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Abstract. Given a graph G with distinguished nodes s and t, a cost on each edge of G, and
a fixed integer L ≥ 2, the two edge-disjoint hop-constrained paths problem is to find a minimum
cost subgraph such that between s and t there exist at least two edge-disjoint paths of length at
most L. In this paper, we consider that problem from a polyhedral point of view. We give an
integer programming formulation for the problem when L = 2, 3. An extension of this result to the
more general case where the number of required paths is arbitrary and L = 2, 3 is also given. We
discuss the associated polytope, P (G,L), for L = 2, 3. In particular, we show in this case that the
linear relaxation of P (G,L), Q(G,L), given by the trivial, the st-cut, and the so-called L-path-cut
inequalities, is integral. As a consequence, we obtain a polynomial time cutting plane algorithm for
the problem when L = 2, 3. We also give necessary and sufficient conditions for these inequalities
to define facets of P (G,L) for L ≥ 2 when G is complete. We finally investigate the dominant of
P (G,L) and give a complete description of this polyhedron for L ≥ 2 when P (G,L) = Q(G,L).
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1. Introduction. Given a graph G = (N,E), with distinguished nodes s and
t, and a fixed integer L ≥ 2, an L-st-path in G is a path between s and t of length
at most L, where the length of a path is the number of its edges. Given a function
c : E → R which associates a cost c(e) with each edge e ∈ E, the two edge-disjoint
hop-constrained paths problem (THPP) is to find a minimum cost subgraph such that
between s and t there exist at least two edge-disjoint L-st-paths.

The THPP arises in the design of reliable communication networks. In fact,
with the introduction of fiber optic technology in telecommunications, designing a
minimum cost survivable network has become a major objective in the telecommuni-
cations industry. Survivable networks have to satisfy some connectivity requirements.
As pointed out in [28], 2-edge connected networks have been shown to be cost effective
and to provide an adequate level of survivability. In such networks, there are at least
two edge-disjoint paths between each pair of nodes. So, if a link fails, it is always
possible to reroute the traffic between two terminals along the second path.

However, this requirement is often insufficient regarding the reliability of a telecom-
munications network. In fact, the alternative paths could be too long to guarantee
an effective routing. In data networks, such as the Internet, the elongation of the
route of the information could cause a strong loss in the transfer speed. For other
networks, the signal itself could be degraded by a longer routing. In such cases, the
L-path requirement guarantees exactly the needed quality for the alternative routes.
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†Department of Computer Science, Université Libre de Bruxelles, Boulevard du Triomphe CP

210/01, B-1050 Ixelles, Belgium (dhuygens@smg.ulb.ac.be).
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The THPP can also be seen as a special case of the more general problem when
more than one pair of terminals is considered. This is the case, for instance, when
several commodities have to be routed in the network. Thus an efficient algorithm for
solving the THPP would be useful to solve (or produce upper bounds for) this more
general problem.

It is clear that an optimal solution of the THPP can be computed in polynomial
time by enumerating all the L-st-paths. However, in a complete graph G = (N,E)
with |N | = n, there are O(nL−1) L-st-paths, which can also be enumeratively gen-
erated in O(nL−1) time. For every pair of such paths, one has to verify their edge-
disjunction, which requires O(L2) comparisons. Consequently, the whole enumerative
algorithm for the THPP runs in O(L2n2(L−1)) time. Clearly, such a method is far
from being applicable in practice. One of the principal aims of this paper is to de-
vise a more efficient algorithm for the THPP. This algorithm, which will be a cutting
plane method, will be based on a complete description of the associated polytope by
a system of linear inequalities.

Given a graph G = (N,E) and an edge subset F ⊆ E, the 0-1 vector xF ∈ R
E ,

such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the incidence vector
of F . For L ≥ 2, the convex hull of the incidence vectors of the solutions of the THPP
on G, denoted by P (G,L), will be called the THPP polytope. Given a vector w ∈ R

E

and an edge subset F ⊆ E, we let w(F ) =
∑

e∈F w(e). If W ⊂ N is a node subset of
G, then the set of edges that have only one node in W is called a cut and is denoted
by δ(W ). We will write δ(v) for δ({v}). A cut δ(W ) such that s ∈ W and t ∈ V \W
will be called an st-cut.

If xF is the incidence vector of the edge set F of a solution of the THPP, then
clearly xF satisfies the inequalities

x(δ(W )) ≥ 2 for all st-cut δ(W ),(1.1)

1 ≥ x(e) ≥ 0 for all e ∈ E.(1.2)

Inequalities (1.1) will be called st-cut inequalities and inequalities (1.2) trivial inequal-
ities.

In [12], Dahl considers the problem of finding a minimum cost path between
two given terminal nodes s and t of length at most L. He describes a class of valid
inequalities for the problem and gives a complete description of the associated L-path
polyhedron when L ≤ 3. In particular, he introduces a class of valid inequalities as
follows.

Let V0, V1, . . . , VL+1 be a partition of N such that s ∈ V0, t ∈ VL+1, and Vi �= ∅
for all i = 1, . . . , L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj , and
|i− j| > 1. Then the inequality

x(T ) ≥ 1

is valid for the L-path polyhedron.
Using the same partition, this inequality can be generalized in a straightforward

way to the THPP polytope as

x(T ) ≥ 2.(1.3)

The set T is called an L-path-cut (or L-star), and a constraint of type (1.3) is called
an L-path-cut (or L-star) inequality.
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Let Q(G,L) be the solution set of the system given by inequalities (1.1)–(1.3).
In this paper, we show that inequalities (1.1)–(1.3), together with the integrality
constraints, give an integer programming formulation of the THPP and of its gener-
alization when more than two edge-disjoint L-st-paths are required for L = 2, 3. We
then discuss the THPP polytope, P (G,L), and show that P (G,L) = Q(G,L) when
L = 2, 3 for any graph. This yields a polynomial time cutting plane algorithm for the
THPP in this case. We also give necessary and sufficient conditions for inequalities
(1.1)–(1.3) to define facets for any L ≥ 2 when the graph is complete. We finally
investigate the dominant of P (G,L), for which we give a complete description for
any L ≥ 2 when P (G,L) = Q(G,L). As a consequence, we obtain the dominant of
P (G,L) when L = 2, 3.

Despite its interesting applications, the THPP has, to the best of our knowledge,
never been studied before. There has been, however, a considerable amount of research
on many related problems. In [14], Dahl and Johannessen consider the 2-path network
design problem, which consists of finding a minimum cost subgraph connecting each
pair of terminal nodes by at least one path of length at most 2. This problem is
NP-hard. Dahl and Johannessen give an integer programming formulation for the
problem and describe some classes of valid inequalities. Using these, they devise a
cutting plane algorithm and present some computational results.

The closely related problem of finding a minimum cost spanning tree with hop-
constraints is considered in [19], [20], [23]. Here, the hop-constraints limit the number
of links between the root and any terminal in the network to a positive integer H.
This problem is NP-complete even for H = 2. Gouveia [19] gives a multicommodity
flow formulation for that problem and discusses a Lagrangian relaxation improving
the LP bound. Gouveia [20] and Gouveia and Requejo [23] propose more efficient
Lagrangian-based schemes for the problem and its Steiner version. Dahl [11] studies
the problem for H = 2 from a polyhedral point of view and gives a complete descrip-
tion of the associated polytope when the graph is a wheel. Gouveia and Janssen [21]
discuss a generalized problem where connectivity requirements are considered. They
formulate the problem as a directed multicommodity flow model and use Lagrangian
relaxation together with subgradient optimization to derive lower bounds. Gouveia
and Magnanti [22] consider the problem that consists in finding a minimum spanning
tree such that the number of edges in the tree between any pair of nodes is limited
to a given bound (diameter). They present directed and undirected multicommodity
formulations along with some computational experiments. Further hop-constrained
survivable network design problems are studied in [1], [4], [5], [33], [34], [37].

In the framework of the minimum cost spanning tree problem with hop-constraints,
Dahl and Gouveia [13] consider the hop-constrained path problem, that is, the prob-
lem of finding between two distinguished nodes s and t a minimum cost path with no
more than K edges when K is fixed. They describe various classes of valid inequal-
ities and show that some of these inequalities are sufficient to completely describe
the associated polytope when K ≤ 3. Then they discuss some applications to the
hop-constrained minimum spanning tree problem. In [10], Coullard, Gamble, and Liu
investigate the structure of the polyhedron associated with the st-walks of length K
of a graph, where a walk is a path that may go through the same node more than
once. They present an extended formulation of the problem, and, using projection,
they give a linear description of the associated polyhedron. They also discuss classes
of facets of that polyhedron.

Itai, Perl, and Shiloach [30] study the complexity of several variants of the maxi-
mum disjoint hop-constrained paths problem. This consists in finding the maximum
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number of disjoint paths between two nodes s and t of length equal to (or bounded
by) K, where K is a positive integer. They show that the problem is NP-complete for
K ≥ 5 and polynomially solvable for some of the variants for K ≤ 4. In particular,
they devise a polynomial time algorithm for the problem when the paths must be
node- (resp., edge-) disjoint and of length bounded by K, with K ≤ 4 (resp., K ≤ 3).
Bley [7] addresses approximation and computational issues for the edge- (node-) dis-
joint hop-constrained paths problem. In particular, he shows that the problem of
computing the maximum number of edge-disjoint paths between two given nodes of
length equal to 3 is polynomial. This answers an open question in [30]. In [35], Li, Mc-
Cormick, and Simchi-Levi study the problem of finding K disjoint paths of minimum
total cost between two distinguished nodes s and t, where each edge of the graph has
K different costs and the jth edge-cost is associated with the jth path. They show
that all the variants of the problem, when the graph is directed or undirected and the
paths are edge- or node-disjoint, are NP-complete, even when K = 2.

Besides hop-constraints, another reliability condition, which is used in order to
limit the length of the routing, requires that each link of the network belongs to a
ring (cycle) of bounded length. In [16], Fortz, Labbé and Maffioli consider the 2-node
connected subgraph problem with bounded rings. This problem consists in finding a
minimum cost 2-node connected subgraph (N,F ) such that each edge of F belongs to
a cycle of length at most L. They describe several classes of facet defining inequalities
for the associated polytope and devise a branch-and-cut algorithm for the problem.
In [17], Fortz et al. study the edge version of that problem. They give an integer
programming formulation of the problem in the space of the natural design variables
and describe different classes of valid inequalities. They study the separation problem
for these inequalities and discuss a branch-and-cut algorithm.

The related 2-edge connected subgraph problem and its associated polytope have
also been the subject of extensive research in the past years. Grötschel and Monma
[25] and Grötschel, Monma, and Stoer [26], [27] study the 2-edge connected subgraph
problem within the framework of a general survivable model. They discuss the poly-
hedral aspects and devise cutting plane algorithms. In [36], Mahjoub shows that if
G is series-parallel, then the 2-edge connected subgraph polytope is completely de-
scribed by the trivial and the cut inequalities. This has been generalized by Bäıou and
Mahjoub [2] for the Steiner 2-edge connected subgraph polytope and by Didi Biha
and Mahjoub [6] for the Steiner k-edge connected subgraph polytope for k even. In
[3], Barahona and Mahjoub characterize this polytope for the class of Halin graphs.
In [15], Fonlupt and Mahjoub study the fractional extreme points of the linear re-
laxation of the 2-edge connected subgraph polytope. They introduce an ordering
on these extreme points and characterize the minimal extreme points with respect
to that ordering. As a consequence, they obtain a characterization of the graph for
which the linear relaxation of that polytope is integral. Kerivin, Mahjoub, and Nocq
[32] describe a general class of valid inequalities for the 2-edge connected subgraph
polytope, which generalizes the so-called F -partition inequalities [36], and introduce
a branch-and-cut algorithm for the problem based on these inequalities, the trivial
and the cut inequalities. Further work on the 2-edge and 2-node connected subgraph
problems can be found in [9], [18], [28], [31].

