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Abstract

Given a graph G = (V , E) with node weights, the Bipartite Induced Subgraph Problem (BISP) is to find a maximum weight
subset of nodes V ′ of G such that the subgraph induced by V ′ is bipartite. In this paper we study the facial structure of the polytope
associated with that problem. We describe two classes of valid inequalities for this polytope and give necessary and sufficient
conditions for these inequalities to be facet defining. For one of these classes, induced by the so-called wheels of order q, we give
a polynomial time separation algorithm. We also describe some lifting procedures and discuss separation heuristics. We finally
describe a Branch-and-Cut algorithm based on these results and present some computational results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V , E) be a graph. If W ⊂ V , then E(W) denotes the set of all edges of G with both endnodes in W. The
graph H = (W, E(W)) is the subgraph of G induced by W. A graph is called bipartite if its node set can be partitioned
into two nonempty disjoint sets V1 and V2 such that no two nodes in V1 and no two nodes in V2 are linked by an edge.
Given a weight function c : V → R that associates with every node v a weight c(v), the bipartite induced subgraph
problem (BISP for short) is to find a bipartite induced subgraph (W, E(W)) of G such that c(W) = ∑

v∈W c(v) is as
large as possible.

A stable set of a graph is a set of pairwise nonadjacent nodes. The stable set problem consists of finding a stable
of maximum weight. The BISP is a generalization of the maximum stable set problem. In fact, if H = (W, F ) is a
graph, then the maximum stable set problem in H can be reduced to the BISP in the graph G = (V , E) obtained from
H by adding for every edge uv of H, a node w with weight M, where M is a big positive value, and the edges wu and
wv. This implies that the BISP is NP-hard. The BISP has been shown to be NP-hard even in graphs with maximum
degree three and in planar graphs when the maximum degree is �4 [8]. The BISP is solvable in polynomial time in
series-parallel graphs [4] and in planar graphs when the maximum node degree is limited to three [8]. (A graph is
called series–parallel if it can be obtained from a graph constituted of one edge by the operations of subdividing and
doubling edges.)

The BISP has applications to the via minimization problem which arises in the design of integrated circuits and
printed circuit boards [8,17,6,14,5,9]. The design of printed circuit board and integrated circuits is usually broken into
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three phases, placement of the components, determination of the physical routing and layer assignment. A net is a
collection of wires (straight lines) that electrically connects a specified set of components. The latter phase consists in
assigning the wire segments of each net to the layers of the circuit so that no two wire segments of different nets cross
in the same layer. Physically a change of layers is achieved by placing a via, a contact cut or a hole to be drilled, to
electrically connect wire segments. Since vias degrade the circuit performance and cause additional cost, it is desirable
to minimize the number of vias without affecting routability. The via minimization problem is to find an assignment with
a minimum number of vias. A junction is a point on which two or more wire segments of the same net meet. The number
of wire segments which are incident to the same junction is called junction degree. The via minimization problem has
been shown to be polynomial when the maximum junction degree is �3 [17,6]. In [8] Choi et al. showed that the via
minimization problem, where the maximum junction degree is limited to 4, is NP-complete by showing that the BISP
can be transformed to the via minimization problem in that case. In [9] it is shown that the via minimization problem
with any maximum junction degree can be reduced to the BISP. So studying the BISP may permit to develop efficient
approaches for the via minimization problem. This was our motivation for investigating the polyhedral structure of the
BISP in this paper.

If W ⊂ V , let xW ∈ RV such that xW (u) = 1 if u ∈ W and xW (u) = 0 if not, xW is called the incidence vector of
W. The convex hull P(G) of the incidence vectors of the node sets of all the induced bipartite subgraphs of G, i.e.

P(G) = conv{xW ∈ RV |W ⊂ V, (W, E(W)) is bipartite},
is called the bipartite induced subgraph polytope (BIS polytope) of G.

�(G) = {W ⊂ V, (W, E(W)) is bipartite},
denotes the family of node sets of bipartite induced subgraph.

In [3] Barahona and Mahjoub studied the polytope P(G). They exhibited some basic classes of facet defining
inequalities and described several lifting methods. In [4] they studied a composition technique for the polytope P(G)

in graphs which are decomposable by two-node cutsets. If G decomposes into G1 and G2, they showed that P(G) can
be obtained from two linear systems related to G1 and G2. Using this, they gave a polynomial time algorithm to solve
the BISP in series-parallel graphs.

The closely related bipartite subgraph problem has been extensively investigated. In [2] Grötschel et al. describe
several classes of facet defining inequalities of the bipartite subgraph polytope. A graph is said to be weakly bipartite
if its bipartite subgraph polytope coincides with the polyhedron given by the trivial inequalities and the so-called
odd cycle inequalities. Grötschel and Pulleyblank [11] showed that the bipartite subgraph problem can be solved in
polynomial time in that class of graphs. Barahona [1] showed that planar graphs belong to that class of graphs. In [13]
Mahjoub extended this result by showing that the graphs noncontractible to K5 are weakly bipartite. Recently Guenin
[12] gave a characterization for this class of graphs.

The paper is organized as follows. In the following section we describe two classes of valid inequality for P(G)

and give necessary and sufficient conditions for these inequalities to be facet defining. We also give a polynomial
time separation algorithm for the class produced by the so-called wheels of order q. In Section 3 we describe some
lifting procedures of facets. In Section 4 we present our computational study. We discuss separation heuristics, give our
Branch-and-Cut algorithm and present some computational results. In the rest of this section, we give more definitions
and notations. The reader is supposed to be familiar with polyhedral theory, for more details see [16].

The graphs we consider are finite, undirected and without loops and multiple edges. We denote a graph by G=(V , E)

where V is the node set and E the edge set of G. If e ∈ E is an edge with endnodes u and v, we also write uv to denote
the edge. If G = (V , E) is a graph and F ⊂ E, then V (F) denotes the set of nodes of V which occur at least once as
an endnode of an edge in F. If W ⊂ V , then �(W) is the set of edges with one endnode in W and the other in V \W .
The set �(W) is called cut. We write �(v) instead of �({v}) for v ∈ V and call �(v) the star of v. For v ∈ V , we denote
by N(v) the set of nodes adjacent to v. If W ⊂ V , we let N(W) = (

⋃
v∈W N(v))\W , and we shall call N(W) the

neighbour set of W.
A walk P in G = (V , E) is a sequence of edges e1, e2, . . . , ek such that e1 = v0v1, e2 = v1v2, . . . , ek = vk−1vk .

A path is a walk that does not go through the same node more than once. The nodes v0 and vk are the endnodes
of P and we say that P links v0 and vk or goes from v0 to vk . The number k of edges of P is called the length of
P. If P = e1, e2, . . . , ek is a path linking v0 and vk and ek+1 = v0vk ∈ E, then the sequence e1, e2, . . . , ek, ek+1 is
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called cycle of length k + 1. A cycle (walk) is called odd if its length is odd, otherwise it is called even. If P is a
cycle or a path and uv an edge of E\P with u, v ∈ V (P ), then uv is called a chord of P. A hole of G is a cycle
without chords.

2. Facets of P(G)

In this section we introduce two new classes of facets of P(G). For one of the classes we present a polynomial time
separation algorithm.

Let G=(V , E) be a graph. If W ⊂ V is a node subset and (W, E(W)) is a bipartite subgraph of G, then the incidence
vector of W, xW satisfies the inequalities

0�x(v)�1, (1)

x(W)� |W | − 1 for all W ⊂ V such that (W, E(W)) is an odd cycle. (2)

Moreover, any 0–1 solution of inequalities (1), (2) is the incidence vector of a bipartite induced subgraph of G. The
constraints of type (1) are called trivial inequalities and the constraints of type (2) are called odd cycle inequalities.
In, [3], it is shown that inequalities (1) define facets for P(G). Moreover, necessary and sufficient conditions for
inequality (2) to define facets are provided. In particular an inequality (2) is facet defining for P(G) only if (W, E(W))

is an odd hole.
A node subset W ⊂ V is called a clique if each pair of nodes in W is joined by an edge. A clique is called maximal

if it is not strictly contained in a clique. If W ⊂ V is a clique then any bipartite induced subgraph of G cannot contain
more than two nodes. This implies that the inequality

x(W)�2 (3)

is valid for P(G). In [3], it is shown that an inequality of type (3) defines a facet of P(G) if and only if W is a maximal
clique with |W |�3.

Our first class of facets is defined by the wheels of order q of G.
A graph H = (W, F ) is called a wheel of order q where q is a positive integer, if W = Wh ∪ Wc where Wh induces

a hole and Wc is a clique of q universal nodes, which are adjacent to every node in the hole (see Fig. 1 for a wheel of
order 3). We will also write H = (Wh ∪ Wc, F ).

Theorem 2.1. Let G = (V , E) be a graph and (Wh ∪ Wc, F ) an induced wheel of order q of G. Let p = |Wh|. Then
the inequality

x(Wh) +
⌊p

2

⌋
x(Wc)�2

⌊p

2

⌋
(4)

is valid for P(G). Moreover, (4) is facet defining for P(G) if and only if

(i) p is odd,

Fig. 1. A wheel of order 3.
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(ii) for every node u of V \(Wh ∪ Wc) where {u} ∪ Wc is a clique, at least one of the following statements holds:
(a) There is a set S ⊂ Wh of �p/2� nodes such that S ∪ {u} is a stable set in G.
(b) There is a node v of Wh such that the graph induced by (Wh\{v}) ∪ {u} is bipartite.

Proof. First we show that inequality (4) is valid for P(G). Indeed, let B ∈ �(G). As Wc is a clique, B contains at most
two nodes of Wc.

• If |B ∩ Wc| = 2, then B ∩ Wh = ∅ and thus xB satisfies (4).
• If |B ∩ Wc| = 1, then B ∩ Wh is a stable set of Wh, and then |B ∩ Wh|��p/2�. Therefore xB satisfies (4).
• If B ∩ Wc = ∅, then B ∩ W ⊂ Wh. If p is odd then by inequality (2), we have |B ∩ Wh|�p − 1. And if p is even,

then trivially |B ∩ Wh|�p. In both cases we have that |B ∩ Wh|�2 �p/2�.

Consequently, (4) is valid for P(G).
Suppose that p = 2k for some k�2. Let Wh = {u1, . . . , u2k} where uiui+1 ∈ E for i = 1, . . . , p (the indices are

taken modulo p). Consider the inequalities

x(Wc) + xui
+ xui+1 �2 for i = 1, 3, . . . , 2k − 1,

which are of type (3), and hence valid for P(G). By summing these inequalities, we obtain constraint (4). This implies
that (4) cannot define a facet.

