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In this article, we consider the two 4-hop-constrained
paths problem, which consists, given a graph G = (N, E)
and two nodes s, f € N, of finding a minimum cost sub-
graph in G containing at least two node- (resp., edge-)
disjoint paths of length at most 4 between s and t. We
give integer programming formulations, in the space of
the design variables, for both the node and edge versions
of this problem. © 2006 Wiley Periadicals, Ine. NETWORKS,
Vol. 49(2), 135-144 2007
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1. INTRODUCTION

One of the main concerns when designing telecommuni-
cation networks is to build topologies that provide protection
against equipment failures. This requires networks to he sur-
vivable, that is, networks that remain functional when links
or nodes fail. However, in general, the survivability require-
ment is not sufficient to guarantee a cost-effective routing.
Indeed, the alternative routing paths may be too long, and
hence, too costly, to be suitable. In consequence, further
technical constraints have to be added. In particular, one can
tmpose a limit on the length of the rerouting paths. One of
the rerouting strategies is the so-called end-to-end rerout-
ing strategy. Here, if a link (node) fails, the traffic must be
rerouted between its origin—destination nodes. To limit the
rerouting, one must have at least two edge- (node-) disjoint
paths with bounded length between each origin-destination
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pair, so that if one of the paths fails, the traffic may be rerouted
{in a minimum time) on the second one. This applies, for

. instance, to ATM networks and the Intemnet. In many practi-

cal situations, the length of the routing path is defined as the
number of links (also cafled hops) in the path, and we talk
about a hop-constrained path. In this article we consider this
fength-constrained survivable network design problem.

Given a graph G = (N, E) with 5,1 € N, and a positive
integer L = 2, an L-s#-path in G is a path between s and 1 of
length at most L, where the length of a path is its number of
edges (also called hops). Given a function ¢ : E - R, which
associates a cost c(e) to each edge ¢ € E, the Two L-Hop-
constrained Paths Problem (THPP) is to find 2 minimum cost
subgraph such that between s and r there exist at least two
node-(edge-} disjoint L-sz-paths. We will speak of the node
THPP if those two paths must be node-disjoint, and of the
edge THPP if they must be edge-disjoint.

In this article, we consider the node THPP and the edge
THPP when L = 4. For both versions, we give an integer
programming formulation in the space of the design vari-
ables. Such a formulation has been for the edge case an open
question for the past few years [20, 21]. For this case, we
will introduce a new class of valid inequalities, and show
that these inequalities together with the so-called st-cut, L-
path-cut and integrality constraints suffice to formulate the
problem when L = 4. For the node case, we first extend the
L-path-cut inequalities to the node THPP, and then show that
these inequalities together with the sz-cut, st-node-cut, and
integrality constraints are sufficient to formulate the problem
when L = 4. Unfortunately, both formulations canpot be
directly extended to every value of L. In fact, as wili be seen
later, one needs additional inequalities for both formulations
even when L = 5. The contribution of this article can be seen
as an impottant step toward a formulation of the THPP in the
natural variable space for all L.

The THPP can also be seen as a special case of the
more general problem when more than one pair of terminals
is considered. This is the case, for instance, when several



commaodities have to be routed in the network. Thus, an effi-
cient algorithm for solving the THPP would be useful io solve
{or produce upper bounds for) this more general problem.
The formulations we will give in this article can be easily
extended to that general problem.

In [15], Gouveia et al. discuss the node case of that gen-
eral problem within the context of an MPLS (Multi-Protocol
Label Switching) network design model. The authors propose
two extended formulations involving one set of variables for
each path between each pair of terminals. The first model uses
standard flow variables, and the second uses hop-indexed
variables. Each subsystem of constraints associated with a
path is a flow model with additional cardinality constraints.
The authors also introduce a third model involving one set
of hop-indexed variables for each pair of terminals. They
show that this aggregated and more compact model produces
the same linear programming bound as the multipath hop-
indexed model. They also present computational results for
L = 4,5, and 6 using these formulations. Unfortunately,
as the number of variables of the resnlting models grows
with L (and the number of pairs of terminals), the size of
the corresponding linear programming relaxation may lead
to excessive computational time when more dense instances
(or instances with a larger value of L or a larger number
of nodes) are considered. As mentioned in [15], this points
out the need for looking for formulations using only natural
variables.

The edge THFP has been already investigated by Huygens
et al. [20] when L = 2, 3. Also, the problem of finding a min-
imum cost subgraph that contains & edge-disjoint 2-st-paths,
with & > 2, has been considered in [7]. For both problems, a
complete and minimal linear description of the corresponding
polytope is given. In [4], Dahl considers the hop-constrained
path problem, that is the problem of finding between two dis-
tinguished nodes s and r a minimum cost path with no more
than L edges when L is fixed. He gives a complete descrip-
tion of the dominant of the associated polytope when [ < 3.
Dahl and Gouveia [6] consider the directed hop-constrained

path problem. They describe valid inequalities and character-

" ize the associated polytope when L < 3. In [2], Coullard et
al. investigate the structure of the polyhedron associated with
the st-walks of length L of a graph, where a walk is a path that
may go through the same node more than once. Dahl et al. [5]
also consider the hop-constrained walk polytope in directed
graphs when L, = 4. This is the first work that addresses
a polyhedral analysis for a hop-constrained network design
problem with L = 4. By introducing extended variables in
addition to the design variables, the authors characterize the
polytope. They also introduce a large class of facet-defining
inequalities for the dominant of that polytope, which sur-
prisingly shows that describing the hop-constrained walk
polytope for L == 4 is easier than describing its dominant.
Moreover, one of their conclusions is that the structure of
the hop-constrained path polytope for L = 4 is considerably
more complicated.

