemma 6, G′ is not perfectly-TEC. Hence from Theorem
1, it follows that G is not perfectly-TEC.

Conversely, suppose G is not perfectly-TEC. Then P(G) contains fractional extreme
points, and, in consequence, there existo an extreme pointy ofP(G)of rank 1. By Lemma
5 together with Theorem 2, G and y can be reduced by operations θ ′

1, θ
′
2, θ

′
3 to a basic

pair (G′, y′). If instead of applying θ ′
2 we apply θ2, we obtain a graph of �. �

4. Proof of Theorem 2

We first present the main steps of the proof of Theorem 2. We will suppose that x̄ is a
critical extreme point of P(G). We first establish some useful properties of x̄ and the
tight cuts for x̄ in G. These are given in Lemmas 7, 8 and 9. Then the proof is divided
into two parts. In the first part, we suppose that the set of proper cuts � is empty. We will
show that x̄ and G satisfy in this case the conditions of Definition 3.1, and hence induce
a basic pair. This is given by Proposition 1. In the second part, which is the crucial part
of the proof, we will show that � = ∅, and thus, by the first part, the theorem follows.

So suppose that x̄ is critical. Then x̄ is of rank 1, and x̄ cannot be reduced by any
of the operations θ ′

1, θ ′
2, θ ′

3. (Recall that a cut δ(W) is proper if it is tight for x̄ and
E0(W) 	= ∅ 	= E0(W).)

4.1. Structural properties

We have the following lemmas. The first one, given without proof, is a direct consequence
of the fact that x̄ is critical.

Lemma 7. i) x̄(e) > 0 for all e ∈ E.
ii) G contains no nodes of degree 2.

iii) If for some W ⊆ V , G(W) is 2-edge connected, then E0(W) 	= ∅.

Lemma 8. Let δ(W) be a proper cut tight for x̄. Then

i) x(f ) + x(g) ≤ 1 for every two edges f, g of δ(W),
ii) |δ(W)| ≥ 4.

Proof. i) Suppose that x̄(f ) + x(g) > 1. Let y ∈ R
�(W) be the restriction of x̄ on

�(W). Clearly y is a solution of Ax = b. Let ȳ be the extension of y. Note that
ȳ ∈ P(G) and δ(W) is tight for ȳ. Also note that, as δ(W) is proper, and hence,
E0(W) 	= ∅, {e ∈ E; 0 < ȳ(e) < 1} ⊂ {e ∈ E; 0 < x̄ < 1}. As x̄ is critical, ȳ

can be written as a convex combination of integer extreme points of P(G). Let ȳ1

be one of these extreme points, and let ȳ1
0 be its restriction on �(W). Notice that

any constraint of P(G) that is tight for ȳ is also tight for ȳ1. Hence ȳ1
0 is a solution

of Ax = b, and as δ(W) is tight for ȳ, we have that ȳ1(δ(W)) = 2. Moreover,



300 J. Fonlupt, A. R. Mahjoub

since x̄(f ) + x̄(g) > 1, ȳ1 can be chosen so that ȳ1(f ) = ȳ1(g) = 1 and hence
ȳ1(e) = 0 for all e ∈ δ(W) \ {f, g}. By considering the restriction of x̄ on �(W)

we can similarly show that there exists an integer solution ȳ2 of P(G) such that its
restriction on �(W), ȳ2

0 is a solution of Āx = b̄, ȳ2(f ) = ȳ2(g) = 1 and ȳ2(e) = 0
for all e ∈ δ(W)\{f, g}. Observe that ȳ1

0(e) = ȳ2
0 (e) for all e ∈ δ0(W). Let ỹ ∈ R

E0

be the solution given by

ỹ(e) =
{

ȳ1
0(e) if e ∈ �(W),

ȳ2
0 (e) if e ∈ E0(W).

We have that ỹ is a solution of (L). Since ỹ 	= x̄0, this is impossible.
ii) If |δ(W)| ≤ 3, then there exists two edges f, g in δ(W) with x̄(f ) + x̄(g) > 1. But

this contradicts i). �
Lemma 9. If δ(S) is a cut of S(G) tight for x̄ with |S| ≥ 2, then δ(S) is proper.