The paper is organized as follows. In the next section, we give an integer pro-
gramming formulation of the THPP and its generalization when the number of paths
is arbitrary for L ≤ 3. In section 3, we study the THPP polytope when L = 2, 3
and give our main result. In section 4, we study some structural properties of the
facet defining inequalities of P (G,L), which are used in section 5 for proving our main
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result. In section 6, we describe necessary and sufficient conditions for the inequalities
(1.1)–(1.3) to be facet defining. In section 7, we discuss the dominant of P (G,L), and,
in section 8, we give some concluding remarks.

The rest of this section is devoted to more definitions and notation. We assume
the reader has familiarity with graphs and polyhedra. For specific details, the reader
is referred to [8] and [38]. The graphs that we consider are finite, undirected, loopless,
and may have multiple edges. A graph is denoted by G = (N,E), where N is the
node set and E is the edge set. Given W , W ′ two disjoint subsets of N , [W,W ′] will
denote the set of edges of G having one endnode in W and the other one in W ′. If
W = {v}, we will write [v,W ′] instead of [{v},W ′]. If G is a graph and e is an edge of
E, then G− e will denote the graph obtained from G by removing e. A path P of G
is an alternate sequence of nodes and edges (u1, e1, u2, e2, . . . , uq−1, eq−1, uq), where
ei ∈ [ui, ui+1] for i = 1, . . . , q−1. We will denote a path P by either its node sequence
(u1, . . . , uq) or its edge sequence (e1, . . . , eq−1).

2. Formulation for L = 2, 3. In this section, we show that the st-cut, L-path-
cut, and trivial inequalities, together with integrality constraints, suffice to formulate
the THPP as a 0-1 linear program when L = 2, 3. To this end, we first give a lemma.

Lemma 2.1. Let G = (N,E) be a graph, s, t be two nodes of N , and L ∈ {2, 3}.
Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then
there exists a set of at most k − 1 edges that intersects every L-st-path.

Proof. We first show the statement for L = 3. The proof uses ideas from [30] and
[17]. Consider the capacitated directed graph D = (N ′, A) obtained from G in the fol-
lowing way. The set N ′ consists of a copy s′, t′ of s, t and two copies N1, N2 of N\{s, t}.
For u ∈ N\{s, t}, let u1 and u2 be the corresponding nodes in N1 and N2, respectively.
To each edge e ∈ [s, u], with u ∈ N\{s, t}, we associate an arc e′ from s′ to u1 of
capacity 1. To each edge e ∈ [v, t], with v ∈ N\{s, t}, we associate an arc e′ from v2 to
t′ of capacity 1. For an edge e ∈ [u, v], with u, v ∈ N\{s, t}, we consider two arcs, one
from u1 to v2 and the other from v1 to u2, both of capacity 1. Finally, we consider in
D an arc from s′ to t′ of capacity 1 for every edge in [s, t] and an arc from each node
of N1 to its peer in N2 with infinite capacity (see Figure 1 for an illustration). Note
that multiple edges in G yield multiple arcs in D. Observe that there is a one-to-one
correspondence between the 3-st-paths in G and the directed s′t′-paths in D.

Now consider a maximum flow φ ∈ R
A
+ from s′ to t′ in D. As the capacities of

D are integer, φ can be supposed to be integer. Hence the flow value of each arc of
capacity 1 is either 0 or 1. We claim that φ can be chosen so that no two arcs (u1, v2)
and (v1, u2), corresponding to the same edge uv in G, have a positive value. Indeed,
suppose that φ(u1, v2) = 1 and φ(v1, u2) = 1. Let φ′ ∈ R

A
+ be the flow given by

φ′(e) =

⎧⎨
⎩

φ(e) + 1 if e ∈ {(u1, u2), (v1, v2)},
0 if e ∈ {(u1, v2), (v1, u2)},
φ(e) otherwise.

As (u1, u2) and (v1, v2) have infinite capacity and the flow going into u2 and v2 has
not changed, φ′ is still feasible. Moreover, φ′ has the same value as φ.

As a consequence, an s′t′-flow of value q in D corresponds to q edge-disjoint 3-st-
paths in G. Since there do not exist, in G, k edge-disjoint 3-st-paths, the maximum
flow in D is of value at most k− 1. Hence a minimum st-cut in D is of value at most
k − 1 as well. Observe that such a cut does not contain arcs with infinite capacity.
Hence, a minimum cut corresponds to a set of at most k − 1 edges that intersects all
the 3-st-paths of G, and the proof for L = 3 is complete.
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Fig. 1.

If L = 2, then we can similarly show the statement by considering the digraph
D = (N ′, A), where N ′ is a copy of N and to every edge e ∈ [s, u] (resp., [u, t]), where
u ∈ N\{s, t}, corresponds an arc e′ from s′ to u′ (resp., u′ to t′) of capacity 1 in D.
Here u′ is the copy of u in N ′ for every u ∈ N .

Theorem 2.2. Let G = (N,E) be a graph and L ∈ {2, 3}. Then the THPP is
equivalent to the integer program

Min{cx; x ∈ Q(G,L), x ∈ {0, 1}E}.

Proof. To prove the theorem, it is sufficient to show that every 0-1 solution
x of Q(G,L) induces a solution of the THPP. Let us assume the contrary. Suppose
that x does not induce a solution of the THPP but satisfies the st-cut and trivial
constraints. We will show that x necessarily violates at least one of the L-path-cut
constraints x(T ) ≥ 2. Let Gx be the subgraph induced by x. As x is not a solution
of the problem, Gx does not contain two edge-disjoint L-st-paths. As L ∈ {2, 3}, it
follows, by Lemma 2.1, that there exists at most one edge in Gx that intersects every
L-st-path. Consider the graph G̃x obtained from Gx by deleting this edge. Obviously,
G̃x does not contain any L-st-path.

We claim that G̃x contains at least one st-path of length at least L + 1. In fact,
as x is a 0-1 solution and satisfies the st-cut inequalities, Gx contains at least two
edge-disjoint st-paths. Since at most one edge was removed from Gx, at least one path
remains between s and t in G̃x. However, since G̃x does not contain an L-st-path,
that path must be of length at least L + 1.

Now consider the partition V0, . . . , VL+1 of N , with V0 = {s}, Vi the set of nodes

at distance i from s in G̃x for i = 1, . . . , L, and VL+1 = N \ (
⋃L

i=0 Vi), where the
distance between two nodes is the length of a shortest path between these nodes.
Since there does not exist an L-st-path in G̃x, it is clear that t ∈ VL+1. Moreover, as,
by the claim above, G̃x contains an st-path of length at least L+1, the sets V1, . . . , VL

are nonempty. Furthermore, no edge of G̃x is a chord of the partition (that is, an
edge between two sets Vi and Vj , where |i− j| > 1). In fact, suppose that there exists
an edge e = vivj ∈ [Vi, Vj ] with |i− j| > 1 and i < j. Therefore vj is at distance i+ 1
from s, a contradiction.

Thus, the edge deleted from Gx is the only edge that may be a chord of the
partition in Gx. In consequence, if T is the set of chords of the partition in G, then
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Fig. 2.

x(T ) ≤ 1. But this implies that the corresponding L-path-cut inequality is violated
by x.

If L ≥ 4, inequalities (1.1)–(1.3), together with the integrality constraints x(e) ∈
{0, 1} for all e ∈ E, do not suffice to formulate the THPP as an integer program.
Indeed, suppose that L = 4 and consider the graph shown in Figure 2. It is not hard
to see that the solution induced by this graph satisfies inequalities (1.1)–(1.3), whereas
the graph itself is not a feasible solution of the THPP.

However, using Lemma 2.1, Theorem 2.2 can be easily extended to the case where
L ∈ {2, 3} and the number k of required L-st-paths is arbitrary. In other words, the
problem in this case is equivalent to the integer program

Min {cx; x ∈ Qk(G,L), x ∈ {0, 1}E},(2.1)

where Qk(G,L) is obtained from Q(G,L) (= Q2(G,L)) by replacing the right-hand
side of inequalities (1.1) and (1.3) by k.

The separation problem for a system of inequalities consists in verifying whether
a given solution x∗ ∈ R

E satisfies the system and, if not, in finding an inequality
of the system that is violated by x∗. The separation problem for inequalities (1.1)
can be solved in polynomial time using any polynomial max-flow algorithm (see, e.g.,
[29]). Inequalities (1.3) can also be separated in polynomial time when L ≤ 3. In
fact, in this case, it is not hard to see that the separation problem reduces to finding
a minimum weight edge subset that intersects all L-st-paths. Recently, Fortz et al.
[17] have shown that this problem reduces to a max-flow problem (as described in the
proof of Lemma 2.1) and hence can be solved in polynomial time.

Thus, by the ellipsoid method [24], problem (2.1) can be solved in polynomial
time. It would then be interesting to characterize the graphs for which Qk(G,L) is
integral. In what follows, we will show that for k = 2, that is, when (2.1) corresponds
to the THPP, Qk(G,L) is integral for any graph for L = 2, 3.

3. THPP polytope for L = 2, 3. We first state our main result.
Theorem 3.1. P (G,L) = Q(G,L) if L = 2, 3.
The proof of this theorem will be given in section 5. In what follows, we shall

discuss the dimension of P (G,L) and study some properties of its facial structure.
Let G = (N,E) be a graph. An edge e ∈ E will be called L-st-essential if e belongs
to an st-cut of cardinality 2 or an L-path-cut of cardinality 2. Let E∗ denote the set
of L-st-essential edges. Thus, P (G− e, L) = ∅ for all e ∈ E∗. The following theorem,
which is easily seen to be true, characterizes the dimension of the polytope P (G,L).

Theorem 3.2. If L = 2, 3, dim(P (G,L)) = |E| − |E∗|.
Corollary 3.3. If G = (N,E) is complete with |N | ≥ 4 and L = 2, 3, then

P (G,L) is full dimensional.
The following theorem gives a procedure for obtaining a linear description of the

THPP polytope for a subgraph of G from that corresponding to G.
Theorem 3.4. Let G = (N,E) be a graph, s, t be two nodes of N , and L ≥ 2 be

an integer. Let e be an edge of E. Let G′ = (N,E′) be the graph obtained from G by
deleting e. Then a linear system describing P (G′, L) can be obtained from a system
describing P (G,L) by removing the variables corresponding to e.
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Proof. The proof is easy.
In the following, we will suppose that G = (N,E) is complete with |N | ≥ 4 and

L = 2, 3. Hence, by Theorem 3.2, P (G,L) is full dimensional. If G = (N,E) is not
complete, then a description of P (G,L) can be obtained from that of P (G,L), by
repeatedly using Theorem 3.4. Here G is the complete graph obtained from G by
adding the missing edges. Moreover, it is clear that the problem can be reduced to
that case by associating a big cost with the missing edges in the graph.

Let

T (G) = {F ⊆ E | (N,F ) is a solution of the THPP}.