From now on, we consider that p is odd. Note that in this case inequality (4) can be written as

x(Wh) + p − 1

2
x(Wc)�p − 1.

Let u ∈ V \(Wh ∪ Wc) such that Wc ∪ {u} is a clique. Suppose that neither (a) nor (b) of (ii) hold. Let B ∈ �(G) such
that xB satisfies (4) with equality. We claim that u /∈ B. In fact, if this is not the case, then |B ∩ Wc|�1, for otherwise
the graph induced by B would contain an odd cycle.

• If B ∩ Wc = ∅, then B would contain p − 1 nodes from Wh. However, by our hypothesis, this implies that the
graph induced by B is not bipartite, a contradiction.

• If |B ∩ Wc| = 1, then B ∩ Wh is a stable set of (p − 1)/2 nodes. As (ii) (a) does not hold, there must exist a node
v ∈ B ∩ Wh, which is adjacent to u. Then {u, v, w} induces an odd cycle, where w is the node of B ∩ Wc. As
u, v, w ∈ B, this is again a contradiction.

Thus u does not belong to any set B ∈ �(G), whose incidence vector satisfies (4) with equality. But this implies that
(4) is equivalent to the constraint x(u)�0, a contradiction.

Now, suppose that (i) and (ii) hold and let p = 2k + 1, k�1. Let S ⊂ Wh be a stable set of k nodes and let v0 ∈ Wc.
Let V1 ⊂ V \(Wh ∪ Wc) be the set of nodes u such that {u} ∪ Wc is a clique. Let V2 = V \(Wh ∪ Wc ∪ V1). Let V ′

1 ⊂ V1
be a node subset of V ′

1 such that for every u ∈ V ′
1 there is a node subset Su of Wh of size k where Su ∪ {u} is a stable set

of G. By (ii) (b), for every u ∈ V1\V ′
1, there is a node, say wu, of Wh such that the graph induced by (Wh\{wu}) ∪ {u}

is bipartite. Also if u ∈ V2 then there exists a node, say vu, of Wc that is not adjacent to u. Set

Bu =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wh\{u} if u ∈ Wh,

S ∪ {u} if u ∈ Wc,

Su ∪ {u, v0} if u ∈ V ′
1,

(Wh\{wu}) ∪ {u} if u ∈ V1\V ′
1,

S ∪ {u, vu} if u ∈ V2.

For all u ∈ V , clearly Bu ∈ �(G) and xBu satisfies (4) with equality, for all u ∈ V . Moreover it is not hard to see that
the vectors xBu , u ∈ V , are linearly independent. �

Inequalities (4) will be called wheel inequalities.
The separation problem for a class of inequalities consists to decide whether a given vector x̄ ∈ RV satisfies the

inequalities, and, if not, to find an inequality that is violated by x̄. An algorithm which solves this problem is called
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Fig. 2. A path-cycle of order 4.

a separation algorithm. A fundamental result in combinatorial optimization is the well known equivalence between
optimization and separation. That is there exists a polynomial time algorithm for optimizing over a class of inequalities
if and only if the separation problem for this class can then be solved in polynomial time. Thus if for a class of
inequalities there exists a polynomial time separation algorithm, it can then be used efficiently in the framework of
a cutting plane algorithm for solving the corresponding optimization problem. The following theorem shows that the
wheel inequalities associated with wheels of order q can be separated in polynomial time, when q is fixed.

Theorem 2.2. For q fixed, the wheel inequalities associated with wheels of order q, with |Wh| odd, can be separated
in polynomial time.

Proof. Let x̄ be a given solution of RV . If q is fixed, then we can test in polynomial time the inequalities of the form

x(W) + xu + xv �2, (5)

where W is a clique of q nodes, and u, v ∈ V are adjacent to each other and universal to W. So one may assume that
inequalities (5) are satisfied by x̄. Now, let Ḡ = (V̄ , Ē) be the graph where V̄ = {u ∈ V |u is universal to W } and
Ē ={uv ∈ E |u, v ∈ V̄ }. Let �= x̄(W). With every edge uv ∈ Ē, let us associate the weight x∗

uv = (2−�)− (x̄u + x̄v).
Note that the weights in Ḡ are all nonnegative. Thus, there is an inequality of type (4), corresponding to W, which is
violated by x̄ if and only if the minimum weight of an odd cycle in Ḡ,with respect to the weight vector x∗, is less than
(2 − �). Indeed, an odd cycle C in Ḡ, where |C| = 2k + 1, has a weight

x∗(C) = (2k + 1)(2 − �) − 2x̄(V (C))

= 2(2k − k� − x̄(V (C))) + (2 − �).

Thus, x∗(C) < 2 − � if and only if x̄(V (C)) + k� > 2k, that is (4) is violated. Since finding a minimum weight odd
cycle in a graph with nonnegative weights can be done in polynomial time [10], the statement follows. �

The second class of facets is induced by the so-called path-cycles of G.
A graph H = (W, F ) is called a path-cycle of order p where p is a positive integer, if H consists of p odd holes

C1, . . . , Cp and a chordless path P ∗ such that

(i) Ci ∩ Ci+1 = Pi where Pi is a chordless path consisting of at least one edge, for i = 1, . . . , p − 1,
(ii) the paths P ∗, P1, . . . , Pp−1 are pairwise node disjoint,

(iii) for all i, j ∈ {1, . . . , p} such that i + 1 < j , Ci and Cj are node disjoint,
(iv) the path P ∗ joins a node of C1, say w0, to a node of Cp, say wp, such that w0 ∈ V (C1)\V (P1), wp ∈

V (Cp)\V (Pp−1) and V (P ∗)\{w0, wp} ∩ (
⋃

i=1,...,p V (Ci)) = ∅.

Note that a path-cycle of order p is a planar graph with p + 2 faces (including the exterior face) and a maximum
degree equal to three. A path-cycle of order 4 is shown in Fig. 2.

Given a path-cycle H =(W, F ) of order p, let H ′=(W ′, F ′) be the subgraph of H obtained by deleting all the internal
nodes of the paths P1, . . . , Pp−1. Note that the graph H ′ consists of three edge-disjoint paths P ∗, P ′, P ′′ between w0
and wp. We shall denote by C′ and C′′ the holes of H ′ formed by the paths P ′ and P ∗, and P ′′ and P ∗, respectively.
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Fig. 3.

Let w1, . . . , wp−1 and z1, . . . , zp−1 be the nodes of P ′ and P ′′ which belong to the paths P1, . . . , Pp−1, respectively,
so that each path Pi joins the node wi to the node zi . For convenience of notations, we let z0 = w0 and zp = wp and
we denote by P0 and Pp, respectively, the paths from w0 to z0 and from wp to zp, respectively. (Note that P0 and Pp

are empty.)
If u and v are two nodes of P ′ (P ′′) then u ∼ v denotes the subpath of P ′ (P ′′) between u and v. Given two integers

j, k, 1�j �k�p, we let Hj,k denote the subgraph of H induced by
⋃

i=j,...,k V (Ci).
Before showing that the path-cycles are facet inducing, we give a technical lemma which will be frequently used in

the sequel.

Lemma 2.3. Let H = (W, T ) be a path-cycle of order p. Let j, k, 1�j < k�p, be two integers such that k − j + 1
is even. Let ui ∈ {wi, zi} be a fixed node of Pi for i = j, j + 2, . . . , k − 1. Let v1 and v2 be respectively two nodes
of V (Cj )\{uj } and V (Ck)\{uk−1}, which both belong either to V (P ′) or to V (P ′′). Then the subgraph H̄j,k of Hj,k

induced by
⋃

i=j,...,k V (Ci)\{uj , uj+2, . . . , uk−1} is a tree. Moreover, the path of H̄j,k between v1 and v2 has the same
parity as v1 ∼ v2.

Proof. Let U = {uj , uj+2, . . . , uk−1}. It is easily seen that H̄j,kis a tree and hence contains exactly one path joining
v1 and v2. Let us denote by R this path (see Fig. 3).

Note that {wj−1, wj+1, wj+3, . . . , wk} ∈ W\U . Now, let Ri be the unique path of H̄j,k between wi and wi+2
for i = j − 1, . . . , k − 2. Pick an arbitrary node wi in {wj−1, wj+1, wj+3, . . . , wk−2}. If wi+1 ∈ V (R), then Ri

is precisely the subpath wi ∼ wi+2. If this is not the case, then Ri is the path Pi ∪ (zi ∼ zi+2) ∪ Pi+2. And, in
consequence, Ri ∪ (wi ∼ wi+2) is the hole Hi,i+2\Pi+1. Since Hi,i+2 consists of two odd cycles with a path in
common, it follows that Hi,i+2\Pi+1 is even and, therefore, Ri has the same parity as (wi ∼ wi+2). This implies
that the path, say R′, in H̄j,k between wj−1 and wk has the same parity as wj−1 ∼ wk . Suppose that both v1 and
v2 belong to V (P ′). The case where v1, v2 belong to V (P ′′) follows by symmetry. Note that wj−1 ∼ wk = (v1 ∼
v2) ∪ (wj−1 ∼ v1) ∪ (v2 ∼ wk). Hence, R′ has the same parity as the set (v1 ∼ v2) ∪ (wj−1 ∼ v1) ∪ (v2 ∼ wk).
Suppose that wj ∈ U and wk−1 /∈ U . (The other cases: wj , wk−1 ∈ U , wj , wk−1 /∈ U , wj /∈ U and wk−1 ∈ U , can be
treated in a similar way.) Hence R′ = (R\(wj−1 ∼ v1)) ∪ (v2 ∼ wk). And therefore the sets (v1 ∼ v2) ∪ (wj−1 ∼
v1) ∪ (v2 ∼ wk) and (R\(wj−1 ∼ v1)) ∪ (v2 ∼ wk) have the same parity. It then follows that R has the same parity
as v1 ∼ v2. �

Remark 2.4. p is even if and only if P ′ and P ′′ have the same parity.

Proof. Let q = ∑p

i=1 |E(Ci)|. Clearly p is even if and only if q is even. Since each edge of Pi , i = 1, . . . , p − 1, is
counted twice in the sum defining q, we have that q is even if and only if P ′ and P ′′ have the same parity. �

Now let G = (V , E) be a graph and let H = (W, F ) be an induced subgraph of G which is a path-cycle of order
p with p�1 such that C′ and C′′ are both odd. By the remark above, it follows that p is even. Let us associate with
H = (W, F ) the inequality

x(W)� |W | −
(p

2
+ 1

)
. (6)

Inequalities of type (6) will be called path-cycle inequalities. We have the following.

