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This article deals with the Two-edge connected Hop-
constrained Network Design Problem (or THNDP for
short). Given a weighted graph G = (N, E), an integer
L > 2, and a subset of pairs of nodes D, the problem
consists of finding the minimum cost subgraph in G con-
taining at least two edge-disjoint paths of at most L hops
between all the pairs in D. First, we show that the THNDP
is strongly NP-hard even when the demands in D are
rooted at some node s and the costs are unitary. However,
if the graph is complete, we prove that the problem in this
case can be solved in polynomial time. We give an inte-
ger programming formulation of the problem in the space
of the design variables when L = 2,3. Then we study the
associated polytope. In particular, we consider the case
where all the pairs of nodes of D are rooted ata node s. We
give several classes of valid inequalities along with nec-
essary and/or sufficient conditions for these inequalities
to be facet defining. We also derive separation routines
for these inequalities. We finally develop a branch-and-
cut algorithm based on these results and discuss some
computational results for L = 2, 3. © 2006 Wiley Periodicals,
Inc. NETWORKS, Vol. 49(1), 116—133 2007
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1. INTRODUCTION

Let G = (N,E) be a graph. Let D € N x N be a set of
pairs of nodes, called demands. If the pair {s,t} is a demand
in D, we will call s and ¢ demand nodes or terminal nodes. In
particular, when several demands {s, 1}, .. ., {s, t4} are rooted
at the same node s, we will speak of s as a source node and
of the 1;s as the destination nodes of s. The nodes in N that
do not belong to any demand of D will be called Steiner
nodes.

Let L > 2 be a fixed integer. If s, f are two nodes of NV, an
L-st-path in G is a path between s and 7 of length at most L,
where the length of a path is its number of edges (or hops).
Given a function ¢ : E — R, which associates a cost c(e) to
each edge e € E, the Two-edge connected Hop-constrained
Network Design Problem (THNDP) s to find a minimum cost
subgraph such that, between each demand {s,t} € D, there
exist at least two edge-disjoint L-st-paths. If all the demands
in D are rooted at some node s, then we will speak about the
rooted THNDP.

In practice, the THNDP addresses the actual need of
designing telecommunication networks of high survivabil-
ity. Indeed, basic requirements, like 2-edge connectivity, for
example, are often not sufficient to guarantee an effective sur-
vivable network. Further technical constraints must be added
to guarantee the quality of the rerouting paths in the net-
work. Actually, there are two types of rerouting strategies
in telecommunications: the local, and the end-to-end rerout-
ings. In the second one, in case of a link failure, the traffic
is rerouted between its endnodes along an alternative path.
This one has to be short enough so that this procedure can
be accomplished in a minimum time. This strategy is used
in the ATM and SDH/SONET networks and the Internet,



for example. In such situations, hop-constrained paths offer
exactly the reliability required.

In this article, we study the THNDP from a polyhedral
point of view. We first show that the rooted THNDP is
strongly NP-hard even for L = 2. We give an integer pro-
gramming formulation for L = 2,3. We introduce several
classes of valid inequalities along with necessary conditions
and sufficient conditions for these inequalities to be facet
defining. We also discuss separation routines for these classes
of inequalities. Using this, we propose a branch-and-cut algo-
rithm for the THNDP when L = 2,3, and present some
computational results.

Despite its practical interest, we are not aware of previous
work on the THNDP. However, the related problem where
node-disjunction is required between the paths linking the
demands has already been studied in [21]. The authors give
three compact formulations for the problem and discuss com-
putational results. Moreover, the particular case where the
set of demands D is of cardinality 1 has been investigated
by Huygens et al. [26] for two edge-disjoint L-st-paths with
L = 2,3, and by Dahl et al. [10] for k-edge-disjoint 2-s¢-paths
with k > 2. For both problems, a complete and minimal linear
description of the corresponding polytope is given.

Many related problems have been however investigated.
In [7], Dahl considers the hop-constrained path problem, that
is, the problem of finding between two distinguished nodes s
and 7 a minimum cost path with no more than L edges when
L is fixed. He gives a complete description of the dominant of
the associated polytope when L < 3. Dahl and Gouveia [9]
consider the directed hop-constrained path problem. They
describe valid inequalities and characterize the associated
polytope when L < 3. In [5], Coullard et al. investigate the
structure of the polyhedron associated with the st-walks of
length L of a graph, where a walk is a path that may go through
the same node more than once. Dahl et al. [8] also consider
the hop-constrained walk polytope.

The closely related problem of finding a minimum
cost spanning tree with hop-constraints is considered in
(16, 17, 22]. Here, the hop-constraints limit to a positive
integer L the number of links between the root and any des-
tination node in the network. Dahl [6] studies the problem
for L = 2 from a polyhedral point of view, and gives a
complete description of the associated polytope when the
graph is a wheel. Gouveia and Janssen [18] discuss a gener-
alization of the previous problem where two different cable
technologies with different reliabilities are available. In [11],
Dahl and Johannessen consider an extension of the short-
est hop-constrained path problem with L = 2 called the
2-path network design problem. Given a set of pairs of ter-
minal nodes, this problem consists of finding a minimum
cost subgraph connecting each pair of terminal nodes by at
least one path of length at most 2. The authors discuss a
polyhedral approach for the problem and devise a cutting
plane algorithm. Gouveia and Magnanti [19] consider the
problem that consists of finding a minimum spanning tree
such that the number of edges in the tree between any pair
of nodes is limited to a given bound (diameter). In [20],

Gouveia, et al. provide an alternative modeling approach for
that problem when the tree diameter is odd. Further hop-
constrained survivable network design problems are studied
in [1-3, 29, 30, 32]. A survey of survivability, which also
includes a section with hop-constraints, can be found in [28].

We assume familiarity with graphs and polyhedra. For spe-
cific details, the reader is referred to [4] and [33]. The graphs
that we consider are finite, undirected, loopless, and may have
multiple edges. A graph is denoted by G = (N, E), where N
is the node set and E is the edge set. If V,W C N, [V, W]is
the set of edges having one endnode in V and the other one in
W. Note that we will write [v, w] instead of [{v}, {w}]. Given
two nodes u and v such that [u, v] is not empty, we will denote
by uv an arbitrary edge of [u, v]. If W C N is a node subset of
G, then the set of edges that have only one node in W is called
a cut and denoted by §(W). We will write §(v) for §({v}). A
cut §(W) such that s € W and ¢+ € N\W will be called an
st-cut. For a partition IT = (Vo, Vi, ..., Vi) of N, the associ-
ated multicut in G, denoted by A (G) = 8(Vo, Vi, ..., Vi),
is the set of edges having their endnodes in two different
subsets. For a partition TT = (Vo, V1,..., Vi) of N, we will
denote by ER? = Uizpp11,.4[Vis Vis1] the set of edges
between the consecutive subsets Vy,, Vpi1,.. .5 Vgti of TIT.
A path P of G is an alternating sequence of nodes and edges
(U1, er,u2,€3,. .., Ug—1,€q-1,Ug), where ¢; € [u;,u;y1] for
i=1,...,q— 1. We will denote a path P by either its node
sequence (uy,...,lq) or its edge sequence (et «aeg=1):
(The node sequence notation of a path will be used only if
the edges of the path can be taken arbitrarily.) A cycle.in
G is a path whose endnodes coincide, that is, ugp = ug. It
will be denoted in the same way as a path. We will define
the length of a cycle as its number of edges. Finally, a chord
is an edge between any two nonadjacent nodes of a path
(cycle).

Given a graph G = (N, E) and an edge subset F' C E,
the 0 — 1 vector xf € RE, such that xF(e) = life € F
and xF' (e) = 0 otherwise, is called the incidence vector of F.
Given a set of demands D € N x N and an integer L > 2,
the convex hull of the incidence vectors of the solutions to
the THNDP on G, denoted by Pg(D, L), will be called the
THNDP polytope. Given a vector w € RE and an edge subset
F CE,weletw(F)=)_,.pw(e).

The article is organized as follows. In the next section,
we investigate the complexity of the rooted THNDP. In
Section 3, we give an integer programming formulation for
the problem when L = 2,3. In Section 4, we present some
new classes of valid inequalities. Necessary and sufficient
conditions for these inequalities to be facet defining are dis-
cussed in Section 5. In Section 6, we study the separation of
these inequalities. In Section 7, we derive a branch-and-cut
algorithm and present our experimental results. Finally, in
Section 8, we give some concluding remarks.

2. COMPLEXITY OF THE ROOTED THNDP

It is easy to see that the rooted THNDP is a generaliza-
tion of the two-edge connected subgraph problem. Given a
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graph with weights on its edges, this latter problem consists of
finding a minimum weight subgraph such that, between every
pair of nodes, there exist at least two edge-disjoint paths. So
the two-edge connected subgraph problem is nothing but the
rooted THNDP for D = {s} x N and L sufficiently large. It is
well known that this former problem is NP-hard, even when
the weights are all equal to 1. This implies that the rooted
THNDP is also NP-hard in this case. Moreover, because the
input is then of polynomial length, we have that the rooted
THNDP is strongly NP-hard.

In what follows, we are going to show that the rooted
THNDP remains strongly NP-hard for every fixed L > 2.

Theorem 1. For L fixed, the rooted THNDP is strongly
NP-hard.

Proof. We will show that any instance of the mini-
mum cardinality dominating set problem can be polynomially
transformed to an instance of the rooted THNDP with L > 2.
As the former problem is NP-hard (see [13]), this will prove
that the latter one is also NP-hard. Moreover, as the input
data of the corresponding THNDP instance will always be
of polynomial length, we obtain that this problem is strongly
NP-hard.

Consider an instance G = (N ,E) of the dominating set
problem. This problem consists of finding a subset N’ of N of
minimal cardinality such that every node in N\N' is adjacent
to at least one node of N'.

Let us construct an instance of the rooted THNDP for a
fixed value of L in the following way. We create a source node
s, and two copies, Ni and Ns, of N. Construct an edge sv for
eachnodev € NyUN,, and an edge v v, betweenv; € Np and
v2 € N3 if the corresponding nodes in N are either the same or
adjacent to each other in the original graph G. Finally, insert
L — 2 nodes of degree 2 on each edge between either s and
N, or Ni and N,. Observe that the latter operation transforms
these edges into paths of length L — 1, which we denote in
the following way. For each u ¢ {s}UN; and v € N, let us

call P, the (L — 1)-uv-path. Let us denote by G = (N, E) the
auxiliary graph. See Figure 1 for an illustration for [, = 3.
We consider the rooted THNDP on G, with unit costs on all
edges, and the set N, as destination nodes relative to s.