Given an inequality ax ≥ α that defines a facet of P (G,L), we let

τa = {F ∈ T (G) | axF = α}.

In what follows, we will consider a(e) as a weight on e. Hence, any solution S of τa
will have a weight a(S) equal to α and any solution of T (G) a weight ≥ α.

Lemma 3.5. (i) Let ax ≥ α be a facet defining inequality of P (G,L) different
from the trivial inequalities. Then for every edge e ∈ E, there exists an edge subset
in τa that contains e and another one that does not.

(ii) Let ax ≥ α be a facet defining inequality of P (G,L) different from the st-cut
inequalities. Then, for every st-cut δ(W ), there exists an edge subset in τa containing
at least three edges of δ(W ).

Proof. The proof is easy.
Lemma 3.5 will be frequently used in what follows. At times we will use it without

referring to it explicitly.
Lemma 3.6. Let ax ≥ α be a facet defining inequality of P (G,L) different from

a trivial inequality. Then a(e) ≥ 0 for all e ∈ E and α > 0.
Proof. Assume, on the contrary, that there is an edge e ∈ E such that a(e) < 0.

Since ax ≥ α is different from −x(e) ≥ −1, by Lemma 3.5(i), there must exist a
solution S of τa that does not contain e. As S′ = S ∪ {e} still belongs to T (G), this
yields α ≤ axS′

= axS + a(e) < axS = α, a contradiction. Thus, a(e) ≥ 0 for all
e ∈ E. Since ax ≥ α defines a facet of P (G,L), there must exist at least one edge,
say f , with a(f) > 0. Now, as ax ≥ α is different from the inequality xf ≥ 0, there
is an edge set of τa containing f . This implies that α > 0.

The following lemma shows that parallel edges in G have the same coefficient in
every nontrivial facet defining inequality of P (G,L) for L = 2, 3.

Lemma 3.7. Let ax ≥ α be a facet defining inequality of P (G,L) different from
the trivial inequalities. Let [u, v] = {e1, e2, . . . , ep} be the set of the parallel edges
between two nodes u and v in G. Then a(ei) = a(ej) for i, j = 1, . . . , p.

Proof. We will show the result for L = 3. The proof for L = 2 is similar. First
we show that all edges in [u, v] have the same coefficient, except possibly one, that
may have a smaller coefficient. Indeed, if there are three edges e1, e2, e3 ∈ [u, v] such
that a(e1) > a(e2) ≥ a(e3), then there cannot exist an edge subset of τa containing e1.
Otherwise, one could replace e1 by either e2 or e3 and get a solution which violates
ax ≥ α, a contradiction. Now, suppose that there are two edges e1, e2 ∈ [u, v] such
that a(e1) > a(e2). By the remark above, it follows that a(e) = a(e1) for all e ∈
[u, v]\{e1, e2}.

Claim 1. Let S be a solution of τa.
(i) If S contains e1, then it must contain e2.
(ii) If S does not contain e2, then it does not intersect [u, v].
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Proof. (i) If e1 ∈ S and e2 /∈ S, then S′ = (S\{e1}) ∪ {e2} is in T (G). As
axS′

< α, we have a contradiction.
(ii) Assume the contrary. Then we may suppose that S contains an edge ei,

i ∈ {1, . . . , p}\{2}, and e2 /∈ S. Since a(ei) > a(e2), this is impossible by the argument
given above.

Now, since ax ≥ α is different from a trivial inequality, by Lemma 3.5(i), there
is an edge set of τa, say S1, containing e1. Let L1 be a 3-st-path of S1 that contains
e1. By Claim 1(i), it follows that e2 belongs to the second 3-st-path of S1, say L2.
Note that L1 ∩ L2 = ∅. It is not hard to see that L1 and L2 go through e1 and e2,
respectively, in the same direction starting from s. If not, one would have one path of
the form (s, u, v, t) and the other one of the form (s, v, u, t). But then the edges e1, e2

might be deleted and one would obtain a feasible solution of weight smaller than α,
a contradiction. So, let us assume, without loss of generality (w.l.o.g.), that u is the
first node of e1, e2 used by L1, L2 going in this direction.

Let Ls
1, L

t
1 (resp., Ls

2, L
t
2) be the subpaths of L1 (resp., L2) between s and u and

between v and t. Obviously, |Ls
i ∪ Lt

i| ≤ 2 for i = 1, 2. Note that we have either
Ls

1 = ∅ = Ls
2 or Ls

1 �= ∅ �= Ls
2. Moreover, if the latter case holds, we have that

|Lt
1| ≤ 1 and |Lt

2| ≤ 1. Note also that, by symmetry, these properties remain true
if we exchange s and t. Thus every st-path consisting of a combination of subpaths
Ls
i ∪ {ej} ∪ Lt

k is of length at most 3 for i, j, k = 1, 2. In other words, we have that

|Ls
i ∪ Lt

k| ≤ 2 for all i, k ∈ {1, 2}.

By Lemma 3.5(i), there must also exist an edge set of τa, say S2, that does not
contain e2. By Claim 1(ii), we have that [u, v] ∩ S2 = ∅. Let P1 and P2 be two
edge-disjoint 3-st-paths in S2. We have the following claim.

Claim 2. At least one of the sets P1 ∩ L1 and P2 ∩ L2 (P2 ∩ L1 and P1 ∩ L2) is
nonempty.

Proof. Assume, on the contrary, that, for instance, P1 ∩L1 = ∅ = P2 ∩L2. Then,
since P2 ∪L2 ∈ T (G), it follows that a(P2) ≥ a(L1). Now, let L′

1 = (L1\{e1})∪ {e2}.
As e2 /∈ S2 and hence e2 /∈ P1, we have that P1 ∩ L′

1 = ∅. Thus P1 ∪ L′
1 ∈ T (G), and

therefore a(L′
1) ≥ a(P2). As a consequence, a(L′

1) ≥ a(L1), and hence a(e2) ≥ a(e1),
a contradiction.

By Claim 2, we may assume, w.l.o.g., that P1 ∩ L2 �= ∅. Also by the same claim,
at least one of the sets P1 ∩L1 and P2 ∩L2 is nonempty. In what follows, we suppose
that P2 ∩ L2 �= ∅. The case where P1 ∩ L1 �= ∅ can be treated along the same lines.
As e2 /∈ S2, it follows that |L2| = 3. If |Ls

2| = 2, then v = t, and L2 is of the form
(s, w, u, t) with w �= s, t, u. Let e0 be the edge of L2∩ [u,w]. Note that one of the 3-st-
paths of S2, say P1, uses e0. Then P1 is of the form (s, u, w, t). Let {f} = P1 ∩ [w, t].
As (S1\{e0, e1}) ∪ {f} and (S2\{e0, f}) ∪ {e2} are edge sets of T (G), we obtain that
a(f) ≥ a(e0) + a(e1) and a(e2) ≥ a(e0) + a(f), respectively. But this implies that
a(e2) ≥ a(e1), a contradiction.

Consequently, |Ls
2| ≤ 1, and, by symmetry, we also have that |Lt

2| ≤ 1. Since
|L2| = 3, it follows that |Ls

2| = |Lt
2| = 1. So L1 and L2 are both of the form

(s, u, v, t). As P1∩L2 �= ∅ �= P2∩L2 and S2∩ [u, v] = ∅, we may assume, w.l.o.g., that
P1 ∩ [s, u] �= ∅ and P2 ∩ [v, t] �= ∅. Moreover, this implies that P1 ∩L1 = ∅ = P2 ∩L1.
Now, by replacing e1 and Lt

1 by the subpath Put
1 of P1 between u and t, we get a

solution, yielding a(Put
1 ) ≥ a(e1) + a(Lt

1). Similarly, if we replace Put
1 by e2 and Lt

1

in S2, we obtain that a(e2) + a(Lt
1) ≥ a(Put

1 ). But this again yields a(e2) ≥ a(e1),
which is impossible.
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By Lemma 3.7, the multiple edges have the same coefficient in any nontrivial facet
of P (G,L). For the rest of the paper, if u, v ∈ N , we will denote by uv a fixed edge
of [u, v]. If P is a path of the form (u1, u2, . . . , uq), then we will suppose that P uses
the edges u1u2, . . . , uq−1uq. If for a solution S ∈ T (G) and two nodes u, v ∈ N we
have that S intersects [u, v], then we will suppose that S uses edge uv and eventually
further edges parallel to uv.

4. Structural properties. In this section we give some structural properties
of the facet defining inequalities of P (G,L) different from the trivial and the st-cut
inequalities. These will be useful for the proof of our main result in section 5.

Let L = 2, 3 and ax ≥ α be a facet defining inequality of P (G,L) different from
the trivial and the st-cut inequalities. First, we give the following technical lemma,
which will be frequently used in the subsequent proofs.

Lemma 4.1. Let S1 and S2 be two edge sets of τa. Let P1 and P ′
1 be two edge-

disjoint L-st-paths of S1. Suppose that there is an L-st-path P2 in S2 such that
P2∩P ′

1 = ∅. Then, for every L-st-path P not intersecting S2, we have a(P ) ≥ a(P1).
Proof. Let S′

1 (resp., S′
2) be the edge set obtained from S1 (resp., S2) by

replacing P1 by P2 (resp., P2 by P ). As S′
1, S

′
2 ∈ T (G), it follows that a(P2) ≥ a(P1)

and a(P ) ≥ a(P2). Hence, a(P ) ≥ a(P1).
Lemma 4.2. There cannot exist an L-st-path containing only edges with zero

weight.
Proof. We will show the result for L = 3. The proof for L = 2 can be done in a

similar way.
Let us assume the contrary. Let P0 be a shortest st-path such that a(e) = 0 for

all e ∈ P0. In what follows, we consider the case where |P0| = 3. The cases where
|P0| = 2 or 1 can be treated similarly.

Let P0 = (s, u1, u2, t). Then a(e) > 0 for every chord of P0. By Lemma 3.7, we
have a(e) = 0 for all e ∈ [s, u1]∪ [u1, u2]∪ [u2, t]. As ax ≥ α is different from a trivial
inequality, by Lemma 3.5(i), there must exist an edge set S of τa not containing the
edge u2t of P0. Let P1, P2 be two edge-disjoint 3-st-paths of S.

Claim 1. Let T be a solution of τa and T1, T2 be two edge-disjoint 3-st-paths of
T . Then at least one of the paths T1, T2 has only edges with zero value if one of the
following statements holds:

(i) u2t /∈ T ,
(ii) su1 /∈ T ,
(iii) u1u2 /∈ T and |[u2, t]| ≥ 2.
Proof. Suppose that both T1 and T2 use edges with positive weight. We first

claim that both T1 and T2 intersect P0. Otherwise, if, for instance, T1 ∩ P0 = ∅, then
T1 ∪ P0 ∈ T (G), yielding a(P0) ≥ a(T2). As a(P0) = 0, we then have a(T2) = 0, a
contradiction.

Now suppose that u2t /∈ T . As T1 ∩ T2 = ∅, one of the paths, say T1, uses edge
u1u2. Since T1 uses at least one edge of positive weight and a(e) = 0 for all e ∈ [s, u1]∪
[u2, t], T1 must be of the form (s, u2, u1, t). By the remark above, we have indeed that
a(u1t) > 0. Now if we replace in T the edges u1u2 and u1t by u2t, we get a solution of
T (G). Moreover, as a(u2t) = a(u1u2) = 0, it follows that a(u1t) = 0, a contradiction.