Proof. If δ(S) is not proper, then at leat one of the sets E0(S) and E0(S) is empty.
Suppose, for instance, that E0(S) = ∅. Then E(S) = E1(S). Since G(S) is 2-edge
connected, x̄ can be reduced by operation θ ′

3, a contradiction. �

4.2. Case � = ∅

Proposition 1. If � = ∅, then ( G, x ) is a basic pair.

Proof. Assume that � = ∅. By Lemma 9, x̄0 is the unique solution of the linear system

x(δ0(v)) = bv, ∀ v ∈ V ∗,

where V ∗ is the set of tight nodes of V . Let G′
0 = (V ′, E′

0) be a connected component
of the fractional graph G0. Let V ∗′ = V ∗ ∩ V ′. Then the linear system

x(δ0(v)) = bv, ∀ v ∈ V ∗′, (4.1)

has also a unique solution, namely the restriction of x̄ to E′
0. Thus |V ∗′| ≥ |E′

0|. On the
other hand, since G′

0 is connected, |V ∗′| ≤ |V ′| ≤ |E′
0| + 1. Hence

|V ∗′| ≥ |V ′| − 1. (4.2)

In addition, if v ∈ V ∗, then v is adjacent to at least two fractional edges. If G′
0 is a tree,

then G′
0 has at least two (pending) nodes which do not induce tight cuts and therefore

|V ∗′| ≤ |V ′| − 2, contradicting (4.2). Thus G′
0 is not a tree, and hence |V ′| ≤ |E′

0|. We
then have that |V ∗′| ≤ |V ′| ≤ |E′

0| ≤ |V ∗′ |. Consequently, |V ∗′| = |V ′|. This implies
that V ∗′ = V ′, and the matrix of system (4.1) is the node-edge incidence matrix of a
cycle. Moreover, as this matrix is non-singular, this cycle must be odd, and therefore the
unique solution of (4.1) is x̄(e) = 1

2 for all e ∈ E′
0. We claim that E′

0 = E0. In fact, if
E′

0 ⊂ E0, let ȳ ∈ E be the solution such that

ȳ(e) =
{

x̄(e) if e ∈ E′
0,

1 if e ∈ E0 \ E′
0.
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Obviously, ȳ ∈ P(G). Also as ȳ is a unique solution of system 4.1 and ȳ(e) = 1 for
all e ∈ E \ E′

0, ȳ is an extreme point of P(G). Since x̄ � ȳ, this implies that x̄ is not
critical, a contradiction.

Consequently, G0 is an odd cycle such that x̄(e) = 1
2 for all e ∈ E0. Moreover, as x̄

is critical, by Lemma 7 i) x̄(e) > 0 for all e ∈ E. Hence x̄ = 1 for all e ∈ E \ E0. Also,
as every node of V0 is tight, it follows by Lemma 7 iii) that the integer graph, G1 is a
forest whose pending nodes are precisely the nodes of V0. Thus conditions i) and iii) of
Definition 3.1 are satisfied with respect to G and x̄.

In addition, if |δ(W)| = 2 for some cut δ(W) and, say W = {v}, then v is a node of
degree two. But this contradicts Lemma 7 ii). Therefore condition iii) of Definition 3.1
is also satisfied with respect to G and x̄. Consequently, G and x̄ form a basic pair. �

4.3. Case � 	= ∅

4.3.1. Further structural properties We first prove a basic lemma, which establishes
further structural properties of x̄ and the tight cuts of G when � 	= ∅. In particular we
will show in this case that the components of x̄ are 0, 1 and 1

2 , and all the proper cuts
have exactly four edges.

Lemma 10. If � 	= ∅, then

i) x(e) = 1
2 for all e ∈ E0, and

ii) |δ(S)| = 4 for any proper cut δ(S) of �.

Proof. Let δ(S) be a proper cut. Let δ(W) be a proper cut such that W ⊆ S and |W |
is minimum, that is |W | ≤ |S′| for any proper cut δ(S′) with S′ ⊆ S. Thus, if δ(T ) is
a tight cut with T ⊂ W , then either x(δ0(T )) = bT is redundant in (L) and hence in
Ax = b or δ0(T ) is a degree-cut. Thus we may suppose that the equations of Ax = b

all correspond to degree-cuts.
Let f = uv ∈ E0(W) and let x∗ ∈ R

E be defined as

x∗(e) =
{

x̄(e) if e ∈ E \ {f },
1 if e = f.