Theorem 2.5. Inequality (6) is valid for P(G).
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Proof. Let B ∈ �(G), and suppose that |B ∩ W | is maximum. (Obviously, if inequality (6) is satisfied by xB then
it is satisfied by the incidence vector of any node set inducing a bipartite subgraph of G.) Let B̄ = W\B and W =
W\⋃i=1,...,p−1V (Pi). We distinguish two cases.

Case 1: W ∩ B̄ �= ∅. Then let u ∈ W ∩ B̄. If u ∈ V (P ∗)\{w0, wp}, then since V (Ci)∩ B̄ �= ∅ for i =1, 3, . . . , p−1,
we have that |B̄|�(p/2) + 1, and thus (6) is satisfied by xB . If not, then u ∈ V (Cj ) for some j ∈ {1, 2, . . . , p}.
We may assume that j is even. (The case where j is odd follows by symmetry.) Hence, since V (Ci) ∩ B̄ �= ∅ for
i = 1, 3, . . . , j − 1, j + 1, j + 3, . . . , p − 1, it follows that |B̄|�p/2 + 1, implying that (6) is satisfied by xB .

Case 2: W ∩ B̄ = ∅. Since V (Ci) ∩ B̄ �= ∅, for i = 1, 3, . . . , p − 1, we have that |B̄|�p/2. Now, let us suppose that
|B̄|=p/2. It then follows that |B̄∩V (Pi)|=1 for i=1, 3, . . . , p−1. Let ui be the node of B̄∩V (Pi) for i=1, 3, . . . , p−1.
Since |B ∩ W | is maximum, we may assume that u1, u3, . . . , up−1 all are in {w1, . . . , wp−1, z1, . . . , zp−1}. From
Lemma 2.3 it follows that H̄ = H\{u1, u3, . . . , up−1} has a path, say R, between w0 and wp which is different
from P ∗ and has the same parity as Pp = w0 ∼ wp. Since C′ is odd, we have that the hole which consists of the
paths R and P ∗ is also odd. Therefore, H̄ is not bipartite, a contradiction. Consequently, |B̄|�p/2 + 1 and thus xB

satisfies (6). �

Theorem 2.6. Inequality (6) defines a facet of P(H).

Proof. Denote the inequality (6) by ax�� and suppose that there exists an inequality bx�� that defines a facet of
P(H) such that {x ∈ P(H) | ax = �} ⊂ {x ∈ P(H) | bx = �}. Since, by Theorem 2.5, inequality (6) is valid for P(G),
to prove that it is also facet defining it suffices to show that there is � > 0 such that b = �a.

For this, we first show that there is � ∈ R such that b(u) = � for every node u ∈ V (C′) ∪ V (C′′). To this end, let j
be an odd integer in {1, 3, . . . , p − 1}. Pick an arbitrary node u of V (C′). Consider the node sets

B1 = W\{z1, z3, . . . , zj , wj , zj+2, zj+4, . . . , zp−1},
B2 = (B1\{u}) ∪ {wj }.

From Lemma 2.3 w.r.t. v1 = w0 and v2 = wp, it follows that the graph obtained from H0,p by removing the nodes
z1, z3, . . . , zp−1 is a tree. Hence the graph induced by W\{z1, z3, . . . , zp−1} contains a unique (odd) cycle. Therefore
the graphs induced by B1 and B2 are bipartite. Moreover, axB1 = axB2 = |W | − ((p/2) + 1) = �. Thus 0 = bxB1 −
bxB2 = b(u) − b(wj ). By letting �1 = b(wj ), we then get b(u) = �1 for every node u ∈ V (C′). Similarly, we obtain
that there exists �2 ∈ R such that b(v) = �2 for every node v ∈ V (C′′). Since w0 ∈ V (C′) ∩ V (C′′), it follows that
�1 = �2 = � and thus we have proved that

b(u) = � for all u ∈ V (C′) ∪ V (C′′). (7)

Next we show that b(w) = �, for all w ∈ V (Pi)\{wi, zi}, for i = 1, 2, . . . , p − 1. For this, consider a path Pi , for
i = 1, 2, . . . , p − 1, whose set of internal nodes is nonempty and let w ∈ V (Pi)\{wi, zi}. If i is even (resp. odd),
consider the following node sets

B3 = W\{z1, z3, . . . , zi−1, zi+1, wi+2, zi+3, zi+5, . . . , zp−1},
B4 = (B3\{w}) ∪ {zi+1}
(resp. B ′

3 = W\{z1, z3, . . . , zi , wi+1, zi+2, zi+4, . . . , zp−1},
B ′

4 = (B ′
3\{w}) ∪ {zi}).

As before, using Lemma 2.3 we can show that both B3 and B4 (resp. B ′
3 and B ′

4) induce bipartite subgraphs of H.

Moreover we have that axB3 = axB4 = � (resp. axB ′
3 = axB ′

4 = �). Thus, 0 = bxB3 − bxB4 (resp. 0 = bxB ′
3 − bxB ′

4 ).
Which implies that b(w) = b(zi+1) (resp. b(w) = b(zi)). By (7), it follows that b(w) = �.

Thus, b = �a. Moreover, since ax�� is nontrivial, bx�� defines a nontrivial facet of P(H), and thus b�0.
Consequently � > 0, which finishes the proof of our theorem. �

Theorem 2.7. Let H ∗ be the subgraph of G induced by W ∪N(W). Suppose that H ∗ is of maximum degree three and
that the neighbours in H ∗ of each node u ∈ N(W) all belong to the same face of H. Let Hu, for u ∈ N(W), be the
subgraph induced by W ∪ {u}. Then inequality (6) defines a facet of P(G) if and only if for each node u ∈ N(W) of
degree three in H ∗, at least one of the faces of Hu is even.
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Proof. First of all, note that, for u ∈ N(W), Hu is planar and every node of Hu is of degree �3.
(⇐): Since inequality (6) defines a facet of P(H), to show that it also defines a facet of P(G), it suffices to show

that for every node u ∈ V \W , there is a node set B which induces a bipartite subgraph of G, contains u and whose
incidence vector satisfies (6) with equality. For this, pick an arbitrary node u of V \W . Note that u is contained in one
of the faces of H. (This face may be the exterior face of H.) Suppose that u is contained in C′ and its neighbours in
H ∗ all belong to V (P ′). (The other cases can be treated in a similar way). Since C′ is odd, it follows that exactly one
of the faces of Hu containing u is odd. Let u1 be a neighbour of u which belongs to this face such that u1 ∈ V (Cj ),
where j ∈ {1, . . . , p}. If j is odd (resp. even), consider the node set

Bu = (W\{z1, z3, . . . , zj−2, u1, zj , zj+2, . . . , zp−1}) ∪ {u}
(resp. Bu = (W\{z1, z3, . . . , zj−1, u1, zj+1, . . . , zp−1} ∪ {u}).

Clearly, Bu induces a bipartite subgraph of G, and its incidence vector satisfies (6) with equality.
(⇒): Let us suppose that the claim does not hold and let u ∈ V \W be a node of N(W) of degree three whose

neighbours, say u1, u2, u3, are in W and such that the three faces of Hu, which contain u, are all odd. By hypothesis,
we have that the nodes u1, u2, u3 all belong to one of the faces C′, C′′, Ci , i = 1, . . . , p. Since H ∗ is of maximum
degree three, we have that u1, u2, u3 are of degree two in H.

To show that inequality (6) does not define a facet in this case, we shall show that every node subset B which induces
a bipartite subgraph of G and whose incidence vector xB satisfies (6) with equality, cannot contain u. In fact, let us
assume to the contrary, that there is a node set B, containing u, which induces a bipartite subgraph of G and whose
incidence vector xB satisfies (6) with equality.

Let B̄ = W\B. Given two integers r, s, 1�r �s�p, we let B̄r,s denote the set of nodes of B̄ which are in⋃
i=r,r+1,...,s V (Ci) and H̄r,s the graph obtained from Hr,s by deleting the nodes of B̄. Note that if s − r + 1 is

even (resp. odd), then |B̄r,s |�(s − r + 1)/2 (resp. |B̄r,s |�(s − r + 2)/2). Also note that in case s − r + 1 is even,
and |B̄r,s | = (s − r + 1)/2, the nodes of B̄r,s all belong to the paths Pr, Pr+2, . . . , Ps−1 and |B̄r,s ∩ V (Pi)| = 1 for
i = r, r + 2, . . . , s − 1.

Claim 1. Let r, s ∈ {1, . . . , p}, r �s. Suppose that s − r + 1 is even and |B̄r,s | = (s − r + 1)2. Let v1 and v2 be two
nodes of V (wr−1 ∼ wr)\{wr} and V (ws−1 ∼ ws)\{ws−1}, respectively. Then there exists a path R in H̄r,s between v1
and v2 with the same parity as v1 ∼ v2.

Proof. Since the cycles Cr, . . . , Cs are all odd and |B̄r,s | = (s − r + 1)/2, one should have |V (Pi) ∩ B̄| = 1 for
i = r, r + 2, . . . , s − 1. W.l.o.g., we may assume that V (Pi) ∩ B̄ ⊂ {zi, wi} for i = r, r + 2, . . . , s − 1. Now, from
Lemma 2.3, it follows that there is a path R′ in H̄r,s between wr−1 and ws which has the same parity as wr−1 ∼ ws .

If wr ∈ R′, then we let R′′ be the path R′\(wr−1 ∼ v1) and if not we let R′′ =R′ ∪ (wr−1 ∼ v1). Now, if ws−1 ∈ R′′,
then we let R be the path R′′\(v2 ∼ ws) and if not be the path R′′ ∪ (v2 ∼ ws). Clearly, R joins v1 to v2, and has the
same parity as v1 ∼ v2. �

Claim 2. Let r, s ∈ {1, . . . , p} such that r < s and s − r + 1 is even. Let v1 and v2 be two nodes of V (P ′) ∩ V (Cr ′)
and V (P ′) ∩ V (Cs′), respectively, where r ′ �r + 1 and s′ �s. Suppose that there are two paths R1 and R2 of H̄r ′,s′
from v1 to wr and from v2 to ws , respectively. If (V (Pr) ∪ V (zr ∼ zs) ∪ V (Ps)) ⊂ B, then there is a path R of H̄r ′,s′ ,
between v1 and v2, having opposite parity to that of the path (R1, wr ∼ ws, R2).

