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Abstract In this paper, we study a variant of the well-known single-vehicle pickup
and delivery problem where the demands can be unloaded/reloaded at any node. By
proving new complexity results, we give the minimum information which is neces-
sary to represent feasible solutions. Using this, we present integer linear programs
for both the unitary and the general versions. We then show that the associated linear
relaxations are polynomial-time solvable and present some computational results.
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1 Introduction

The Single-vehicle Pickup and Delivery Problem (SPDP) is a well-studied problem
which consists of constructing a route for a limited-capacity vehicle in order to satisfy
transportation demands defined by paired pickup and delivery locations, see Parragh
et al. (2008), Berbeglia et al. (2007), Savelsberg and Sol (1995) for surveys of the
SPDP and close-related problems. In this paper, we are interested in a variant of the
SPDP where no time-windows are considered and reloads are allowed anywhere dur-
ing the transportation of the demands in order to get a better route for the vehicle.
We will call this problem the Single-vehicle Preemptive Pickup and Delivery Prob-
lem (SPPDP). Following the graph terminology and notation in Schrijver (2002), the
SPPDP can be stated in terms of graphs as follows.

Let D = (V, A) be a simple and strongly connected digraph, hereafter called
the initial digraph. (Remark that D may not be complete.) Let vg € V be a dis-
tinguished node corresponding to the depot. We also consider one vehicle having a
given transportation capacity Q € R, and a non-empty set P of demands. Each de-
mand p € P is specified by an arc (o”, d?), where o” € V corresponds to its origin
node and d? € V \ {o”} to its destination node, and a volume ¢” € ]0; Q]. The di-
graph & = (V, P) is called the demand digraph. We suppose that a demand cannot
be split and cannot go through the same node more than once. This implies that any
demand is carried on a path. However, before reaching its destination node, a de-
mand can be fully unloaded at any node and then picked up later by the vehicle. This
unloading/picking-up process, called a reload, can be repeated several times and we
consider restrictions neither on the storage volume nor on the number of reloads at
any node. The vehicle closed walk starts at the depot and we suppose that no arc can
appear more than once in the vehicle closed walk. We associate with each arc a € A
of the digraph a cost ¢, € R4 which corresponds to what must be paid by the vehicle
to use this arc, and we consider no reload costs. Hence, the SPPDP consists of find-
ing the vehicle closed walk and the demand paths so that the vehicle carries every
demand from its origin node to its destination node, the demand paths may contain
some reloads, the vehicle is never overloaded, and the cost of the vehicle closed walk
is minimum.

The fact of considering reloads in the SPDP considerably modified the structure
of its solutions. First of all, even if the digraph is complete, any node is incident to at
most one demand, no demand is incident to the depot and the cost function satisfies
the triangle inequalities, the vehicle closed walk is no more totally defined by its set
of arcs. In fact, at any node where a reload occurs, the vehicle has to go through this
node at least twice, which implies that the vehicle closed walk does not correspond
to a circuit (that is, a closed walk composed of nodes traversed exactly once) as it is
the case for the SPDP. Moreover, reloads make necessary to differentiate between the
vehicle closed walk and the demand paths, that is, a demand path may not coincide
with part of the vehicle closed walk. Furthermore, it is not possible to restrict the set
of nodes to the depot and the origin/destination nodes since reloads may take place
anywhere in the digraph.

Despite its additional complexity, it is worth considering the SPPDP because of
the important savings that may be obtained with the reloads. The following example
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Fig. 1 Example of savings
thanks to reloads

illustrates this cost reduction between the SPDP and the SPPDP. Consider the graph
given in Fig. 1 where each edge represents two opposite arcs, the weights on the edges
correspond to the costs associated with the arcs, and the dashed arcs represent the
three demands pj, p» and p3. For the sake of clarity, we have only depicted the arcs
which allow us to present optimal solutions even though the digraph we consider is
complete. (The costs of the non-depicted edges can be easily obtained by computing
the shortest paths between their extremities.) The volume of each demand is supposed
to be equal to the transportation capacity of the vehicle. An optimal solution to the
SPDP consists of passing by the nodes vy, vs, v7, v4, vg, V1, U3, Vg in that order for
a cost of 475. An optimal solution to the SPPDP is the ordered sequence of nodes
vo, V1, V3, V4, V5, U7, U5, Ve, Vo in Which a reload for demand p, occurs at node vs.
The cost of this solution is 446 which corresponds to a saving of more than 6%.

Clearly, the SPPDP is NP-hard. Indeed, consider an instance of the SPPDP where
the overall volume of demands is lower than the transportation capacity of the vehicle,
the digraph is complete, each node different from the depot is the origin or the des-
tination of exactly one demand and the costs are positive, symmetric and satisfy the
triangle inequalities. Under these assumptions, it is straightforward to see that every
optimal solution to the SPPDP is such that no reloads occur and the vehicle closed
walk corresponds to a Hamiltonian circuit traversing the origin of every demand be-
fore its destination. This problem is nothing but the pickup and delivery traveling
salesman problem which has been shown to be NP-hard (Renaud et al. 2002).

In this paper, we are interested in integer linear programming formulations for the
SPPDP based on minimal representations of feasible solutions. In Sect. 2, we give
some literature overview. In Sect. 3, we first consider the complexity of the demand-
paths checking problem and show that this problem is NP-hard, which implies that
the set of arcs associated with the demand paths are necessary in minimal repre-
sentations. We then look at the vehicle-sequence checking problem, which permits
to distinguish the unitary version of the SPPDP (i.e., when the vehicle cannot carry
more than one demand at a time) from the general one. We actually prove that for the
unitary case, the order of the arcs of the vehicle closed walk can be removed from
a minimal representation, which is not the case in general. The obtained minimal
representations of the solutions are used in Sects. 4 and 5 to give integer linear pro-
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gramming formulations for the unitary and general versions of the SPPDP. We also
prove that the associated linear relaxations are polynomial-time solvable, and present
some computational results. Finally, Sect. 6 gives some concluding remarks.

The rest of this section is devoted to more graph definitions and notation. Given
awalk P = (ay,...,a) and two distinct arcs a;,a; € P with i < j, we say that g;
is traversed before a; in P and we write a; <p a;. We say that a walk C respects a
path P if for any arc a of P that belongs to C, the arcs traversed before a in P are
also traversed before a in C. Note that if C respects P, two adjacent arcs of P are
not necessarily adjacent in C, and an arc of P may not appear in C. If C respects
all the paths of a given set K, then C respects K. (We remark that it is possible for
two vertices to appear before each other with respect to a path set K.) Furthermore,
when a graph notation is used without specifying as subscript the graph on which it
is applied, it is applied on the initial digraph D.