If su1 /∈ T , then the statement follows by symmetry.
Suppose now that u1u2 /∈ T and |[u2, t]| ≥ 2. Denote by f an edge of [u2, t]\{u2t}.

Since u1u2 /∈ T and T1∩P0 �= ∅ �= T2∩P0, we may suppose, w.l.o.g., that su1 ∈ T1 and
u2t ∈ T2. Let Tu1t

1 be the subpath of T1 between u1 and t. Observe that a(Tu1t
1 ) > 0.

Consider the solution obtained from T by replacing Tu1t
1 by the edges u1u2 and f .
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As a(f) = a(u1u2) = 0, this yields a(Tu1t
1 ) = 0, a contradiction, which ends the proof

of the claim.
As u2t /∈ S, by Claim 1(i), it follows that at least one of the paths P1 and P2, say

P1, contains only edges with zero coefficient. Moreover, we have that P1 ∩ P0 �= ∅.
Otherwise, there would exist a solution formed by P1 and P0 of weight zero, contra-
dicting the fact that α > 0.

Claim 2. (i) |[u2, t]| ≥ 2.
(ii) |[s, u1]| ≥ 2.
Proof. We will prove (i); the proof of (ii) follows by symmetry. Suppose that

|[u2, t]| = 1. We claim that the edge su1 of P0 belongs to P1. In fact, if this is
not the case, as u2t /∈ S and P1 ∩ P0 �= ∅, P1 must contain the edge u1u2. As
|[u2, t]| = 1 and u2t /∈ S, P1 must use an edge of [u1, t] which is of positive weight,
a contradiction. Thus P1 is of the form (s, u1, v, t) with v �= u2. We thus have
|[s, u1]| = 1. Otherwise, we would have two edge-disjoint 3-st-paths of zero weight,
yielding α = 0, a contradiction. By considering a solution of τa not containing su1

and using Claim 1(ii) together with similar arguments as above, we can show that
there exists a path P ′

1 of the form (s, w, u2, t), with w �= u1, constituted of edges with
zero coefficient. As P1 and P ′

1 are edge-disjoint and hence form a solution of T (G),
this yields α = 0, a contradiction.

Since there are no two edge-disjoint 3-st-paths of weight zero, at least one of the
sets [s, u1], [u1, u2], [u2, t] must be reduced to a single edge. Consequently, by Claim
2, it follows that |[u1, u2]| = 1. Consider now a solution S′ of τa not containing u1u2.
Let P ′

1 and P ′
2 be two edge-disjoint 3-st-paths of S′. As, by Claim 2(ii), |[u2, t]| ≥ 2,

we may, w.l.o.g., suppose by Claim 1(iii) that a(P ′
1) = 0. Also, since α > 0, one should

have P ′
1∩P0 �= ∅. Since u1u2 /∈ S′, we may, w.l.o.g., suppose that su1 ∈ P ′

1. Therefore
P ′

1 = (s, u1, v
′, t) with v′ �= u2. As, by Claim 2, |[s, u1]| ≥ 2, the solution given by

P0∪ P̃1, where P̃1 = (f, u1v
′, v′t) with f ∈ [s, u1]\{su1}, would be in T (G) and of zero

weight. But this is a contradiction, and the proof of the lemma is complete.
Let us denote by U (resp., V ) the subset of nodes u such that a(e) = 0 for all

e ∈ [s, u] (resp., e ∈ [u, t]). Note that, by Lemma 3.7, if for an edge f ∈ [s, u] (resp.,
f ∈ [u, t]) for some u ∈ N\{s, t} we have a(f) = 0, then u ∈ U (resp., u ∈ V ). By
Lemma 4.2, we have that U∩V = ∅. Moreover, a(e) > 0 for all e ∈ [s, t]∪[s, V ]∪[U, t].
If L = 3, we also have that a(e) > 0 for all e ∈ [U, V ]. Let W = N\({s, t} ∪ U ∪ V ).
Note that if W �= ∅, a(e) > 0 for all e ∈ [s,W ] ∪ [W, t].

Lemma 4.3. U �= ∅ �= V .
Proof. We will prove the lemma for U . The proof for V is similar. Since ax ≥ α

is different from the st-cut constraint corresponding to the node s, by Lemma 3.5(ii),
there is an edge set F of τa that contains at least three edges of δ(s). As only two
of these edges can be used by two edge-disjoint L-st-paths of F , there is an edge of
F ∩ δ(s), say e0 ∈ [s, u] with u ∈ N\{s, t}, such that F\{e0} ∈ T (G). This implies
that a(e0) = 0, and therefore u ∈ U .

Lemma 4.4. Let S ∈ τa and P1 be a 3-st-path of S going through a node u of
N\{s, t}. Let P̃1 be the subpath of P1 between s (resp., t) and u. Let P be a path
between s (resp., t) and u such that a(P ) = 0 and |P | ≤ |P̃1|. If a(P̃1) > 0, then
P ∩ P2 �= ∅ for any 3-st-path P2 of S, where P2 ∩ P1 = ∅.

Proof. If P ∩ P2 = ∅, as |P | ≤ |P̃1|, the edge set (S\P̃1) ∪ P belongs to T (G),
and hence a(P̃1) ≤ a(P ). As a(P ) = 0 and a(P̃1) > 0, this is impossible.

The following lemma shows that the edges having both endnodes in U (V ) all
have zero coefficient. Moreover, if L = 2, the same holds for the edges between U
and V .
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Lemma 4.5. (i) If L = 2, then a(e) = 0 for all e ∈ [U, V ].
(ii) a(e) = 0 for all e ∈ E(U) ∪ E(V ).
Proof. (i) Let e ∈ [U, V ], and let S be a solution of τa containing e. As e cannot

belong to a 2-st-path of S, S\{e} is also a solution of T (G), and therefore a(e) = 0.
(ii) If L = 2 and e ∈ E(U) ∪ E(V ), we can show as in (i) that a(e) = 0. Now

let us consider the case where L = 3. Let us assume, on the contrary, that there
exists an edge u1u2 with u1, u2 ∈ U (the case where u1, u2 ∈ V is similar) such that
a(u1u2) > 0. Note that by Lemma 3.7 it follows that a(e) > 0 for all e ∈ [u1, u2].
Let us consider an edge set of τa, say S1, that contains u1u2, and let P1, P

′
1 be two

edge-disjoint 3-st-paths in S1. As a(u1u2) > 0, u1u2 must be in one of the 3-st-paths,
say P1. We can suppose, w.l.o.g., that P1 is (s, u1, u2, t). Moreover, as a(e) = 0 for
all e ∈ [s, u2], by Lemma 4.4, P ′

1 must contain every edge of [s, u2]. However, this is
possible only if |[s, u2]| = 1. Consequently, we will assume in the rest of the proof that
[s, u2] = {su2} and su2 ∈ P ′

1. Let us assume that P ′
1 is of the form (s, u2, z, t) with

z �= s, t, u2. If P ′
1 consists of only two edges, then the proof is similar. Furthermore,

z /∈ U . Otherwise, one can consider the edge set S′
1 = (S1\{su1, u1u2, u2z}) ∪ {sz},

which is a solution of T (G). As a(sz) = 0, we get a(su1) + a(u1u2) + a(u2z) ≤ 0, and
hence a(u1u2) = 0, a contradiction. Therefore z ∈ V ∪W .

Moreover, we have that a(e) > 0 for all e ∈ [U\{u1, u2}, u2]. Indeed, if a(e) = 0,
then the edge set (S1\{su1, u1u2}) ∪ {su, e}, where u is the endnode of e different
from u2, would be a solution of T (G) with a weight smaller than α, a contradiction.

Now, let us consider an edge set of τa, say S2, that does not contain the edge su2.
Let P2, P

′
2 be two edge-disjoint 3-st-paths in S2. We claim that [u2, t]∩S2 = ∅. In fact,

if one of the 3-st-paths of S2, say P2, uses an edge of [u2, t], say u2t, as |[s, u2]| = 1 and
su2 /∈ S2, one should have P2 = (sw,wu2, u2t), where w ∈ N\{s, u2, t}. Moreover,
we have a(sw) + a(wu2) > 0. In fact, this is clear if w /∈ U . If w ∈ U , then, as shown
above, a(wu2) > 0 and the statement follows. Now, by replacing in S2 the subpath
(sw,wu2) by su2, we get a solution of smaller weight, which is impossible.

Thus [u2, t] ∩ S2 = ∅, and hence, as su2 /∈ S2, no 3-st-path in S2 goes through
the node u2. Let P be the path (su2, u2t). Thus, P ∩ S2 = ∅. Moreover, as neither
su2 nor u2z belongs to S2, at most one of the paths P2, P

′
2 intersects P ′

1. W.l.o.g., we
may suppose that P2 ∩ P ′

1 = ∅. From Lemma 4.1, it then follows that a(P ) ≥ a(P1).
But this implies that a(u1u2) = 0, a contradiction.

Lemma 4.6. (i) If L = 2, then W = ∅.
(ii) If L = 3, then W �= ∅.
Proof. (i) Assume the contrary, and let w ∈ W . Then a(e) > 0 for all e ∈

[s, w] ∪ [w, t]. We will show that |[s, w] ∩ F | = |[w, t] ∩ F | for every F ∈ τa. In
fact, suppose, by contradiction, that there exists F ∈ τa such that, for instance,
|[s, w] ∩ F | > |[w, t] ∩ F |. Since at most |[w, t] ∩ F | edge-disjoint 2-st-paths can go
through w, there must exist an edge, say ē, of [s, w]∩F such that F\{ē} ∈ T (G). This
implies that a(ē) = 0, a contradiction. Thus, the incidence vector of any solution of
τa verifies the equation x([s, w]) = x([w, t]). As, by Lemma 3.6, this equation cannot
be a positive multiple of ax ≥ α, we get a contradiction.

(ii) Assume that, on the contrary, W = ∅. Let U ′ = U ∪ {s}. Since ax ≥ α is
different from the st-cut inequality associated with δ(U ′), there exists an edge set of
τa, say F1, that uses at least three edges of δ(U ′). Let P1, P

′
1 be two edge-disjoint 3-st-

paths of F1. Since W = ∅, a(e) > 0 for all e ∈ δ(U ′), and hence every edge of F1∩δ(U ′)
must belong to one of the paths P1 and P ′

1. So, one of these paths, say P1, must use at
least two edges of δ(U ′). As any st-path intersects any st-cut an odd number of times,
we have that P1 contains exactly three edges of δ(U ′). Therefore, P1 is of the form
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(s, v, u, t), where u ∈ U and v ∈ V . Let F2 = (F1\(P ′
1 ∪ {vu})) ∪ {su, vt}. Obviously,

F2 ∈ T (G). As a(su) = a(vt) = 0, it follows that a(vu) = 0, a contradiction.
For the rest of this section, we assume that L = 3.
Lemma 4.7. (i) If there are a node w ∈ W and a node u1 ∈ U such that

a(u1w) = 0, then a(e) = 0 for all e ∈ [U,w].
(ii) If there are a node w ∈ W and a node v1 ∈ V such that a(wv1) = 0, then

a(e) = 0 for all e ∈ [w, V ].
Proof. We show the result for U ; the proof for V is similar. If |U | = 1, then the

statement follows from Lemma 3.7. So, let us suppose that |U | ≥ 2 and assume, on
the contrary, that there is a node u2 ∈ U such that a(u2w) > 0. Let S1 be a solution
of τa such that u2w ∈ S1. As a(u2w) > 0, u2w must belong to a 3-st-path P1 in S1.
Let P ′

1 be a further 3-st-path of S1 with P1 ∩ P ′
1 = ∅.