Proof. We shall consider the case where zr ∈ V (R1) and zs /∈ V (R2) (The other cases are similar). Let R=(R1\Pr, zr ∼
zs, Ps, R2). Since the cycles Cr, . . . , Cs are all odd and s − r is odd, the paths (Pr , zr ∼ zs, Ps) and wr ∼ ws have
opposite parities. Thus the claim follows. �

Now we consider two cases.
Case 1: u is contained in a face Cj for some j ∈ {1, . . . , p}. Then u1, u2, u3 ∈ V (Cj ). We may assume that j is odd.

The case where j is even follows by symmetry (see Fig. 4).
We can easily show that for all i ∈ {1, . . . , p}, |V (Ci) ∩ B̄|�2. Since the three faces of Hu containing u are all odd

and, consequently, must be covered by at least two nodes of B̄, |V (Cj ) ∩ B̄| = 2 with |{u1, u2, u3} ∩ B̄|�1.
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Fig. 4.

Fig. 5.

Let us suppose that u1 ∈ V (zj−1 ∼ zj ), u2 ∈ V (Pj ) and u3 ∈ V (wj−1 ∼ wj) with u3 ∈ B̄ (the other cases can be
treated similarly). Then the subpath of Cj between u1 and u2 which does not go through u3 contains exactly one node
of B̄.

• If (V (u1 ∼ zj )\{zj }) ∩ B̄ �= ∅, then |B̄|� |B̄1,j−1| + 2 + |B̄j+1,p|�p/2 + 2, a contradiction.
• If V (u1 ∼ zj ) ∩ B̄ = ∅, then |B̄1,j−1| = (j − 1)/2 and |B̄j+2,p| = (p − (j + 2) + 1)/2. Thus, from Claim 1,

there are two paths R1 and R2 having same endnodes and parities as w0 ∼ wj−1 and wj+1 ∼ wp, respectively.
Since V (Pj−1) ∪ V (zj−1 ∼ zj+1) ∪ V (Pj+1) ⊂ B, it is easy to prove that, from R1 and R2, one can construct a
path R between w0 and wp with the same parity as P ′. Then R′ ∪ P ∗ is an odd cycle whose node set is in B, a
contradiction.

Let us suppose that zj ∈ B̄. Using the paths R1, (Pj−1, zj−1 ∼ zj , Pj ) and (wj ∼ wj+1, R2) together with
arguments similar to those used in the proof of Claim 2, one can show that there is a path R′ between w0 and wp

having opposite parity to that of P ′. Moreover R′ goes through u1, zj and u2. Let R be the path constructed from R′
by deleting the subpath between u1 and u2 and adding the edges u1u, uu2. Since V (wj ∼ wj+1) ∩ B̄ = ∅, R and P ∗
form an odd cycle whose node set is in B, a contradiction.

Case 2: u is contained in the face C′. (Note that this case is the same as the one where u is in the exterior face of H.
We have just to move path P ∗.)

Suppose that the nodes u1, u2, u3, all belong to the path P ′. (The case where some of the nodes u1, u2, u3 are in
the path P ∗ can be studied along the same way.) We may assume that u1, u2, u3 do not belong to the same cycle Ci .
If u1, u2, u3 are in the same cycle, then case 1 applies. So let j, k, l, 1�j �k� l�p such that u1, u2, u3 belong to
V (Cj ), V (Ck), V (Cl), respectively (see Fig. 5).

Suppose first that {u1, u2, u3} ⊂ B̄. Since |V (Ci) ∩ B̄|�1 for i = 1, . . . , j − 1, j + 1, . . . , k − 1, k + 2, . . . , l −
1, l + 1, . . . , p, |B̄|�(p/2) + 2, a contradiction. Hence, |B̄ ∩ {u1, u2, u3}|�2.

We shall consider the case where j is odd, k is even and l is odd (the other cases can be treated similarly). Moreover,
w.l.o.g., we can assume that j > 1, j + 1 < k < l − 1 and l < p − 1.

Case 2.1. |B̄ ∩ {u1, u2, u3}| = 2.
If B̄∩{u1, u2, u3}={u1, u3} or B̄∩{u1, u2, u3}={u2, u3}, then |B̄|�p/2+2, a contradiction. Thus B̄∩{u1, u2, u3}=

{u1, u2}. In consequence, |B̄1,j−1|=(j −1)/2, |B̄j+1,k−1|=((k−1)−(j +1)+1)/2 and |B̄k+1,p|=(p−(k+1)+1)/2.
From Claim 1, there are three paths R1, R2 and R3 having the same endnodes and parities as w0 ∼ wj−1, wj ∼ wk−1
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and wk ∼ wp, respectively. Thus, by Claim 2 w.r.t. R1 and R2, there is a path R between w0 and wk−1 having opposite
parity to that of w0 ∼ wk−1. Now, using again Claim 2 w.r.t. R and R3, one gets a path R′ between w0 and wp with the
same parity as P ′. Therefore, R′ together with P ∗ form an odd cycle. Since the node set of this cycle is in B, we have
a contradiction.

Case 2.2: |B̄ ∩ {u1, u2, u3}| = 1.
We may assume that u1 ∈ B̄ (the cases where u2 ∈ B̄ and u3 ∈ B̄ are similar). Thus |V (Ck) ∩ B̄| = 1. Let

V (Ck) ∩ B̄ = {z}.
If z /∈ V ((u2 ∼ wk) ∪ Pk), then |B̄k+1,l−1| = (l − k − 1)/2. Therefore by Claim 1, there is a path R between wk and

wl−1 of the same parity as wk ∼ wl−1. Thus, the cycle (uu2, u2 ∼ wk, R, wl−1 ∼ u3, u3u) is odd and its node set is
in B, a contradiction.

So suppose that z ∈ V ((u2 ∼ wk)∪Pk). Thus |B̄1,j−1|= (j −1)/2 and |B̄j+1,k−1|= (k −j −1)/2. In consequence,
by Claim 1, there are two paths R1 and R2 having the same endnodes and parities as w0 ∼ wj−1 and wj ∼ wk−1,
respectively. From Claim 2 w.r.t. R1 and R2, there is a path, say R∗, between w0 and wk−1 having opposite parity to
that of w0 ∼ wk−1. Then, we have the following claims.

Claim 3. |B̄l,p| = (p − l + 1)/2 + 1.

Proof. Obviously, |B̄l,p|�(p−l+1)/2. Suppose the statement does not hold. Then |B̄l,p|=(p−l+1)/2, and by Claim
1, there is a path R having the same endnodes and parity as u3 ∼ wp. However, since the cycles (uu1, u1 ∼ u2, u2u)

and (uu1, u1 ∼ w0, P
∗, wp ∼ u3, u3u) are odd, it follows that the cycle (uu2, u2 ∼ w0, P

∗, wp ∼ u3, u3u) is even.
Furthermore, since R∗ has opposite parity to that of w0 ∼ wk−1 and R has the same parity as u3 ∼ wp, the cycle
(uu2, u2 ∼ wk−1, R

∗, P ∗, R, u3u) is odd, a contradiction. �

Claim 4. {wl−1, wl} ⊂ B̄.

Proof. If wl−1 /∈ B̄, then V (u3 ∼ wl−2) ∩ B̄ = ∅. Moreover, since |B̄k,l−2| = (l − k − 1)/2, from Claim 1, there is a
path R between u2 and wl−2 with the same parity as u2 ∼ wl−2. Thus the cycle (uu2, R, wl−2 ∼ u3, u3u) is odd, a
contradiction. Hence wl−1 ∈ B̄.

Now in order to show that wl ∈ B̄, we first show that |V (Pl)∩ B̄|=1 and |B̄l+2,p|= (p− l −1)/2. If V (Pl)∩ B̄ =∅,
then |B̄k,l | = (l − k + 1)/2, and hence from Claim 1 there exists a path R between u2 and u3 with the same parity as
u2 ∼ u3. Thus the cycle (uu2, R, u3u) is odd, a contradiction.

Now suppose wl /∈ B̄. Then V (u3 ∼ wl+1) ∩ B̄ = ∅. By Claim 1, there is a path R between wl+1 and wp with the
same parity as wl+1 ∼ wp. However, since the cycles (uu1, u1 ∼ u2, u2u) and (uu1, u1 ∼ w0, P

∗, wp ∼ u3, u3u)

are odd, it follows that the cycle (uu2, u2 ∼ w0, P
∗, wp ∼ u3, u3u) is even. Since R∗ has opposite parity to that of

w0 ∼ wk−1, the cycle (uu2, u2 ∼ wk−1, R
∗, P ∗, R, wl+1 ∼ u3, u3u) is odd, a contradiction. �

By Claims 3 and 4, |B̄k,l−2| = (l − k − 1)/2 and |B̄l+2,p| = (p − l − 1)/2. Then from Claim 1, there are two paths
R1 and R2 having the same endnodes and parities as wk−1 ∼ wl−2 and wl+1 ∼ wp, respectively. Consequently, by
Claim 2 w.r.t. R1 and R2, there is a path R between wk−1 and wp having opposite parity to that of wk−1 ∼ wp. Note
that if we replace in C′ the path w0 ∼ wk−1 by R∗, as R∗ has opposite parity to w0 ∼ wk−1, the resulting cycle, say
C̃′, is even. If we also replace in C̃′, wk−1 ∼ wp by R, as the two paths have opposite parities, one gets an odd cycle.
However we have that all the nodes of this latter cycle are in B, which is impossible.

Case 2.3: B̄ ∩ {u1, u2, u3} = ∅.
Let

U1 = V ((u1 ∼ wj) ∪ Pj ) ∪ V (Pk−1 ∪ (wk−1 ∼ u2)),

U2 = V ((u2 ∼ wk) ∪ Pk) ∪ V (Pl−1 ∪ (wl−1 ∼ u3)).

If U1 ∩ B̄ = ∅ (the case where U2 ∩ B̄ = ∅ follows by symmetry), then |B̄j+1,k−1| = (k − j − 1)/2. Thus from Claim
1, it follows that there is a path R having the same extremities and parity as wj ∼ wk−1. Since V (u1 ∼ wj) ∩ B̄ = ∅
and V (wk−1 ∼ u2) ∩ B̄ = ∅, it follows that the cycle (uu1, u1 ∼ wj , R, wk−1 ∼ u2, u2u) is odd and its node set is
contained in B, a contradiction.