Clearly, x∗ ∈ P(G). If none of the nodes u and v induces a tight cut for x̄, then clearly
x∗

0 is a solution of (L). As x∗ 	= x̄0, this is a contradiction.
If only one of these nodes, say u is tight, then we have x∗(δ(u)) = 3 − x̄(f ). As

x∗ ∈ P(G) and x̄ is critical, x∗ can be written as a convex combination of integer
extreme points of P(G). Let y1 be one of these extreme points. Since x̄(f ) > 0 and thus
x∗(δ(u)) < 3, y1 can be chosen so that y1(δ(u)) = 2. Moreover, every constraint of
P(G) which is tight for x∗ is also tight for y1. Thus y1

0 is a solution of (L). As y1
0 	= x̄0,

we have again a contradiction. (Recall that y1
0 is the restrictions of y1 on E0.)

So assume that both nodes u and v are tight for x̄. Hence x∗(δ(u)) < 3 and
x∗(δ(v)) < 3. As we did in the previous case, we can show that there exists an integer
solution y2 of P(G) such that y2(δ(v)) = 2 and y2 satisfies with equality every con-
straint of P(G) which is tight for x∗. Thus y1(W) = y2(W) = 2. Moreover, we have
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y1(δ(v)) > 2 and y2(δ(u)) > 2. For otherwise, either y1
0 or y2

0 would satisfy system
(L), contradicting the fact that x̄0 is the unique solution of (L).

Now it is not hard to see that there exists 0 ≤ α ≤ 1 such that the solution

ȳ = αy1 + (1 − α)y2 (5.1)

satisfies

ȳ(δ(u)) = ȳ(δ(v)) = ρ > 2.

Note that ȳ satisfies with equality all the constraints tight for x̄ other than x(δ(u)) ≥ 2
and x(δ(v)) ≥ 2. Also note that ȳ(f ) = 1. Let z ∈ R

E such that

z(e) =
{

ȳ(e) if e ∈ E \ {f },
3 − ρ if e = f.

As z(δ(u)) = z(δ(v)) = 2, we have that z is a solution of (L). Since x̄0 is the unique
solution of (L), we then have x̄ = z.

Consider now our initial cut δ(S). Since y1(δ(S)) = 2 and y2(δ(S)) = 2, there are
four edges e1, e2, e3, e4 ∈ δ(S) such that

{
y1(e1) = y1(e2) = 1, and y1(e) = 0 for all e ∈ δ(S) \ {e1, e2},
y2(e3) = y2(e4) = 1, and y1(e) = 0 for all e ∈ δ(S) \ {e3, e4}.

Since x̄(e) > 0 for all e ∈ δ(S), it follows that |δ(S)| ≤ 4. For otherwise, there
would exist an edge e ∈ δ(S) such that y1(e) = y2(e) = 0. But this implies that
x̄(e) = z(e) = 0, a contradiction.

If ei = ej for some i, j where i ∈ {1, 2} and j ∈ {3, 4} , then ȳ(ei) = z(ei) = 1
and hence x̄(ei) = 1. But this implies that x̄(ei)+ x̄(ej ) > 1, contradicting Lemma 8 i).
Consequently, e1, e2, e3, e4 are all distinct, and therefore δ(S) = {e1, e2, e3, e4}. Hence
|δ(S)| = 4, and ii) is proved.

Moreover we have

x̄(e1) + x̄(e2) = 2α,

x̄(e3) + x̄(e4) = 2(1 − α).

By Lemma 8 i), we should also have y(e1) + y(e2) = 2α ≤ 1 and y(e3) + y(e4) =
2 − 2α ≤ 1. Thus α = 1

2 . This implies that x(e) = 1
2 for all e ∈ E0 \ {f }. Since

x̄(δ(u)) = 2 and x̄(f ) > 0, we should also have x̄(f ) = 1
2 , which proves i), and ends

the proof of the lemma. �

4.3.2. No proper cuts exist In what follows we are going to show that no proper cuts
exist. Once this fact is established, Theorem 2 follows from Proposition 1.