Let §* be an optimal solution to the rooted THNDP in
G with respect to s and N;. We are going to show that an
optimal solution of the THNDP in G corresponds to a min-
imum cardinality dominating set in G and conversely. Let

I' = UveNz Pgyand I'y = UueN[,veNg Pl

Claim 1. There exists an optimal solution S* of the rooted
THNDP in G such that

(i) S* contains all the paths of Iy, and
(ii) §* contains exactly |N| paths from Iy.

Proof. First we remark that any feasible solution to the
THNDP will contain at least 2|N| paths from I'; UT"5, because
such a path used for an L-svp-path, with vy € Ny, cannot be
used for an L-sv))-path, where vy € N2\ {v2}. Moreover, an
optimal solution S* for the THNDP in G can be considered
so that it contains the |N| paths of T';. Indeed, if a path of I'y,
say Py, with vy € N5, is not taken in S *, then there must exist
two L-sv;-paths in the solution, going through N;. Therefore,
the optimal solution contains two paths from I'; incident to
v2. Now, by replacing one of these two by Py,,, we get a
solution with the same cardinality, hence being still optimal,
and containing Py,,. This shows @d).

Finally, by (i) and the first remark, we have that S* must
contain at least |N| paths in ["2. As for each node v, € Ny,
only one path from I'; is needed in S*, it follows that A\
contains exactly |N| paths from 'y, which establishes (i1). O

By Claim 1, all the paths of I'; can be considered in §* and
S§* then contains exactly |N| paths from I';. Asa consequence,
determining such an optimal solution $* reduces to finding
a minimum number of edges between s and N; such that,
for each node v, € N, there is a path of length exactly L

Q u
w
v :
©.
G =(N,E)

FIG. 1. An instance of the dominating set problem (graph G) and the corresponding instance of the rooted

THNDP with L = 3 (graph G).
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between s and v, going through N; and using one of those
|N| paths of I';. Because every node of N is adjacent to s,
this is equivalent to finding a minimum cardinality subset N 1
of N that covers all the nodes of Ny, in the sense that all the
nodes of N are reachable by the paths of I'; going out of V7.
See, for instance, Figure 1, where S* is represented by the
bold edges.

Claim 2. A node subset N’ of N is a dominating set of G
if and only if the corresponding subset Nj of Ny covers all
the nodes of Ny in G.

Proof. Suppose that we have a dominating set N’ of G.
By definition, each node of N\N " is adjacent to at least one
node of N'. Let N| and N} be the sets of nodes corresponding
to N’ in N and Na, respectively. In G, we have that each
node in N2\N§ is adjacent to at least one node of N i C N
by a path of I';. Moreover, by construction, each node of
N} is adjacent to its copy in Nj. Hence, we have that N> is
covered by the paths of I, going out of Nj. The other way is
similar. a

By Claim 2, and the above developments, the minimum
cardinality subset N; C N that covers Na corresponds to a
minimum cardinality dominating setin G (e.g., the black node
w in Fig. 1). Moreover, it is clear that any optimal solution in
G can be transformed into a solution verifying the conditions
of Claim 1 in polynomial time. B

For rooted demands and unitary costs, along with the addi-
tional assumption that the underlying graph is complete, the
THNDP can be solved in polynomial time, as shown in the
following theorem. This result is based on Theorem 6, stated
and proved later on.

Theorem 2. If the graph G is complete, and all edge
costs are equal to 1, the rooted THNDP can be solved in
polynomial time for every L > 2.

Proof. LetD = {{s,t1},{s,t2},...,{s,t4}} be asetof d
demands rooted at some node s. By Theorem 6, the minimum
number of edges of a feasible solution to the THNDP is [(L+
1)d/L). Because the graph G is complete, it is easy to build a
solution having exactly this number of edges, hence, optimal
for the THNDP in G with unitary costs. This solution can
be constructed in the following way. We consider the first
L destination nodes and cover them, along with s, with a
simple cycle of length L + 1. Observe that each destination
node ¢; that is considered is covered by two edge-disjoint L-
st;-paths. This procedure is iterated for sets of L destination
nodes until there remain [ < L destination nodes to cover.
If I = 0, we are done. If [ = 1, we link the last destination
node #4 to s and to t4_1 (two additional edges). The resulting
solution contains [(L + 1)d/L] edges. If [ > 1, we cover
the [ remaining destination nodes, along with s, by a simple
cycle of length [ + 1, and the obtained solution contains the
desired number of edges. B

3. INTEGER PROGRAMMING FORMULATION

It is clear that the incidence vector x of any solution
(N, F) of the THNDP satisfies the following inequalities:

x(8(W)) = 2,

1>x()>0,

for all st-cuts (W), {s,t} € D,

foralle € E.

The first inequalities are called st-cut inequalities, and the
second ones are called trivial inequalities.

In [7], Dahl introduces a class of valid inequalities for
the hop-constrained s¢-path problem as follows. Let TT =
(Vo, Vi, ..., Vit1) be a partition of N such that s € Vo,
teViyandV; #@foralli=1,...,L. Let T be the set of
edges e = uv where u € V;, v € V; and |i —j| > 1, that is,
= AH(G)\E%L. Then the inequality

x(T) > 1

is valid for the L-path polyhedron. The set T is called an L-
path-cut (or L-st-path-cut). Figure 2 presents an example of
an L-st-path-cut for L = 3.

Using the same kind of partitions, these inequalities can be
generalized in a straightforward way to the THNDP polytope
as

x(T) = 2,

for any L-(st-)path-cut T relative to any demand (s, t} €
D. Constraints of this type will be called L-(st-)path-cut
inequalities.

In consequence, consider the following inequalities,
which are valid for the THNDP for L > 2:

x(8(W)) > 2, for all st-cuts §(W), for all {s,t} € D, (1)

x(T) > 2, for all L-st-path-cuts T, for all {s, t} e D,

()
x(e) <1, foralle € E, 3)
x(e) >0, foralle € E. 4)

We will show that the system of inequalities (1)—-(4) along
with integrality constraints formulates the THNDP as an inte-
ger program when L = 2, 3. For this, we need the following
lemma, whose proof can be found in [26].

FIG. 2. Support graph of an L-st-path-cut inequality for L = 3.
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Lemma 1. Let G = (N,E) be a graph, with s and t two
nodes of N, and L € {2,3). Suppose that two edge-disjoint
L-st-paths in G do not exist. If G contains an L-st-path, then
there exists an edge that belongs to every L-st-path.

Theorem 3. Let G = (N,E) be a graph and L € (2,3).
Then the THNDP is equivalent to the integer program

min{cx; subject to (1)~(4), x € {0, 1}£).

Proof. First of all, note that as inequalities (1)—(4) are
valid for the THNDP, the system (1)—(4) is satisfied by any
feasible solution of the THNDP. Now, let x* be the incidence
vector of a network (V, F) of G = (N, E) that is not feasible
for the THNDP. Then, by definition of the problem, there
must exist at least one demand {s, t} € D that is not linked by
two edge-disjoint paths of length at most L. Let us suppose
that x* satisfies all the cut constraints (1) (and, because it is
a boolean vector, all the trivial constraints (3) and (4)). We
will show that there is a constraint of type (2) that is violated
by x¥ for the demand {s, ¢}.

By hypothesis, there do not exist in (V,F ) two edge-
disjoint L-st-paths. Consequently, by Lemma 1, there is at
most one edge, say ep, belonging to every L-st-path (if
any) in (V,F). If eq exists, we consider the subgraph H =
(V,F\{eo}). If not, we simply consider H = (V,F).In H,
it is clear that there are no L-st-paths. On the other hand,
because all the constraints of type (1) are satisfied by xf,
there must exist at least two edge-disjoint paths between s
and ¢ in (V, F). Thus, there remains at least one st-path in H,
of length at least L + 1.

Now we define a partition (Vp, V, . . ., Vi+1) in H in the
following way. The subset Vi,i=1,...,L, contains all the
nodes at distance i from s in this subgraph (distance being
defined as the minimum number of edges of a path from s
to the node). The subset V.| contains all the other nodes.
By the previous remarks, we have that s € Vo,t € Vi1 and
all the V;’s are nonempty. Moreover, by construction, there
is no edge of H having its endnodes in two subsets Vi and
Vj with |i — j| > 1. Therefore, by considering the L-st-path-
cut associated with this partition, we get that no edge of H
belongs to the L-sz-path-cut, and hence xF (T) < 2. m

Unfortunately, this result is no longer true when L > 4,
because this is already the case when |ID| = 1; see [26].
In fact, as shown in [25], in addition to inequalities (1)—(4),
further valid inequalities are needed to formulate the problem
as an integer linear programming problem when L = 4. We
have, however, identified other classes of valid inequalities
for the THNDP, for any L > 2. The next section is devoted
to these classes.

4. VALID INEQUALITIES

In this section, we present new classes of valid inequalities
for the THNDP for any L > 2 and set of demands D —
{{s,11}, ..., {s4,14}} with d > 2. Note that some demands
may have common nodes.
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Theorem 4. Let G = (N,E) and T1 = Vo, Vi, ..., Viar)
be a partition of N with s| € Vy (resp., t| € Vy) and t| €
Vit1 (resp., s1 € Viyy). Letio € {0,. .., L} be such that Vis
and Vi 1\ induce a s;, tj, -cut and a sj,t;,-cut with {sj,. 4, } and
{sj,,;,} in D. (Note that j| and j, may be the same.) Let

E=[V,_, VieJU [Vig 11, Vigs2]

U U

kl@{io.io+1}, |k—1|>1

V. Vil ],

and F C E. Then the inequality
X(An(GN\F UEY > UERT2 Dy > 3 |1F|/2]  (5)
is valid for P6(D, L).

Proof. Observe that the following inequalities are valid
for the THNDP:
x(8(Vip)) > 2,
x(8(Vig+1)) > 2,
*(An(GO\ER") > 2,
=) =1,
x(f) = 0,

forall f € F,
forall f € E\F.