In [8], Dahl and Johannessen consider the 2-path network
design problem, which consists of finding a minimum cost
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subgraph connecting each pair of terminal nodes by at least
one path of length at most 2. The problem of finding a mini-
mium cost spanning tree with hop constraints is considered in
{10,11, 16]. Here, the hop constraints limit to a positive inte-
ger H the number of links between the root and any terminal
in the network. Dahl [3] studies the problem for H = 2 from a
polyhedral point of view and gives a complete description of
the associated polytope when the graph is a wheel. Huygens et
al. [19] consider the problem of finding a minimum cost sub-
graph with at Ieast two edge-disjoint L-hop-constrained paths
between each given pair of terminal nodes. They give an inte-
ger programming formutation of that problem for L = 2,3,
and present several classes of valid inequalities. They also
devise a Branch and Cut algorithm, and discuss some com-
putational resuits. In [23], Nguyen gives a complete linear
description of the k-path polyhedron.

Hop constraints have been also censidered by Gouveia
[10, 11] for the minimum spanning tree problem. The prob-
lem is then, given a graph G = (V, E) with weights on the
links and a #oot node, to find a minimum spanning tree such
that the (unique) path between the root and any other node
in the graph has no more than L links (hops), where L is
a fixed positive integer. This problem is NP-hard even for
L = 2 (see, ie., [3]). Gouveia [10] gives a multicommodity
flow formulation for that problem and discusses a Lagrangian
relaxation improving the LP bound. Gouveia [11] proposes
a hop-indexed reformulation of a multicommodity flow for-
mulation which is based on an extended description of the
L-walk polyhedron. The reported computational results show
that the new formaulation is attractive to use when L is small. In
[16], Gouveia and Requejo propose a Lagrangian relaxation
for the problem that dualizes the hop-indexed flow conserva-
tion constraints. Reported results show that this relaxation is
a good alternative to directly solving the corresponding lin-
ear programming relaxation. Further results, formulations,
and polyhedral analysis for the hop-constrained minimum
spanning tree problem can he found in [12-14].

We assume familiarity with graphs and polyhedra. For
specific details, the reader is referred to [1] and [24]. The
graphs we consider are finite, undirected, loopless, and may
have multiple edges. A graph is denoted by G = (N, E),
where N is the node set and E is the edge set. ifu,v ¢ N,
we will denote by iy an edge between i and v. If W C N is
a node subset of G, then the set of edges that have only one
node in W is called a cur and is denoted by (W), When it
is elear that the cut is taken with respect to G, we will simply
denote it by §(W). We will write §(v) for §({v}). A cut (W)
such that s € W and t+ € N\W will be called an st-cur. If
V.W C N, [V, W] is the set of edges having one endnode
in V and the other one in W. Note that we will write {v, w}
instead of [{v], {w}]. A path P of G is an alternating sequence
of nodes and edges (i, e, 42,€2,. . ., Ug—1,€q~1. Ug), where
e; € [upuiq]fori=1,...,qg — 1. We will denote a path P
by either its node sequence (uy, . . ., uy) or its edge sequence
{(e1,...,eg4-1). Given a partition (V,...,V,) of N, an edge
between any two nonconsecutive subsets of the partition will
be called a chord.




]

Given a graph G = (N, E) and an edge subset F C E, the
0 — 1 vector x¥ ¢ R¥E such that x¥(¢) = 1 ife € F and
xF(e) = 0 otherwise, is called the incidence vector of F. The
x-variables are also named design variables. We denote by
Gr = (N, F) the support graph of x¥, that is, the subgraph
of G containing only the edges e with x* (¢} = 1. Given an
edge ¢ € E, the graph G — ¢ is the subgraph obtained from G
by deleting the edge e (but not its endnodes). Given a node
z € N, the graph G — z is the subgraph obtained from G by
deleting the node z and ali its incident edges (but not their

other endnodes).
This article is organized as follows. In the next section, we

propose an integer programming formulation, in the space of
the design variables, for the node THPP with L = 4. This
formulation will also be valid when L = 2,3. In Section 3,
we first present a new family of valid inequalities for the edge
THPP when L = 4. Using this family, we give an integer pro-
gramming formulation, in the space of the design variables,
for this problem. In Section 4 we discuss some extensions,
and in Section 5, we give some concluding remarks.

2. FORMULATION FOR THE NODE THPP
WHEN L =4

The incidence vector x* of any solution (N, F) to tﬁe node
{edge) THPP satisfies the following inequalities:

x(8(WY) = 2, forall st-cuts 8 (W),

1 >x(e)>0, forallecE.
The first inequalities are called st-cur inequalities and the
second ones are called trivial inequalities. Moreover, in the
node case, the following so-called sr-node-cut inequalities
are also valid for the associated polytope:

*(36-(W)) = 1,

where 7z € N\[s,t} and 8g_,(W) is an sr-cut in the graph
G-z

In [4], Dahl introduces a class of valid inequalities for
the hop-constrained sr-path problem as follows. Let [T =
(Vo, V1,...,VL41) be a partition of N such that s € Vg,
teVigrandV; = Bforalli = 1,...,L. Let Ts be the set
of the chords of the partition IT of G. Then the inequality

x(Tg)y =1

is valid for the L-path polyhedron. The set Tg is called an
L-path-cur. When it is clear that the L-path-cut is taken with
respect to G, we will simply denote it by 7. Using the same
kind of partition, these inequalities can be generalized in a
straightforward way to the THPP as

x(T) =2,

for any L-path-cut T. Constraints of this type will be called
L-path-cut inequalities.