Suppose, on the contrary, that there exists a proper cut δ(W). By Lemma 10 ii) there
are four edges e1, e2, e3, e4 ∈ E0 such that δ(W) = {e1, e2, e3, e4}. The set W is called
a nice set if there exists a basic system A1x = b1 for W such that, after eventual permu-
tation of the four edges of δ(W), the relation x(e1) + x(e2) = 1 is the unique redundant
relation produced by A1x = b1.
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Now the proof will be organized as follows. First we will prove the following crucial
result (Proposition 2): any proper cut is induced by a nice set. The proof of this propo-
sition uses two preliminary results. The first, established by Lemma 11, states that the
family of nice sets contained in W is a nested family. (The definition of a nested family
is given below.) And the second, given in Lemma 12, shows that the polytopes PW and
PW are integral. As a consequence, we will obtain that the sets W and W are both nice.
Using this, we will finally show that there is an integer solution that satisfies system (L).
As this solution is different from x̄, we will thus get a contradiction.

By Lemma 3, if x(δ(W)) = 2 is linearly independent in the system Ax = b, then
x(e1)+x(e2) = 1 is also the unique redundant equation produced by Ax = b. However,
if x(δ(W)) = 2 is a redundant equation of Ax = b, then {x(e1)+x(e2) = 1, x(δ(W)) =
2} is a redundant system for Ax = b. Thus, if W is a nice set and x is a solution of

PW ∩ {x ∈ R
�(W); Ax = b, x(δ(W)) = 2},

then x(e1) + x(e2) = 1 and x(e3) + x(e4) = 1.
Two sets S and T are said to be crossing if S ∩ T 	= ∅, S ∩ T 	= ∅, S ∩ T 	= ∅ and

S ∩ T 	= ∅. A family of sets S1, . . . , Sk is said to be nested if S1, . . . , Sk are pairwise
noncrossing.

Lemma 11. Let W ⊂ V be a nice set. Then for every proper cut δ(T ), W and T are
noncrossing.

Proof. Assume, on the contrary, that T and W are crossing. Let W1 = W ∩ T and
W2 = W ∩ T . As δ(W) and δ(T ) are tight for x̄, it is easy to see that δ(W1) and
δ(W2) are also tight for x̄, and x̄(δ(W1, W2)) = x̄(δ(W1, W)) = x̄(δ(W2, W)) = 1. As
W ∈ S0, and by Lemma 10 i), x̄(e) = 1

2 for all e ∈ E0, we have that |δ(W1, W)| =
|δ(W2, W)| = |δ(W1, W2)| = 2. So we may suppose that δ(W1, W) = {e1, e2} and
δ(W2, W) = {e3, e4}. Let δ(W1, W2) = {f1, f2}. Then the following equations are
among those of Ax = b,

x(δ0(W1)) = x(e1) + x(e2) + x(f1) + x(f2) = 2,

x(δ0(W2)) = x(e3) + x(e4) + x(f1) + x(f2) = 2.

As W is a nice set, it then follows that the unique redundant relation of Ax = b is either
x(e1) + x(e2) = 1 or x(e3) + x(e4) = 1. Consider the following solution y ∈ R

E such
that

y(e) =






x̄(e) if e ∈ E(W) ∪ δ(W),

1 if e ∈ E(W) \ {f2},
0 if e = f2.

As δ(W) is proper, and hence G(W) is 2-edge connected, by Lemma 1, y ∈ P(G). Also
observe that both cuts δ(W1) and δ(W2) are tight for y. Hence y is a solution of the
system
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(L1)






x(e) = 1 if e ∈ (E1 ∪ E(W)) \ f2,

x(e) = 0 if e = f2,

x(e1) + x(e2) = 1,

x(e3) + x(e4) = 1,

Āx = b̄.

By Lemma 2 ii), it follows that y is the unique solution of (L1), and in consequence y

is an extreme point of P(G). Moreover we have that x̄ � y. Since y is fractional, this
contradicts the fact that x̄ is critical. �
Lemma 12. PW and PW are integral.