Claim 1. P1 = (s, u2, w, t).
Proof. As u2w ∈ P1, P1 is either of the form (s, w, u2, t) or (s, u2, w, t). Suppose

that the first case holds. As a(e) > 0 for all e ∈ [s, w] and a(e) = 0 for all e ∈ [s, u2],
it follows from Lemma 4.4 that P ′

1 uses all the edges between s and u2. Therefore
[s, u2] ⊆ P ′

1. Moreover, since, by Lemma 4.5(ii), all the 2-su2-paths going through
u1 have weight zero, again by Lemma 4.4, P ′

1 must also intersect all these paths. As
P ′

1 cannot use more than one edge incident to s, one should have [u1, u2] ⊆ P ′
1. As

a consequence, |[s, u2]| = |[u1, u2]| = 1, and P ′
1 is of the form (s, u2, u1, t). But, by

adding edge su1 and removing the edges sw,wu2, we obtain a solution of lower weight,
which is impossible.

Consequently, P1 = (s, u2, w, t). As a(u2w) > 0 and therefore the weight of the
subpath of P1 between s and w is positive, it follows by Lemma 4.4 that P ′

1 must
intersect every 2-sw-path of weight zero going through u1. Since a(u1w) = 0, by
Lemma 3.7 a(e) = 0 for all e ∈ [u1, w]. Thus, as a(e) = 0 for all e ∈ [s, u1], we obtain
that at least one of the sets [s, u1] and [u1, w] is reduced to a single edge. If there is
a node u ∈ U\{u1, u2} such that a(e) = 0 for some edge e ∈ [u,w], then by Lemma
4.4, P ′

1 must also intersect the 2-sw-paths going through u. But as |P ′
1| ≤ 3, this is

not possible. Therefore a(e) > 0 for all e ∈ [U\{u1}, w].
Claim 2. P ′

1 ∩ [u1, w] = ∅.
Proof. Suppose, on the contrary, that P ′

1 uses, for instance, u1w. If P ′
1 =

(s, w, u1, t), then, as the weight of the subpath of P ′
1 between s and u1 is positive

and a(e) = 0 for all e ∈ [s, u1], by Lemma 4.4 it follows that P1 uses all the edges
between s and u1. But this contradicts Claim 1. Hence P ′

1 is of the form (su1, u1w, h),
where h ∈ [w, t]\{wt}. We consider two cases.

Case 1. |[s, u1]| = 1. Consider an edge set S2 of τa such that su1 /∈ S2. We
may suppose that S2 is minimal. Let P2 and P ′

2 be the two edge-disjoint 3-st-paths
of S2. If S2 uses an edge u1z with z ∈ V ∪ W , then u1z belongs to one of the
3-st-paths of S2, say P2. As su1 /∈ S2, P2 = (s, z, u1, t). Observe that a(e) > 0
for all e ∈ [s, z]. Now by replacing the edges sz, zu1 by su1, we get a solution of
T (G) of weight less than α, a contradiction. As a consequence, we have [u1, V ∪
W ] ∩ S2 = ∅, and therefore [u1, w] ∩ S2 = ∅. Suppose now that S2 ∩ [w, t] �= ∅
and, for instance, that P2 ∩ [w, t] �= ∅. Since a(e) > 0 for all e ∈ [U\{u1}, w], the
subpath of P2, say P sw

2 , between s and w has a positive weight. As {su1, u1w}
is a 2-sw-path of weight zero which does not intersect S2, if we replace P sw

2 by
su1, u1w, we get a solution of lower weight, which is impossible. Thus S2 ∩ [w, t] = ∅,
and, in consequence, P ′

1 ∩ S2 = ∅. Let P = P ′
1. By Lemma 4.1, it follows that

a(P ) = a(P ′
1) ≥ a(P1). As a(h) = a(wt) and a(su1) = a(u1w) = 0, this yields

a(u2w) = 0, a contradiction.
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Case 2. |[s, u1]| ≥ 2. Since one of the sets [s, u1], [u1w] contains exactly one edge,
we have that [u1, w] = {u1w}. Let S̄2 be a solution of τa not containing u1w. Suppose
that S̄2 is minimal, and let P̄2 and P̄ ′

2 be the two edge-disjoint 3-st-paths of S̄2. We
can show, in a similar way as in Case 1, that [w, t] ∩ S̄2 = ∅. As u1w /∈ S̄2, it follows
that |S̄2 ∩ P ′

1| ≤ 1. Hence, there is a 3-st-path of S̄2, say P̄2, that does not intersect
P ′

1. Therefore P̄2 ∪ P ′
1 is a solution of T (G), yielding a(P̄2) ≥ a(P1). On the other

hand, since |[s, u1]| ≥ 2, we may suppose that P̄ ′
2 ∩ P ′

1 = ∅. So, if we replace, in
S̄2, P̄2 by P ′

1, we get a solution of T (G), implying that a(P ′
1) ≥ a(P̄2). Therefore

a(P ′
1) ≥ a(P1), and hence a(u2w) = 0, a contradiction.
By Claim 2, we then have P ′

1 ∩ [u1, w] = ∅. As P ′
1 intersects all the 2-sw-paths

going through u1, it follows that [s, u1] = {su1} and su1 ∈ P ′
1.

If P ′
1 uses an edge of [u1, t], then, by removing the edge u2w and adding edges

u1w and u1u2, we get a solution of T (G). But this implies that a(u2w) = 0, which is
impossible. Along the same lines, we can also show that P ′

1 does not go through any
node of U . Hence P ′

1 must use a node of V ∪W , say v.
Consider now a solution S3 of τa not containing su1. Let P3 and P ′

3 be two edge-
disjoint 3-st-paths of S3. Suppose that there is an edge, say u1z, of [u1, V ∪W ] that
belongs to S3. Since su1 /∈ S3, the 3-st-path containing u1z, say P3, must be of the
form (s, z, u1, t). Note that the subpath between s and u1 has a positive weight. As
a(su1) = 0, by Lemma 4.4, it follows that su1 ∈ P ′

3, and hence su1 ∈ S3, contradicting
our hypothesis. Thus [u1, V ∪ W ] ∩ S3 = ∅, and hence ([u1, v] ∪ [u1, w]) ∩ S3 = ∅.
Thus |P ′

1 ∩ S3| ≤ 1. Consequently, there must exist a 3-st-path of S3, say P3, such
that P ′

1 ∩ P3 = ∅. Also we may show in a similar way that [w, t] ∩ S3 = ∅. Consider
now the path P = (s, u1, w, t). Observe that P ∩S3 = ∅. By Lemma 4.1, with respect
to S1 and S3, it follows that a(P ) ≥ a(P1). But this implies that a(u2w) = 0, a
contradiction, and the proof of the lemma is complete.

Lemma 4.8. For all e, e′ ∈ [U, t] (resp., e, e′ ∈ [s, V ]), a(e) = a(e′).
Proof. We will prove the lemma for U ; the proof for V is similar. If |U | = 1,

the statement follows from Lemma 3.7. So suppose |U | ≥ 2. Let u1, u2 ∈ U such
that a(u1t) = min{a(e), e ∈ [U, t]} and a(u2t) = max{a(e), e ∈ [U, t]}. Assume that
a(u2t) > a(u1t).

Claim. (i) Let S ∈ τa. If S ∩ [u2, t] �= ∅, then [u1, t] ⊆ S.
(ii) |[u1, t]| = 1.
Proof. (i) Suppose that u2t ∈ S, and let T1 and T2 be two edge-disjoint 3-st-paths

of S. As a(u2t) > 0, we may suppose, for instance, that u2t ∈ T2. Assume that there
is an edge e1 of [u1, t] that is not in S. If there is an edge e ∈ [s, u1] that is not in
T1, then we can replace u2t by e and e1 and get a solution of T (G) of lower weight,
a contradiction. Hence [s, u1] ⊆ T1, and therefore [s, u1] = {su1}, su1 ∈ T1, and
[s, u2]∩T1 = ∅. Furthermore, if T1 contains an edge e′ ∈ [u1, u2], then, as su1 ∈ T1, T1

must use an edge f of [u2, t]\{u2t}. Now it is easy to see that (S\{f})∪{e1} ∈ T (G).
Since by Lemma 3.7, a(e1) = a(u1t) and a(f) = a(u2t), it follows that a(u1t) ≥ a(u2t).
But this contradicts our hypothesis. Therefore [u1, u2] ∩ T1 = ∅. Consider now the
solution S′ = (S\{u2t}) ∪ {su2, u1u2, e1}. As a(su2) = a(u1u2) = 0, we have that
a(u1t) = a(e1) ≥ a(u2t), a contradiction.

(ii) Let S̄ ∈ τa such that u2t ∈ S̄. We may suppose that S̄ is minimal. Let T 1, T 2

be the edge-disjoint 3-st-paths of S̄, and suppose, w.l.o.g., that u2t ∈ T 2. From (i), it
follows that [u1, t] ⊆ S̄. Moreover, as u2t ∈ T 2, T 2∩ [u1, t] = ∅, and hence [u1, t] ⊆ T1.
This implies that |[u1, t]| = 1.

Let S1 be a solution of τa containing u2t. By the claim above, S1 also contains
u1t. As a(su1) = a(su2) = 0 and {su1, su2, u1t, u2t} is a solution of T (G), we may
assume that S1 = {su1, su2, u1t, u2t}.
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Consider now a solution S2 ∈ τa that does not contain u1t, which may be supposed
minimal. Since u1t /∈ S2, by the claim it follows that [u2, t] ∩ S2 = ∅; and, as a
consequence, [u1, u2] ∩ S2 = ∅. Suppose that S2 contains an edge su1. Since S2

is minimal, one of the two 3-st-paths of S2, say T , contains su1, and hence T is
of the form (s, u1, z, t), where z ∈ N\{s, t, u1, u2}. Let Tu1t be the subpath of T
between u1 and t. As the sets (S2\Tu1t) ∪ {u1t} and (S1\{u2t}) ∪ ({u1u2} ∪ Tu1t)
are both solutions of T (G), and, as by Lemma 4.5(ii) a(u1u2) = 0, we have that
a(u1t) ≥ a(Tu1t) ≥ a(u2t), a contradiction. Consequently, [s, u1] ∩ S2 = ∅.

Let P1 = (su2, u2t) and P ′
1 = (su1, u1t) be the two 3-st-paths of S1. Let P = P ′

1

and P2 be any 3-st-path of S2. Note that P ∩S2 = P ′
1∩S2 = ∅, and hence P2∩P ′

1 = ∅.
By Lemma 4.1, it follows that a(P ) ≥ a(P1). However, as a(su1) = a(su2) = 0, this
implies again that a(u1t) ≥ a(u2t), which is impossible.