By summing these inequalities, dividing the sum by 2, and
rounding up the right-hand side to the next integer, we obtain
inequality (5). |

Inequality (5) will be called a double cut inequality, and
the set of edges having a positive coefficient in (5) a dou-
ble cut. The name double cut comes just from the fact that
(exactly) two cuts are used for generating the inequalities by
the Chvatal-Gomory procedure.

Later on, we will discuss special cases of these inequalities
that will be used in our experimental study. This will concern
in particular the case where L = 2,3 and ip = 0 (in that case
Vi,—1 does not exist).

e If L = 2, then the partition IT is of the form Vo, Vi, Vo, V3)
with s1 € Vj (tesp., t; € Vp), 1, € V; and 1, € V3 (resp.,
51 € V3). Consider F = {e} € [V, V,]. In this case, the
double-cut inequality (5) can be written as

X@(Vo)) +x([V1, V3D +x([V1, Val\{e}) = 3. (6)

o If L = 3, then the partition IT is of the form Vo, ..., V4)
with s1 € Vp (tesp., t; € Vp), 1» € V; and t; € V3 (resp.,
s1 € V3). Consider F = {e} € [Vy, V,]U[Va, V4]. In this case,
the double-cut inequality (5) (see Fig. 3) can be written as

2@ (Vo)) +x([V1, V3 U Val) +x([V1 U Vs, Val\fe]) > 3. (7)

Actually inequality (6) (or (7)) expresses the fact that we
need two (jump) edges to satisfy the L-path-cut induced by
the partition with respect to s; and 7;, and one more edge
(with e from §(V})) to satisfy the s,#-cut induced by V.



FIG.3. Support graph of a double cut inequality for L = 3.

Our second class of valid inequalities are given for L =
2,3 and are called triple path-cut inequalities. In a similar
way as before, we will speak of a triple path-cut as the set
of edges having a positive coefficient in such an inequality.
They are defined as follows.

Theorem 5. (i) Let L = 2 and (Vo,V1,...,V4) be a par-
tition of N with s1,52 € Vo, t1 € Vz and tp € Va. Then the
triple path-cut inequality (see Fig. 4)

2x([Vo, Val) + x([Vo, V31) + x([Vo, Val)
+x([Vi, Va\{e}) + x([V1, Val) +x([V3, Va]) = 3, (8)

where e € [V, V3], is valid for Pg(D,?2).

(ii)Let L = 3 and (Vo, V1, ..., Vs) beapartition of N with
s1,50 € Vo, t1 € Vyand 1y € Vs. Then the triple path-cut
inequality

2x([Vo, Va]) + 2x([Vo, V3]) + 2x([V1, V3])

+x([Vo U Vi UVaU V3, VaU Vsi\{e}) +x([Va, V5]) = 3,
€))

where e € [Vo U V3, V4] U [V3, Vs], is valid for P(D, 3).

Proof. (i) Let T be the L-s1¢;-path-cut induced by the
partition (Vo, V1 U V4, V2, V3), and T, and T3 be the L-s21>-
path-cuts induced by (Vo, Vi U V3, V2, V4) and (Vo, V1, Vo U
V3, V4), respectively. Then the following inequalities are
valid for the THNDP:

x(Ty) = 2,
x(Tr) = 2,
x(T3) = 2,
—x{e) & =L

x(f) =0, for all f € [Vy, V3]\{e}.

By summing these inequalities, dividing the sum by 2, and
rounding up the right-hand side, we obtain inequality (8).
(i) Let Ty be the L-sqt;-path-cut induced by the partition

(Vo, V1 U Vs,V,,V3,Vy), and T and T3 be the L-sytp-path-
cuts induced by (Vo, ViU Vs, V2, V3, Vs) and (Vo, Vi, V2, V3U

V4, Vs), respectively. Then the following inequalities are
valid for the THNDP:

x(Ty) = 2,
x(Tp) =12,
x(T3) = 2,
~x(e) = =1

%) =0, for all f € ([V2 U V3, V4l U [V3, VsD\{e}.

By summing these inequalities, dividing the sum by 2, and
rounding up the right-hand side, we obtain inequality (9). =

The name triple path-cut comes just from the fact that three
path-cut inequalities are used for generating the inequalities
by the Chvatal-Gomory procedure.

Given a partition I'T based on a subset of rooted demands,
our next class of inequalities gives the minimum number of
edges of the multicut Aj(G), used by a feasible solution of
the THNDP. We will call the set of edges with positive coeffi-
cient in such a multicut a rooted-partition and the associated
inequality a rooted-partition inequality.

Theorem 6. Let L > 2 and T = {t1,...,t} be a sub-
set of k destination nodes relative to node s. Let T1 =

(Vo, V1,..., Vi) be a partition of N such that s € Vo, and
ti € Vi, foralli=1,... k. See Figure 5 for an illustration.
Then the inequality

x(An(G)) = k+ [k/L] (= [(L+ Dk/LT) (10)

is valid for Pg(D,L).

Proof. The proof is by induction on k.

If k = 1, it is obvious that we need at least two edges
in any feasible solution, and thus (10) is satisfied. Suppose
that the statement holds for any partition based on at most
k — 1 destination nodes relative to s. We will show that the
statement remains true for the partition IT.

First notice that we can assume that the V;’s contain only
one node, thatis Vo = {s} and V; = {f;} fori = 1,...,k.
If not, we could indeed consider the graph obtained from G
by contracting the V;’s with |V;| > 2. It is clear that neither

FIG. 4. Support graph of a triple path-cut inequality for L = 2.
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FIG.5. Support graph of a rooted-partition inequality on k = 5 demands.

the number of edges in the multicut, nor the number k of dis-
tinguished destinations, would be changed by this operation,
and hence, the inequality to prove remains the same.

Now let F be a feasible solution of the THNDP. Let T
(resp., T3) be the subset of destinations adjacent to s (resp.,
not adjacent to s) in F. By the previous remark, we can also
assume that 7'y # . Let 1; e T). There must exist in F
another L-path between s and #;. Note that this path can use
an edge that is parallel to the first edge between s and ¢;. These
two paths give us a cycle C of lengthc, with2 < ¢ <L + 1,
going through at most ¢ — 1 destinations. Suppose, w.l.o.g.,

that € = {5, 07,: . sto— i} Let IT- = (V’,V{,...,V,;_Cﬂ) be
the partition given by V/ = {s, 1, . .. Jle—1tand V) = Vi .
fOEl =1, k= e 1, By induction, we have

A (G) = (k= (c = 1)+ [(k — (c — 1))/L].
This yields
XAn(G) = (k= (c— 1)) + [(k ~ (c = 1))/L] +c.

Now, if k = g + Lp for some integers p, g, we have [k/L] =
[q/L]+p.Because c < L+1,wealso havek—(c—1) > k—1L.
Hence, [(k — (c - 1))/L] > [(k — L)/L] = [q/L1+p—1.
So,

X(An(G) = k+1+[q/L1+p—1
=k+ [k/L].

=]

As it will turn out, the rooted-partition inequalities can-
not define facets when  is a multiple of L or when the sets
V1i,..., Vi are not all reduced to singletons. We will now
present a strengthening of inequalities (10) for , = 2 when
at least one set of Vi, . . ., Vi is not reduced to a single node.

Theorem 7. LetL =2and T = {t1,..., 1) be a subset of
k > 2 destination nodes of s among the demands of D. Let
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= Vo, Vi1, Vi, V1) be a partition of N such that
s € Vo,andt; € Vy, foralli =1, . .. k. Lete € [Vi—1, Vir1];
see Figure 6 for an illustration. Then the inequality

X(An(GN\[Vk, Vig1] U {e})) = [3k/2] (11)
is valid for Pg(D, 2).

Proof. First note that, as we did in Theorem 6, we can
suppose that the sets V;, i = 0,. .. ,k + 1, are reduced to
single nodes. Also, we may suppose that the (single) node of
Vi+1, say v, is a Steiner node. Indeed, suppose that (11) is
valid with v a Steiner node. If F is a solution of the problem
with v a terminal, then, clearly, F is also a solution of the
problem with v a Steiner node, and hence, x" satisfies (11).
This implies that (11) is also valid if v is a terminal node.

Consider the rooted-partition inequality induced by the
partition (Vp, ..., V4_; U Vit1, Vi),

(@Yo, ..., Vie1 U Vi1, Vi) > [3k/2].
Similarly, by collapsing Vj.1 and Vi, we get
x(6Vo,..., Vi, Vi U Vi) > [3k/2].

Because Ap(G) = SWVo,..., Vi1 U Vie1, Vi) U [Vi_y,
Vi1l =8(Vo,. .., Vi1, Ve U Vie ) UV, Vit1], the previ-
ous two inequalities can be respectively written as
*(An(G)) = x([Vi-1, Viq1]) > [3k/2], 12)
and
X(An(G)) — x([Vk, Vaq1]) > [3k/2]. (13)
Let F be a solution to the THNDP, We distinguish two cases.

CASEl. e¢ ForFn [Vi, Vieil = 0. If e ¢ F, then, by
(13), we have that (11) is satisfied by xF, the incidence vector

FIG. 6. Support graph of a rooted-opt-partition inequality on &k = 5
demands.



of F. If F does not intersect [V, Vk+11, then inequality (12)
implies (11), and thus this latter inequality is satisfied by o,

CASE?2. e e Fand F N [Vi, Vig1] # 9. First note that we
may suppose that FN[s, Vi1] # @, because otherwise F'\ {e}
would be a solution of the THNDP, and Case 1 would apply.
So let us consider an edge, say eg, of F N [s, Vi+1]. Let also
¢ be an edge in F N [Vi, Vit1]-

Suppose that there is a cycle C of length ¢ = 2 or 3,
linking s and ¢ — 1 destinations from {t1,...,%—2}. W.Lo.g,,
we may suppose that C is simple and C = {s,f1,...,fc—1}.
Let Tl = (V5 s s Vi_cqn) be such that V§ = U=, -1 Vir
and V! = Viyc-1, fori = 1,...,k—c+2. Wehave

F (AR (@) = (An(B) —c. (14)

Hence, if inequality (11) is satisfied by xI" with respect to T’
and e, we get

(A GNWV)_ eyt Vieeral U (e]) = [k — ¢+ D/21.