Proof. We show the statement for PW , the proof for PW is similar. Assume the contrary,
and let y ∈ R

�(W) be a fractional extreme point of PW . Let ȳ ∈ R
E be the extension of

y. As G(W) is 2-edge connected, from Lemma 1 it follows that ȳ ∈ P(G). Furthermore
since y is an extreme point of PW , we have that ȳ is also an extreme point of P(G).
Since δ(W) is proper, and hence E0(W) 	= ∅, we have that x̄ � ȳ. As ȳ is fractional,
this is a contradiction. �

Now suppose that the cut δ(W) is such that if S ⊂ W , then S is a nice set. As
δ(W) ∈ �. By Lemma 11 there exists a partition S1, . . . , Sr , {w1}, . . . , {ws} such that
S1, . . . , Sr are maximal noncrossing nice sets and w1, . . . , ws are tight nodes. Note
that if T ⊂ W induces a proper cut, then T ⊆ Si for some i = 1, . . . , r . Also notice
that, as by Lemma 10 i) x̄(e) = 1

2 for all e ∈ E0, every wi, i = 1, . . . , s, is either of
degree 2 or of degree 4 in G0. If wi , for i = 1, . . . , s, is of degree 2 (resp. 4), then wi

will be called a 2-singleton (resp. 4-singleton). Observe that if wi is a 2-singleton (resp.
4-singleton), then x̄(δ0(wi)) = 1 (resp. x̄(δ0(wi)) = 2), and hence x(δ0(wi)) = 1 (resp.
x(δ0(wi)) = 2) is one of the row of Ax = b.

We now establish the following which is the crucial point of the proof. It shows that
any proper cut is induced by a nice set.

Proposition 2. Any proper cut is induced by a nice set.

Proof. We will show that W is a nice set. To this end we will consider two cases.

Case 1. W contains no nice sets.

Let W ∗ be the set of tight nodes in W (i.e. W ∗ = {w1, . . . , ws}). As W does not
contain nice sets, it follows that Ax = b is given by

x(δ0(v)) = bv, ∀ v ∈ W ∗. (4.3)

Let vi, i = 1, . . . , 4 be the nodes (not necessarily distinct) of W incident to ei; i =
1, . . . , 4, respectively.

Claim 1. Let W1 ⊆ W be a node subset that induces a connected component of G0(W).
Let A1x = b1 be the linear system given by the inequalities (4.3) corresponding to the
nodes of W ∗ ∩ W1. Then
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i) |δ(W1) ∩ δ(W)| ≥ 1,
ii) Assume that A1x = b1 produces a redundant constraint distinct from x(δ(W)) =

2. Then
ii.1) G0(W1) is a tree T and all the nodes of W1 belong to W ∗,
ii.2) T has at most one 4-singleton,
ii.3) if T has one 4-singleton, then T has at least one 2-singleton, and (after

eventual permutation of edges) A1x = b1 produces a unique redundant
relation given by

x(e1) + x(e2) − x(e3) − x(e4) = 0, (4.4)

ii.4) if all the nodes of T are 2-singletons, then T is a path. Moreover, if T
is an even (resp. odd) path, then A1x = b1 produces a unique redundant
relation given by

x(e1) + x(e2) = 1, (4.5)

(resp. x(e1) − x(e2) = 0.) (4.6)

ii.5) The rows of A1x = b1 are linearly independent.

Proof. i) If δ(W1) ∩ δ(W) = ∅, then δ0(W1, W) = ∅, and therefore A1x = b1 has
a unique solution, namely the restriction of x̄ to E0(W1). Note that this solution is
fractional. As any extreme point of the polytope P ′

W = PW ∩ {x ∈ R
�(W); Ax =

b, x(δ(W)) = 2} is also a solution of the system A1x = b1, it then follows that
all the extreme points of P ′

W are fractional. Since by Lemma 12 PW is integral,
and hence P ′

W is so, this is impossible.
ii.1) We first prove that G0(W) does not contain even cycles. Indeed, assume, on the

contrary, that G0(W) contains an even cycle C = {f 1, . . . , f2p}, (k > 1). Con-
sider the solution y ∈ R