These inequalities can be extended to the node case as
follows: ’

*Te-) = 1,

where z € N\[s, 1} and T, is an L-path-cut in the graph

(G —z. We call these constraints L-path node-cut inequalities.
Now, consider the following linear system consisting of

the inequalities introduced above, that is

for all sz-cuts (W), (1)

for all sz-cuts g (W),

forallz € N\[s, £}, (2)

x(8(W)) = 2,
*(@e— (W) = 1,

x(1) =2, for all L-path-cuts 7', (3)
x(Tg—) = 1, for all L-path-cuts Tg.—,

forall z € N\{s,¢}, (4
x{e) <1, foralle € E, (5)
x(e) > 0, forall e € E. )

We will show that the system above, along with the inte-
grality constraints, formulates the node THPP as an integer
program when L = 4.

Theorem 1. The node THPP for L = 4 is equivalent to the
integer program

min {cx; subject to (1)~(6), x € ZIF! }

Proof. By the development above, it is clear that the
incidence vector of any solution to the node THPP with . = 4
satisfies inequalities (1)—~(6). ‘

Now consider an edge subset F € F and suppose that F
does notinduce a solution to the node THPP with I = 4. Sup-
pose that all sz-cut and sr-node-cut constraints are satisfied
by xf. We are going to show that there is at least one 4-path-
cut or 4-path node-cut violated by x*. Let Gy be the graph
induced by F and Py a shortest st-path (in aumber of hops) in
Gr. In what follows, we are going to discuss different cases
with respect to the length of Py.

If |Py| = 1, that is Py = (sz) with 5t € [s,1], then Py
is the only 4-st-path in Gg. In fact, if there exists a 4-si-
path P different from Py, then P would be node-disjoint from
Py, a contradiction. Therefore, in Gr — sz, because the sz-cut
inequalities are satisfied, there must exist an st-path, of length
atleast5, Letus define Vi, i = 0, .. ., 4, as the subset of nodes
atdistance i from s in Gg —st, and V5 = N\(Uf:(} Vi). By the
previous remarks, it is clear that the V;’s are nonempty, and
thats € Vyands € V5. Moreover, by construction, no edge of
G — st is in the corresponding 4-path-cut T, g, and hence,
x(Tg,.sr) = 0. Let T be the corresponding 4-path-cut in G.
Therefore, in G, we obtain x7 (T) = 1, which is a violated
4-path-cut inequality.

If|Py) = 2,thatis Py = (su, ut) withu € N\[s, 1}, because
F is not a solution to the problem, all the other 4-s¢-paths of
G must go through u. Therefore, in Gr — u, because the st-
node-cut inequalities are satisfied, there exists an sz-path, of
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FIG. 1. Infeasible solution for the node THPP with /. — 5.

length at least 5. Let us define a 4-path-cut Tg__, in Gr —u
the same way as in the previous case. By construction, no
edge of Gp —uisin TG, —u. and hence, x(Tg.—y} = 0. This
implies that the 4-path node-cut inequality corresponding to
TG—y and u is violated by x7

If | Py} = 3, that is Py = (su, uv, vr) with i, v € N\{s, ¢},
u 7 v, then all the other 4-st-paths of Gr must go through
either u, or v, or both. Suppose that there exist at Ieast one
4-st-path P going through w, but not v, and at least one 4-s1-
path P» going through v, but not u. Let P (resp., P§) be the
subpath of P; between « and ¢ (resp., s), and P (tesp., P})
the subpath of P, between s (resp., 1) and v. Clearly, |Pi] <3
and fP;] < 3. Moreover, because Py is a shortest st-path,
we have |P|| > 2 and IP3| > 2. Hence, 1 < Pl < 2 and
I < |Pij = 2. Now, because F is not feasible, P and P,
must intersect each other in a node w different from S, U,V L.
If w € P} N P, then Py and the 4-st-path consisting of the
subpath of P, from s to w, and of the subpath of P; from
w to £, are node-disjoint, a contradiction. Therefore, either
w € Pl orw € Pj. Suppose that w & P; (the other case
follows by symmetry). Then IP{| = 2, and hence, [Pl =
2. Let PY” be the subpath of P> between v and w. Clearly,
|P3*] = 2. But then we have two node-disjoint 4-s¢-paths
in Gp, namely su, P}, and sw, P37, v, This contradicts the
infeasibility of the solution. Consequently, there cannot be at
the same time 4-st-paths going only through u, or through v.
We can suppose that u belongs to all 4-st-paths of Gr (the

other case is symmetric). Therefore, there exists no 4-st-path-

in Gr —u and, by constructing the 4-path node-cut T_,, as
before, we get a contradiction.

Now suppose that || = 4, thatis Py = (s,u,v,w, 1) with
u, v, w € N\[s, 1}, u,v, w different from each other. Then all
the other 4-s¢-paths of G must go through either u, or v, or w.

Claim. There does not exist a 4-st-path going through u
which uses neither v nor w.