Lemma 4.9. Let S be a minimal solution of τa.
(i) If U = {u} and S ∩ [s, u] = ∅, then δ(u) ∩ S = ∅.
(ii) If V = {v} and S ∩ [v, t] = ∅, then δ(v) ∩ S = ∅.
Proof. We will show (i); the proof of (ii) is similar. We first show that [u, t]∩S =

∅. Assume, on the contrary, that ut ∈ S. Then, as a(ut) > 0, one of the 3-st-paths of
S, say P , must contain ut. As [s, u]∩S = ∅, P must be of the form (s, w, u, t), where
w ∈ N\{s, t, u}. Note that w /∈ U , and hence a(sw) > 0. Thus, one can replace sw
and wu by su in S and get a solution of T (G) of weight less than α, a contradiction.
Thus [u, t] ∩ S = ∅. Now, by the minimality of S, no other edge of δ(u) may be used
by S.

Lemma 4.10. a(e) = a(e′) for all e ∈ [U, t] and e′ ∈ [s, V ].
Proof. Assume the contrary. Thus, by Lemma 4.8, we may assume, w.l.o.g., that

a(e) > a(e′) for all e ∈ [U, t] and e′ ∈ [s, V ].(4.1)

Let u1 ∈ U . Consider a solution S1 of τa that contains u1t, and suppose that S1 is
minimal. Let P1 and P ′

1 be the two edge-disjoint 3-st-paths of S1, and suppose that
u1t ∈ P1.

Claim. |V | = 1.
Proof. Assume that |V | ≥ 2. First observe that P1 cannot go through a node

v ∈ V . Otherwise, P1 would be of the form (s, v, u1, t). Since the subpaths of P1

between s and u1 and between v and t both have positive weight, by Lemma 4.4, P ′
1

must use edges su1 and vt. Now, if we remove the edges of S1 between u1 and v, we
still have a solution of T (G). This implies that a([u1, v]) = 0. But this contradicts the
fact that a(u1v) > 0. In consequence, since S1 is minimal, S1 may contain at most
one edge from [s, V ]. Suppose that S1 contains edge sv1, where v1 ∈ V . Note that
sv1 ∈ P ′

1. As |V | ≥ 2, there is an edge sv2, with v2 ∈ V , that does not belong to S1.
If there is an edge e ∈ [v2, t] such that e /∈ S1, then, by replacing u1t by sv2 and e,
we get a solution of T (G). As a(e) = 0, this yields a(sv2) ≥ a(u1t), which contradicts
(4.1). Thus [v2, t] ⊆ S1 and therefore [v2, t] ⊆ P ′

1. This implies that [v2, t] = {v2t}
and P ′

1 = (s, v1, v2, t). By considering the solution obtained by replacing u1t by sv2

and v1t, we obtain that a(sv2) ≥ a(u1t), which once again contradicts (4.1).
Consequently, S1 ∩ [s, V ] = ∅. Now we remark that, since S1 is minimal and

u1t ∈ S1, S1 cannot use two edges of [V, t]. Thus there is a node z ∈ V such that
([s, z]∪ [z, t])∩S1 = ∅. By replacing u1t by sz and zt in S1, we get a solution of T (G),
yielding a(sz) ≥ a(u1t). This contradicts (4.1), and the claim is proved.

Let V = {v}. Let P = (s, v, t) be an st-path of length 2 going through v. We
claim that P ′

1 ∩ P �= ∅. In fact, if this is not the case, then, as the edge set obtained
from S1 by replacing P1 by P is in T (G), we would have that a(sv) ≥ a(u1t). But
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this contradicts (4.1). Therefore, P ′
1 must contain at least one of the sets [s, v] and

[v, t]. Thus at least one of the sets [s, v] and [v, t] is reduced to a single edge.
Case 1. [v, t] = {vt}. Consider a solution S2 ∈ τa not containing vt, which is

supposed minimal. Then, by Lemma 4.9, S2 ∩ δ(v) = ∅, and hence P ∩ S2 = ∅.
Moreover, as P ′

1 ∩ P �= ∅, P ′
1 does meet v, and therefore |P ′

1 ∩ S2| ≤ 1. Thus there
exists a 3-st-path of S2, say P2, that does not intersect P ′

1. As P ∩S2 = ∅, by Lemma
4.1, we have that a(P ) ≥ a(P1), and hence a(sv) ≥ a(u1t). But this contradicts (4.1).

Case 2. [s, v] = {sv}. By Case 1, we may suppose that |[v, t]| ≥ 2. As P ′
1 contains

one of the sets [s, v] and [v, t], it follows that sv ∈ P ′
1. Note that {su1, u1t, sv, vt} ∈

T (G). As a(su1) = a(vt) = 0 and S1 is minimal, we may suppose, w.l.o.g., that
S1 = {su1, u1t, sv, vt}. Hence P1 = (su1, u1t) and P ′

1 = (sv, vt). Consider now an
edge set S3 of τa not containing sv and suppose that S3 is minimal. Since |P ′

1∩S3| ≤ 1,
there must exist a 3-st-path in S3, say P3, such that P3 ∩P ′

1 = ∅. If we replace, in S1,
P1 by P3, the resulting set is still a solution of T (G), and therefore a(P3) ≥ a(P1).
On the other hand, if there is an edge h ∈ [v, t] such that h /∈ S3, then one can replace
the path P3 by the one formed by sv and h and get a solution of T (G). But this
implies that a(P3) ≤ a(sv) + a(h). As a(P3) ≥ a(P1) and a(h) = 0, we obtain that
a(u1t) ≤ a(sv), contradicting (4.1). Thus [v, t] ⊆ S3. As |[v, t]| ≥ 2 and S3 is minimal,
it follows that P3 ∩ [v, t] �= ∅. Let P sv

3 be the subpath of P3 between s and v. By
replacing, in S3, P

sv
3 by sv, we get a solution of T (G), which yields a(sv) ≥ a(P sv

3 ).
As a(P3) ≥ a(P1) and therefore a(P sv

3 ) ≥ a(u1t), we get a(sv) ≥ a(u1t). But this
again contradicts (4.1), which ends the proof of the lemma.

Lemma 4.7 allows a partition of the set W into four subsets:
W1 = {w ∈ W | a(e) = 0 for all e ∈ [U,w], and a(e′) > 0 for all e′ ∈ [w, V ]},
W2 = {w ∈ W | a(e) = 0 for all e ∈ [U,w] ∪ [w, V ]},
W3 = {w ∈ W | a(e) > 0 for all e ∈ [U,w], and a(e′) = 0 for all e′ ∈ [w, V ]},
Z = W\(W1 ∪W2 ∪W3).
Lemma 4.11. (i) If U = {u}, then a(e) = a(e′) for all e ∈ [u, t] and e′ ∈

[W1 ∪W2, t].
(ii) If V = {v}, then a(e) = a(e′) for all e ∈ [s, v] and e′ ∈ [s,W2 ∪W3].
Proof. We will prove only (i); the proof of (ii) is similar. Assume by contradiction

that a(ut) �= a(wt) for some w ∈ W1 ∪W2. We will first give the following claim.
Claim. No solution of τa uses at the same time an edge of [u, t] and an edge of

[w, t].
Proof. It suffices to show that there is no solution of τa containing at the same

time ut and wt. Let us suppose, on the contrary, that there exists a solution S ∈ τa
with ut, wt ∈ S. Let T1 and T2 be two edge-disjoint 3-st-paths of S. As a(ut) > 0
and a(wt) > 0, we may suppose that ut ∈ T1 and wt ∈ T2.

Suppose that a(wt) < a(ut). The case where a(wt) > a(ut) can be treated along
the same lines. If [s, u]∩T1 = ∅, T1 must go through a node z ∈ N\{s, t, u}, and hence
the subpath T su

1 of T1 between s and u is of positive weight. By Lemma 4.4, it follows
that [s, u] ⊆ T2, and therefore [s, u] = {su} and T2 = (s, u, w, t). If z ∈ V , then, by
replacing wt by zt in S, we get a solution of T (G). But, as a(zt) = 0, this implies
that a(wt) = 0, a contradiction. Thus T1 cannot go through V . As a consequence,
as by Lemma 4.3, V �= ∅, there is a node v ∈ V such that sv and vt belong neither
to T1 nor to T2. So, by replacing T1 by (sv, vt), we get a solution of T (G). However,
since, from Lemma 4.10, we have a(ut) = a(sv), we get a(T su

1 ) = 0, a contradiction.
Consequently, [s, u] ∩ T1 �= ∅ and T1 = (s, u, t). By using similar arguments, we can
also show that T2 is of the form (f, uw,wt), where f is an edge parallel to su, and
hence |[s, u]| ≥ 2. Furthermore, at least one of the sets [u,w] and [w, t] is reduced to
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a single edge. If not, one may replace ut by a 2-ut-path going through w and get a
solution of T (G). But this would imply that a(wt) ≥ a(ut), a contradiction.

Suppose that |[w, t]| = 1. The case where |[u,w]| = 1 is similar. Hence [w, t] =
{wt}. Let S′ ∈ τa such that wt /∈ S′ and suppose that S′ is minimal. If S′ contains
an edge e ∈ [u,w], then, as S′ is minimal, there must exist in S′ a 3-st-path T
containing e. Therefore T is of the form (s, w, u, t). Observe that in this case, the
edge set obtained by deleting ut and adding wt is in T (G), and then a(ut) ≤ a(wt),
a contradiction. Consequently, [u,w] ∩ S′ = ∅. Hence, as |T2 ∩ S′| ≤ 1, there is a
3-st-path, say T ′

1, in S′ such that T ′
1 ∩ T2 = ∅. By replacing T1 by T ′

1 in S, we get a
solution of T (G), and hence a(T ′

1) ≥ a(T1). Note that only one edge of [s, u] can be
used by the second 3-st-path of S′. Thus one can replace T ′

1 by T2 in S′ and obtain
a feasible solution, which yields a(T2) ≥ a(T ′

1), and therefore a(T2) ≥ a(T1). But this
implies that a(wt) ≥ a(ut), which is impossible.

Suppose that a(ut) > a(wt). The case where a(ut) < a(wt) can be treated sim-
ilarly. Let S1 be a minimal solution of τa that contains ut, and let P1 and P ′

1 be
two edge-disjoint 3-st-paths of S1. Suppose, w.l.o.g., that ut ∈ P1. By the claim,
we have [w, t] ∩ S1 = ∅. If S1 contains an edge of [u,w], then there is a 3-st-path
of S1 of the form (s, w, u, t). However, by removing ut and adding wt, we obtain
a solution of T (G), yielding a(wt) ≥ a(ut), a contradiction. Thus [u,w] ∩ S1 = ∅.
Moreover, if there is an edge e of [s, u] such that e /∈ P ′

1, one can replace ut by
(e, uw,wt) and get a solution of T (G). But this implies that a(wt) ≥ a(ut), a
contradiction. Consequently, we have that [s, u] ⊆ P ′

1. Hence [s, u] = {su} and
P1 = (s, z, u, t) with z ∈ N\{s, t, u, w}. Observe that the subpath P su

1 of P1 be-
tween s and u is of positive weight. If there are two edges f ∈ [s, v] and f ′ ∈ [v, t]
such that f, f ′ /∈ P ′

1, where v ∈ V , then we can replace P1 by the edges f and
f ′ and still have a feasible solution. As by Lemma 4.10, a(f) = a(ut), we ob-
tain that a(P su

1 ) = 0, a contradiction. Thus, for every node v ∈ V , the path P ′
1

must use all the edges of at least one of the sets [s, v] and [v, t]. This implies that
V = {v}. Moreover, as su ∈ P ′

1, we have that [s, v] ∩ P ′
1 = ∅, [v, t] = {vt}, and

P ′
1 = (s, u, v, t).