E defined as

y(e) =






x̄(e) ∀ e ∈ E \ C,

x̄(f2i+1) + ε ∀ i = 0, . . . , p − 1,

x̄(f2i ) − ε ∀ i = 1, . . . , p,

where ε > 0. Since all the equations of system Ax = b correspond to degree-cuts,
we have that y is a solution of system (L). As y 	= x̄, this is a contradiction.
Now by i), we may assume that v1 ∈ W1. Let cx = d be a redundant relation
produced by A1x = b1 and distinct from x(δ(W)) = 2. If v ∈ W ∗ ∩ W1, let
µ(v) be the weight of the equation x(δ(v)) = bv in cx = d. W.l.o.g., we may
assume that c(e1) = +1, and hence µ(v1) = +1. Let e = vw be an edge of
E0(W1). As c(e) = 0, if v ∈ W ∗ and µ(v) 	= 0, one should have w ∈ W ∗ and
µ(w) = −µ(v). As v1 ∈ W1 ∩ W ∗, and µ(v1) = +1, this implies that all the
nodes of W1 belong to W ∗, and µ(u) = +1 or −1 for all u ∈ W1. Let W 1

+
(resp. W 1

−) be the set of nodes u ∈ W1 with µ(u) = +1 (resp. µ(u) = −1).
Note that W 1

+ and W 1
− are determined in a unique way. Hence W 1

+ and W 1
−

is a partition of W1, and therefore the graph G0(W1) is bipartite. In consequence,
G0(W1) does not contain odd cycle. Since G0(W1) does not also contain even
cycles, it follows that G0(W1) is a tree T .
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ii.2) By ii.1) every pending node of T belongs to W ∗ and hence is either a 2 or a
4-singleton. Also at least one of the edges incident to it belongs to δ(W). Hence
every pending node of T is one of the nodes v1, . . . , v4. In consequence, T cannot
contain more than one 4-singleton.

ii.3) If T has a 4-singleton, then the four nodes v1, . . . , v4 belong to T . Now recall
that µ(v1) = +1 and that the weights of the equations of A1x = b1, involved
in the generation of the redundant relation cx = d are +1 and −1. Also these
weights are determined in a unique way. In consequence, there is a unique redun-
dant relation. If the weights of the constraints induced by the four nodes is +1,
then the redundant relation is x(e1) + x(e2) + x(e3) + x(e4) = 2. But this con-
tradics the fact that cx = d is different from x(δ0(W)) = 2. If only one node
among v1, . . . , v4, say v4, induces a constraint with weight −1, then the redun-
dant relation would be x(e1) + x(e2) + x(e3) − x(e4) = 1. As we also have
x(e1) + x(e2) + x(e3) + x(e4) = 2, from both equalities we get x(e4) = 1

2 . So
this implies that the polytope PW ∩ {x ∈ R

�(W), Ax = b, x(δ(W)) = 2} is
not integral, contradicting Lemma 12. Consequently, exactly two nodes among
v1, . . . , v4 induce constraints with weight −1, and therefore the redundant rela-
tion is of the form (4.4). Also note that T contains at least one 2-singleton.

ii.4) Suppose that T is an even path, and, w.l.o.g., v1 and v2 are the extremities of T .
As µ(v1) = +1, it follows that |W+| = |W−| + 1, and µ(v2) = +1. This yields
the redundant relation (4.5).
If T is an odd path, and v1 and v2 are its extremities, then |W+| = |W−| and so
µ(v2) = −1. Hence the redundant relation is of type (4.6).

ii.5) As T is a tree and the weights µ(v) for all v ∈ W1 are uniquely defined, the
statement follows.

�
As |δ(W)| = 4, from Claim 1 it follows that, if W contains no nice sets, G0(W) has at
most two connected components each being a tree and producing a redundant relation.
If Ax = b produces two redundant relations, then each relation is of type either (4.6) or
(4.5), and G0(W) has no node of degree 4. If Ax = b produces one redundant relation,
this is of type either (4.4), (4.6) or (4.5).

Case 2. W contains a nice set.