2 Literature overview

Even though reloads have already been considered in transportation problems for a
few years, no previous work seems to have specifically dealt with the SPPDP. In the
literature, reloads are actually involved in more general problems or particular cases
of our problem.

The Preemptive Stacker Crane Problem (PSCP) (Atallah and Kosaraju 1988) is
probably the closest problem to ours which has already been studied. The main dif-
ference with the SPPDP lies in the fact that the vehicle cannot carry more than one
demand at a time. Some other minor differences exist: the vehicle may pass several
times per arc, and as the costs are symmetric, the initial graph is undirected. The
PSCP can then be considered as a particular case of the SPPDP. However, we are not
aware of any integer linear programming formulation dedicated to the PSCP. In fact,
only few works have been published on this problem. Atallah and Kosaraju (1988)
study the problem when the graph is a line or a circle. They develop an exact algo-
rithm which runs in O(k + n). Frederickson and Guan (1992) show that the PSCP
is polynomial-time solvable if the graph is a tree. They present two algorithms run-
ning in O(k + gn) and O(k + nlog(n)) where k denotes the number of demands, n
the number of nodes, and ¢ is less than or equal to min{k, n} and corresponds to the
number of non-trivial components in a related digraph. A survey of the complexity
of this problem and other close ones can be found in Anily et al. (2011).

Among the more general versions, we can first mention the Pickup and Deliv-
ery Problem with Transfers (PDPT) (Cortés et al. 2005), the Pickup and Delivery
Problem with Time-Windows and Transshipments (PDPTWT) (Mitrovi¢-Mini¢ and
Laporte 2006) and the Pickup and Delivery Problem with Reloads (RPDP) (Oertel
2000). These problems actually correspond to the same one which is the pickup and
delivery in which demands may be fully unloaded and picked up later on certain spe-
cific nodes, called hubs. Moreover, reloads may be transshipments since the vehicle
unloading a demand may be different from the one picking it up. The problem also
differs from ours since it takes into account time-windows constraints.

Mitrovi¢-Mini¢ and Laporte (2006) give a two-phase heuristic to approximately
solve the PDPTWT. They first construct an initial solution using multi-start cheapest
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insertion procedure. The best solution is used as the initial one. This solution is then
improved by successively removing and reinserting every demand. In both phases,
a demand may be inserted with one or no reload. This choice is made by consider-
ing all possible insertions and choosing the best one. The insertion of a demand p
carried from o” to d” with a reload at node v is represented by two demands hav-
ing o?, v as origins and v, d? as destinations respectively. Time-windows of both
demands are chosen to ensure that p is carried within its time-window and the first
part of the demand path (corresponding to the path from o” to v) is made before the
second one (from v to d”). The experimental results they obtain show that allowing
transshipments is very useful to reduce total travel distance.

To model the RPDP, Oertel (2000) creates an auxiliary graph by considering mul-
tiple copies per hub. In fact, every hub is split into two nodes for every demand. This
transformation ensures that every vehicle closed walk now corresponds to a circuit.
Using this new graph, Oertel then gives a mixed-integer formulation for the problem.
He then solves this latter using a tabu-search algorithm by reinserting every demand
in the same way as in (Mitrovi¢-Mini¢ and Laporte 2006). Instances with about sev-
enty demands and a hub are solved with this heuristic.

Cortés et al. (2005) also consider for the PDPT an auxiliary graph with multiple
copies per hub. The number of copies is equal to twice the maximum number of
times a vehicle can make a reload at a same node. (This limit is arbitrary fixed by
the user.) The given formulation is then an arc-node formulation. They also present
a solution method based on Benders decomposition. This method is then applied to
solve exactly instances up to six demands, two vehicles and a hub.

We can also mention The Vehicle and Request Flow Network Design Problem
(VRFNDP) Griinert and Sebastian (2000) which arises in the context of ground trans-
portation problem for postal deliveries. In this problem, nodes correspond to letter
mail centers and demands to mail packages. Several vehicles and tight time-windows
constraints are considered. Moreover, each time a vehicle reaches a node, the mail
carried inside the vehicle has to be unloaded for a sorting stage. Griinert and Sebas-
tian (2000) consider a discrete model based on time periods. They use a space-time
graph by creating two nodes (one for the pickup action and the other for the delivery
one) for all physical locations at each period. They give a mixed-integer linear pro-
gramming formulation which is based on two types of commodity flows: the vehicle
and the demands. They yet give neither solution method nor computational results
for this problem.

The splittable pickup and delivery problem with reloads (SPDPR) (Kerivin et al.
2008) is an extension of the SPPDP when several vehicles are available to carry the
demands, transshipments are permitted and demands may be carried on several paths.
The authors give a model for the problem using a space-time graph similar to the one
given by Griinert and Sebastian (2000) for the VRFNDP. They provide two mixed
linear programming formulations based on that model and develop a branch-and-cut
algorithm for each formulation. Instances with up to 10 vertices and 15 demands are
solved to optimality.

As the SPPDP can be seen as a particular case of different more general prob-
lems such as the SPPDP, the RPDP or the PDPT, the models and solution methods
which have been developed for those problems could naturally be used for the SP-
PDP. However, the models developed for the RPDP and the PDPT take advantages
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of the small number of hubs in the graph. If such approach is used for modeling the
SPPDP, every node will have to be replaced by multiple copies, leading to a very
large auxiliary digraph. Similarly, since there is no time-windows constraints and no
time limit is given for the vehicle closed walk duration, the space-time graph that
one should construct for modeling the SPPDP will be much bigger than the initial
digraph. Consequently, none of these approaches can be used for the SPPDP for de-
vising exact efficient algorithms. For this, it is necessary to devise models for the
SPPDP which are specifically adapted. This is primordial if a polyhedral approach is
chosen to solve the problem. In fact, as mentioned by Queyranne and Schulz (1994),
“the success of this approach depends highly on the choice of variables which is
typically the first question addressed in formulating a model”. The set of variables,
considered in an integer linear programming formulation, actually corresponds to a
representation of some kind of information which may induce several non-necessary
feasible solutions. A tractable representation must contain enough information to as-
sert in polynomial time whether or not a feasible solution can be obtained from it. A
(inclusionwise) minimal representation is a tractable one from which no information
can be removed without losing the polynomial tractability. A minimal representation
then always implies the minimum number of distinct solutions with respect to the
given manner a representation is transcribed into variables. Therefore, dealing with
this reduced number of possible solutions in a method based on implicit enumeration
(e.g., branch-and-bound, branch-and-cut) allows to limit the combinatorial explosion.