Proof. Assume the contrary, andlet Pbe a 4-st-path that
contains u, but neither v nor w. Because Pp is a shortest path,
P must contain three edges between u and . Let v/, w’ be
the nodes along this subpath, different from  and . Now,
suppose that there exists a 4-s¢-path P’ not going through u,
but through v or w. Thus, P’ must also intersect P in either
v or w'. Becanse Py is a shortest st-path, it is not hard to see
that we have either P’ = (s,u’,v/,w, Nor P = (5,0, v, ', 1),
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with &’ € N\{s,u,v,w,v, w’, r}. But then the graph induced
by Py U P.U P’ contains two node-disjoint 4-st-paths, a con-
tradiction. Consequently, there cannot exist a 4-st-path not
going through w1, and hence, ail 4.st-paths of Gr use u. This
implies that Gy — u does not contain 4-sr-paths. We can then
get a contradiction in a similar way as before. [

By the claim above, all 4-ss-paths in Gr go throngh v or
w. Suppose there is a 4-st-path P going through w, but not
v. If P does not contain i, we can show along the same lines
that all 4-st-paths use w, and get a violated 4-path node-cut
Inequality.

So suppose that P contains . We may also suppose that
there are two farther 4-st-paths Py and P such that P, {resp.,
P2} uses u but not w (resp., w but not 1). For otherwise, either
each 4-sr-path contains 1 or cach 4-st-path contains w. In both
cases, we get as before a violated 4-path node-cut. Moreover,
Py and P must go through v, for otherwise, we would get
two node-disjoint 4-st-paths, a contradiction. Hence, Pyisof
the form (s, u, v, P}), where P{ is a ve-path of length 2 not
going through w, and P, is of the form (P5,v,w, 1), where
P is a sv-path of length 2 not going through u. But then we
obtain two node-disjoint 4-s¢-paths, namely P; U P| and P,
which is a contradiction.

In consequence, all 4-5z-paths go through v. As before, we
obtain a violated 4-path node-cut inequality.

If |Py] = 5, there exists no 4-st-path in Gy. Thus, we can
build directly an adeguate partition in Gr and get a violated
4-path-cut inequality. =

This result holds for L = 2,3 by doing a similar proof.
However, this is not the case for [, — 5. Consider, indeed,
the graph shown in Figure 1. Unfortunately, its incidence
vector satisfies inequalities (1)~(6) when 7, = 5. However,
this solution is clearly infeasible for the node THPP with
L=3.

3. FORMULATION FOR THE EDGE THPP
WHEN L =4

In [20], Huygens et al. have shown that the linear system
of inequalities (1), (3), (5), and (6), along with the integrality
constraints, is sufficient to formulate the edge THPP for I =
2, 3. However, this is not the case when [ = 4, as illustrated
by Figure 2. One can verify that all those inequalities are
satisfied, while the solution is not feasible for the edge THPP
with L = 4.

In [6], Dahl and Gouveia describe the following class of
valid inequatities for the L-hop-constrained path problem.
Let Vy,..., Vi be a partition of N such thatr > 1,5 ¢ ¥

FIG. 2. Infeasible solution for the edge THPP with L = 4,




FIG.3. A two-layered infeasibie solution for the edge THPP with L = 4.

and ¢ € Vr,. Then the generalized jump inequality is

Z min()i —j| — 1,7 x(e) > r.

es[Vi, ViLirAs

These inequalities can be easily extended to the edge THPP
as follows:

Z min(|i — j| — I, ) x{€) > 2r. (7

e[V, Vilisy

Note that these inequalities generalize the L-path-cut inequal-
ities (by setting » = 1). Moreover, it 15 easy to see that the
inctdence vector of the graph of Figure 2 does not satisfy
(7) when r = 2 and each V; is restricted to a single node,
However, adding this class is still not sufficient to formulate
the edge THPP for L = 4. Consider, for example, the graph
of Figure 3. Clearly, this solution is not feasible for the edge
THPP with L = 4. However, it is not difficult to check that,
besides all sz-cut and trivial constraints, its incidence vector
also satisfies all generalized jump inequalities (7).

S0, to formulate the edge THPP for L = 4, further inequal-
ities are clearly needed. In what follows, we introduce a more
general class of valid inequalities and show that these inequal-
ities together with (1), (3), (5}, and (6) suffice to formulate
the edge THPP for L = 4.

Let Vo, V1,..., Vs, Wi, ..., Wy be a two-layered partition
of Nsuchthats € Vpandr € Vg, and V; # Bfori=1,...,5.
See Figure 4 for an illustration. We note that the W;’s may be
empty. Consider the inequality

ax > 4, 8
with
a(e) = min(|i — j| — 1,2),
forall e € [V}, Vili #J,

ale) = 2, forall e € [W;, W;1. i —j| = 2,

ale) =2, foralle € [V, W;],j—i=>2o0ri—j=>3,

ale) =1, for all e € [V;, Wi1, (4, /)
=1(2,3).(3,1),(3.4),(4,2),

ale) =0, otherwise.

Inequalities of type (8) will be called two-layered 4-path-cut
inequalities. In Figure 4, the edges with coefficient 1 are in
solid lines, while those with coefficient 2 are in bold. The
edges with zero coefficient do not appear in the figure.

Theorem 2. Inequalities (8). are valid Jor the edge THPP
polytope when L = 4.