Let S2 be a solution of τa that does not contain su. Recall that [s, u] = {su}.
Suppose that S2 is minimal. Thus S2 consists of two edge-disjoint 3-st-paths, say P2

and P ′
2. As |U | = 1, by Lemma 4.9, we have that δ(u) ∩ S2 = ∅. If S2 contains an

edge e of [w, t], as a(e) > 0, e must belong to one of the 3-st-paths of S2, say P2.
Since ({su}∪ [u,w])∩S2 = ∅, P2 must be of the form (s, z′, w, t), where z′ /∈ {s, t, u}.
We remark that the subpath of P2 between s and w is of positive weight. Hence, by
Lemma 4.4, P ′

2 must intersect every 2-sw-path going through u. But this contradicts
the fact that ({su} ∪ [u,w]) ∩ S2 = ∅. It then follows that [w, t] ∩ S2 = ∅. As
|P ′

1 ∩ S2| ≤ 1, there is a 3-st-path in S2, say P2, which does not intersect P ′
1. Let P

be a 3-st-path going through the nodes s, u, w, t. From Lemma 4.1, it follows that
a(P ) ≥ a(P1). But then we have that a(wt) ≥ a(ut), a contradiction.

5. Proof of Theorem 3.1. In this section, we prove Theorem 3.1; that is,
P (G,L) = Q(G,L) for L = 2, 3. For this, we consider an inequality ax ≥ α that
defines a facet of P (G,L) different from the trivial and the st-cut inequalities. We
will show that ax ≥ α is necessarily an L-path-cut inequality.

Case 1. L = 2. Let U, V,W be as defined in the previous section. By Lemma
4.6, it follows that W = ∅, and thus each 2-st-path uses exactly one edge with a
nonzero coefficient. Thus, any solution of τa contains exactly two edges with a positive
coefficient, which are exactly the edges of the 2-path-cut inequality induced by the
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partition {s}, U, V, {t}. This implies that ax ≥ α is the 2-path-cut inequality induced
by this partition.

Case 2. L = 3. Let U, V,W1,W2,W3, Z be as defined in the previous section. We
consider two cases.

Case 2.1. W1 ∪ W3 ∪ Z �= ∅. Let F1 = [{s} ∪ U,Z] ∪ [s,W1] ∪ [U,W3] and
F2 = [Z, V ∪ {t}] ∪ [W3, t] ∪ [W1, V ] (see Figure 3). We remark that F1 ∩ F2 = ∅ and
that there is no st-path of length 3 in G formed by edges only from F1 and F2. We
have the following.

Lemma 5.1. For every solution S of τa, we have that |S ∩ F1| = |S ∩ F2|.
Proof. Assume the contrary. Then there exists a solution, say S1, such that,

for one of its 3-st-path, say P1, we have |P1 ∩ F1| �= |P1 ∩ F2|. Let P ′
1 be the second

3-st-path in S1. W.l.o.g., we may suppose that P1 ∩ F1 �= ∅.
Claim 1. P1 ∩ F2 = ∅.
Proof. Since P1 ∩ F1 �= ∅ and F1 ∩ F2 = ∅, we have that |P1 ∩ F2| ≤ 2. If

|P1 ∩ F2| = 1, as |P1 ∩ F1| �= |P1 ∩ F2| and P1 ∩ F1 �= ∅, |P1 ∩ F1| = 2. Then, P1

is of length 3 and contained in F1 ∪ F2, which is impossible by the remark above.
If |P1 ∩ F2| = 2, then |P1 ∩ F1| = 1, and again we have that P1 is of length 3
and contained in F1 ∪ F2, a contradiction. Thus, |P1 ∩ F2| = 0 and the claim is
proved.

Claim 2. (i) P1 ∩ [s, U ] = ∅.
(ii) P1 = (s, z, w, t) with z ∈ Z ∪W1 and w ∈ U ∪W1 ∪W2 (z and w may be the

same).
(iii) [s, U ] ⊂ P ′

1.
(iv) |U | = 1 and |[s, U ]| = 1.
Proof. First note that (iv) is a consequence of (iii).
(i) If P1 uses an edge of [s, U ], say su with u ∈ U , as P1 ∩ F1 �= ∅, P1 would

be of the form (s, u, z, t), where z belongs to either Z or W3. But this implies that
P1 ∩ F2 �= ∅, which contradicts Claim 1.

(ii) Suppose that P1 contains an edge of [U,W3], say uw3. Note that a(uw3) > 0.
As, by (i), [s, U ] ∩ P1 = ∅, it follows that P1 = (s, w3, u, t). By removing uw3

and adding su and edges w3v, vt for some v ∈ V , we get a solution of T (G). As
the added edges all have zero weight, this implies that a(uw3) = 0, a contradiction.
Consequently, we have that P1∩[U,W3] = ∅. Then, by (i) and the fact that P1∩F1 �= ∅,
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it follows that P1 uses one of the edges of [s, Z ∪W1]. As, by Claim 1, P1 ∩ F2 = ∅,
we obtain that P1 = (s, z, w, t), where z ∈ Z ∪W1 and w ∈ U ∪W1 ∪W2.

(iii) Suppose that there is an edge of [s, U ], say su0, that does not belong to P ′
1.

We have that w �= u0. Otherwise, P1 would be (s, z, u0, t). As by (ii) z ∈ Z ∪W1 and
hence a(sz) > 0, it follows that the subpath of P1 between s and u0 has a positive
weight. But this implies by Lemma 4.4 that su0 ∈ P ′

1, a contradiction. We claim
that [u0, w] ⊆ P ′

1. In fact, if, for instance, u0w /∈ P ′
1, then consider the solution, say

S′
1, obtained from S1 by replacing sz and zw by su0 and u0w. Clearly, S′

1 ∈ T (G),
which implies that a(su0) + a(u0w) ≥ a(sz) + a(zw). As a(u0w) = a(su0) = 0, we
obtain that a(sz) = 0, a contradiction. Thus [u0, w] ⊆ P ′

1, and hence [u0, w] = {u0w}.
Suppose now that P ′

1 = (f, u0w, g), where f (resp., g) is an edge of [s, u0] (resp., [w, t])
different from that used by P1. By removing sz, zw, and g and adding the edges su0

and u0t, we get a solution of T (G). As by Lemma 4.11 a(u0t) = a(g), it follows that
a(sz) = 0, a contradiction. Consequently, P ′

1 = (s, w, u0, t). Now, by considering the
solution S̃1 = (S1\{sz, zw})∪{su0}, one can get a contradiction along the same lines.
This ends the proof of the claim.

Now, by Claim 2(iv), we may suppose that U = {u} and [s, u] = {su}. Let S2

be a solution of τa that does not contain su. W.l.o.g., we may suppose that S2 is
minimal. Then, by Lemma 4.9, it follows that S2 ∩ δ(u) = ∅. Let P = {s, u, t}.
Clearly, P ∩ S2 = ∅. Moreover, as P ′

1 goes through node u, |P ′
1 ∩ S2| ≤ 1. As a

consequence, there must exist a 3-st-path of S2, say P2, such that P2 ∩ P ′
1 = ∅. Now,

by Lemma 4.1, we obtain that a(P ) ≥ a(P1). By Claim 2(ii), together with Lemma
4.11, it follows that a(sz) ≤ 0. We then have a contradiction, and the lemma is
proved.

From Lemma 5.1, it follows that the facet defined by ax ≥ α is contained in the
face induced by the equation x(F1) − x(F2) = 0. As, by Lemma 3.6, this equation
cannot be a positive multiple of ax = α, we have a contradiction.

Case 2.2. W1 ∪W3 ∪ Z = ∅. Since, by Lemma 4.6, W �= ∅, we have necessarily
that W2 �= ∅. Thus {s}, U,W2, V, {t} is a partition of N . Let T be the set of edges of
the 3-path-cut induced by this partition (these edges are represented by solid lines in
Figure 4). Note that a(e) > 0 for all e ∈ T . Moreover, a(e) = 0 for all e ∈ E\T . This is
clear for the edges of E\(T∪E(W2)) from Lemma 4.5(ii) and the definition of U, V,W2.
If a(z1z2) > 0 for some z1, z2 ∈ W2, then there must exist a solution S̃ of τa and a
3-st-path P̃ of S̃ containing z1z2. W.l.o.g., we may suppose that P̃ = (s, z1, z2, t). Let
S̃′ = (S̃\{z1z2}) ∪ {su, uz2, z1v, vt} for some nodes u ∈ U and v ∈ V . As S̃′ ∈ T (G)
and all the added edges have zero weight, it follows that a(z1z2) = 0, a contradiction.

s

U

t

W2 V

Fig. 4.
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Now we claim that each solution of τa contains exactly two edges of T . First of
all, note that, as the constraint (1.3) associated with T is valid for P (G, 3), every
solution of τa must contain at least two edges of T . Assume that there is a solution
S of τa with more than two edges of T . So, there must exist in S a 3-st-path P
that contains at least two edges of T . We consider the case where P = (s, w2, w

′
2, t)

with w2, w
′
2 ∈ W2. The other possible cases for P can be treated similarly ((s, w2, t),

(s, w2, u, t) with u ∈ U , (s, v, w2, t) with v ∈ V , (s, v, u, t)). Let P ′ be the second
3-st-path of S. By replacing P ′ by the edges su, uw′

2, w2v, vt in S, we get a solution
of T (G). As all these edges have zero weight, a(P ′) = 0, contradicting Lemma 4.2.

Thus, every solution of τa uses exactly two edges of T . This implies that ax ≥ α is
nothing but the 3-path-cut inequality induced by T , which ends the proof of Theorem
3.1.

6. Facets of P (G, L). In this section, we give necessary and sufficient condi-
tions for inequalities (1.1)–(1.3) to be facet defining for P (G,L). This yields a minimal
description of this polytope when L ≤ 3. Throughout this section, G = (N,E) is a
complete graph with |N | ≥ 4, which may contain multiple edges. Hence, by Corollary
3.3, P (G,L) is full dimensional. The first two theorems, given without proof, describe
when the trivial and the st-cut inequalities define facets of P (G,L).

Theorem 6.1. (i) For L ≥ 2, inequality x(e) ≤ 1 defines a facet of P (G,L).
(ii) For L ≥ 2, inequality x(e) ≥ 0 defines a facet of P (G,L) if and only if

|N | ≥ 5, or |N | = 4 and e does not belong to either an st-cut or an L-path-cut, with
exactly three edges.

Theorem 6.2. (i) If L = 2, then the only st-cut inequalities that define facets of
P (G, 2) are those induced by {s} and N \ {t}.

(ii) For L ≥ 3, every st-cut inequality defines a facet of P (G,L).
We give now necessary and sufficient conditions for the L-path-cut inequalities to

be facet defining for P (G,L).
Theorem 6.3. For L ≥ 2, inequality (1.3) defines a facet of P (G,L) if and only

if |V0| = |VL+1| = 1.
Proof. Necessity. We will show that x(T ) ≥ 2 does not define a facet of P (G,L)

if |V0| ≥ 2. The case where |VL+1| ≥ 2 follows by symmetry.
Suppose that |V0| ≥ 2, and consider the partition given by

V 0 = {s},
V 1 = V1 ∪ (V0\{s}),
V i = Vi, i = 2, . . . , L + 1.

This partition induces the L-path-cut inequality x(T ) ≥ 2, where T = T\[V0\{s}, V2].
As G is complete, we have that T is strictly contained in T , and hence x(T ) ≥ 2
cannot be facet defining.