3 Minimal representations of the solutions to the SPPDP

This section is devoted to the problem of determining minimal representations of the
solutions to the SPPDP. The common way of representing a solution to a transporta-
tion problem consists of specifying the sequences of arcs of the vehicle closed walk
and the demand paths. Furthermore, it is well-known that for the classical single-
vehicle pickup and delivery problem, a solution can be represented by only consid-
ering the set of arcs traversed by the vehicle (Savelsberg and Sol 1995). This repre-
sentation of a solution to the SPDP is mainly based on the fact that every vertex is
visited exactly once. This property clearly does not hold for the SPPDP and then, such
a representation cannot be straightforwardly proved tractable in our case. Therefore,
a natural question to address is whether or not there exists a (minimal) representation
of the solutions to the SPPDP where some information on the vehicle closed walk
and the demand paths may be discarded.

Clearly, it is sufficient to represent any demand path by its set of arcs instead of
its sequence. Moreover, it is trivial that we cannot put aside the whole information
associated with the vehicle closed walk. Consequently, among the possible represen-
tations we need to investigate, we consider the two defined by the following decision
problems. The first one, called Demand-Paths Checking Problem (DPCP), consists
of deciding if there exists a feasible solution to the SPPDP when the only information
we have is the sequence of arcs of the vehicle closed walk. In the second problem,
called Vehicle-Sequence Checking Problem (VSCP), we are given the sets of arcs of
the vehicle closed walk and the demand paths, and we check whether there exists an
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order on all the arcs of the vehicle closed walk which induces a feasible solution to
the SPPDP.

For both checking problems, we consider the set of demands P we defined in the
introduction, and the arc set A’ C A of the vehicle closed walk. This set clearly in-
duces an Eulerian digraph D" = (V', A’) where V' is the set of vertices of V covered
by A’. Since vy is the starting (and ending) vertex of the vehicle closed walk, it is
obvious that vy belongs to V'. Moreover, as the vehicle passes exactly once by every
arc of A’, at most Q units of the demands can be carried on any arc of A’.

3.1 The demand-paths checking problem

Given an Eulerian closed walk C of D’, the DPCP seeks to answer the following
question. Does there exist a set K = {K, : p € P} of demand paths of D’ so that for
every demand p € P, the arcs of the o”d”-path K, are traversed in the same order
as in C, and for every arc a € A’, the whole demand volume carried on a does not
exceed the vehicle capacity Q? The DPCP is NP-complete as shown in the following
theorem. The proof is given in the appendix.

Theorem 1 The DPCP is NP-complete even for the unitary case, and if no vertex of
D' appears more than twice in the Eulerian closed walk C and vy appears only as
the starting and ending vertex of C.

As it can be seen, for the unitary case, the DPCP is nothing but an Arc-Disjoint
Path Problem (ADPP) where the demand paths must fulfill some precedence con-
straints induced by C. The proof given in the appendix shows that the precedence
conditions can be ignored, leading to an ADPP by transforming D’ to a specific
acyclic digraph called Quasi-topological digraph. The NP-completeness of the DPCP
is then settled by proving that the ADPP remains NP-complete in quasi-topological
digraphs.

Theorem 1 implies that, in any tractable representation of a solution to the SPPDP,
no information relative to the arc sets of the demand paths can be put aside. In the
next subsection, we look at the VSCP which aims to decide whether or not the order
on the arc set of the vehicle closed walk can be dropped in a tractable representation.

3.2 The vehicle-sequence checking problem

Given the demand path set K = {K1, K>, ..., K}, the VSCP consists of determining
whether or not there exists an Eulerian closed walk C of D’, starting at vg, which
traverses the arcs of D’ in the same order as in the demand paths. The complexity
of the VSCP has been previously stated in Kerivin et al. (2010) where the VSCP is
referred to as the so-called Eulerian Closed Walk with Precedence Path Constraints
Problem.

Theorem 2 (Kerivin et al. 2010) The VSCP is NP-complete.

Kerivin et al. (2010) also present a polynomial-time algorithm to solve the VSCP
when the set K is composed of arc-disjoint paths. They give necessary and sufficient
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conditions for the existence of a feasible solution in this case. These conditions are
based on the concept of impregnable Eulerian subgraphs which can be defined as
follows. Let D = (V, A) be an Eulerian subgraph of D’. A vertex v of V is called
D-impregnable with respect to K if for every arc a of Sg“(v), there exists an arc a’

of SiDI‘(v) so that

() @’ <k, a for some path K; of K, if v=1p
(ii) either a’ <k, a for some path K; of K or v is incident with no arc of A"\ A, if

v # 9.

The subgraph D is then called impregnable if every vertex of D is D-impregnable.
This new concept is the keystone of our argument towards the polynomial-time solv-
able case. In fact, an impregnable Eulerian subgraph corresponds to a component of
the digraph D’ that cannot be traversed by the vehicle according to the order on the
arcs specified by the demand paths.

Theorem 3 (Kerivin et al. 2010) The VSCP admits a feasible solution when the set K
is composed of arc-disjoint paths if and only if D’ does not contain any impregnable
Eulerian subgraph with respect to K. Moreover, checking whether or not D' contains
an impregnable Eulerian subgraph can be done in polynomial time.

Theorem 3 can be used to deduce a particular case of the SPPDP for which the
VSCP can be solved in polynomial time. This particular case occurs when the demand
paths are arc-disjoint and corresponds to the unitary version of the SPPDP, that is,
when the vehicle can carry at most one demand at a time. It follows that for the unitary
SPPDP, the information relative to the order on the arc set of the vehicle closed walk
is not necessary in a tractable representation of solutions to the SPPDP. It can be
recovered in polynomial time from the conditions of Theorem 3. However, for the
SPPDP, this information has to be taken into account in a tractable representation.
These results provide the structure of the remainder of the paper. In fact, the next
section is devoted to giving an integer linear programming formulation of the unitary
SPPDP using a minimum representation, whereas Sect. 5 focuses on the general case.

4 The unitary SPPDP
4.1 Formulation for the unitary SPPDP

We present in this section an integer linear programming formulation for the unitary
SPPDP. In this variant of the SPPDP, the vehicle can carry only one demand at the
same time. Since we have supposed that a demand transportation cannot be split onto
several paths, the unitary SPPDP occurs when g? + q”/ > Q for all distinct p and p’
of the set P of demands. An instance of the unitary SPPDP then consists of an initial
digraph D = (V, A), a specific vertex vg of V called the depot, and a demand digraph
o= (V, P).