Proof. Consider a two-layered 4-path-cut inequality
ax > 4, whose coefficients can be seen as weights on the
edges. It is easily seen that the total weight of any 4-sr-path
is at least 2. Becanse any feasible solution to the edge THPP
with L = 4 must contain at least two such edge-disjoint paths,
its incidence vector satisfies ax = 4. n

Observe that, when the W;’s are all empty, these inequal-
ities correspond to the generalized jump inequalities with
r = 2. Also note that the solution induced by the graph of
Figure 3 can be cut off by the two-layered 4-path-cut inequal-
ity obtained from the partition with all the sets being single
nodes.

‘We are now going to show that the linear system consisting
of inequalities (1), (3), (), (6), and (8), along with the inte-
grality constraints, is sufficient to formulate the edge THPP
with I = 4.

Theorem 3. The edge THPP for L = 4 is equivalent to the

integer program
min {cx; subject to (1), (3), (5), (6); (8), x € ZIF1].

Proof. By Theorem 2, together with the fact that the sz-
cut, L-path-cut, and trivial constraints are valid for the edge
THPP polytope, the incidence vector of any solution to the
edge THPP for L = 4 satisfies inequalities (1), (3), (3), (6),
and (8).

Now suppose there exists a solution F whose incidence
vector % satisfies the st-cut, 4-path-cut and trivial inequali-
ties, but that is not feasible for the edge THPP with [ = 4. We
will show that there exists a two-layered 4-path-cut inequal-
ity ax > 4 violated by x7. Let Gr be the graph induced by
F and Py a shortest sr-path in Gp. We have the foliowing

claims.

FIG. 4. Support graph of a two-layered 4-path-cut inequality.
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Claim 1. For every edge e, there is at least one 4-s7-path

m Gg — e.

Proof. Suppose this is not the case. Let ¢y be an edge
such that Gy — eg does not contain any 4-sz-path. Becanse x*
satisfies all the sz-cut inequalities, there must still exist an st-
pathin G —ep, of length at least 5. Let us consider a partition
Vo..... V5 of N such that V;, i = 0,...,4, contains all the
nodes at distance { from s in G — ey, and V5 contains all the
other nodes. By the previous remark, each V; is nonempty,
s € Vo,and ¢t € V5. Let T, be the associated 4-path-
cut. By construction, x(Ts—.,) = 0, and hence, if T is the
corresponding 4-path-cutin G, x* (T') < 1, a contradiction. [

Claim 2. The path Py is of length at least 3.

Proof. Suppoese this is not the case, that is, either [Py) =
1,or [Pyl = 2.If |Py| == 1, then Py = (s51). By Claim 1, there
is a 4-s¢-path that does not contain s¢. But this tmplies that Gz
contains two edge-disjoint 4-st paths, a contradiction. Thus
IPg| = 2. Let Py = (e1, e2). By Claim 1, there is a 4-s7-path
Py that does not contain e;. Then ¢; € P1. Let P} be the
subpath of P} between s and v, where v is the endnode of ¢;
different from s. Hence, |P]] = 3. Similarly, there is a 4-s¢-
path P> such thate; € P> and ez ¢ Pa. Let P} be the subpath
between v and 7. We also have |P}| < 3.

If P} and P} do not intersect in some edge, then the paths
e1, P and P{, e; are of length at most 4 and are edge-disjoint,
a contradiction. Let w be the first node of P{ that belengs to
Pi. Note that w # v. Let P} be the subpath of P} between
w and ¢. Clearly, [P5] < 2. Similarly, let P% be the subpath
of P{ between s and w. We also have if’f | = 2. Now let P
be the path P{ U P}, We have [P)] < 4 and Po N P = 0, a
contradiction. O

Claim 3. The path Py is of length exactly 3.

Proof. By Claim 2, we already have |Pg| = 3. Also, itis
clear that {Py| < 4. If not, this would contradict Claim 1 for
any edge e. Suppose now, by contradiction, that |Py| = 4.

Let Py = (sv1,vive, vova, v3t) with vy, va,v3 € N\fs, 1},
vy, vy, v3 different from each other. By Claim 1, there must
exist a 4-sr-path P| not containing svy, and another one P
not containing vsz. Because Py is a shortest path, Py and P
are both of length exactly 4. Let P (tesp., ) be the subpath
of Py (resp., P2) from s (resp., t) to the first node in common
with Pp. Note that if this node is v;, then [P{] = i (resp.,
|P5| = 4 — i). Moreover, note that P} and P}, do not intersect
Fy in any edge.

Suppose first that P and P} intersect in some edge.
Thus, there is a node z common to P and P}, different
from v, v2,v3. But then the subpaths of P, Pg between z
and s, ¢, respectively, form a 4-s¢-path disjoint from Py, a
contradiction. Therefore, P{ and P are edge-disjoint.

Notice that P{ cannot go from s to v3. If this was the case,
we would indeed have |P}| = 3, and hence, P; would be of
the form sv{, |V}, vv3, vat. But then, as var ¢ Pa,and P} and
P’ are edge-disjoint, P2\ P} must have an edge in common
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with P} (and also with Pp). Clearly, the only possibility is

that P; is of the form (sv), v} va, vzvs, B} ot (sv1, vivy, ¥y v, ),
with & € [v3, t]\{v3¢}. But this creates two edge-disjoint 4-st
paths, a contradiction. Similarly, P}, cannot go from 7 to v;.