Now suppose that U1 ∩ B̄ �= ∅ �= U2 ∩ B̄.
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Claim 5.

(i) |B̄1,j−1| = (j − 1)/2,
(ii) |B̄j,k| = ((k − j + 1)/2) + 1,

(iii) |B̄l,p| = ((p − l + 1)/2) + 1.

Proof. (i) First observe that (j − 1)/2� |B̄1,j−1|�(j − 1)/2 + 1. Suppose that |B̄1,j−1| = (j − 1)/2 + 1. If V ((u1 ∼
wj) ∪ Pj ) ∩ B̄ �= ∅, then |B̄j+2,p|�(p − j − 1)/2. This implies that |V (Pi) ∩ B̄| = 1 for i = j + 2, j + 4, . . . , p − 1
and thus U2 ∩ B̄ = ∅, a contradiction. If this is not the case, then V (Pk−1 ∪ (wk−1 ∼ u2)) ∩ B̄ �= ∅, and hence
|B̄j+1,k−2|�(k − j − 1)/2 + 1. Consequently, |B̄k+1,p| = (p − k)/2 and therefore |V (Pi) ∩ B̄| = 1 for i = k + 1, k +
3, . . . , p − 1. We then have U2 ∩ B̄ = ∅, a contradiction.

(ii) We have that (k − j + 1)/2� |B̄j,k|�((k − j + 1)/2) + 1. Let us suppose that |B̄j,k| = (k − j + 1)/2. By
Claim 1, there exists a path R having the same endnodes and parity as u1 ∼ u2. Thus the cycle (uu1, R, u2u) is odd, a
contradiction.

(iii) We have that (p − l + 1)/2� |B̄l,p|�((p − l + 1)/2) + 1. Suppose that |B̄l,p| = (p − l + 1)/2. Then, since
|B̄1,j−1|�(j − 1)/2, from Claim 1, there are two paths R1 and R2 having the same endnodes and parities as w0 ∼ u1
and u3 ∼ wp, respectively. Since the cycle (uu1, u1 ∼ w0, P

∗, wp ∼ u3, u3u) is odd, the cycle (uu1, R1, P
∗, R2, u3u)

is also odd. As the node set of the latter cycle is in B, we have a contradiction. �

Claim 6.

(i) |V (Pk) ∩ B̄| = 1,
(ii) |V (Pl−1) ∩ B̄| = 1.

Proof. We will prove (i), the proof of (ii) is similar. It suffices to show that V (Pk) ∩ B̄ �= ∅. If |V (Pk) ∩ B̄|�2, as by
Claim 5(ii), |B̄j,k| = ((k − j + 1)/2) + 1, it follows that B̄ ∩ V (Ct ) = ∅ for some t ∈ {j, . . . , k − 1}, a contradiction.
Now assume, on the contrary, that V (Pk) ∩ B̄ = ∅. As k < l − 1, k is even and l is odd, we have l − k�3. If l − k = 3,
then from Claim 5, we have |B̄1,j−1| + |B̄j,k| + |B̄l,p| = (p/2) + 1 (Note that by Claim 5(i), B̄1,j−1 ∩ B̄j,k = ∅).
Therefore V (Ck+1) ∩ B̄ = ∅, a contradiction. If l − k > 3, then ((l − 2) − (k + 2) + 1)/2� |B̄k+2,l−2|�(p/2) + 1 −
|B̄1,j−1| − |B̄j,k| − |B̄l,p|�(((l − 2) − (k − 2) + 1)/2) − 1, and we have again a contradiction. �

Claim 7. If |V (Pk−1) ∩ B̄| = 1, then wk−1 ∈ B̄.
If |V (Pl) ∩ B̄| = 1, then wl ∈ B̄.

Proof. Let us suppose that |V (Pk−1) ∩ B̄| = 1 with wk−1 /∈ B̄. Then V (u2 ∼ wk−2) ∩ B̄ = ∅. By Claims 5(ii) and 6(i)
it follows that |B̄j,k−2| = ((k − 2) − j + 1)/2. Hence from Claim 1, there is a path R between u1 and wk−2 with the
same parity as u1 ∼ wk−2. But this implies that the cycle (uu1, R, wk−2 ∼ u2, u2u) is odd, a contradiction.

Now, let us suppose that |V (Pl) ∩ B̄| = 1 with wl /∈ B̄. Then V (u3 ∼ wl+1) ∩ B̄ = ∅. Observe that by Claim 5(i),
|B̄1,j−1| = (j − 1)/2, and by Claims 5(iii) and 6(ii), |B̄l+2,p| = (p − (l + 2) + 1)/2. Thus from Claim 1, there are
two paths R1 and R2 with the same endnodes and parities as w0 ∼ wj−1 and wl+1 ∼ wp, respectively. Then the cycle
(uu1, u1 ∼ wj−1, R1, P

∗, R2, u3 ∼ wl+1, u3u) is odd, a contradiction. �

Now we distinguish two cases.
Case 2.3.1: Either wk /∈ B̄ or wk ∈ B̄ and V (Pk−1) ∩ B̄ = ∅.
First suppose that either wl−1 /∈ B̄ or wl−1 ∈ B̄ and V (Pl) ∩ B̄ = ∅. In both cases, it is easy to prove that there is a

path R between u2 and u3 with the same parity as u2 ∼ u3. Then (uu2, R, u3u) is an odd cycle whose node set is in B,
a contradiction.

Consequently, wl−1 ∈ B̄ and |V (Pl) ∩ B̄| = 1. From Claim 5 together with Claim 1, it is easy to prove that there
are three paths R1, R2 and R3 having the same endnodes and parities as w0 ∼ u1, u2 ∼ wl−2 and wl+1 ∼ wp,
respectively. Then, by Claim 2 w.r.t. R2 and R3, there is a path R between u2 and wp having opposite parity to that
of u2 ∼ wp. Since the faces (uu2, u2 ∼ u3, u3u) and (uu1, u1 ∼ w0, P

∗, wp ∼ u3, u3u) are odd, then the cycle
(uu1, R1, P

∗, wp ∼ u2, u2u) is even. Hence, the cycle (uu1, R1, P
∗, R, u2u) is odd, a contradiction.
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Case 2.3.2: wk ∈ B̄ and |V (Pk−1) ∩ B̄| = 1.
Thus, by Claim 7, wk−1 ∈ B̄. Suppose that either wl−1 /∈ B̄ or wl−1 ∈ B̄ and V (Pl)∩ B̄ =∅. From Claim 5, one can

easily prove that there are two paths R1 and R2 having the same extremities and parities as u1 ∼ wk−2 and wk+1 ∼ u3,
respectively. So, by Claim 2, there is a path R between u1 and u3 having opposite parity to that of u1 ∼ u3. Hence, the
cycle (uu1, u1 ∼ u3, u3u) is even, and the cycle (uu1, R, u3u) is odd, a contradiction.

In consequence wl−1 ∈ B̄ and |V (Pl) ∩ B̄| = 1. Thus, from Claim 7, wl ∈ B̄. From Claim 5 together with Claim
1, it is easy to see that there are three paths R1, R2 and R3 having the same endnodes and parities as w0 ∼ wk−2,
wk+1 ∼ wl−2 and wl+1 ∼ wp, respectively. Then, by Claim 2 w.r.t. R1 and R2, there is a path R between w0 and wl−2
having opposite parity to that of w0 ∼ wl−2. Similarly, from Claim 2 w.r.t. R and R3, there is a path, say R̃, between
w0 and wp having the same parity as P ′. As path R̃ together with P ∗ form an odd cycle whose node set is in B, this is
a contradiction, and the proof of our theorem is complete. �

3. Construction of facets

In what follows, we describe three lifting methods that permit to construct “facets from facets’’. But first, let us give
the following remark.

Remark 3.1. If ax�� is facet defining for P(G), different from a trivial inequality, then a(u)�0 for all u ∈ V and
� > 0.

Proof. Suppose there exists a node v with av < 0. As ax�� is different from the facet induced by x(v)�0, there must
exist a set B ∈ �(G) such that u ∈ B and axB = �. Let B ′ = B\{v}. Obviously, B ′ ∈ �(G). However, as av < 0, we
have axB ′

> �, which is impossible.
On the other hand, since ax�� is facet defining, at least one of the coefficients of a, say au, is positive.As {u} ∈ �(G),

it follows that 0 < au ��. �

Our first method consists in adding an universal node.

3.1. Adding an universal node

Theorem 3.2. Let G = (V , E) be a graph and ax�� a nontrivial facet defining inequality of P(G). Let � =
max{axS |S is a stable set of G}. Let G′ = (V ′, E′) be a graph obtained from G by adding an universal node v0.
Let āx� �̄ such that

āu = au if u ∈ V ,

āv0 = � − �,

�̄ = �.

Then āx� �̄ defines a facet of P(G′).

Proof. Since ax�� is not a trivial inequality, then by Remark 3.1 � > 0. We first show that āx� �̄ is valid for P(G′).
Let B ′ ∈ �(G′). If v0 /∈ B ′, then B ′ ∈ �(G) and thus āxB ′ = axB ′ �� = �̄. If v0 ∈ B ′, then B = B ′\{v0} is a stable set
of G, and hence axB ��. Thus, āxB ′ = axB + (� − �)�� + � − � = �̄.

Next, we shall exhibit |V ′| bipartite induced node sets whose incidence vectors satisfy āx� �̄ with equality and are
linearly independent, which shows that āx� �̄ defines a facet of P(G′). Indeed, since ax�� defines a facet of P(G)

with � > 0, there are n = |V | node sets B1, . . . , Bn ∈ �(G) such that axBi = �, for i = 1, . . . , n and xB1 , . . . , xBn are
linearly independent. Now consider the sets

B ′
i = Bi for i = 1, . . . , n,

B ′
n+1 = S∗ ∪ {v0},

where S∗ is a stable set of G such that axS∗ = �. Clearly, B ′
1, . . . , B

′
n+1 ∈ �(G′). Moreover, their incidence vectors

satisfy āx� �̄ with equality and are linearly independent. �
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Fig. 6.

An immediate consequence of Theorem 3.2 is the following:

Corollary 8 (Adding an universal complete graph). Let G = (V , E) be a graph and ax�� a nontrivial facet defining
inequality of P(G). Let � = max{atxS |S is a stable set of G}. Let G′ = (V ′, E′) be the graph obtained from G by
adding a complete graph h = (W, F ) and linking each node of H to every node in G. Let āx� �̄ such that

āu = au if u ∈ V ,

āv = � − � if v ∈ W ,

�̄ = �.