As ¢ < 3, by (14), it follows that inequality (11) is also
satisfied by x with respect to I and e. Thus, we may suppose
that the subgraph, say G = (V,E), induced by F on the
nodes s,1t1,...,tk—2 does not contain any cycle of length 2
or 3.

Let T} (resp., T2) be the set of nodes among {t1,. .., te—2}
that are linked (resp., not linked) to s by edges in F. Note
that, for every node t; € T, we already have one 2-st;-path,
namely the edge st;. Because G does not contain cycles of
length 2 or 3, the second 2-st;-path for ¢; € T) must use
one edge of [t;, {tk—1, fx,v}]. Moreover, all those edges are
different. Therefore, to cover T}, F uses at least 2|Ty| edges.

Next, each node in 7> must be linked to s by two 2-paths,
each one going through either T, or {tx—1,%,v}. Hence, F
must use two additional edges for every node of 7. In conse-
quence, in the 2-paths between s and the nodes {t1,. .., %-2}
F uses at least 2(|Ty1| + |T2)) = 2(k — 2) edges.

Let F be the set of these edges, and F’ be the set of edges
of F different from those in F U [V, Vi1] U {e}. We have
the following claim.

Claim. |F'| > 3.

Proof. Firstnotethatey € F’. Also observe that, to cover
tx_1, Ik, besides eg, e, €', we still need one 2-path from s to
t¢—1 and another from s to fx. (Recall that v is a Steiner node.)
‘We consider two cases. i
CASE 2.1. None of the edges of F is incident to fx—1 Or
tx. This implies that the edges of F used in 2-st;-paths, with
t; € T\ U Ty, going through the node set {tx_1, %, v} are all
incident tov. So, to cover 1, we need at least one more gdge,
say h, from 8(fx—1)\{e}. Moreover, we note that h € F'.If
h ¢ [tk—1, tk]f,vthen, to cover fx, one more edge in F " is needed,
and hence, |[F'| > 3. If h € [f_1,%], again it is not hard to
see that one more edge from F’ is necessary to cover both
tr—1 and fx.

CASE 2.2. Some of the edges of F are incident to fx—1 or
tx. If there is an edge of F incident to fx—; (resp., k), then F’
must contain the edge stx—1 (resp., sty). If not, the edge of F
would not belong to a 2-st;-path, where t; € T U T,, which
is a contradiction. Therefore, if glere are edges of F incident
to both #;— and fx, then ~clearly F’ contains at least the edges
€0, stk—1, sty and thus |[F’| > 3. Now suppose that there is
onll/ one node #; among -1, t; that is incident to some edge
of F. Thus st; € F'. Moreover, to cover 4, ] € k= 1, kN {i},
we need one more edge in F ', which implies that |F Ne=3.0

In consequence, by the claim above, and as FU fod C F,
we have

|F| > 2(k —2) + 3 = [3k/2],
forall k > 2. |

Inequalities (11) will be called rooted-opt-partition
inequalities. The rooted-opt-partition will then be the set
of edges with positive coefficient in the corresponding
inequality.

Consider a rooted-partition (Vo, . . -, Vk)- If |V;| = 2 for
someiin{l,...,k}, then onecan move one of the nodes of V;
into Vi41. In consequence, the resulting rooted-opt-partition
inequality dominates the first one. As mentioned before, this
implies that if Vy,... .V} are not all reduced to singletons,
the corresponding rooted-partition inequality does not define
a facet.

Note that the extension of the rooted-opt-partition inequal-
ities to any L leads to nonvalid inequalities for the THNDP.
Indeed, consider a rooted instance where s is the source node,
t1 and 1, are the destination nodes of s, and v is a Steiner node.
A cycle of length four spanning s, {1, v, f2 in this order is fea-
sible for L = 3. However, if we take Vo = {s}, V1 = {t:},
V, = {t} and V3 = {v} (hence, k = 2), the corresponding
rooted-opt-partition inequality would be

Xst, + X1, + Xsv Xt = [4k/3-‘ =3,

which is violated by this point.

5. FACETS OF THE ROOTED THNDP POLYTOPE

In this section, we will consider the rooted case, where
all the demands are rooted at a unique source node s. So, let
G = (N,E)beagraphand D = {{s,t1}, ... {s, t1}} beasetof
rooted demands. We will describe necessary conditions and
sufficient conditions for the previous inequalities to be facet
defining. Besides their theoretical interest, these conditions
will be used in the next section to devise efficient separation
procedures.

First, we discuss the dimension of Po(D,L). If D =
{{s,1}}, then dim(Pc(D,L)) = |E| — |E¥%| where Ej; is the
set of essential edges of G, relative to {s,t}; see [26]. An
edge e is essential relative to {s,t} if and only if e belongs
to an st-cut or L-st-path-cut of cardinality 2. If we extend
this definition of E¥ to any demand {s, t} € D, we get that
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dim(Pg(D,L)) = |E| — | U{”}eD E}|. In the following, we
will always suppose that G = (N, E) is a complete graph
with |N| large enough to have (i, ,ycp E5; = @, and hence,
Pg(D, L) full dimensional. This assumption can always be
achieved by adding nodes and edges with sufficiently high
weights.

Let

S(G) = {F C E|(N,F) is asolution of the THNDP}.

Givenaninequality ax > « valid for Pg (D, L), we will denote
by

S.(G) = {F € S(G) |ax" = a}.

We first give two lemmas that will be frequently used in the
sequel, sometimes without explicit reference. Their proofs
being obvious, they are omitted.

Lemma 2. Let ax > « be a facet defining inequality of
Pg(D, L), different from a trivial inequality. Then for every
edgee € E, there exists an edge subset in S,(G) that contains
e and another one that does not.

Lemma 3. Let ax > «, where a = (a(e),e € E), be a
facet defining inequality of Pg(D, L), different from a trivial
inequality. Then a(e) > 0, foralle € E and a > 0.

We now present necessary and sufficient conditions for
the double cut inequalities to be facet defining when L = 2.
We consider first the case where s € V.

Theorem8. LetlL =2andG = (N, E) be acomplete graph
with |N| > 4, one source node s and d destination nodes
T ={t1,...,ta}. Let (Vo, V1, V2, V3) be a partition of N such
that s € Vo, ty € Vi and ty € V3. Let e € [V}, V3]. Then the
double cut inequality (6) is facet inducing for P(D, 2) if and
only if all the following hold:

(i) Vol =1,
(ii) V1] =1,
(i) d =2,

(iv) if va is the endnode of e in Vy and |[t),v2]| > 2, then
[[t2, v2ll = 2 and |[s,v2]| = 2.

Proof. Let us denote inequality (6) by ax > « and let
S, (G) be the induced face.

Necessity

1. Suppose, on the contrary, that inequality (6) is facet defin-
ing while [Vo| > 2. Let vp € Vp\{s}. We are going to
show that any feasible solution F' € S,(G) does not inter-
sect [vg, V2], which contradicts Lemma 2. Suppose that
this is not the case, and that there exists a feasible solution

between s and ¢ (resp., ;) that F must contain. However,
it is not possible to build these four paths with only two
more edges from the double cut.

. Suppose, on the contrary, that inequality (6) is facet defin-

ing while |V|| > 2. Hence, because the graph G is
complete, we have [[V|,V2]| = 2. Suppose first that
e € [t1, V2]. Then, we have that any edge f € [V \{#1}, V2]
belongs to the double cut. However, f is not useful for
building 2-paths between s and ¢}, or s and #,. Therefore,
any feasible solution F' € S,(G) cannot contain f. Thus,
by Lemma 2, we have a contradiction.

Suppose now that e € [V)\({#1}, V2]. In that case, any
edge f € [t;, V2] is in the double cut. Consider a solution
F € S,(G) that contains f. If f is not used in a 2-st;-
path of F, then f does not belong to any of the 2-paths
between s and ¢, and s and #,, and therefore, we get the
same contradiction as before. As a consequence, f must
belong to a 2-st;-path of F of the form (s,v,,#) with
vy € V3. As this path uses two edges of the double cut and
ax” = & = 3, F can only contain one more edge of it for
the other 2-st1-path and for at least one of the two 2-st,-
paths (given that sv, can be used together with an edge of
[v2, 2] to form a 2-st,-path). But this is also impossible.

. By definition of the double cut, we have already thatd > 2

holds. Let us show now that d < 2 when the correspond-
ing inequality is facet defining. Suppose, on the contrary,
that the double cut inequality is facet defining while there
exists a third destination of s, say #3. By (i) and (ii), we
have t3 € V, U V3. Consider a solution F € S,(G) not
containing e. Therefore, the two 2-st;-paths of F are only
constituted of edges in the double cut. First, it is clear that
these paths cannot be both of length 2. If one of the paths
is of length 1 and the other is of length 2, we have already
three edges taken by F' in the double cut, while we still
need to construct at least one 2-path for one of the two des-
tination nodes t,, #3. Clearly, this is impossible. Finally, if
both 2-st;-paths are of length 1, we can still take one more
edge in the double cut. But, this time, we need to link both
f and 3 to s by two 2-paths. Once again, this is not pos-
sible. We, therefore, get that any solution F € S,(G) does
contain e, which contradicts Lemma 2.

. Suppose that the double cut inequality is facet defining

and that |[#], v2]| > 2. Therefore, any edge ¢’ € [t1, v2]\{e}
belongs to the double cut. By Lemma 2, there must exist
a feasible solution F in S,(G) containing ¢’. Moreover, ¢’
must belong to a 2-st;-path of F. This path is then of the
form (sv,e"). As sv; and ¢’ belong to the double cut, only
one more edge of it must be used to form a second 2-st, -
path and one 2-st,-path (the other one using the edge sv,
plus an edge in [v, f2]). Clearly, the only possibility to do
that is to go once again through v,. As a consequence, we
obtain that both [s, v2] and [v,, ,] contain parallel edges.