Thus r ≥ 1. As δ(S1) ∈ �, by Lemma 10 ii), there are four edges f1, f2, f3, f4 ∈ E0
such that δ(S1) = {f1, f2, f3, f4}. Let A1x = b1 be a basic system for S1. Note that
A1x = b1 can be considered as a subsystem of Ax = b. As S1 is a nice set, we may
suppose that x(f1) + x(f2) = 1 is the unique redundant relation of A1x = b1. Let
A2x = b2 be the system given by






x(f1) + x(f2) = 1,

x(f3) + x(f4) = 1,

x(δ0(T )) = bT , ∀ T ⊆ W, T ∩ S1 = ∅, T ∈ S0.

As by Lemma 11, nice sets and node sets that induce proper cuts are noncrossing, it
follows that a solution of R

�(W) satisfies Ax = b if and only if it satisfies both systems
A1x = b1 and A2x = b2.
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Claim 2. Systems Ax = b and A2x = b2 have the same sets of redundant relations.

Proof. Since x(f1) + x(f2) = 1 is a redundant relation of A1x = b1, it is clear that a
redundant relation of A2x = b2 is also a redundant relation of Ax = b. Now consider
a redundant relation cx = d of Ax = b. If this equation is not redundant in A2x = b2,
then there must exist a solution y2 ∈ R

�(W)\E0(S) of A2x = b2 such that cy2 	= d. By
Lemma 2 i) there exists a solution y1 ∈ R

�(S1) of A1x = b1 such that y1(f ) = y2(f )

for all f ∈ δ(S1). Let ỹ ∈ R
�(W) such that

ỹ(e) =
{

y1(e) if e ∈ E0(S1),

y2(e) if e ∈ �(W) \ E0(S1).

Clearly ỹ is a solution of both systems A1x = b1 and A2x = b2, and hence is a solution
of Ax = b. As cx = d is redundant in Ax = b, it then follows that cỹ = d. However,
cỹ = cy2 	= d, a contradiction. �

Claim 2 allows a reduction on the graph G0. Indeed, consider the graph G̃0 =
(Ṽ0, Ẽ0) obtained from G0 as follows:

– remove the nodes of S1 and the edges of E0(S1),
– add two new nodes s1, s2, and
– link s1 to the edges f 1, f 2 and s2 to the edges f 3, f 4.

Let W̃ = (W \S1)∪{s1, s2}. We have that A2x = b2 is the linear system corresponding
to W̃ in G̃0.

By Claims 1 and 2 we can assume, by induction on the number of maximally nice
sets of W , that A2x = b2 (and therefore Ax = b) has either one redundant relation
of type either (4.4), (4.5) or (4.6) or two redundant relations each being of type either
(4.5) or (4.6). Now the rest of the proof consists in studying all the possible cases of the
redundant relations produced by A2x2 = b2 and showing for each one either W is nice
or the considered case does not hold. As it is quite technical, this part of the proof is
omitted, the complete proof can be found in [17]. �

By Proposition 2, it follows that every proper cut in Ax = b is induced by a nice set.
In consequence, we have that both W and W are nice sets. W.l.o.g., we may suppose that
x(e1)+x(e2) = 1 is the unique redundant relation of Ax = b, and that the unique redun-
dant relation of Āx = b̄ is one of the relations x(ei) + x(ej ) = 1, i, j ∈ {1, . . . , 4}.
Suppose for instance that the redundant relation of Āx = b̄ is x(e1) + x(e3) = 1.

(The other cases can be treated in a similar way.) Consider the solution y ∈ R
4 such

that y(e1) = 1, y(e2) = 0, y(e3) = 1, y(e4) = 0. Clearly, y satisfies both redun-
dant relations. By Lemma 2 i) there exists a solution z1 ∈ R

�(W) of Ax = b with
z1(ei) = y(ei) for i = 1, . . . , 4. Similarly there is a solution z2 ∈ R

�(W) of Āx = b̄

such that z2(ei) = y(ei) for i = 1, . . . , 4. Let z ∈ R
E0 be given by

z(e) =
{

z1(e) if e ∈ �(W),

z2(e) if e ∈ E0(W).

In consequence, we have that z is a solution of system (L). Since z 	= x̄0, this is a
contradiction.