Suppose now that P goes from s to v;. Therefore, to not
create two edge-disjoint 4-s¢-paths, P, must go from f to vs.
Recall that in this case, P] = {sv},v|v) and P, = (h) with
h € [vs,t]\{vst}). Consequently, it is clear that vavs must be
common to Py, P1, P2 (if not, we would immediately create a
path disjoint from Pg). On the other hand, by Claim 1, there
must exist a further 4-st-path not containing v;v3. However,
because this one cammot intersect all the previous paths in at
least one edge, we obtain a contradiction.

Thus, P| must go from s to v; and, by symmetry, P/, must
go from 7 to v3. Hence, P] = (g) with g € [s,vi]\{sv,}, and
Pl = (h) with h € [v3,7]\{v37}. Note that a 4-s¢-path cannot
intersect at the same time sv; and g, or vaz and h. Therefore, if
we consider a 4-st-path not containing v vy, it must use vovs.
In the same way, a 4-sr-path not containing vavs must use
v1v2. Once again, we obtain two edge-disjoint 4-s7-paths.

In the rest of the proof, we let Py = (ej,er,e3) =
(8,v1,v2,8).

Claim 4. Every 4-sr-path of G contains at least two
edges among ey, €2, 3.

Proof. Let P be a 4-sr-path different from Pp. Let us
suppose that P; does not intersect {e), e2}. Then, ey € Py.
Let P{ be the subpath of P; between s and the first node in
common with Po. Suppose first that this node is v. Because
Pyis ashortest sz-path, it follows that 2 < |P{| < 3. By Claim
1, there is a 4-st-path P; that doss not contain es. Thus, P
intersects {e1,ez]. Let P be the subpath of P> between ¢
and the first node in common with Py. Note that |P] < 3.
If P’ contains another node of Ps than v, say z, then the
subpaths of P between s and z, and of Pi between z and
t form a 4—st-path edge-disjoint from Py, a contradiction.
So, P; and P, may only intersect in v3. Moreover, if this is
the case, because P, must contain ¢; or e, we then have
1 < {P}] < 2. But this creates two edge-disjoint 4-s¢-paths,
namely P U {e|, ez} and Py, which is impossible. If P§ and
PE do not intersect in a node, then P; goes from ¢ to v1. But,
therefore, the paths P) U {e;} and Py are of length at most
4 and edge-disjoint, a contradiction. Suppose now that the
first node common to P| and Py is v1. Then Py is either of the
form (P'f, viva, €3}, with vyvy parallel toe; and 1 < |P]| = 2,
or of the form (svy, viu, uvo, e3) with sv parallel to €, and
u e N\{s. t,vy, vl

Case 1. P; = P{ U {v;»,es} where vivo is an edge of
[vi,v2]\lez}. By Claim 1, there is a 4-s¢-path not containing
e3. Butitis nothard to see here that there are two edge-disjoint

- 4-st-paths, a contradiction.

CASE 2. P1 = (svi,viu,uva,es) with svp € [s,11]\{e;}
and u € N\{s,#,v),v2). Again, by Claim 1, there is a 4-st-
path, say P3, not containing 3. Because F is not a solution
to the problem, P; must intersect all the 4-sr-paths obtained




from PoU{svy, v &, uvz}. However, this is impossible without
creating a 4-st-path disjoint from Py,

Therefore, £; must intersect the set {e;, e2}. By symme-
try, P; must also intersect {es, e3}. Now, to complete the
proof of the claim, it suffices to show that P; also inter-
sects {e1,e3}. Suppose the contrary. Then P contains e,
and hence, P| = P; U {e2} U P}, where P| is a path going
from v; to . Note that P{ is a path going from s to v;. (The
other case would immediately create two edge-disjoint 4-sz-
paths, namely, P{ U {e3} and {e|} U P].) Note that P| and P
must be either both of length 1, or one of length 1 and the
other of length 2. In both cases, by considering a 4-st-path
not containing e, but intersecting all the previous paths, one
would contradict the infeasibility of F. O

Consider now the subgraph G, of G obtained by deleting
the three edges of Py. Because F is not feasible, G does not
contain any 4-st-path. Thus, if Pj is a shortest sz-path in G,
we have |P(| = 5. Suppose first that [P] = 6 (note that this
includes the case where Pé does not exist). We will show that
there exists an inequality (8), with all the W;'s empty, violated
by x'.

In Gy, let TT = (Vp, V1,.. ., V) be a partition of N such
that V;, i = 1,...,5, contains the nodes at distance i from s,
and Vg contains all the other nodes. Clearly, s € V, and by
our current assumption, 1 € V. M'oreover, we claim that each
other V; is nonempty. Suppose this is not the case, that is, there
issomei € {1,...,5]} such that V; = @. By definition, this
means that there does not exist any node at distance ¢ from
s, and hence, at distance 5 from s. Therefore, V5 = @ and
the st-cut §(Vs) is empty in G.. However, in G, we have by
hypothesis xF (3(Vs)) > 2. As any st-path intersects any sz-
cut an odd number of times, we obtain that e{, ey, and ¢3 must
all belong to 8(Vg). Therefore, v; € Vg and v ¢ V. Suppose
now that va belongs to V) U Vo U V3. Then, by construction,
there exists an sv;-path of length at most 3. This creates a 4-
st-path containing only the edge e3 of Py, which contradicts
Claim 4. Consequently, we have v» € V. This also yields
that all the Vs, except Vs, are nonempty. Consider now the

Vo

~

4-path-cut T obtained from I1 by collapsing V5 and V. In G,
itis clear that the only chord of T is ¢, and hence, xF (Ty=1,
which is again a contradiction.