Sufficiency

F containing f € [vg, V,] and such that x satisfies (6) as
an equality. First, note that, as f belongs to the double cut
and ax” = o = 3, F contains exactly two more edges of
it (recall that the double cut is the set of edges such that
a(e) > 0). On the other hand, because f is incident neither
to s, nor to #; (resp. fp), f is not useful to the two 2-paths
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Suppose that (1), (2), (3), and (4) hold. Let v, be the
endnode of e in V. Let bx > B be a facet defining inequality
of Pg(D,?2) such that

(xF e Po(D,2) |axf = o} € (xF € PG(D,2) | bx" = B).

As before, we will show that b = pa for some p > 0.



Consider the solution F' = {st1, st2, t112}. Clearly, its inci-
dence vector x" satisfies ax = «. Note that we can add to
F all the edges in E(V, U V3) U {e} while x still satisfies
ax = a. Consequently, we get

b(f) =0, forall f € E(V, U V3) U {e}. (15)

Now, let F* = (F\{t12}) U {sv2, e, a12}. Clearly, I'* €
S.(G). Hence, bx"" = B. As by (15) b(e) = b(vatz) = 0,
this yields

b(tir2) = b(svz). (16)

The same holds if in F* we replace st (or st2) by tf;.
Therefore,

b(st) = b(t1tz) = b(st2). (17)
From (16) and (17), we get

b(st1) = b(sty) = b(t112) = b(sv2).

As these edges are arbitrary edges from [s, 111, [s, £2], [£1, 2],
[sv,], respectively, we obtain

b(f) = p, forall e € [s,11] U [s, 2] U [t1, 2] U [, v2], (18)

for some scalar p.

Now consider the solution F, = {svs, e, vat, sv, Vi1, vy}
forv € (V,UV3)\{v2, 1o}. Itis not hard to see that F € S4(G).
Therefore, bx'™ = B. As bxf" = B, using (15) we obtain

b(sty) + b(sty) = b(sv) + b(vt1). (19)

Also consider F, = (F,\{vt;}) U {st;}. Because F, €
S, (G), and hence bxfr = B, we get

b(st;) = b(vty). (20)
From (19) and (20), it follows that
b(sty) = b(sv). 20)

From (20) and (21), together with the fact that sv (resp.,
vt1) is an arbitrary edge between s and v (resp., v and 1), by
(18) it follows that

b(f) = p, forall f € [{s,1}, Vo U Vsl\[v2,11].  (22)

If there are edges in [v2,#1]\{e}, we still need to prove
that their coefficient in b is equal to p. Suppose this is the
case, and let vof; be an edge of [vo,f1]\{e}. Then, by (iv),
the edge set F' = {svy, g, e, vat1, vato, h} exists. Here, g and
h are edges parallel to svy and vy1, respectively. Clearly, its
incidence vector x satisfies ax = «. Thus, bx = B. As
bxf" = B, we obtain

b(g) + b(vat1) = 2b(sty). (23)

From (18) and the fact that vyf; is an arbitrary edge of
[v2,t1]\{e}, we get

b(f) = p, forall f € [va,t1]\{e}. (24)

From (15), (18), (22), (24), we have b = pa. As bx > B
is a facet defining inequality different from a trivial one, by
Lemma 3, it follows that p > 0. |

The following theorem gives a similar result for the
double-cut inequalities based on partitions with s € V3. Its
proof is along the same line as that of Theorem 8.

Theorem9. LetL =2andG = (N, E) be a complete graph
with |N| > 6, one source node s and d destination nodes
T ={t1,...,t3). Let (Vo, V1, Va, V3) be a partition of N such
thatty € Vo, t; € Vi and s € V3. Let e € [V}, V2]. Then the
double cut inequality (6) is facet inducing for PG(D, 2) if and
only if all of the following hold.:

(i) Vol =1,
(ii) Vil =1,
(iii) if vy is the endnode of e in Vo and |[t1,v2]| = 2, then
[[s,v2]] = 2.

For L. = 3, we have also investigated necessary conditions
for the double cut inequalities (7) to be facet defining. We have
shown the following result, given here without proof because
it is similar to that of Theorem 8.

Theorem 10.
Pg(D,3) only if

If L = 3, inequality (7) defines a facet of

(i) Vol =1,
(ii) |\Vi| =1, and
(iii) |Va] < 2.

We have also investigated the conditions under which the
triple path-cut inequalities are facet defining when L = 2.
Note that, in the case of rooted demands, we simply pose
S1 = 82.

Theorem 11. Let L = 2 and G = (N, E) be a complete
graph with |N| > 5, one source node s and d destination
nodes T = {t1,...,t4}. Let (Vo, V1, V2, V3, Vi) be a partition
of N such thats € Vo, t1 € V3 and ty € V4. Let e € [V1, V3].
Then the triple path-cut inequality (8) is facet defining for
Pg(D,2) if and only if all of the following hold:

(i) Vol =1,

(ii) |Vl =1,

(iii) |Val =1,

(iv) if vy is the endnode of e in 'V and |[vi,t]| = 2, then
[[s,vill = 2.

(v) if IVi| < 2and Vy C T, then there existst € Vi N T
such that |[s, t]| > 2.

(vi) if |Vi| = 2 and Vi N T = {3}, then at least one of the
following holds:
— e s incident to t3,
— s, Vil = 2,
— |ls,311 > 2.

Proof. See [24]. ®
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Note that triple path-cut inequalities never define facets of
Ps(D, L) when L = 3.1t is indeed impossible to find a feasi-
ble solution satisfying such an inequality with equality while
containing an edge in [V}, V3] (of coefficient 2 in the triple
path-cut). However, let us remark that these inequalities will
be useful in our branch-and-cut algorithm. In fact, although
they are not facet defining, they permit us to cut off fractional
solutions.

The following two theorems give conditions for inequali-
ties (10) to be facet defining.

Theorem 12. Let G = (N,E) be a complete graph and
let t1,...,t be k destination nodes associated with s. Let
I = Vo, Vi,..., V) be a partition of N such that s € Vj
andt; € Vifori = 1,... k. If the rooted-partition inequality
(10) is facet defining, then k is not a multiple of L.

Proof. Suppose that k is a multiple of L. We will show
that, for any feasible solution F' whose incidence vector xF
satisfies (10) with equality, we have |F N [s,T]| = 2k/L,
where T = {11, ..., t}. But this will imply that every solution
of the face defined by (10) satisfies the equation

x([s, T1) = 2k/L.

As (10) is not a positive multiple of this equation, it cannot
define a facet.

For this, first note that, as we did before, we may suppose
that the V;’s are reduced to single nodes, that is Vo = {s},
Vi ={t},i=1,...,k. Itis easy to see that if the statement
holds in this case, it also holds when the elements of the
partition are not necessarily singletons.

Claim 1. The solution F does not contain any chordless
cycle containing s of length < L.

Proof. Assume to the contrary that there exists in I a
chordless cycle C spanning s and at most L — 1 destination
nodes of s. Suppose, w.l.o.g., that C spans Vo, V1,..., V1,
c < L Let " = (Vg,Vi,...,V;_.,1) be the partition

.....

1,...,k — ¢ + 1. By the validity of the rooted-partition
inequality induced by IT’, we have

A (G)NF| > [(L+ 1)k —c+ 1)/L].

On the other hand, we have |A(G) N F| = (L + 1)k/L. As
IAn(G) NF| = |A(G) N F| + ¢, it follows that

(L+Dk/L>[(L+1)k—-c+1)/LT+c
=[tk—c+1)/L]1+k+1.
Asc < L, we have
k/L>[tk—L+1)/L1+1=k/L+1,

where the last equality comes from the fact that k is a multiple
of L. But this is a contradiction. O
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Consequently, by Claim 1, F does not contain any cycle
that spans V and the sets V;s, and whose length is less than
or equal to L.

Claim 2. Anytwocycles Cy, C» C F,Cy # Cy,of length
L+ 1 and going through s, cannot have a destination node in
common.

Proof. Assume, to the contrary, that C; and C; intersect
in d destination nodes, L > d > 1. Let p be the number of
destination nodes covered by C; U C». First, we show that
p < k. In fact, suppose, by contradiction, that p = k. If
k=L,then|F| =L+ 1.As|C;| =L+ 1and |C\C1| > 1,
we have

|F| > |C1| + |C2\Ci| = L +2,

a contradiction.
So suppose that k > L. Then

p=2L—d>L.

Therefore, d < L. But this implies that p = k is not a multiple
of L, a contradiction.

Consequently,p < k. Also,asd > 1, wehavep < 2L—1.
Moreover, observe that |C; U Cy| > p + 2. This follows from
the fact that C; U C, covers p + 1 nodes and C; U C; is not
a simple cycle.

Suppose, w.l.o.g., that 11, . . ., #, are the destination nodes
govered by CUC,. LetIT = (Vo, V1,..., Vi_p) be such that
Vo={st1,....00},and V; = {fzp}, fori=1,... .k —p.

By the validity of the rooted-partition inequality corre-
sponding to IT, we have

Az (G)NF| = [(L+ Dk —p)/L].
Because |An(G) NF| > |Af(G) NF| +p + 2, we get

lAnG) NF| = [(L+Dk—p)/L1+p+2,
=k+2+[(k—p)/L],
>k+2+[(k—Q2L-1))/L],
=k+k/L+1/L],
=k+k/L+1.

But this contradicts the fact that x”" satisfies (10) with equality,
and the claim is proved. a

Claim 3. The solution F does not contain any chordless
cycle containing s of length > L + 2.

Proof. Suppose there is a cycle C C F of length ¢ >
L + 2. We assume that ¢ is minimum. Suppose w.].0.g. that
C goes through s,1, ..., in this order. Because F is a
feasible solution for the THNDP and, by Claim 1, F' does not
contain cycles of length less than or equal to L, there must
exist two paths P and P; of length L joining s to ¢y and f.—1,
respectively. Let C; = {st;} U Py and Cy = {st._1} U P».



P
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FIG.7. An example of an (L + 2)-cycle C and the two associated (L +
1)-cycles C; and C.

If ¢ > L + 3, then there must also exist a chordless path P
from s to f, of length either L — 1 or L. If P isof length L —1,
then the cycles Cy and P U {s1y, t1t,} are both of length L+ 1.
Because these cycles intersect at #1, this contradicts Claim 2.
If P is of length L, then the cycle P U {sty, t1t2} is chordless
and of length L + 2. But this contradicts the minimality of C.