Sufficiency. Now, suppose that |V0| = |VL+1| = 1, that is, V0 = {s} and VL+1 =
{t}. Let us denote inequality (1.3) by ax ≥ α, and let bx ≥ β be a facet defining
inequality of P (G,L) such that

{x ∈ P (G,L) | ax = α} ⊆ {x ∈ P (G,L) | bx = β}.

We will show that a = ρb for some ρ > 0.
Let V0 = {s}, V1, . . . , VL, VL+1 = {t} be the partition inducing ax ≥ α. Let

E = E\T = (
⋃L

i=1 E(Vi)) ∪ (
⋃L

i=0[Vi, Vi+1]). Let f ∈ [s, t] and Tf = T\{f}. As the
graph G is complete, it is easy to see that the sets given by

Fe = E ∪ {f, e} for all e ∈ Tf
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induce solutions of the THPP whose incidence vectors satisfy ax ≥ α with equality.
Thus,

0 = bxFe − bxFe′ = b(e) − b(e′) for all e, e′ ∈ Tf .

Hence,

b(e) = b(e′) for all e, e′ ∈ Tf .(6.1)

Now let g ∈ [V0, VL], g′ ∈ [V1, VL+1], and F ∗ = E ∪ {g, g′}. It is obvious that
F ∗ induces a solution whose incidence vector satisfies ax ≥ α with equality. Thus
bxF∗ − bxFg = b(g′) − b(f) = 0. This together with (6.1) yields

b(e) = γ for all e ∈ T for some γ ∈ R.

Now, we shall show that b(e) = 0 for all e ∈ E. Suppose first that e ∈ [V0, V1].
Consider an edge h ∈ [s, w] with w ∈ V2 and the edge set Fh\{e}, where Fh is as
defined above. It is easy to see that Fh\{e} still induces a solution of the THPP
whose incidence vector satisfies ax ≥ α with equality. Thus,

0 = bxFh − bxFh\{e} = b(e).

Similarly, we obtain that b(e) = 0 for all e ∈
⋃L

i=0[Vi, Vi+1]. Consider now
an edge e ∈ E(Vi), i ∈ {1, . . . , L}. Let v ∈ VL and h′ ∈ [s, v]. Clearly, the set
Fh′\{e} induces a solution of the problem. As axFh′ = axFh′\{e} = α, we have that
bxFh′ = bxFh′\{e} = α, and hence b(e) = 0.

Consequently, we have that

b(e) = 0 for all e ∈ E,
b(e) = γ for all e ∈ T .

Since α > 0, we have that γ > 0, and by setting ρ = 1/γ, we obtain that
a = ρb.

Let E′ be the set of edges that belong neither to an st-cut nor to an L-path-cut,
consisting of exactly three edges. From the previous theorems, we have the following.

Corollary 6.4. For L = 2, if G = (N,E) is complete and |N | ≥ 4, then a
minimal complete linear description of P (G,L) is given by

x(δ(s)) ≥ 2,

x(δ(t)) ≥ 2,

x(T ) ≥ 2 for all 2-path-cut T induced by V0 = {s}, V1, V2, V3 = {t},
x(e) ≤ 1 for all e ∈ E,

x(e) ≥ 0 for all e ∈ E′.

Corollary 6.5. For L = 3, if G = (N,E) is complete and |N | ≥ 4, then a
minimal complete linear description of P (G,L) is given by

x(δ(W )) ≥ 2 for all st-cut δ(W ),

x(T ) ≥ 2 for all 3-path-cut T induced by V0 = {s}, V1, V2, V3, V4 = {t},
x(e) ≤ 1 for all e ∈ E,

x(e) ≥ 0 for all e ∈ E′.
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7. Dominant of P (G, L). In this section, we consider the dominant of the
polytope P (G,L). We give a complete description of that polyhedron for any graph
G and integer L ≥ 2 such that P (G,L) = Q(G,L).

Let Dom(P (G,L)) be the dominant of P (G,L), that is,

Dom(P (G,L)) = {y ∈ R
E | ∃x ∈ P (G,L), x ≤ y}.

Let D(G,L) be the polyhedron given by

y(δ(W )) ≥ 2 for all st-cut δ(W ),

y(δ(W )\{e}) ≥ 1 for all st-cut δ(W ), e ∈ δ(W ),(7.1)

y(T ) ≥ 2 for all L-path-cut T,

y(T\{e}) ≥ 1 for all L-path-cut T, e ∈ T,(7.2)

y(e) ≥ 0 for all e ∈ E.(7.3)

Theorem 7.1. For every L ≥ 2, if P (G,L) = Q(G,L), then Dom(P (G,L)) =
D(G,L).

Proof. We first prove that Dom(P (G,L)) ⊆ D(G,L). Let y ∈ Dom(P (G,L)).
Then there exists x̄ ∈ P (G,L) such that x̄ ≤ y. Hence, y satisfies (1.1), (1.3), and
(7.3). We show that y also satisfies constraints (7.1) and (7.2).

Consider a constraint y(δ(W )\{e}) ≥ 1 of type (7.1). As x̄(δ(W )) ≥ 2 and
x̄(e) ≤ 1, we have that

y(δ(W )\{e}) ≥ x̄(δ(W )\{e})
= x̄(δ(W )) − x̄(e)

≥ 2 − x̄(e)

≥ 1.

Now, in a similar way, we obtain that y(T\{e}) ≥ 1 for all L-path-cut T and
e ∈ T . Therefore Dom(P (G,L)) ⊆ D(G,L).

Next we prove that D(G,L) ⊆ Dom(P (G,L)). To this end, first let us note
that the dominant of D(G,L), Dom(D(G,L)), is D(G,L) itself. Thus, to prove
that D(G,L) ⊆ Dom(P (G,L)), it is sufficient to show that any extreme point ȳ of
D(G,L) belongs to P (G,L). Indeed, suppose that this is the case. Then any convex
combination of extreme points of D(G,L) is also in P (G,L). On the other hand,
since Dom(D(G,L)) = D(G,L), any solution y ∈ D(G,L) can be seen as ỹ + z,
where ỹ belongs to the convex hull of the extreme points of D(G,L) and z ≥ 0. As
ỹ ∈ P (G,L), we have therefore that y ∈ Dom(P (G,L)).

So let ȳ be an extreme point of D(G,L). As P (G,L) = Q(G,L) and all in-
equalities in Q(G,L) are in D(G,L) except x(e) ≤ 1, e ∈ E, in order to show that
ȳ ∈ P (G,L), it suffices to show that ȳ(e) ≤ 1 for all e ∈ E.

Suppose that ȳ(e0) > 1 for some e0 ∈ E. Since ȳ is an extreme point of D(G,L),
there exists at least one constraint among (1.1), (7.1), (1.3) (7.2) involving the variable
x(e0) and that is tight for ȳ.

If ȳ(δ(W )\{f}) = 1 with e0 ∈ δ(W )\{f}, then, clearly, ȳ(e0) ≤ ȳ(δ(W )\{f}) = 1,
a contradiction.

If ȳ(δ(W )) = 2 with e0 ∈ δ(W ), then ȳ(e0) + ȳ(δ(W )\{e0}) = 2, and hence
ȳ(e0) = 2 − ȳ(δ(W )\{e0}). As ȳ satisfies (7.1), it follows that ȳ(e0) ≤ 1, which is
impossible.
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We obtain a similar contradiction if one of the constraints (1.3), (7.2) is tight for
ȳ .

It would be interesting to investigate the dominant of the THPP polytope when
P (G,L) �= Q(G,L).

An immediate consequence of Theorems 3.1 and 7.1 is the following.
Corollary 7.2. If L = 2, 3, then Dom(P (G,L)) = D(G,L).

8. Concluding remarks. In this paper, we have considered the problem of
finding a minimum cost edge set containing at least two edge-disjoint paths between
two terminals s and t of length no more than L, where L ≥ 2 is a given integer. We
have given a formulation for this problem and extended this formulation to the case
where more than two paths are required between s and t. We have also investigated
its polyhedral structure when L = 2, 3. In particular, we have shown in that case that
the associated polytope P (G,L) is described by the trivial, st-cut, and L-path-cut
inequalities. Moreover, we have given necessary and sufficient conditions for these in-
equalities to be facet defining for any L ≥ 2. This yielded a minimal linear description
for P (G,L) when L = 2, 3. We have finally considered the dominant of P (G,L), for
which we have given a complete description for any L ≥ 2 when P (G,L) is given by
those inequalities.

Since the separation problems for inequalities (1.1) and (1.3) can be solved in
polynomial time when L ≤ 3, from Theorem 3.1 it follows that, for L ≤ 3, the THPP
can be solved in polynomial time using a cutting plane algorithm. To the best of our
knowledge, this is the first (nonenumerative) polynomial algorithm devised for this
problem.

Let Pk(G,L) be the polytope associated with the problem where the number of
edge-disjoint paths k is arbitrary. A natural question that may be posed is whether
the linear relaxation of this problem is integral. We have made some investigations
in this direction. These motivate us to give the following conjecture.

Conjecture 8.1. Pk(G,L) = Qk(G,L) if L = 2, 3, where Qk(G,L) is as defined
in section 2.

As already mentioned, if L ≥ 4, the formulation given in section 2 is no longer
valid for the THPP. Unfortunately, so far we do not know a formulation for the
problem in that case. However, for L ≤ 3, it is not hard to see that the formulation
given in section 2 for the THPP (and also for its generalization when the number k of
required edge-disjoint L-st-paths is more than two) can be easily extended to the case
where more than one pair of terminals is considered. Here the formulation is given
by the st-cut and L-path-cut inequalities for every pair {s, t} of terminals, together
with the trivial inequalities. However, these inequalities do not suffice to completely
describe the associated polytope for this general case even for L ≤ 3. In fact, consider
the graph shown in Figure 5 with two pairs of terminals {s, t} and {s′, t′}. Suppose
that L = 3. Here, a feasible solution must contain at least two edge-disjoint 3-st-paths
and at least two edge-disjoint 3-s′t′-paths. It is not hard to see that the fractional
point x̄ = (1, 1, 1, 1, 0, 0, 0, 1/2, 1/2, 1/2) satisfies all trivial, st-cut, and L-path-cut
inequalities (with respect to the two pairs of terminals). Moreover, x̄ is an extreme
point of the polyhedron given by these inequalities. Actually, one can easily see that
the inequality

x(e5) + x(e6) + x(e7) + x(e8) + x(e9) + x(e10) ≥ 2

is valid for the problem but violated by x̄. Furthermore, this inequality is facet
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defining for the associated polytope.
Finally, let us note that the results given in this paper can be exploited to devise

a branch-and-cut algorithm for that general problem when L = 2, 3. For this, we
should identify further families of facet defining inequalities. These should take into
account the interaction between the different pairs of terminals. Our results can also
be used to obtain upper bounds for that problem. If L ≤ 3, one can solve the THPP in
the underlying graph G for every pair of terminals using the cutting plane algorithm
developed in this paper. Then, by considering the union of the different solutions
obtained this way, one get a feasible solution for the problem. This approach can be
used to provide upper bounds even when L ≥ 4. On the other hand, it would be
interesting to investigate the extension of the results, related to the formulation of
the THPP when L ≤ 3 as well as the facial structure of its associated polytope, to the
more general case when k and L are both arbitrary. This is our aim for future work.
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