Then āx� �̄ defines a facet of P(G′).

Proof. The statement follows by repeated applications of Theorem 3.2 for the nodes of W. �

Our second procedure of construction of facets consists in splitting a node. The following theorem describes this
procedure and shows that the underlying operation can be reversed.

3.2. Splitting and contracting

Theorem 3.3 (Splitting a node). (a) Let G = (V , E) be a graph and ax�� a nontrivial facet defining inequality of
P(G). Let v ∈ V be such that av > 0 and let F be an edge subset of �(v). Let G′ = (V ′, E′) be the graph obtained from
G by splitting the node v into two nodes v1, v2 such that v1 is incident to all edges of F and v2 is incident to all edges
of �(v)\F . Let a′

u = au for all u ∈ V \{v} and a′
v1

= a′
v2

= av . Suppose that every maximal bipartite induced subgraph
of G′ intersects {v1, v2} and that � + 2av = max{a′xB |B ∈ �(G′)}. Let Ḡ = (V̄ , Ē) be the graph obtained from G′
by adding a new node v3 and the edges v1v3 and v3v2 (see Fig. 6). Set

āu = au if u ∈ V \{v},
āv1 = āv2 = āv3 = av ,

�̄ = � + 2av .

Then āx� �̄ defines a facet of P(Ḡ).
(b) (Contracting a path of length two). Let G = (V , E) be a graph and ax�� a nontrivial facet defining inequality

of P(G). Let v1, v2, v3 be three nodes of G such that (v1, v2, v3) is a path, v3 is of degree two and av1 = av2 = av3 > 0.
Suppose that every maximal induced bipartite subgraph of G intersects {v1, v2}. Let G′=(V ′, E′) be the graph obtained
from G by contracting v1v3 and v3v2. Let v be the node that arises from the contraction. Set

āu = au if u ∈ V \{v},
āv = av1 ,

�̄ = � − 2av1 .

Then āx� �̄ defines a facet of P(G′).

Proof. (a) Let B̄ ∈ �(Ḡ). If |{v1, v2, v3} ∩ B̄|�2, as B̄\{v1, v2, v3} ∈ �(G), it follows that āxB̄ �� + 2av . If
{v1, v2, v3} ⊂ B̄, then let B = (B̄\{v1, v2, v3})∪{v}. Obviously B ∈ �(G) and hence āxB̄ =axB −av +3av ��+2av .
Therefore āx� �̄ is valid for P(Ḡ).



P. Fouilhoux, A.R. Mahjoub / Discrete Applied Mathematics 154 (2006) 2128 –2149 2141

Now we shall show that āx� �̄ is facet defining. Let bx�� be a facet defining inequality of P(Ḡ) such that

{x ∈ P(Ḡ) | āx = �̄} ⊂ {x ∈ P(Ḡ) | bx = �}.
To show that āx� �̄ defines a facet of P(Ḡ), it suffices to show that b = �ā for some � > 0.

Let B∗ ∈ �(G′) such that a′xB∗ = � + 2av . Then we claim that v1, v2 ∈ B∗. In fact, suppose, for instance, that
v1 /∈ B∗. Let B = B∗\{v2} if v2 ∈ B∗ and B = B∗ if not. Thus B ∈ �(G) and axB > �, a contradiction. Now consider
the sets B∗

1 = (B∗\{v1}) ∪ {v3} and B∗
2 = (B∗\{v2}) ∪ {v3}. Then B∗, B∗

1 , B∗
2 ∈ �(Ḡ) with āxB∗ = āxB∗

1 = āxB∗
2 = �̄.

This implies that bxB∗ = bxB∗
1 = bxB∗

2 = �, and thus bv1 = bv2 = bv3 .
Since ax�� defines a facet of P(G), there are n = |V | node sets B1, . . . , Bn ∈ �(G) such that xB1 , . . . , xBn satisfy

ax�� with equality and are linearly independent. As ax�� is different from a trivial inequality, there is at least one
set among B1, . . . , Bn that contains (does not contain) v. So suppose that v belongs to k, k < n, of these sets. W.l.o.g.,
we may assume that v ∈ B1, . . . , Bk . Since each maximal bipartite node set of G′ intersects {v1, v2}, it follows that for
each set Bi , i = k + 1, . . . , n, there exists vi ∈ {v1, v2} such that B ′

i = Bi ∪ {vi} ∈ �(G′). Consider the following node
sets

B̄i = Bi\{v} ∪ {v1, v2, v3} for i = 1, . . . , k,

B̄i = B ′
i ∪ {v3} for i = k + 1, . . . , n,

which belong to �(Ḡ) and verify āxB̄i = �̄, for i = 1, . . . , n. We have that bxB̄i = �, for i = 1, . . . , n. Let b′ ∈ RV

such that b′
u = bu, for u ∈ V \{v} and b′

v = bv1 . We have that the incidence vectors xB1 , . . . , xBn satisfy the inequality
b′x�� − 2bv1 with equality and are linearly independent. In consequence, b′x�� − 2bv1 defines a facet for P(G).
Note that this facet contains that defined by ax��. Therefore, bv1 = �av and bu = �au, for all u ∈ V \{v}, for some
� ∈ R. This yields bv2 = bv3 = �av , and, consequently, b = �ā.

Moreover, since ax�� is nontrivial, bx�� is also nontrivial and then � > 0. Hence āx� �̄ defines a facet of P(Ḡ).
(b) The validity of the new inequality can be shown easily as in (a) by elementary constructions. Next we shall show

that āx� �̄ is facet defining.
Since ax�� defines a facet of P(G), there are n=|V | node sets B1, . . . , Bn ∈ �(G) whose incidence vectors verify

axBi = �, for i = 1, . . . , n and are linearly independent. Set

B ′
i =

{
Bi\{v1, v2, v3} ∪ {v} if {v1, v2, v3} ⊂ Bi,

Bi\{v1, v2, v3} if not,

for i = 1, . . . , n. Clearly, B ′
1, . . . , B

′
n ∈ �(G′). Moreover, we have that āxB ′

i = �̄ for i = 1, . . . , n. Let M (M ′) be

the matrix whose columns are the vectors xB1 , . . . , xBn (xB ′
1 , . . . , xB ′

n ). To prove our claim, it suffices to show that
M ′ is of rank n − 2. We first claim that for i = 1, . . . , n, |Bi ∩ {v1, v2, v3}|�2. In fact, if this is not the case, then
by hypothesis, it follows that there exists Bi, i ∈ {1, . . . , n}, such that v3 /∈ Bi and Bi contains exactly one of the
nodes v1, v2, say v1. However, since Bi ∪ {v3} still induces a bipartite subgraph and av3 > 0, this yields axBi∪{v3} > �,
a contradiction. In addition, there must exist at least one set Bi that contains exactly two nodes among {v1, v2, v3}
and at least one set Bi that contains {v1, v2, v3}. For otherwise, the facet defined by ax�� would be included either
in the face {x ∈ P(G) | x(v1) + x(v2) + x(v3) = 2} or in the face {x ∈ P(G) | x(v1) + x(v2) + x(v3) = 3}. Since
x(v1)+ x(v2)+ x(v3)�2 is not valid (note that {v1, v2, v3} ∈ �(G)), this contradicts the former case. If the latter case
occurs then it follows that the facet is included in the trivial face {x ∈ P(G) | x(v1)=1}. But this is again a contradiction.
In consequence, we may suppose, w.l.o.g, that the sets B1, . . . , Bn are ordered in such a way that B1, . . . , Bk , 1�k < n,
contain {v1, v2, v3} and Bk+1, . . . , Bn contain exactly two nodes from {v1, v2, v3}. Therefore M ′ looks as follows

where the last line corresponds to v and A is the submatrix of M given by the lines corresponding to the nodes of
V \{v1, v2, v3}.
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Fig. 7.

Now, let L = (2, . . . , 2) be the line vector which contains twos only. Note that L = (2/�)at .M (recall that
� > 0). If we substract L from the sum of the lines of M corresponding to v1, v1, v3, we obtain the last line of
M ′. This implies that the lines of M ′ are nothing but linear combinations of lines of M. This show that M ′ is of
rank n − 2. �

Our last operation consists in subdividing a star.

3.3. Star subdivision

Theorem 3.4. Let G = (V , E) be a graph and ax�� a nontrivial facet defining inequality of P(G). Let v ∈ V such
that av > 0. Suppose that for each edge e ∈ E incident to v, there is a node set B which induces a bipartite subgraph
of G\e and such that axB = � + av . Let G′ = (V ′, E′) be the graph obtained from G by subdividing the edges incident
to v (see Fig. 7). Set

āu = au if u ∈ V ,

āu = av if u ∈ V ′\V ,

�̄ = � + |N(v)|av .

Then āx� �̄ defines a facet of P(G′).

Proof. Let N(v) = {u1, . . . , uk}, k�1. For j = 1, . . . , k, let vj be the node added on the edge vuj .
Let us show first that āx� �̄ is valid for P(G′). Let B ′ ∈ �(G′). If v /∈ B ′, then B ′\{v1, ..vk} ∈ �(G) and hence

āxB ′ �� + kav . Now suppose that v ∈ B ′. We consider two cases:
Case 1: |{v1, . . . , vk} ∩ B ′| < k. As B ′\{v, v1, . . . , vk} ∈ �(G), it follows that āxB ′ �� + kav .
Case 2: {v1, . . . , vk} ⊂ B ′. Let B = B ′\{v1, . . . , vk}. We claim that B ∈ �(G). In fact, suppose this is not the

case, and let C be an odd cycle of (B, E(B)). Clearly, v ∈ V (C), for otherwise C would be an odd cycle in the graph
obtained by removing v, which is impossible. Let u1, u2 be the nodes of V (C) adjacent to v and let P be the path in C
joining u1 and u2 and not containing v, that is P = C\{u1v, vu2}. Now let C′ be the cycle obtained from P by adding
the edges {u1v1, v1v, vv2, v2u2}. Obviously, C′ is odd. Since C′ is a cycle of the subgraph of G′ induced by B ′, this
is a contradiction. Thus B ∈ �(G) and in consequence, āxB ′ = axB + kav �� + kav � �̄. Therefore, āx� �̄ is valid
for P(G′).