Consequently, we have ¢ = L + 2. Now we are going to
show that P; (P,) cannot go through two nodes #;,, i, j €
{1,...,c— 1}, i < j, such that the subpaths of P; (P2) and
C between t; and f; are edgg-disjoint. In ~fact, suppose, for
instance, that the subpaths P, of Py and C of C betvyveen t;
and ; are edge-disjoint. Let p; and ¢ be the lengths of P and
C, respectively. We~claim ~that p1 = ¢. Indeed, if p; > ¢,
then, by replacing Py by C in Py, we get a path of length
< L—1between sand #,a cgntra(liction. On the other hand,
if ¢ > p1, then, by replacing C by Py in C, we obtain a cycle,
say C/, of length < L + 1. Because, by Claim 1, F does not
contain a cycle of length < L, it follows that C’ is of length
exactly L + 1. Because Cy and C’ have ¢; in common, this
contradicts Claim 2.

Therefore p; = ¢. But this is still a contradiction because
C; and the cycle obtained from C| by replacing Py by C are
both of length L + 1 and have destination nodes in common.

In consequence, if ;, (resp., #,) is the first node of C met
by Py (resp., P2), then Py (resp., P5) contains the subpath of
C between f;, and t (resp., #, and t.—1). See Figure 7 for
an illustration. Moreover, we have [ < I, for otherwise, the
cycles Cy and C would intersect in some destination nodes,
which by Claim 2 is impossible.

Letd = I, —1; — 1. Observe thatd is the number of internal
nodes of the subpath of C between ¢, and ;,. Also note that
d < L. Nowlet T = (Vo, Vi,... , Vi—a1—q) be the partition
of N obtained from IT by gathering the nodes of C; UC, UC
into V. Note that |[E(Vo)| > 2(L+ 1) +d+ 1. By the validity

of the rooted-partition induced by I1, we have

|AR(G) N F| = k —2L —d + [k — 2L — d/L],
— k=2 —d+ kL =3,

Nggice that this remains true even if k — 2L — d = 0, that is
if Vo = N, because in this case A (G) N F' is empty and the
right-hand side of (10) is equal to 0. So,

|An(G)NF| > IAﬁ(G)ﬂF|+2(L+1)+d+1 > k+k/L+1,
a contradiction, which finishes the proof of the claim. 0O

From Claims 1 and 3, it follows that the only cycles
induced by F are of length exactly L + 1. By Claim 2, these
cycles do not contain destination nodes in common. There-
fore, F consists of k/L cycles of length L+ 1 and having only
s in common. Because each of these cycles uses exactly two
edges of [s, T], this yields |F N [s, T']| = 2k /L, and the proof
of the theorem is complete. =

Given a graph G = (N,E) and a node subset V. C N,
we say that V satisfies Property (7r) if one of the following
holds:

@ Viz=4,
(ii) |V| = 2,3 and V contains at least one Steiner node,
(iii) |V| = 3, V does not contain Steiner node, and there are
parallel edges between at least two pairs of nodes in V,
(iv) |V| = 2, V does not contain Steiner node, and E(V)
contains parallel edges,
W) |Vl=1

Theorem 13. Let L = 2, and G = (N, E) be a complete
graph with one source node s and at least k destination nodes
associated with s. Let T1L = (Vo, V1, ..., Vi) be a partition of
N suchthats € Voand t; € Vi fori =1,...,k

Then the rooted-partition inequality (10) defines a facet if
and only if

(i) kis odd,
(ii) Vil =1foralli=1,...,k and
(iii) Vy satisfies Property (7).

Proof. See [24]. |

6. SEPARATION ROUTINES

In this section, we discuss the separation problem for the
facet defining inequalities introduced in the previous section.
Given a system of inequalities Ax < b and a vector x* € RIE!,
the separation problem associated with Ax < b consists of
verifying whether x* satisfies Ax < b, and, if not, in finding
an inequality of Ax < b violated by x*. In the sequel, we will
denote by Gy = (N, Ey+) the support graph of x*, that is the
graph induced by the edges e such that x%(e) > 0.

The st-cut constraints (1) can be separated exactly using
the Gomory-Hu algorithm [15]. This produces the so-called
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Gomory-Hu tree, which has the property that for all pairs
of nodes s,# € N the minimum st-cut in the tree is also
a minimum sz-cut in G,+. To do this, we use the algorithm
developed by Gusfield [23], which requires |N|— 1 maximum
flow computations. In practice, to speed up the computation,
we first use a simple heuristic to try to quickly find a violated
st-cut inequality. This goes as follows. We contract iteratively
the edges by decreasing x* values until either the total value
of the shrunk graph G = (V,E) is less than its number of
nodes, or there only remain two nodes. In the first case, at
least one of the nodes of G induces a cut violated by the
restriction of x* on E. By expanding this node, we obtain a
cutin G violated by x*. In tlle second case, we check if the cut
between the two nodes of G is violated or not. Of course, in
both cases, we verify if the cut obtained separates two nodes
of the same demand. If this heuristic is unsuccessful, we then
generate the Gomory-Hu tree, using the Gusfield algorithm,
to separate the cut constraints exactly.

The L-path-cut inequalities (2) can also be separated in
polynomial time when L = 2, 3. In fact, for a fixed demand
{s,t} € D, the separation problem reduces to find a minimum
weight edge subset that intersects all L-st-paths. This has been
shown to be polynomially solvable in [12]. In practice, when
L =2, we do the following for each demand {s,t} € D. We
consider the partition ITT = (Vj, Vi, V2, V3) with Vg = (s},
V3 = {1}, and where V| and V, are constructed as follows. For
eachnode u € N\ {s, t}, we putuin Vi if x(su) > x(ut), and u
in V; if not. We then test the violation of the corresponding 2-
st-path-cut inequality. This exact separation routine takes into
account the particular structure of L-path-cuts when 7, = 2.
When L = 3, for each demand {s,t} € D, we first check with
the algorithm given in [12], if the minimum weight edge set
cutting all the 3-sz-paths of Gy has size less than 2. If yes,
then there is a 3-st-path-cut inequality violated by x*. That
one is then built through a breadth first search from s in Gyx.

Let us now turn our attention to the separation problem
for the rooted-partition inequalities (10). We shall prove that
this problem for L = 2, when k is odd, and the partition sets,
except Vo, are singletons, can be solved in polynomial time.
Note that these two conditions are necessary for the rooted-
partition inequalities to be facet defining; see Theorem 13.
As it will turn out, that problem will reduce to minimizing a
submodular function on a parity subfamily of a lattice family.

Let M be a finite set. A family C of subsets of elements
of M is called a lattice family if

XUY,XNYeC, forall X,Y € C.
A function f : C — R is said to be submodular if
JXUY)+fXNY) <f(X)+f(Y),VX,Y € C.
A subcollection D of C is called a parity family if
XNYeD < XUYeD, forallX,Y e C\D.

In [14], Goemans and Ramakrishnan have shown the follow-
ing result.
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Theorem 14 ([14]).  Given a submodular functionf onalat-
tice family C, and a parity family D of C, a set U minimizing
S(U) over U € D can be found in polynomial time.

Theorem 15. The separation problem for the rooted-
partition inequalities

x(An(G)) = [3k/21, (25)

when L = 2, k is odd, and V; = {ti} fori=1,... k can be
solved in polynomial time.

Proof. Letx € RIEl Ask is odd, the separation problem
for inequalities (25) is equivalent to

min x(A(G)) — 3k/2 — 1/2, (26)

over the partitions IT = (V, Vi,..., Vi) of N such that V; =
{t;} fori =1,..., k. Problem (26) can also be written as

min x(E(S)) +x(8(S)) — 3IS|/2 - 1/2. (27)
S UL, {6),18] odd

Now let M be the set N of nodes of G, Cbe the set of subsets
of N contained in UL, {1}, £(S) = x(E(S)) + x(5(S)) —
31S1/2—1/2,and D= {X € C : |X| 0dd }.

It is clear that C is a lattice family, and that D is a parity
family. Also, it can be easily seen that S is submodular on C.
Consequently, by Theorem 14, the result follows. =

As the complexity of the minimization of a submodular
function is around o(n’) [34], using the above algorithm to
separate exactly inequalities (10) would be time consuming.
In our branch-and-cut algorithm, we will rather use a heuris-
tic separation for the rooted-partition inequalities (10). The
heuristic can be described as follows for each source node s
with at least two destinations. We consider the nodes that are
not destinations of s as Steiner nodes. If . = 2, we first look
for triangles formed by edges with value 1. If C is such a trian-
gle, then we contract C into a pseudo-node w. If C contains s
(resp., a destination node but not s) (resp., only Steiner nodes),
then w will take the role of s (resp., a destination node) (resp.,
a Steiner node) in the new graph. After this eventual step, we
consider the Steiner nodes. If a Steiner node u is adjacent to at
least one destination node, then we contract the edge that has
the highest value, between u and a destination node. The new
node is considered as a destination node. If not, then we con-
tract 1 and s and consider the new node as s. At the end of this
procedure, we get a graph without Steiner nodes, and con-
taining, say k, destination nodes t1,..., . This graph gives
rise to a partition Vo, V1, ..., V; of N such that s e Vo and V;
contains at least a destination node of s,fori=1,... k. If
L = 3, then we check whether the rooted-partition induced
by this partition is violated. If L = 2, then we consider a
rooted-opt-partition obtained from Vo, V1, ..., Vi as follows.
We consider anedge uv with maximum value such that u & Vi
andv € V;forsomei,j € {1,...,k},i < j,and at least one of
the sets V;\ {u} and V;\ {v} contains at least a destination node.



If Vi\{u} (resp., V;\{v}) contains a destination, then we con-
sider the rooted-opt-partition induced by e = uv together
with the partition IT" = (Vy, Vi, ..., V/£+1) given by

Vi=V,  forl=0,...,i—1,
Vi =V forl=i+1,...,j—1,
Vi,=V forl=j+1,...,k,
Viei =¥ (resp., V),

Vi = Vi\{u} (resp., V;\{v}),

Vier = {u} (resp., {(v}).