Consequently, the set of proper cuts � is empty. By Proposition 1 (G, x̄) is then a
basic pair, and the proof of our theorem is complete.
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5. Concluding remarks

In this paper we have introduced the concept of critical extreme points of the polytope
P(G), and we have given necessary conditions for a non-integer extreme point of P(G)

to be critical. As a consequence, we have obtained a characterisation of perfectly 2-edge
connected graphs.

Theorem 2 has interesting polyhedral and algorithmic consequences. First note that
operations θ ′

1, θ
′
2, θ

′
3 can be performed in polynomial time and in any order. Now con-

sider a graph G = (V , E) and a critical extreme point x̄. By Theorem 2, there exists an
odd cycle C of G such that x̄(e) = 1

2 and x̄(e) = 1 for e ∈ E \C. Morover E \C induces
a forest whose pending nodes are precisely the nodes of C. The following inequality,
which is valid for the TECP, is then violated by x̄.

∑

e∈C
x(e) ≥ |C| + 1

2
. (5.1)

Thus we have the following.

Theorem 3. Critical extreme points can be separated from the 2-edge connected sub-
graph polytope in polynomial time.

Also, if G is for instance a wheel, that is the forest induced by E \ C is a star, constraint
(5.1) defines a facet of the TECP [31]. Thus by Theorem 3 critical extreme point may
be separated by facet defining inequalities of the TECP in polynomial time. So a natural
question that arises here is to characterise the facets that can be produced by critical
extreme points.

Moreover, given an extreme point x of P(G) of rank k, one can obtain from x

extreme points of rank ≤k. Thus a further question that may be asked here is to find out
whether it is possible to lift facets induced by extreme points of rank k to facets induced
by extreme points of rank ≤k. It may be however possible that when all the non-integer
extreme points of P(G) have rank 1, the problem of the descrption of the facets of P(G)

is tractable. So we shall give the following conjecture.

Conjecture 6.2. For k fixed, if all the non-integer extreme points of P(G) have rank
≤ k, then TECSP can be solved in polynomial time.

As a final remark, let us note that the rank concept introduced in Section 3 for the
extreme points of P(G) can be extended to the faces of a polytope.

Let H ⊂ Rn be the hypercube, i.e.,

H = {x ∈ Rn; 0 ≤ xi ≤ 1, i = 1, . . . , n},
and S a subset of the extreme points of H . (Each element of S is the incidence vector
of a subset of the set {1, . . . , n}).

Let P be a polytope included in H and containing S. A non-empty face F of P is
said to be fundamental if there exists a face L of H such that F = P ∩ L. The polytope
P will be considered itself as a fundamental face. Let us denote by F(P ) the set of
fundamental faces of P , and for a point x of P by F(x) the smallest fundamental face
containing x.
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Assume now that P satisfies the following property:
Any fundamental face of P contains at least one element of S.

Note that if x is an integer extreme point of P , then the set {x} is a face of P and therefore
x is an element of S. (Thus if P is not an integer polytope, P is a relaxed polytope of
the convex hull of the elements of S). We will now define the rank of a face (extreme
point) F of P , which will be denoted by rank (F ), in a recursive way.

1) The rank of an extreme point x of P is equal to rank(F (x)).
2) The rank of a fundamental face is 0 if and only if it is integral. Thus all the integer

extreme points of P have rank 0.
3) If F is a fundamental face which is not integral, then

rank(F ) = 1 + max{rank(F ′); F ′ ∈ F(P ), F ′ ⊂ F }.
A fundamental face F (resp. an extreme point x) of P is called critical if rank(F ) = 1
(resp. rank(x) = 1).

Note that if S is the set of the incidence vectors of the 2-edge connected subgraphs
of a 2-connected graph G and if P is the polytope P(G), then the definitions related to
the rank of an extreme point and to the critical extreme points, given in Section 3, fit in
this more general concept.

A further illustration of this new general concept comes from perfect graphs. Here
S is the set of incidence vectors of the stable sets of a graph G and P is the polytope
described by the non-negativity and the so-called clique constraints. We have that P is
critical if and only if the graph G is critically imperfect.
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