According to the developments of Sect. 3, a minimal representation of solutions
to the unitary SPPDP can be defined by only considering the sets of arcs of the ve-
hicle closed walk and demand paths. We then introduce the following two sets of
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variables, the first one corresponding to the arcs of the demand paths, and the second
one representing which arcs belong to the vehicle closed walk. Let x € {0, 1}4*F be
so that

p _ | 1 if the demand p is carried on the arc a,
710 otherwise,

for all arcs a € A and for all demands p € P, and let y € {0, 1}4 be so that

__ ) 1 if the vehicle traverses the arc a,
Ya=10 otherwise,

for all arcs a € A. Let Sy (D, vg, ®) denote the set of vectors (x, y) associated with
the feasible solutions to the unitary SPPDP. A vector (x, y) of Sy (D, vg, ®) satisfies
the following inequalities

> Ya—ya=0 VW CVwithvge W, Va' € A[W], (1)
aesou (W)

Y Ya— Y, va=0 VYveV, ©)
aes(v) aedin(v)

Yo xl— > xf=bl VpeP VveV, 3)
aesou(v) aesin(v)

VpeP,VWCYV witho?,d? e W,
PORETEND DEE T V- o

YveW,
aesou (W) aesout(v)
> xd=1 VpeP,VveV, (5)
aesout(v)
Ya— D x§ =0 Vaea, ©)
peP

where the number b} defined by

1 if v=07?,
bP=1-1 ifv=dP,
0 otherwise,

represents the supply/demand associated with vertex v € V with respect to demand
p € P. In fact, constraints (1) and (2) imply that the arc set Ay ={a € A:y, =1},
corresponding to the vehicle closed walk, induces an Eulerian digraph passing by vp.
Constraints (1), hereafter called connectivity constraints, actually ensure that vy is in-
cident with at least one arc of Ay and that the induced digraph is weakly connected.
Constraints (2) are the flow-conservation constraints and enforce the number of arcs
entering any vertex to be equal to the number of arcs leaving this vertex. Constraints
(3) are the flow-conservation constraints associated with the demands. Constraints
(4) are the connectivity-demand inequalities and ensure that the set of arcs traversed
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by any demand leads to a weakly connected digraph. The circuit constraints (5) pre-
vent the demands from passing more than once per vertex and then guarantee, with
constraints (3) and (4), that every demand is carried on a path from its origin to its
destination. Constraints (6) are the capacity constraints. They impose that at most
one demand is carried at the same time on an arc traversed by the vehicle.

Let S be the set of binary vectors (x, y) which satisfy (1)—(6). Theorem 3 implies
that Sy (D, vg, @) C S since constraints (1)-(6) do not prevent the Eulerian digraph
induced by Ay, from containing an impregnable Eulerian subgraph with respect to
the demand paths associated with variables x. We then need further inequalities to
formulate the problem. In what follows, we describe a new class of valid inequalities.

Proposition 1 Let W # () be a proper vertex subset of V so that vo € W, Agp[W] *0
and §¢ (W) = . Then, the inequality

Yoova— Y. Y A= )

aedout (W) pEAG[W]aEs (W)

is valid for the unitary SPPDP.

Proof Assume that we are given a feasible solution (x, y) to the unitary SPPDP that
violates an inequality of type (8), that is,

Yoova— Y, Y. K=o

aesou (W) peAe[W]acsout (W)

From the feasibility of (x, y), we know that y, — x, (Ap[W]) >0 forall a € A and
then, we deduce that y, = x,(Ae[W]) for all a € §°"'(W). Consequently, on any arc
a leaving W with y, = 1, the vehicle carries a demand having both its origin and its
destination in W. Since the depot vy belongs to W and Ag[W] # ¢, this implies that
there is no arc of §°"{(W) to first reach the origin of a demand of Ag[W]. Therefore,
(x, y) could not be a vector of Sy (D, vy, ). Il

Inequalities of type (7) will be called vulnerability constraints. In the following,
we introduce a weaker version of inequalities (7). Let W # J be a proper vertex
subset of V so that vg € W, Ap[W] # @ and §¢ (W) = (. Consider the inequality

ST ova— Y. D XM DY D xl=1 ®)

aesou(w) pEAQ[W] A€t (W) pEAG[W]aesou(w)

where M denotes a sufficiently large constant. It is not hard to see that inequality
(8) is also valid for the unitary SPPDP. Indeed, every inequality (8) associated with
a vertex subset W is nothing but a linear combination of the vulnerability constraint
(7) associated with W and some trivial constraints x2 > 0. The value M may be
any non-negative value. Inequalities of type (8) will be called relaxed vulnerability
constraints. As it will be seen later, inequalities (8) can be separated in polynomial
time for specific values of M.

We now prove that the relaxed vulnerability constraints (8) are sufficient to reduce
the set S to Sy (D, vy, D).
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Proposition 2 Any binary vector of S satisfying constraints (8) induces a feasible
solution to the unitary SPPDP.

Proof Let (x, y) be a vector of S, Dy be the Eulerian digraph induced by the arc set
Ay of the vehicle closed walk, and K = {Ky,..., K,} be the set of demand paths
induced by variables x. Due to the unitary property, the paths of K are pairwise
arc-disjoint. As previously mentioned, (x, y) induces a feasible solution to the uni-
tary SPPDP if and only if the Eulerian digraph D, does not contain an impregnable
Eulerian subgraph with respect to K. We then prove that the existence of an impreg-
nable Eulerian subgraph, say D’ = (V’, A’), of D, with respect to K implies that
(x, y) violates a relaxed vulnerability constraint (8).

Consider the vertex subsets Vi ={ve V' :v=wvgorép, (v)\ A’ # ¢} and V, =
V/'\ Vi. Let W = V \ V,. We remark that vy € W and Vs is composed of all the
vertices of V' \ {vo} that are not incident with arcs of A, \ A’. Clearly, we have
Vi € W and

sprwy < | 83t ). ©)
veV

We claim that any demand that is carried on an arc of A’ has its origin and its destina-
tion in V,. Consider a demand p € P carried on the path K, = (a1, a2, ..., ag) with
g > 1 so that at least one of the arcs of K, belongs to A". Suppose that o” ¢ V> and
letaj, j €{1,2,..., g}, be the first arc of K in A’ If j =1, then it is obvious that
oP € V. Therefore, since the demand paths are pairwise arc-disjoint, the arc a; has
no predecessor which means that o” is not D’-impregnable. If j € {2, 3, ..., g}, then
the arc aj 1 = (u,v) isin Ay \ A’ and v € V. Thus, the arc a; has no predecessor
in A” which implies that v is not D’-impregnable. Using similar arguments, we can
prove that d” € V.