‘Therefore, all the V;’s are nonempty, and T is an admissi-
ble partition for a two-layered 4-path-cut inequality ax > 4
with the W;’s empty. Moreover, in G}, we have ax” = 0 by
construction. Observe that we can suppose that Vg only con-
tains £. If not, we can put all the other nodes of Vi in V5 without
creating a chord. Now consider this two-layered 4-path-cut
in Gr. If a(e)) +ales) +ales) < 3, we have axf < 4in
Gr and we have then found a violated inequality of type (8).
Thus, ale))} 4 alez) + ales) > 4. Because by Claim 4 no 4-
st-path containing only ez from Py can exist in Gy, we have
vy € Va U V5. Suppose first that vy € Vy. Thus, ale;) = 1,
and hence, a(e1) 4 a(ez) = 3. The only possibility is that v,
belongs to V. But this is impossible because Vg only con-
tains r. Suppose now that v, € V5. Therefore, a(ex) = ( and
ale1) + afez) = 4. Clearly, this is also impossible.

Finally, suppose that the shortest sz-path in G is of length
exactly 5. We claim that there exists an inequality (8), with
at least one W; nonempty, violated by x*.

By Claim 1, there exists in G a4-st-path P; not containing
e;, for each i = 1,2, 3. Moreover, by Claim 4, the P;’s must -
contain P\ {e;}. Besides these two edges from Py, it is clear
that each P; must contain iwo more edges. Indeed, if one P;
was of length 3, this would create two edge-disjoint 4-sr-paths
in F, a contradiction. For the same reason, the P;’s cannot
have a node in cormon besides s, v, v2, 7. As a consequence,
we have the graph of Figure 2 as a subgraph of Gg. Note that
the sf-path of this subgraph not intersecting Py is of length 6.
Let us denote its nodes by {s, u1, vy, 2, V2, 3, £ }. Notice that,
as the shortest sr-path of G}, is of length exactly 5, there must
be in Gr additional edges (and nodes) forming, eventually
with edges of that path, an sz-path of length 5.

Consider the partiion [T = (Vp,..., Vg, Wi, .., Wy)
In Gy defined as follows. We set Vy = {5}, V| = {u},
Vo = (i} V3 = {ma}, Va = {»}, Vs = {us}, and Vs = {1].
All the other nodes are distribuied to the W;'s through a
breadth first search from s in Gy. See Figure 5 for an iilustra-
tion. Note that some W;’s may be empty, but not all of them

Va

ez
%2
v

5

Gl
A

3
UWE

FIG. 5. Partitton T of Gg.
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FIG. 6. Infeasible sclutions for the edge THPP with L = 5.

by our previous remark. Let E = (Uj -2 or izl Vo AN
Uij=eaoneaanVe W;1), that is, the set of edges
between the two layers of the partition I'T that have a posi-
tive coefficient in the corresponding inequality (8). We claim
that Gr does not contain any edge from E. Suppose this i3
not the case. If there was an edge of Gp in [V;, W;] with
j—i =2, thenits endnode in W; would be at distance i -+ 1
from s, and hence, it should have been put in Wiy by con-
struction. The same contradiction holds for edges of Gp in
[Va, W3] U [V3, Wal. Now, assume there is an edge e of G in
[Vi, Wyl with i —j = 3. Thus, by construction, there exists in
G a subpath P, from s to the endnode of e in W;, of length
exactly j. But then G contains the graph of Figure 2, P and
¢, and hence, two edge-disjoint 4-st-paths, a contradiction.
Finally, if Gr uses some edge from [V3, WilU [Va, Wa], we
get a similar contradiction.

Consequently, the only edges of G between the two lay-
ers of partition IT have coefficient zero in the corresponding
inequality (8). Moreover, by construction, the lower partition
cannot contain chords, and the upper one has e1, €2, €3 forits
only chords. Because these three edges have a coefficient 1,
we obtain axf = 3 < 4, and the proof is complete. -

Unfortunately, as pointed outin Section 1, the formulation
given above for the edge THPP when L = 4 cannotbe directly
extended to an arbitrary L. In what follows we show that
further inequalities are needed to formulate the edge THFP
even for L = 3.

4. EXTENSIONS

We first describe a larger class of valid inequalities that
generalizes inequalities (8) for every L.

Consider a complete graph G = (N, E) and let L be a
fixed positive integer. Let Vo, V1, - -0 Vag—2, Wi, .00 Wi be
a two-layered partition of N such thats € Voand ¢t € Var—2,

and V; £ Pfori=1,....2L — 1. Note that the W;’s may be
empty. Let G’ be the subgraph induced by the edges that are
in the same layer. Consider the inequality

ax = 2(L —2), )
with
a’(g) = mjﬂ(ii “jl - I,L - 2):
forall e € [V, ViL.i # 1,
a(e) =L—-2, foralle € [Wl-,“{u],h *“']i 227
a(e) = max{L — 2 — a(P \ {e}); Pis an L-st-path of G’ + ¢},
foralle € [V, Wil

Note that the coefficients of the edges between the two lay-
ers are nothing but the lifting coefficients of (9) with respect
to G'. By considering afe) as a weight on each edge, it is
easy to see that any L-sf-pathin G has a weight at least L — 2,
implying that (9) is valid.