Since ax�� defines a facet of P(G), there are n = |V | node sets B1, . . . , Bn ∈ �(G) such that axBi = � for
i = 1, . . . , n and xB1 , . . . , xBn are linearly independent. For uj ∈ N(v), let us denote by Dj the set of �(G\vuj ) such
that axDj = � + av . Consider the sets

B ′
i = Bi ∪ {v1, . . . , vk} for i = 1, . . . , n,

B ′
n+j = Dj ∪ {v1, . . . , vk}\{vj } for j = 1, . . . , k,
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which induce bipartite subgraphs in G′. Moreover, we have that āxB ′
i = �̄ for i = 1, . . . , n + k. Now, let M (M ′) be the

matrix whose columns are the vectors xBi , i = 1, . . . , n (xB ′
i , i = 1, . . . , n + k). Then M ′ looks as follows:

M ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M A

1 .. 1 0 1 . . 1
1 . .

: : . . .

. . 1
1 .. 1 1 . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the k last lines of M ′ correspond to the nodes v1, . . . , vk and A is a 0/1 matrix. Note that line n of M ′ corresponds
to node v. Also note that av > 0. Now perform the following operations on M ′: replace the line n by

∑i=n
i=1 aiM

′
i , where

M ′
i is the line i of M ′, and multiply each line i by �, for i = n + 1, . . . , n + k. Then substract the line n from each line

i, for i = n + 1, . . . , n + k. This yields a matrix of the form[
M̄ Ā

0 −D

]
,

where M̄ is a matrix obtained from M by linear combinations and D is a matrix which can be written as⎡
⎢⎢⎢⎣

� + av av . . av

av � + av .

. . .

. . av

av . . av � + av

⎤
⎥⎥⎥⎦ .

Thus M̄ is nonsingular. Furthermore, as �, av > 0, it can be easily seen that D is a nonsingular matrix. In conse-
quence, M ′ is nonsingular and thus xB ′

1 , . . . , xB ′
n+k are linearly independent, which implies that āx� �̄ defines a facet

of P(G′). �

3.4. Applications and examples

First of all let us remark that the validity of most of the inequalities introduced in the previous sections can also be
shown using these lifting operations. In fact, a clique inequality (3) can be obtained from a triangle by adding universal
nodes (Theorem 3.2). Also a wheel inequality can be obtained from a cycle by adding a complete graph (Corollary 8).

Further valid and facet defining inequalities can also be generated using the lifting operations. Consider for instance
a hole H1 = (W1, E1) on three nodes, see Fig. 8(a). From [3] we have that the inequality x(W1)�2 defines a facet of
P(H1). By applying twice Theorem 3.2, we get the complete graph H2 = (W2, E2) of Fig. 8(b) and the facet defining
inequality x(W2)�2 of P(H2). Now, pick a node v, take any set F of two edges incident to v and apply Theorem 3.3(a)
with respect to v and F. This yields the graph H3 = (W3, F3) of Fig. 8(d) and the associated facet defining inequality
x(W3)�4. By repeated applications of Theorem 3.3(a) for the remaining nodes of W2, we get the graph H4 = (W4, E4)

of Fig. 8(c). The resulting facet inequality is x(W4)�12. Now, if we repeatedly apply Theorem 3.4 for the nodes of
the exterior cycle of H4, we obtain the graph H5 = (W5, E5) of Fig. 8(e), and the associated facet defining inequality
x(W5)�27. Finally, by using Theorem 3.3(b), we get the graph H6 = (W6, E6) of Fig. 8(f) and the facet defining
inequality x(W6)�7. Note that graph H5 is the well known Petersen graph.

Given a wheel of order 1, the node that is universal to the exterior cycle of the wheel is called the hub. A lifted
p-wheel H =(W, F ) is a subdivision of a wheel H ′ =(W ′, F ′) of order 1 with p+1 nodes such that the cycles obtained
from the triangles of H ′ by the subdivisions are all odd. H is said to be odd (even) if p is odd (even). The hub of H ′
will also be called the hub of H.

Now let G = (V , E) be a graph and H = (W, F ) an induced lifted p-wheel of G with hub v0. Suppose that p is odd.
Consider the inequality∑

u∈W\{v0}
x(u) + p − 1

2
x(v0)� |W | − 2. (8)
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Fig. 8. Construction of facets.

Fig. 9. A lifted 5-wheel.

It is not hard to see that inequality (8) can be obtained from a wheel inequality by repeated applications of the
operations: contracting a path and subdividing a star. This implies that inequalities (8) are valid for P(G). Moreover,
these inequalities may define facets. Fig. 9 shows the construction of a lifted 5-wheel (Fig. 9(c)) from a wheel on 6
nodes (Fig. 9(a)). The graph of Fig. 9(b) is obtained by subdivision operations on the stars �(vi), i = 1, 2, 4, 5. Note
that �(v1) and �(v2) are subdivided twice. The graph of Fig. 9(c)) is obtained by contracting some paths of three nodes.
Observe that the edge between v1 and v2 is obtained by two contractions.

Cheng and Cunnigham [7] introduced a large class of valid inequalities for the stable set polytope, called general
wheel inequalities. Using the same ideas, we can describe similar inequalities, which will also be called general wheel
inequalities, valid for P(G). Inequalities (8) are nothing but a special case of these inequalities. Moreover, Cheng and
Cunnigham devised a polynomial time separation algorithm for the general wheel inequalities. One can easily extend
this algorithm to separate the general wheel inequalities for the bipartite induced subgraph polytope. We preferred
not to introduce these inequalities here for a sake of clarity. Also these inequalities are not going to be used in the
experiments we present in the sequel.



P. Fouilhoux, A.R. Mahjoub / Discrete Applied Mathematics 154 (2006) 2128 –2149 2145

4. Computational study

In this section we present a Branch-and-Cut algorithm for the bipartite induced subgraph problem. Our aim is to
address the algorithmic application of the polyhedral results described in the previous sections. So let us assume that
we are given a graph G = (V , E) and a weight vector c ∈ RV+ associated with the nodes of G. The algorithm starts by
solving a linear relaxation program of the form

max
∑
v∈V

c(v)x(v)

s.t. 0�x(v)�1 for all v ∈ V ,

x(T )�2 for all T ∈ �.

where � is a set of triangles. The optimal solution y ∈ RV of this relaxation is feasible for the problem if y is integer and
satisfies all the odd cycle inequalities. Usually the solution y is not feasible, and thus, in each iteration of the Branch-
and-Cut algorithm, it is necessary to generate further inequalities that are valid for the BIS polytope but violated by
the current solution y.

In what follows, we present separation algorithms for the different classes of inequalities used by the algorithm
as well as the way the separation of these inequalities is organized. In the second part of this section we present our
experimental results.

4.1. Separation procedures

The separation of the inequalities is performed in the following order.

1. Clique inequalities,
2. Cycle inequalities,
3. Lifted odd wheel inequalities,
4. Path-cycle inequalities.

We remark that all inequalities are global (i.e. valid in all the Branch-and-Cut tree) and several constraints may
be added at each iteration. For each class of inequalities, i = 1, . . . , 4, we associate a bound pi on the number of
constraints that may be generated from that class in each iteration. We go to the next class of inequalities i + 1 (in the
same iteration) only if less than 50pi/100 new constraints of class i could be found.

Moreover some inequalities may belong to more than one of the classes 1, . . . , 4 (like a clique inequality induced
by K4 is at the same time a wheel inequality). In order not to generate such an inequality more than once in the same
iteration, we remove one of the nodes of the graph producing it the first time in the separation.

Now we describe the separation routines used in the algorithm. These may be either exact algorithms or heuristics
depending on the class of inequalities. All the separation algorithms are applied on the graph G with weights y(v), v ∈
V , where y is the optimal solution of the current linear relaxation. In what follows, we will denote by y′ the vector
1 − y, where 1 = (1, . . . , 1)T. We also denote by Gy the support graph of y, that is the graph induced by the nodes u
with y(u) �= 0.

The separation of the odd cycle inequalities (2) can be performed in O(|V |3) time [10]. These inequalities define
facets for P(G) only when the cycles are odd holes [3]. By slightly modifying the algorithm in [10], the separation of
the odd holes inequalities can also be done in O(|V |3) time. The main idea of the algorithm developed in [10] consists
in considering a new graph G′

y = (V ′, E′) with two nodes u′ and u′′ for every node u of Gy . For every edge uv of Gy

we put the edges u′v′′ and u′′v′ with weight (y′(u) + y′(v))/2. Clearly, the graph G′
y with the node set V ′ = V1 ∪ V2

is bipartite where V1 = {u′ |u ∈ V } and V2 = {u′′ |u ∈ V }.
Now observe that a path P ′

u′v′′ in G′
y from a node u′ to a node v′′ corresponds to an odd walk Puv in Gy between u

and v. For each node u in Gy we compute a shortest path P ′
u′u′′ in G′ between u′ and u′′. The path Puu corresponds to

an odd (closed) walk containing u. Since every closed odd walk contains at least one odd hole, we compute a shortest
odd hole Cu in Puu w.r.t. the weight vector y′. This can be handled using a simple labeling technique.

Now let Cu0 such that y′(Cu0) = minu∈V ′ y′(Cu). If y′(Cu0)�1, then y(C)� |C| − 1 for all odd cycles, and hence
inequalities (2) are all satisfied by y. Otherwise, the constraint x(Cu0)� |Cu0 | − 1 would be violated by y.
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The shortest path computation is handled by Dijkstra’s algorithm. In order to speed up this computation we make
use of the well known trick to start the shortest path trees from both endpoints. Due to symmetries in the graph, both
shortest path trees starting from u′ and u′′ are identical and the computation of only one suffices.

Also the separation of odd cycle inequalities is implemented so that if an odd hole Cu is generated, then all the odd
holes already computed have a weight (w.r.t y′) greater than or equal to that of Cu. This means that sometimes there is
no need to explore all the nodes of the graph Gy .

Our separation of the clique inequalities (3) uses a simple greedy heuristic introduced by Nemhauser and Sigismondi
[15] for the stable set problem. The heuristic goes as follows: we pick a node, say v, with maximum weight (w.r.t y).
Let K = {v}. Then iterate the following:

Determine a maximum weight node among the nodes universal to K, if there is any, and add this node to K.
If y(K) > 2 then the clique inequality corresponding to K is violated.
Now, we turn our attention to the separation of lifted wheel inequalities (8). We recall that, as mentioned before, these

inequalities can be separated in polynomial time within the framework of the general wheel inequalities. However that
algorithm, which is in O(|V |4), requires that all the cycle inequalities are satisfied. For this we decided to develop a
heuristic with a more efficient time complexity. This can be presented as follows: we arbitrarily pick a node, say u, of
degree k�3, and l nodes u1, . . . , ul ∈ N(u) with l�k and odd. For every i = 1, . . . , l, we compute a shortest odd
walk Pi (w.r.t y′) between ui and ui+1 such that u /∈ V (Pi) and every node of Pi appears in at most one of the walks
P1, . . . , Pi−1, Pi+1, . . . , Pl . The idea behind this is that every walk Pi may correspond to a cycle of the lifted odd
wheel, and every node different from u may belong to at most two of these cycles. Let W = ⋃

i=1,...,l V (Pi) ∪ {u}.
If all the Pi are paths, then W induces a lifted odd wheel. Otherwise W would produce a redundant inequality. If the
former case holds, then we test whether the corresponding lifted odd wheel inequality is violated.