From the definition of impregnable Eulerian subgraphs, we know that D’ contains
at least one arc which is traversed by a demand of P. The previous claim directly
implies that there exists at least one demand whose origin and destination are in
V». Moreover, since vertices of V, are only incident with arcs of A’, there cannot
exist a demand having exactly one extremity in V2. As Vo =V \ W, we also have
Ao[W]# 0 and 8¢(W) = 0.

Let K’ be the path subset of K induced by the demands of Ag[W]. The vertex
set V1 is thus composed of the vertices v of V' so that for every arc a of 8°D“,‘(v),
there exists an arc a’ of 8%‘,(1)) with a’ <k, a for some path K; of K’. From (9),
we then obtain that y, — x, (Ae[W]) = 0 for all arcs a of 8°D“t(W). Furthermore,
since the demand paths of K are pairwise arc-disjoint, it is straightforward to see that
xP =0 for all arcs a of 8%‘”(W) and for all demands p of Ag[W]. Consequently, the
vulnerability constraint (8) associated with W is violated by (x, y). O

Using Propositions 1 and 2, we can now define the set of the feasible solutions to
the unitary SPPDP.

Theorem 4 The set {(x,y) € {0, 1} x {0, 1}4 : (x,y) satisfies (1)—(6), (8)}
corresponds to the set Sy (D, vy, @) of the feasible solutions to the unitary SPPDP.
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The previous theorem allows to formulate the unitary SPPDP as the following
integer linear program

min{c’ y | (x, y) € conv(Sy (D, vy, D))},

hereafter denoted by Py .

We also point out that the connectivity constraints (1) are no more necessary in
the formulation Py if arc cost vector ¢ is positive since the digraph induced by A,
is weakly connected by (8). We are now interested in the complexity of solving the
linear relaxation of Py. Before stating it, we consider the separation problem for
inequalities (8). We then show that inequalities (8) can be separated in polynomial
time for any M > maxgea, pe p{é}. In consequence, the value of M depends on the

precision used for coding rational values.

Proposition 3 Suppose that M > maxX,ea, pe r{L 37 }. Let (x, y) be a vector of RAXP

RA satisfying constraints (4) and (6). The separation problem for the relaxed vulner-
ability constraints (8) with respect to (x, ¥) can be solved in polynomial time.

Proof We show that the separation problem associated with the relaxed vulnerability
constraints reduces to a polynomial number of computations of minimum cut in an
auxiliary digraph. Let D= (V, A) be the digraph obtained from D = (V, A) by con-
tracting the vertices o” and d” into a vertex v” for every demand p € P. Let i € R4
be the vector associated with the arcs of A so that for all (u,v) € A, the value Wy, v)
corresponds to the sum of the values y, — x,(P) associated with the arcs a € A for
which the contraction of the vertices o” and d” into v? for all p € P transforms a
into (1, v) in D.

For all demands p € P, we denote by V7 the vertices of the digraph covered by
the arc set {a € A : x! > 0}. We then define, for every demand p € P, the arc set

Bp={(vp,v):veV”\{o”,d”}}.

Consider the digraph D = (V, A) obtained by adding the arcs of B? in D for all
p € P. We then have A= (@) BP)U A. Let w € RA be the vector associated with
the arcs of D so that

peP

- if BP ~
Wy = —L-oo aGUPGP > VaeA.
Wy otherwise,

Consider a demand of P, say p. We now show that a relaxed vulnerability con-
straint (8) associated with a vertex subset W so that p € Ae[W] is violated if and
only if there exists a vov”-cut whose weight is less than 1 in the digraph D with
weights .

Suppose that the vector (x, y) violates the vulnerability constraint associated with
a vertex subset W so that j has both extremities in W. We then have

oove- Y Y #am Y Y w#<l

aesou(w) pEAG[W]acso (W) peAG[W]aesou(w)
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Since x is non-negative and due to the hypothesis made on the value of M, this means
that, for every demand p € Ae[W], ¥} = 0 for all arcs a € §°"'(W). Let W’ be the
vertex subset obtained from W by contracting the origin o” and the destination d”
into a vertex v? for every demand p € P. It is clear that vy € W’ and v” € W'. Since
3¢ (W) = @, by definition of W, we have

BEMWN =Y Fa— D, Y

aesou (W) pEAG[W]acs (W)

Consider a demand p of Ag[W]. Since x satisfies constraints (4), the digraph in-
duced by {a € A : x/ > 0} is weakly connected and no arc of this digraph belongs
to §°"(W). We then have V? C W. Consequently, there does not exist an arc of B?,
p € P, belonging to §°"'(W’). We then deduce that % (§°"'(W')) = w (8°"(W")) < 1.
The cut associated w1th W’ has a weight less than 1 in the digraph D. Fmally, as
vo € W and v? € W there exists a vgv?-cut whose weight is less than 1 in D with
weights w. The proof of the converse is similar.

Looking for a violated vulnerability constraint associated with a vertex subset W
so that p belongs to Ag[W] then reduces to find a minimum vov?-cut in D with
weights w. Since p is any demand of P such that vy ¢ {0o”, dP}, this means that the
separation problem associated with the relaxed vulnerability constraints (8) reduces
to the computation of at most | P| minimum cuts in the digraph D with weights w.
Moreover, as (x, y) satisfies the capacity constraints (6) and the weight vector w is
non-negative, the computation of every minimum cut can be performed in polyno-
mial time. Since the construction of D from D can also be performed in polynomial
time, it follows that the separation problem associated with the relaxed vulnerability
constraints (8) is polynomial-time solvable. g

Theorem S The linear relaxation of Py can be solved in polynomial time.