We notice that, as shown in the proof of Theorem 13
(ii), this rooted-opt-partition inequality is stronger than the
rooted-partition one. We then test the violation of this rooted-
opt-partition inequality. Moreover, in both cases (L = 2 or
L = 3), if the tested inequality is not violated, we then
contract two sets V;, V; such that [V;, V;] contains an edge
having the largest value in Ap(G), and test this smaller
partition. This procedure is stopped whenever the number
of partition subsets becomes 2, because the corresponding
rooted-partition is then an s¢-cut.

When L = 2,3, we also separate heuristically the double
cut inequalities (6)—(7) and triple path-cut inequalities (8)~-
(9). In what follows, we present their separation procedures
for L = 2. Those for L = 3 are similar. For the former class,
we apply the following for every demand {s;,#;} € D and
every terminal node #, different from sy, #;. We consider the
partition IT = (Vp, ..., V3), where Vo = {s1}, V| = {2},
Vo = N\{s1,11, 12}, V3 = {t1}. The idea behind this is to get
a double-cut inequality that, by Theorems 8-9, may define a
facet of Pg(D,2). We select e € [V}, V] having the largest
value and then test the violation of the double-cut inequality
corresponding to IT and e. (We also test the partition obtained
by exchanging the roles of s; and 1;.)

For the latter class, the separation procedure can be pre-
sented as follows for any source node s with at least two
destinations. We look for two destination nodes 71, f of s such
that the triangle s, £1, f, has minimum x* value. We then con-
sider the partition TT = (Vp, V1, ..., V4) such that Vo = {s},
Vi = N\[s,t1,t2}, Vo = @, V3 = {11}, V4 = {t2}. Note
that this partition satisfies the necessary conditions (i), (ii),
(iii) of Theorem 11. Also, because we consider graphs with
at least five nodes, we have |V;| > 2. For every node u of
Vi, if x*(su) < 1/2(x*(ut) +x*(utp)), then we move u from
V; to V5, and consider the new partition, still denoted by IT.
The motivation behind this is, as before, to reduce as much as
possible the left-hand side of the generated inequality. This
process is stopped if V| has only one node left. If, after this
step, V5 is still empty, then we take a node u from V; such
that x*(su) = minyey, {x*(sv)}, and we transfer it to V2. We
then test if the triple path-cut inequality corresponding to TT
is violated. The edge e to be removed is chosen as the edge
with the maximum x* value between V| and {¢1,t}. If e is
incident to t,, then we exchange the role of #; and 1, for e to
belong to [V, V3].

7. BRANCH-AND-CUT AND COMPUTATIONAL
RESULTS

Based upon the previous theoretical results, we have
developed a branch-and-cut algorithm to solve efficiently the
THNDP when L = 2, 3. The algorithm has been implemented
in C++, using BCP (the Branch, Cut and Price package of
the library COIN-OR [31]) to manage the branching tree and
CPLEX 8.11[27] as the linear solver, and tested on a Pentium
IT1 at 933 MHz with 384 Mb of RAM under Linux. The maxi-
mum run time has been fixed at 5 hours. The results presented
here essentially concern the case where the demands are
rooted at a node s, because we have focussed our polyhedral
study on this case. Nevertheless, our algorithm is adapted to
any set of demands, and we also present some computational
results in that case. For each instance tested, we have run the
algorithm twice, once with the constraints (1)—(4) only, and
a second time with also inequalities (5)-(11) depending on
their respective validity for L = 2, 3.

To begin the optimization, we consider the linear program
consisting of the cut inequalities associated with the demand
nodes, and the trivial inequalities. Moreover, in the second
run of the algorithm, for each source node s with at least
two destinations, we add to this basic program the rooted-
partition inequality where each destination of s corresponds
to an element of the partition and all the other nodes are put
in V().

In the branch-and-cut algorithm, we have to check whether
or not an optimal solution of a relaxation to the THNDP is
feasible. An optimal solution x* of a relaxation is feasible for
the THNDP if it is an integer vector satisfying the st-cut and
L-st-path-cut inequalities. Verifying if an integer solution x*
is feasible for the THNDP can be done in an efficient way. For
every edge e of G+ and every demand {s, 1} € D, we check
if the shortest st-path in G+ — e is of length < L. If this is
the case, then by Lemma 1 x* is feasible. If not, this means
there is no L-st-path not containing e. This implies that x* is
not feasible.

Another important issue in the effectiveness of the branch-
and-cut algorithm is to compute a good upper bound. For this,
in the solution of the current linear program, we first round
up to 1 all the variables with a value > 0.3 and round down to
0 those with value < 0.3. We try to improve this solution by
deleting all the edges incident to a Steiner node whose total
value is less than 2. We then verify if the resulting integer
solution is feasible. If not, we apply the same procedure for
the solution obtained by rounding up to 1 all the fractional
values. This latter solution is certainly a feasible solution.

If an optimal solution x* of the linear relaxation of the
THNDP is not feasible, the algorithm generates additional
valid inequalities of PG (D, L) violated by x*. Their separation
is realized in the following order:

. st-cut inequalities,

. L-path-cut inequalities,

. double cut inequalities,

. rooted-(opt-)partition inequalities (if L = 2),
. triple path-cut inequalities.

S I
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We remark that all inequalities are global (i.e., valid at
every node of the branch-and-cut tree) and several of them
can be added at each iteration. Moreover, we go to the next
class only if we do not find any violated inequalities in the
current class.

To separate the different inequalities, we use the algo-
rithms described in Section 6. All our separation procedures
are applied on the support of x*, that is G-, where x* is the
solution of the current relaxation. When solving instances
of the THNDP, we observed that the exact separation of the
st-cut inequalities is time consuming. Therefore, we decided
to perform this exact separation after that of the L-path-cut
inequalities.

To store the generated inequalities, we use a pool whose
size increases dynamically. Inequalities in the pool can be
removed from the current linear program when they are not
active. Also, they are the first inequalities to be separated. If
all the inequalities in the pool are satisfied by the current solu-
tion, we then separate the classes of inequalities according to
the order given above.

The computational results presented here concern ran-
domly generated instances and instances coming from real
applications. The instances consist of complete graphs with
edge costs equal to rounded Euclidean distances. The tests
were performed for L = 2, 3. In practice, note that the bound
on the routing paths does not usually exceed 4. The sec-
ond set of instances comes from the network of the Belgian
telecommunications operator, Belgacom, on 52 cities and
subsets of these (the demands related to these insatnces are
randomly generated). The random problems were generated
withn = 10 to n = 40 nodes, with different number d of
demands. For each couple (n,d), five instances were tested.

In the various tables, the entries are:

n: the number of nodes of the problem,

d : the number of demands,

Cu : the number of generated st-cut inequalities
(run 2),

Pc . the number of generated L-path-cut inequali-
ties (run 2),

Dc :  the number of generated double cut inequali-

ties (run 2),

Ro : the number of generated rooted-(opt-)partition
(if L = 2) inequalities (run 2),

Tp : the number of generated triple path-cut
inequalities (run 2),

ol : the number of problems solved to optimality
(run 1) over the five instances tested,

02 : the number of problems solved to optimality

(run 2) over the five instances tested,

Gapl the gap between the best upper bound and the
lower bound obtained at the root node of the
branch-and-cut tree in the first run,

Gap2 the gap between the best upper bound and the

lower bound obtained at the root node of the
branch-and-cut tree in the second run,

Gtl : the gap between the best upper bound and the
best lower bound obtained in the first run,

Gt2 the gap between the best upper bound and the
bestlower bound obtained in the second run,

Treel the number of nodes in the branch-and-cut tree
for the first run,

Tree2 the number of nodes in the branch-and-cut tree
for the second run,

CPU1 the total time of the first run in seconds,

CPU2 the total time of the second run in seconds.

The first two tables report the average results for the random
instances, obtained in the case of rooted demands, for L = 2
and L = 3, respectively.

In Table 1, we remark that, up to 20 nodes and 15 demands,
all problems have been solved to optimality within the time
limit. With one exception, this is also the case for 30 (resp.,
40) nodes when there are 15 (resp., 10) destinations or fewer.
When we consider 20 demands or more, only one instance has
been solved in less than 5 hours. We remark that not many sz-
cut inequalities are obtained for the different instances. This,
in fact, is because, when L = 2, the L-st-path-cut inequali-
ties dominate the s¢-cut constraints induced by nonsingletons
[26]. Note that, in the second run, a significant number of
double cut, rooted-opt-partition, and triple path-cut inequal-
ities have been generated. If these yield little impact on the
number of instances solved to optimality, or on the CPU time,
weremark that the gaps (Gap2, Gt2) and, in particular, the size

TABLE 1. Results for random instances with = 2 and rooted demands.

n d Cu Pc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPU1 CPU2

10 2 0 4 2 2 2 5 5 0.0 0.0 0.0 0.0 1 1 0.01 0.01
10 35 1 24 5 9 5 5 5 8.0 1.1 0.0 0.0 17 5 0.10 0.06
10 8 3 70 20 26 8 5 5 12.0 5.0 0.0 0.0 156 34 1.30 0.54
20 5 0 36 5 10 10 5 5 6.6 0.9 0.0 0.0 10 2 0.12 0.09
20 10 5 480 65 311 25 5 5 13.5 6.8 0.0 0.0 1143 547 32.02 40.88
20 15 13 3077 371 973 59 5 5 15:1 9.2 0.0 0.0 79,054 35,770 6711.73 7081.31
30 8 2 249 22 273 26 5 5 8.9 33 0.0 0.0 152 51 5.05 15.19
30 15 8 2465 207 1491 82 4 4 12.8 7.4 0.2 07 28,501 7694 5023.44 5215.93
30 22 17 2082 327 1554 40 1 1 30.5 202 22,6 157 73,564 26,235 14,591.42 14,432.96
40 10 3 1714 87 2972 84 4 4 13.2 7.4 0.1 1.0 10,458 2139 3696.43 4426.79
40 20 13 3252 213 3379 56 0 0 33.4 242 256 207 60,744 10,978 18,000.00 18,000.00
40 30 26 3191 234 1626 19 0 0 433 363 39.1 341 53,753 12,859 18,000.00 18,000.00
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TABLE 2. Results for random instances with L = 3 and rooted demands.