Inequalities (9) will be called two-layered L-path-cut
inequalities.

Now consider the case L = 3 and the graphs of Figure 6.

First note that, because of the restricted number of nodes,
no two-layered inequalities of type (9) arise in the first graph.
There are, however, two-layered inequalities induced by the
second graph, but they are not violated. Moreover, one can
easily verify that the st-cut and L-path-cut inequalities are
satisfied, while none of the graphs contain two edge-disjoint
5-st-paths. This implies that further inequalities, in addition
to the st-cut, L-path-cut and two-layered inequalities, are
needed for the formulation of the edge THPP even for L = 5.

In fact, the proof of Theorem 3 is based on the shortest
st-path Py of a solution F* that satisfies the st-cut and L-path-
cut inequalities, but that is not feasible for the edge THPP
with L = 4. As shown in the proof (Claim 3 of Theorem
3), Py has a unique length value, that is, [Po| = 3. The rest
of the proof consists then of showing that one of the two-
Jayered inequalities i violated in that case. This unique length
possibility for Po is unfortunately no longer true when L = 5.
Indeed, for L = 3, as can be seen from the graphs of Figure
6, such a solution may have a shortest path Py of length 2.
(Similar solutions exist for L = 5 where [Py| = 4.) Figure 7
shows a similar solution for L = 6 where [Pol = 3.

In general, Py may have different values (we conjecture
that there are between 2 and L-1), which makes the proof for
L > 5 much harder. In fact, each possible value of |Pp| should
give rise to a violated inequality. We believe that there should

FIG.7. Infeasible solution for the edge THPP with L = 6.
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exist a unified framework for these inequalities, a direction
that we are now exploring.

5. CONCLUDING REMARKS

In this article we have given an integer programming
formulation, in the space of the design variables, for the
two 4-hop-constrained paths problem in both the edge and
node cases. For the edge version of the problem, we have
introduced a new class of valid inequalities that we called
two-layered 4-path-cut inequalities and shown that these
inequalities together with the so-called st-cut and 4-path-cut
inequalities yield an integer programuming formulation of the
problem.

A natural question that may be posed is whether or not
these formulations are complete, that is whether or not their
linear relaxation is mtegral. Unfortunately, for the node
version, this is not the case as shown by the following
example.

Consider the graph G = K of Figure 8, where the edges in
solid lines have value 1/2, the ones in bold have value 1, and
the remaining edges have value zero. It is easy to verify that
this solution is a fractional extreme point of the polyhedron
given by the linear relaxation of the node THPP with . = 4
and {s, 7} = {1, 6}. This point can be cut off by the following
valid inequality

2x(ez) + x{ez) + x(eq) + 2xes) + x{es) + x(e7)
+ 2x(ey) + xlen) + x(e14) + 2x(e1s) = 3.

Moreover, this inequality is facet defining for the polytope
on this graph.

An interesting question would be to see whether the linear
relaxation of the edge version is integral.

The separation problem for a system of inequalities con-
sists of verifying whether a given solution x* € Rl satisfies

eg o = e1s

6

HIG. 8. A fractional extreme point of the linear relaxation of the node
THPP with £ = 4 and (s,7) = {1,6}.

the system and, if not, of finding an inequality of the sys-
tem that is violated by x*, Grétschel et al. [17] showed that
optimization over a system of inequalities can be solved in
polynomial time if and only if the separation problem for
that system can be solved in polynomial time. The separa-
tion problem for the st-cut and st-node-cut inequalities can
be solved in polynomial time using any polynomial time
max-flow algorithm [18]. The separation problem for the L~
path-cut inequalities (and the L-path-node-cut inequalities)
reduces to finding a minimum weight edge subset intersect-
ing all the L-st-paths. In [9], Fortz et al. showed that, when
L < 3, this problem can be reduced to a max-flow problem
and can then be solved in polynomial time. The case L = 4
is, unfortunately, still an open question (see [22]).

Because the THPP for L = 4 can be solved in polyno-
mial time (by enumeration), from the equivalence between
optimization and separation, it follows that inequalities (3)
and (4), as well as inequalities (8), can be separated in poly-
nomial time among a system of inequalities describing the
THPPF polytope in this case. For integer solutions, inequali-

“ties (3) (and (4)) can be separated in polynomial time for all

L using a breadth first search [19]. Also, from the proofs of
Theorems 1 and 3, inegualities (8) can be separated in poly-
nomial time for integer solutions. Hence, one can state the
following.

Theorem 4. Given a  — 1 solution x*, the problem of
finding whether or not x* satisfies system (1)~(6) [resp., (1),
(3}, (3), (6). and (8)] car be solved in polynomial fime.

Theorem 4 is very important from a practical point of
view. Indeed, in many approaches such as cutting planes
approaches, one has to solve the feasibility problem for a
given (integer) solution. If the solution is feasible for the
underlying problem, then it is optimal. By Theorem 4, this
problem can be solved in polynomial time for both the node
and edge THPP. Also note that, by the remarks above, the
classes of inequalities can be separated independently of each
other.

Finally, let us mention that the formulation given in this
article can be easily extended to the case where more than
one pair of terminals are considered. Here, for each vari-
ant of the THPP, the formulation is given by the inequality
system for each pair of terminals together with the integral-
ity constraints. Hence, an efficient separation algorithm for
inequalities (3), (4), and (8) would be of great interest for
solving the multipic demands case by cutting planes.
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