Proof Since Py contains a polynomial number of variables, and constraints (2), (3),
(5), (6) appear in a polynomial number in Py, the complexity of solving its linear
relaxation only depends on the separation problems associated with inequalities (1),
(4) and (8) for any vector (x, y) € [0, 114%F x [0, 114 satlsfymg 2), (3) (5) and (6).
Separating (1) can be reduced to |A| minimum vgv“ -cuts, where v is the vertex
obtained from the contraction of a’ and the arc weight function is given by y > 0.
The separation problem of constraints (4) associated with any demand p € P reduces
to the computation of |V| vPv-minimum cuts, where v? is the vertex obtained by
contracting o” and d? and v is any vertex of V \ {v”}, the arc weight function being
given by x > 0. Therefore, inequalities (1) and (4) are polynomial-time separable.
Suppose now that (x, y) satisfies constraints (4). Since (x,y) also satisfies in-
equalities (6) and x > 0, it follows, from Proposition 3, that the separation problem
for inequalities (8) can be also solved in polynomial time. |

From the previous results, it is clear that by replacing inequalities (8) by inequali-
ties (7) in the formulation Py of the unitary SPPDP given by Theorem 4, one gets a

strengthened formulation of the problem which might be a stronger formulation for
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a cutting plane based algorithm. However, we do not have an exact efficient algo-
rithm for separating inequalities (7). We even conjecture that the separation problem
for these inequalities is NP-complete. For this, we will use formulation Py in our
branch-and-cut algorithm. However, we can remark that if a relaxed vulnerability
constraint (8) associated with a vertex subset W is violated by a vector (x, y) so that
X is non-negative, then, (x, y) also violates the vulnerability constraint (7) associated
with W. Therefore, during our branch-and-cut algorithm, once a violated relaxed vul-
nerability constraint (8), associated with a vertex subset W has been found during the
separation procedure, the constraint we add in the current linear program is the vul-
nerability constraint (7) associated with W in order to strenghten the linear relaxation.
In consequence, the big constant M does not appear in the constraints during the al-
gorithm. One can also remark that the connectivity-demand inequalities (4) are not
necessary in the formulation since no cost is associated with the demands. However,
they are necessary from an optimization point of view in order to exactly solve the
separation problem associated with the relaxed vulnerability constraints (8).

In Lacroix (2009), it has been shown that, if the digraph D is complete, the origins
and destinations of the demands are distinct nodes of V \ {vg} and the costs satisfy
the triangle inequalities, allowing the vehicle to pass by any arc more than once does
not change the optimal value of the unitary SPPDP. This result has an interesting
application for the PSCP. Indeed, we can suppose, without loss of generality, that any
instance of the PSCP satisfies the three previous assumptions. These latter can be
fulfilled by considering copies of nodes and by computing shortest paths between the
two extremities of each edge. Furthermore, as the vehicle may pass several times per
edge in the PSCP, we can replace each edge by two opposite arcs having the same
cost as the edge. Therefore, this instance is also an instance of the unitary SPPDP and
the only difference between these two problems is that the PSCP gives the possibility
for the vehicle to pass by every arc more than once whereas the unitary SPPDP does
not. However, the result given in Lacroix (2009) implies that this possibility does not
change the optimal value, which means that we can restrict our attention to solutions
in which every arc is traversed by the vehicle at most once. Thus, the two problems
are equivalent from an optimization point of view and the formulation Py, devised for
the unitary SPPDP, is then valid for the PSCP providing, to the best of our knowledge,
the first one dedicated to this problem.

4.2 Experimental results

In this section, we present a branch-and-cut algorithm for the unitary SPPDP. Our
aim is to determine if the formulation Py has an interest from an optimization point
of view. For this, the algorithm does not consider constraints in addition to the vulner-
ability constraints (7) and those belonging to Py . Indeed, we think that an efficient
branch-and-cut must be based on a deep polyhedral study and such work is clearly
beyond the scope of this paper. Furthermore, as in the tested instances, arc costs are
positive, we do not consider the connectivity constraints (1) since these latter are not
necessary.

To start the optimization, we consider the following program, called Py, given by
the inequalities of Py that appear in polynomial number, that is,

Po={minc’y | (x,y) €[0, 17 x [0, 11" : (x, y) satisfies (2), (3), (5), (6)}.
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An important task for the branch-and-cut algorithm is to determine whether or not
an optimal solution of the relaxation of Py is feasible. An optimal solution (X, y) is
feasible for the unitary SPPDP if it is an integer vector that satisfies the connectivity-
demand constraints (4) and the relaxed vulnerability constraints (8).

If an optimal solution (x, y) of the linear relaxation is not feasible, the branch-
and-cut algorithm generates further valid inequalities that are violated by (x, ¥). The
separation of valid inequalities is performed in the following order:

— connectivity-demand inequalities,
— relaxed vulnerability inequalities.

We remark that all inequalities are global (i.e., valid in all the branch-and-cut tree)
and several constraints may be added at each iteration. Moreover, we go to the next
class of inequalities only if we do not find any violated inequalities in the current
class.

To separate the connectivity-demand inequalities, we use the algorithm described
in the proof of Theorem 5. We separate the relaxed vulnerability constraints using
the algorithm described in the proof of Proposition 3. We remark that the algorithm
separates inequalities (8) in an exact way because it is performed only if no violated
connectivity-demand constraint is found. Moreover, as noted before, each time a vio-
lated relaxed vulnerability constraint (8) associated with a vertex subset W is found,
we add the violated vulnerability constraint (7) induced by W instead, in order to
enforce the linear relaxation.

To store the generated inequalities, we created a pool whose size increases dynam-
ically. All the generated inequalities are put in the pool and are dynamic, i.e., they are
removed from the current LP when they are not active. We first separate inequalities
from the pool. If all inequalities in the pool are satisfied by the current LP-solution,
we separate the classes of inequalities in the order given above.

The branch-and-cut algorithm has been implemented in C++, using CBC (Lougee-
Heimer 2003) to manage the branch-and-cut tree, CLP (Lougee-Heimer 2003) as
LP-solver and BGL (Siek et al. 2000) for the maximum-flow algorithm used in the
separation algorithms. It was tested on processor 2.5 GHz with 6 Gb RAM, running
under Linux. We fixed the maximum CPU time limit to 2 hours.

Results are presented here for randomly generated instances. The initial digraphs
in the instances are complete digraphs with positive arc costs that come from the
asymmetric instances of the TSP Library (Reinelt 1991). We consider digraphs with
up to 101 nodes. The origins and destinations of the demands are randomly chosen
so that each vertex different from the depot is incident to at most one demand and no
demand is incident to the depot.