This heuristic is applied as far as violated lifted odd wheel inequalities can be found. If no more constraints can be
generated by this heuristic, then the exact algorithm of Section 2 is applied to find violated wheel inequalities.

We have also developed a separation heuristic for the path-cycle inequalities (6) using ideas similar to those used
in the separation heuristic for the lifted wheel inequalities. This procedure can be described as follows. Let w(e) =
(y′(u) + y′(v))/2 for all edge e = uv of Gy . We first compute a minimum spanning tree T in Gy w.r.t. w. We then
arbitrarily select three nodes, say u, v, w, of T and determine the subtree T ′ of T that covers these nodes and having,
say u and w as leaves. Note that T ′ may have two forms, either a path with u and w as extremities or a tree with all
the nodes u, v, w as leaves. Once T ′ is computed, if it contains a sufficient number of nodes, we fix q nodes in T ′,
u1, . . . , uq , with q �5, such that u1 = u, . . . , ut = v, . . . , uq = w, q is odd and u1, . . . , ut−1, ut+1, . . . , uq are in this
order on the path joining u to w. For each node uj , j = 2, . . . , q − 1, let u′

j be a neighbour of uj in V \V (T ′) and let
u′

1 = u1, u
′
q = uq . At this step we obtain a graph similar to that shown in Fig. 10(a) (Here q = 7). Then we compute a

shortest path Pi between every pair of nodes (u′
i , u

′
i+1), i = 1, . . . , q (where the indices are taken modulo q). These

paths are computed so that Pi ∪ T ′ contains an odd cycle, for i = 1, . . . , p and two paths Pi and Pj with |j − i| > 1
are node-disjoint. This leads to a graph of the same type as that given in Fig. 10(b). Now the paths Pi together with
T ′ and the set of edges {uiu

′
i , i = 2, . . . , q − 1} form a path-cycle C of order q − 1. This is shown in Fig. 10(c). Note

that Pq corresponds to the path P ∗ of the path-cycle. By construction C′ is odd. We claim that C′′ is also odd. Indeed,
the separation algorithm produces a planar graph having q interior faces which are all odd. Furthermore, each edge is
shared by at most two faces. As q is odd, the exterior face, that is C′′, must also be odd. In addition, if the weight of C
w.r.t. y is > |V (C)| − (((q − 1)/2) + 1), then a violated path-cycle inequality has been found.

We have also developed a primal rounding heuristic in order to compute a lower bound. This heuristic works
as follows. We first compute a maximum spanning tree H w.r.t. to the weight vector � ∈ RE defined as �(e) =
max(y(u)c(u), y(v)c(v)) for every edge e = uv of Gy . The idea behind this is to have in the solution a maximum
number of nodes of large weights. We then partition V into two sets V1 and V2 so that every edge of H has one extremity
in V1 and the other in V2. Let Ṽ = V and ṽ be a node of Ṽ such that y(ṽ)c(ṽ) is minimum. Let i ∈ {1, 2} such that
ṽ ∈ Vi . If ṽ has a neighbour in Vi , then an odd cycle is detected and, hence we let Ṽ := Ṽ \{ṽ}. If the graph induced
by Ṽ is bipartite, then we terminate, otherwise we iterate the process.

4.2. Computational results

We can now present some computational results obtained using our Branch-and-Cut algorithm. The algorithm has
been implemented in C++ using the ABACUS framework [18,19] and CPLEX 7.1 LP solver. It was tested on a Pentium
III 600 MHz with 512 MO RAM, running under Linux.
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Fig. 10.

The first column of the tables gives the instances names. The other entries of the table are as follows.

|V | Number of nodes,
|E| Number of edges,
Ncl Number of generated clique inequalities,
Noc Number of generated odd cycle inequalities,
Now Number of generated lifted odd wheel inequalities,
Npc Number of generated path cycle inequalities,
SB Number of generated nodes in the branch-and-cut tree,
Gap The relative error between the optimal value and the upper bound achieved before branching,
Copt The optimal value,
TT Total CPU time in minutes to solve problem instance to optimality.

For all instances we allowed a maximum of 5 h of CPU time. If for an instance the time limit exceeds, then the primal
heuristic is applied. The value of the solution given by this heuristic as well as the gap between this solution and the
upper bound obtained within the time limit, are given in italic.

Our first series of experiments, given in Table 1, concerns some via minimization instances. The first five instances are
randomly generated, however the last ones come from industry. The instances have been first transformed to equivalent
maximum bipartite induced subgraph problems. The corresponding graphs have 999 to 73 851 nodes and a maximum
degree not exceeding 4. Also, they do not have clique. This is, in fact, a consequence of the model introduced in [9].

We can see that all the instances except r200-47 have been solved to optimality in the cutting plane phase. For that
instance, we applied the primal heuristic and obtained a very small gap. We can also note that many lifted odd wheel
inequalities have been generated for the random instances. However, there are a few inequalities of that type added for
the industrial ones. Also path-cycle inequalities have not been used for these instances. This may be explained by the
particular structure of the industrial instances, which seem to be easier to solve. Finally we can observe that the odd
cycle inequalities play a central role in the resolution of all the instances.

Table 2 reports experimental results for some BIS problem instances that are randomly generated. First of all let us
note that the size of these instances is much smaller than that of those corresponding to, the via minimization problems
given in Table 1. Moreover, for all the graphs, the maximum degree is greater than 4 and the first ten instances are
more dense than the last ones. We noticed that when the graphs get more dense, the problem gets much harder to
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Table 1
Experimental results: via minimization instances

Instance |V | |E| Ncl Noc Now Npc SB Gap Copt TT

r33 − 9 999 1222 0 334 96 0 0 0 2050 0:09
r70 − 45 5211 6453 0 3457 194 36 0 0 10 527 4:43
r100 − 987 13 293 26 572 0 4861 286 38 0 0 26 646 13:26
r150 − 100 32 012 39 964 0 9585 1312 369 0 0 64 030 190
r200 − 47 57 072 71 370 0 14 522 1932 156 0 0.003 113 970 –∗

indc2 13 764 17 032 0 1983 1 0 0 0 27 490 3:18
indc5 23 520 29 042 0 3083 8 0 0 0 46 998 8:30
indm1.f1 44 408 55 162 0 4205 9 0 0 0 88 658 24:24
indt1.0 73 851 91 985 0 4333 73 0 0 0 147 404 42:40

–∗ : time limit of 5 CPU hours exceeded.

Table 2
Experimental results: randomly generated graphs

Instance |V | |E| Ncl Noc Now Npc SB Gap Copt TT

c20a 20 169 21 9 2 0 0 0 20 844 0:01
c50a 50 266 340 501 890 258 420 14.57 70 026 3:17
c50b 50 1082 353 32 3 0 8 1.56 75 123 0:19
c80a 80 2005 43 945 138 9 2 2350 6.47 156 748 –∗
c100a 100 200 1 326 1631 38 100 2.89 80 208 4:19
c100b 100 477 317 3567 11 539 131 5388 12.8 119 964 –∗
c150a 150 295 1 902 6542 98 642 2.42 122 627 61:40
c150b 150 392 16 2025 14 351 205 2404 5.51 131 266 –∗
c200a 200 347 0 1484 11 838 119 2672 1.83 153 992 –∗
n200a 200 299 0 196 276 42 0 0 138 427 0:08
n300a 300 399 0 426 1397 52 78 0.39 192 174 14:12
n500a 500 600 0 442 930 74 34 0.16 291 922 15:10
n700a 700 800 0 543 1140 54 122 0.18 380 339 56:54
n800a 800 900 0 240 146 33 0 0 428 223 0:10
n1000a 1000 1100 0 462 529 79 4 0.03 542 411 7:22
n1000b 1000 1200 0 1353 1714 394 166 1.43 551 834 –∗

–∗ : time limit of 5 CPU hours exceeded.

solve. In fact, only three of the instances have been solved to optimality in the cutting plane phase. Also, some of the
instances (with no more than 100 nodes) have not been solved within the time limit of 5 h. As shown in the table, these
instances have been solved by the primal heuristic with sometimes a very small gap. We can also note that the odd
cycle inequalities play here a minor role. However, the lifted odd wheel and path-cycle inequalities seem to be more
useful for this type of instances. In fact, in more dense graphs, cycle inequalities may be dominated by clique, wheel
and path-cycle inequalities.

Finally we can note that a large number of lifted odd wheel and path-cycle inequalities have been added for most of
the instances. This shows that the separation procedures we developed for these inequalities are effective. Moreover,
our Branch-and-Cut algorithm seems to be more efficient for via minimization instances than for general BIS problems,
because of the special structure of those instances.

5. Concluding remarks

We have studied the bipartite induced subgraph problem. We have described two classes of valid inequalities of the
associated polytope called, respectively, lifted odd wheel and path-cycle inequalities and given necessary and sufficient
conditions for these inequalities to be facet defining. We have devised a polynomial time separation algorithm for the
wheel inequalities. We have also described some lifting operations that permit to construct facet defining inequalities
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from known ones. We have provided separation heuristics for these lifted inequalities as well as for the path-cycle
inequalities. Using these results we have described a Branch-and-Cut algorithm for the bipartite induced subgraph
problem. Our computational results show that the algorithm is quite efficient for solving via minimization instances.
They also show that the lifted odd wheel and the path-cycle inequalities are effective for the more general instances.
We could also measure the performance of our separation techniques. In particular our heuristics for the lifted odd
wheel and the path-cycle inequalities have shown to be efficient.

Now it would be interesting to identify further classes of facet defining inequalities of the bipartite induced subgraph
polytope. It would also be interesting to study a column generation method that can be incorporated in our Branch-
and-Cut algorithm. This may permit to solve larger instances of the BIS problem in a very efficient way. We are now
making investigations in this direction.
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