n d Cu Bc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPU1 CPU2

10 2 5 0 2 3 1 5 5 0.0 0.0 0.0 0.0 1 1 0.01 0.01
10 5 11 53 10 14 3 5 5 11:3 5.6 0.0 0.0 58 17 0.70 0.21
10 8 9 198 20 8 2 5 5 12.3 6.4 0.0 0.0 278 89 7.26 1.50
20 5 28 146 13 45 2 5 5 8.3 52 0.0 0.0 37 17 2.25 1.35
20 10 30 3407 52 312 9 3 5 13.9 6.8 0.0 0.0 3681 1247 2403.97 437.00
20 15 138 24,953 170 422 21 0 0 30.6 16.1 21.8 8.6 10,049 11,971 18,000.00 18,000.00
30 8 30 2250 42 384 1 5 5 10.3 5.3 0.0 0.0 996 336 1927.48 468.81
30 15 60 18,509 122 1071 5 0 1 29.9 164 219 9.9 5326 5087 18,000.00 16,647.14
30 22 39 15,703 105 318 4 0 0 42.8 304 385 277 3859 5753 18,000.00 18,000.00
40 10 58 9351 71 1087 4 2 3 16.7 7.4 6.6 1.7 1965 1099 11,925.39 8710.00
40 20 6l 11,442 76 940 1 0 0 46.0 36.7 424 347 1808 1930 18,000.00 18,000.00
40 30 49 11,344 85 274 4 0 0 57.3 4577 551 444 1525 1547 18,000.00 18,000.00

TABLE 3. Results for random instances with L = 2 and arbitrary demands.

n d Cu Pc Dc Ro Tp ol 02 Gapl Gap2 Gtl Gt2 Treel Tree2 CPUL CpPU2

10 5 3 59 21 10 20 5 5 10.2 8.8 0.0 0.0 21 21 0.16 0.24
20 5 3 76 14 7 20 5 5 4.7 3.8 0.0 0.0 7 9 0.22 0.40
20 10 7 761 52 20 102 5 5 8.3 7.8 0.0 0.0 625 358 50.58 45.19
20 15 11 5898 191 60 949 3 3 15.8 14.3 59 4.8 13,178 9346 8536.60 8314.82
30 8 5 650 66 56 154 <] 5 8.5 8.5 0.0 0.0 459 489 28.61 43.40
30 15 13 5397 412 119 910 2 2 12.5 12.7 3:9 4.6 23,291 15,357 11,748.40 11,613.36
30 22 16 6426 164 5 266 0 0 41.0 45.8 38.1 432 4159 3668 18,000.00 18,000.00
40 10 6 519 50 15 73 5 5 5.4 5.0 0.0 0.0 107 63 15.28 16.44
40 20 13 6565 363 15 736 0 0 17.0 19.3 114 140 10,859 8349 18,000.00 18,000.00
40 30 17 5273 69 1 118 0 0 46.8 46.8 451 451 913 888 18,000.00 18,000.00

TABLE 4. Results for random instances with L = 3 and arbitrary demands.

n d Cu Pc Dc Ro Tp ol 02 Gapl Gap2  Gtl Gt2  Treel  Tree2 CPU1 CPU2

10 5 9 68 21 4 2 .} 5 7.0 5.8 0.0 0.0 29 22 0.35 0.34
20 5 20 565 46 6 0 5 5 8.5 ik 0.0 0.0 103 91 12.12 10.01
20 10 31 20,280 395 7 3 2 2 20.7 18.5 8.0 6.7 5042 4369 12,555.41 11,183.45
20 15 27 28,657 584 15 5 0 0 44.6 41.7 38.0 349 4326 4484 18,000.00 18,000.00
30 8 50 14,251 282 40 4 3 3 15.7 14.0 3:1 2.1 1948 1816 8489.24 8181.75
30 15 29 19,982 318 4 1 0 0 56.7 56.4 53: . 1535 1126 1190 18,000.00 18,000.00
30 22 30 16,097 236 2 0 0 0 66.1 67.0 64.6 655 601 626 18,000.00 18,000.00
40 10 64 16,501 279 9 1 0 0 30.1 33.5. 238 282 1605 1709 18,000.00 18,000.00
40 20 29 12,519 148 -+ 1 0 0 61.5 61.4 60.2  60.0 274 301 18,000.00 18,000.00
40 30 23 9313 60 2 0 0 0 69.3 69.3 68.7  68.7 79 79 18,000.00 18,000.00

TABLE 5. Results for real instances when L = 2.

n d Cu Pc Dc Ro Tp Gapl Gap2 Gtl Gt2 Treel Tree2 CPUIL CPU2

11 10 0 37 25 28 3 9.9 3.3 0.0 0.0 201 29 1.83 0.59
11 30 0 793 4 48 49 17.3 8.9 0.0 0.0 135 95 7.86 10.67
11 55 1 2376 8 51 51 20.9 10.1 0.0 0.0 245 235 118.30 88.88
30 10 4 241 35 302 27 9.9 3.4 0.0 0.0 215 101 5.19 18.58
30 30 2 1862 7 347 67 17.3 8.9 0.0 0.0 103 87 3529 94.78
30 55 0 8767 4 610 98 20.9 10.1 0.0 0.0 227 321 463.32 859.75
52 10 1 613 48 1041 59 9.9 4.5 0.0 0.0 641 315 35.30 226.05
52 30 0 4184 13 1239 156 1.3 9.2 0.0 0.0 161 235 241.0 1130.67
52 55 0 13,540 3 6920 90 20.9 11.1 0.0 74 221 1051 3119.40 18,000.00
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TABLE 6. Results for real instances when L = 3.

n d Cu Pc Dc Ro Tp Gapl Gap2 Gtl Gt2 Treel Tree2 CPUI CPU2

11 10 10 135 19 3 0 11.2 24 0.0 0.0 869 81 21.82 1.13
11 30 11 2887 234 14 3 16.2 8.8 0.0 0.0 4627 891 1655.84 126.39
11 55 11 3485 351 9 0 16.1 7.3 0.0 0.0 3767 721 2741.18 196.13
30 10 3 43 3194 50 339 11.2 3.8 0.0 0.0 3235 603 3678.49 348.73
30 30 14 24,111 423 659 44 17.1 8.9 5.3 1.8 2233 3115 18,000.00 18,000.00
30 55 16 25,376 512 576 45 53.2 7.6 46.8 1.0 1605 2361 18,000.00 18,000.00
52 10 51 14,309 68 1328 9 11.3 73 32 2.6 1643 2221 18,000.00 18,000.00
52 30 31 14,685 80 535 21.5 12.2 13.9 6.6 449 407 18,000.00 18,000.00
52 55 42 11,950 103 1234 11 53.5 13.% 49.1 10.6 383 387 18,000.00 18,000.00

of the branch-and-cut tree (Tree2) are significantly reduced
with respect to Gapl, Gtl, and Treel. We may also observe
that for the instances with 20 demands or more, the gap at
the root node in the second run (Gap2) is better than the final
gap obtained after 5 hours in the first run (Gt1).

Table 2 gives the computational results for the same
instances as those of Table 1, when I, = 3.

Similar observations as for Table 1 can be made for Table
2. However, the improvement between the first and second
runs is even more important. Indeed, one can remark that, for
the instances with (n,d) = (10, 8), (20, 10), or (30, 8), the
CPU time is almost divided by 5. This can be explained by
the fact that the sz-cut inequalities when L = 2 have been
all generated by our heuristic, while, for L = 3, the exact
separation, which takes more time, has been used. For this, it
is natural to come with more exciting results in run 1 when
L =2thaninrun 1 when L = 3. Moreover, for the instances
with (n,d) = (30, 15) or (40, 10), we can see that one more
instance has been solved to optimality in run 2. Finally, the
gap Gt2 has been reduced for the big instances by almost
10% with respect to Gt1.

Tables 3 and 4 summarize the computational results
obtained for the same instances, but with arbitrary sets of
demands.

Unfortunately, for Tables 3 and 4, no significant improve-
ment between the first and second runs is observed. We
believe that this is because the valid inequalities presented
in this paper are more adapted to rooted demands. However,
many instances in both cases have been solved to optimal-
ity. For L = 2, all the instances with up to 10 demands are
solved to optimality. For L = 3, this is the case for up to five
demands only. Also note that, as the triple-path-cut inequal-
ities never define facets for L = 3, they are generated only a
few times in this case. However, as we may see, when L = 2,
they are generated more.

In Tables 5 and 6, we report the computational results
obtained for real instances when L = 2 and [, = 3, respec-
tively. Here, the instances with 10 demands are rooted, while
the others have multiples sources.

Consider first Table 6. We can remark that, for the
instances solved to optimality, the CPU time in the first run
has been divided by more than 10 in the second run, and for
the other instances, the final gap Gt2 has been considerably
reduced compared to Gtl. The most significant case is the
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instance with 30 nodes and 55 demands. The final gap
decreases from 46.8 to 1%. However, quite surprisingly, in
Table 5, for the same instances with I, = 2, the second run
does not permit us to improve either the CPU time, or the
final gap. Only the gap at the root node decreases between
the two runs.

8. CONCLUDING REMARKS

In this article, we have studied the two-edge connected
hop-constrained network design problem (THNDP). We have
proved that the problem remains strongly NP-hard even in
the rooted case and L = 2. We have given an integer pro-
gramming formulation of the THNDP when [, — 2,3, and
described various families of valid inequalities. We have then
focussed on the rooted case and [, — 2,3, where we have
studied necessary conditions and sufficient conditions for
these inequalities to be facet defining. We have also discussed
separation routines for the different classes of inequalities.
In particular, for the rooted-partition inequalities, when the
elements of the partition, different from the one contain-
ing the source node, are singletons, we have shown that the
associated separation problem can be reduced to the mini-
mization of a submodular function, and hence, can be solved
in polynomial time.

Using our polyhedral results, we have devised a branch-
and-cut algorithm for L = 2, 3, and presented some computa-
tional results. We could estimate the effect of the double cut,
the rooted-(opt-)partition and the triple path-cut inequalities
in the branch-and-cut algorithm. This is particularly strong for
the rooted case because these inequalities are more adapted
to this case. For arbitrary demands, the best results have been
realized for the real instances when L = 3. We could also
measure the performance of our separation techniques.

It would be interesting to investigate the polyhedral aspect
of the THNDP when the demand set contains multiple
sources. The case where L = 4 is of particular interest and
also merits study.
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