In Table 1, the entries are:

|V|: the number of nodes in the initial digraph,

— | P|: the number of demands,

o/t: the number of instances solved to optimality over the number of tested in-
stances,

— Ncp: the number of generated connectivity-demand inequalities,

— Nyu: the number of generated vulnerability inequalities,

— Nr: the number of generated nodes in the branch-and-cut tree,
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Table 1 Results obtained for the unitary SPPDP

VI |P| o/t Ncp Nyuin Nr Gap Ts T
31 5 5/5 0.00 20.00 0.00 0.00 0.02 0.44
31 10 5/5 0.00 15.60 0.60 0.01 0.03 1.13
31 15 5/5 0.00 9.20 2.40 0.15 0.08 2.21
41 5 5/5 12.00 55.60 5.60 0.01 0.12 5.71
41 10 5/5 30.60 125.80 0.00 0.00 0.99 71.30
41 15 5/5 2.40 52.00 0.20 0.00 0.51 34.22
41 20 5/5 0.00 4.20 0.60 0.00 0.09 8.89
51 5 5/5 0.00 20.80 0.00 0.00 0.07 2.05
51 10 5/5 0.00 11.40 0.60 0.00 0.11 6.55
51 15 5/5 0.00 97.40 2.20 0.02 1.12 27.94
51 20 5/5 0.00 33.60 2.40 0.15 0.79 41.60
51 25 5/5 0.00 4.40 0.00 0.00 0.25 36.30
61 5 5/5 0.00 43.40 0.00 0.00 0.32 7.97
61 10 5/5 0.00 19.20 0.00 0.00 0.21 14.68
61 15 5/5 0.00 205.00 0.20 0.00 4.05 161.83
61 20 5/5 0.00 14.80 0.60 0.00 0.60 59.28
61 25 5/5 0.00 44.20 2.00 0.00 2.06 170.57
61 30 5/5 0.00 5.00 0.40 0.00 0.38 127.52
71 5 5/5 0.00 1.40 0.00 0.25 0.00 0.55
71 10 5/5 0.00 9.60 0.80 0.00 0.10 86.87
71 15 5/5 0.00 10.60 0.00 0.04 0.30 32.50
71 20 5/5 0.00 4.20 1.20 0.05 0.22 417.93
71 25 5/5 0.00 5.80 0.80 0.11 0.24 274.82
71 30 5/5 0.00 13.00 1.00 0.06 1.23 686.09
71 35 5/5 0.00 8.20 0.40 0.02 0.86 259.59
81 5 5/5 123.00 1140.20 421.00 0.23 103.06 1769.63
81 10 5/5 0.00 121.80 0.40 0.00 2.65 176.96
81 15 4/5 0.00 276.00 0.00 0.42 18.75 1561.71
81 20 5/5 0.00 219.80 1.40 0.00 13.01 1458.39
81 25 4/5 0.00 112.20 1.20 0.92 7.66 1931.71
81 30 5/5 0.00 16.00 2.40 0.00 1.86 845.37
81 35 5/5 0.00 9.60 2.80 0.00 1.34 1149.23
81 40 5/5 0.00 13.40 1.80 0.00 2.99 1404.16
91 5 5/5 0.00 152.40 0.80 0.01 1.58 72.18
91 10 5/5 0.00 466.40 2.60 0.01 13.60 518.38
91 15 5/5 0.00 511.80 1.40 0.05 18.65 857.56
91 20 5/5 0.00 405.80 0.00 0.00 22.32 955.36
91 25 5/5 0.00 139.00 1.80 0.00 9.70 1030.19
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Table 1 (Continued)

Vi [P o/t Ncp Nvuin Nt Gap Ts T
91 30 5/5 0.00 307.60 1.60 0.00 24.77 2086.76
91 35 5/5 0.00 147.80 4.20 0.00 16.10 2015.45
91 40 5/5 0.00 26.40 4.00 0.00 5.48 2431.55
91 45 5/5 0.00 8.20 1.80 0.00 4.84 3130.44
101 5 5/5 0.00 2.20 0.20 0.00 0.01 2.35
101 10 4/5 15.20 88.40 0.40 0.15 1.88 1457.59
101 15 5/5 0.00 2.00 0.20 0.00 0.08 428.35
101 20 5/5 0.00 3.80 0.80 0.00 0.27 510.40
101 25 5/5 0.00 25.80 0.00 0.05 3.24 3823.82
101 30 4/5 0.00 1.40 0.20 0.04 0.11 3228.09
101 35 3/5 0.00 31.80 14.60 0.43 10.92 3563.17
101 40 5/5 0.00 21.60 0.60 0.00 3.54 2268.91
101 45 5/5 0.00 16.20 1.00 0.00 6.78 2857.48
101 50 5/5 0.00 8.00 1.20 0.00 4.82 4075.84

— Gap: the gap between the best upper bound and the lower bound obtained at the
root node before branching,

— Tg: the time consumed in the separation algorithms in seconds,

— TT: the total time in seconds.

Table 1 summarizes results for the unitary SPPDP. Each line reports the average
results obtained for five instances, all of them having the same number of nodes and
demands, and the same arc costs. The five instances only differ by the origins and des-
tinations of the demands. We remark that all the instances except 6 could be solved
to optimality within the time limit. Two instances with 81 nodes and 15 and 25 de-
mands respectively could not be solved to optimality within two hours. Moreover, 4
instances with 101 nodes and 10, 30, 35 and 35 demands respectively could neither
be solved to optimality. The average number of generated connectivity-demand con-
straints is very small. Except for instances with 81 nodes and 5 demands, no more
than 30 connectivity-demands constraints have been generated within the algorithm.
However, a significant number of vulnerability constraints have been generated. We
remark that the average gap between the best upper bound and the lower bound ob-
tained before branching is very small. In fact, it does not exceed 1% for all the tested
instances. Moreover, the number of nodes in the branch-and-cut tree is very small.
Except for the instances with 81 nodes and 5 demands and instances with 101 nodes
and 35 demands, this number does not exceed 6. We can also note that the time con-
sumed for the separation of inequalities (4) and (8) is rather small with respect to the
number of generated inequalities.

These experimental results show that the linear relaxation of Py is really tight
when every found violated relaxed vulnerability constraint (8) is replaced by the
vulnerability constraint (7) induced by the same vertex subset. Indeed, we have a
small number of nodes in the branch-and-cut tree and a small value of the gap. Fi-
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nally, many instances could be solved without branching. However, the total time
is quite long. We can remark, for example, that it needs more than 4000 seconds
in the average to solve instances with 101 vertices and 50 demands whereas the
branch-and-cut tree only contains few nodes and the number of generated constraints
is 8 in the average. In fact, almost all the time is spent in solving the initial lin-
ear program Py. Even if the number of variables and constraints of Py is polyno-
mial, it becomes difficult to efficiently solve it when the size of the instances in-
creases.

5 The SPPDP
5.1 Formulation for the SPPDP

We now focus on the general version of the SPPDP, that is, the only assumption we
consider for the demand volumes is that each of them is smaller than or equal to the
vehicle transportation capacity. In Sect. 3, we showed that a minimal representation
of the solutions to the SPPDP consists of the sequence of arcs of the vehicle closed
walk and the arc sets associated with the demand paths. For the unitary SPPDP, we
presented in Sect. 4 an ILP formulation only based on the sets of arcs for the vehi-
cle closed walk and the demand paths. In this section, we extend this formulation by
adapting the inequalities (1)—(6) to arbitrary demand volumes and transportation ca-
pacity, and by adding some variables and constraints to order the arcs of the vehicle
closed walk, and then to obtain a sequence of arcs.

We still consider the variable sets x € {0, 1}4* and y € {0, 134, Obviously, the
constraints (1)—(5) remain valid whatever the demand volumes and transportation
capacity are. Furthermore, since we now consider the order on the arcs traversed by
the vehicle, we can easily check if the vehicle closed walk traverses the arcs in the
same order as in the demand paths. Thus, inequalities similar to constraints (7) and (8)
are no more necessary in the formulation. Therefore, the only constraints that need to
be adjusted are the capacity constraints (6) that are generalized to the following

Qya— Y _q"xl >0, (10)

peP

foralla € A.

We now focus on modeling the sequence of arcs of the vehicle closed walk. A
natural way to represent the order on this arc set is by considering the following
linear ordering variables (Queyranne and Schulz 1994)

1 if a precedes a’ in the vehicle closed walk,
Naa’ = .
0 otherwise,

for every pair of distinct arcs a,a’ € A. Since the vector 7 defines a linear order on
the arcs traversed by the vehicle, that is, on the arc set Ay = {a € A : y, =1}, the
variable set (y, n) can be seen as inducing a partial linear order on A. This concept
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of partial linear order was first introduced by Sirdey and Kerivin (2007). Therefore,
(v, n) has to satisfy the following constraints

Ya+ Yo' — Naa’ — Nara < 1 Va,a €A, a?éa,’ (11)
Naa’ + Naa — Ya <0 Va,a/eAa;éa’, (12)
Naa’ + Na'a” — Naa” — Yar <0 Va,a',a" € A, a?éa’;éa”?éa, (13)

which were given for the so-called partial linear ordering polytope (Sirdey and
Kerivin 2007).

At this point, the linear order defined by 1 may not correspond to a closed walk.
We then have to add new constraints to enforce an alternate sequence of leaving and
entering arcs at every vertex. Moreover, we also have to impose that, for every vertex
v € V\ {vo} (vertex vy, respectively), the first arc incident with it is an entering (leav-
ing, respectively) arc. This can be achieved by introducing the following equations

Z Naa’ — Z Naa’ + Yo =0 (14)

aes(v)\{a'} aesin(v)

for all vertices v € V \ {vg} and for all a’ € §°**(v). Similar constraints also hold for
the depot vg as follows

Z Naa’ — Z Naa’ =0, (15)

aed®"(vo)\{a’} aedin(vg)

for all a’ € §°*'(vg). Constraints (14) are called alternate constraints, whereas con-
straints (15) are called depot alternate constraints. Constraints (14) express the fact
that the tail of an arca € A, if it is not v, has been entered one more time than left
before a is considered in the sequence. In a similar way, constraints (15) express the
fact that the depot vp has been entered as many time as left before an arc leaving vy
is considered in the sequence. We remark that constraints (14) and (15) are defined
for leaving arcs. It is clear that these constraints could then be replaced by similar
inequalities that would be defined for entering arcs (Lacroix 2009).

Let Scw denote the set of binary vectors (y, 1) that induce closed walks in D
starting at vgp. We have the following result

Proposition 4 The set Scw is given by

Sew = {(y.n) € {0, 114 x {0, 1)) : (y, ) satisfies (2), (11)~(15)}.

Proof Consider a closed walk C of D starting at vg. Let (y, ) be the vector so that
yq =1 if and only if @ € C and n,, = 1 if and only if a appears before a’ in C. It is
straightforward to see that (y, n) satisfies constraints (2), (11)—(15).

We now prove that a binary vector (y, n) that satisfies (2), (11)—(15), induces a
closed walk in D starting at vg. As previously mentioned, n corresponds to a linear
order on the arc set Ay. Constraints (14) imply that for every vertex v € V \ {vo}, the
first arc in the order incident with it is an entering one. We then deduce that the first
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arc of the linear order, say aj, leaves vg. Because of constraints (14) and (15), the
second arc in the order leaves the head of a;. By repeating this argument, we clearly
deduce that (y, n) corresponds to a walk starting at vg. Moreover, since y satisfies
constraints (2), this walk is then a closed walk. This latter result ends the proof. [

We remark that the constraints (2) associated with the vertices v € V \ {vg} are not
necessary to describe the set Scy. The one associated with the depot vg only needs to
be taken into account. Similarly, the constraints (1) do not appear in the description
of Scw since we now consider a linear order 1 on A,. In fact, this latter ensures that
the digraph induced by A, is weakly connected.

To obtain the set of the feasible solutions to the SPPDP, that we will hereafter
denote by Sg (D, vg, @), we finally need to combine the closed walk and the demand
paths in such a way that the closed walk respects all the demand paths. To do so, we
introduce the demand precedence constraints

Xg A+ X0 = Nag <1 (16)

for all p € P, for all v e V \ {o?,d?}, for all a € §™(v) and for all a’ € §°"'(v).
These inequalities allow every demand p to be carried from a vertex v € V' \ {0?, d”}
through a leaving arc a’ € 8°"!(v) if and only if the arc a € §™(v) used for the trans-
portation of the demand appears before a’ in the closed walk. Clearly, inequalities
(16) are valid for the SPPDP. Moreover, from constraints (5), the demands are carried
on paths, that is, they can go through every vertex at most once. Therefore, constraints
(16) suffice to ensure that the closed walk respects all the demand paths. We can now
define the set Sg (D, vg, @) of the binary vectors (x, y, n) associated with the feasible
solutions to the general SPPDP. We remark that the connectivity-demand inequalities
(4) are not necessary in the formulation since constraints (16) already ensure that the
set of arcs traversed by each demand corresponds to a walk. We then remove these
inequalities in the formulation of the general case. Using all the previous results, a
description of Sg (D, vy, ®) is given by the next theorem

Theorem 6 The set Sg(D,vo, ®) of the feasible solutions to the SPPDP is
A

{(x,y,m) € {0, JA%P x {0,134 x {0, 1}2) : (x,y, n) satisfies (2), (3), (5), (10),

(11)=(16)}.

Using the previous theorem, we can now formulate the general SPPDP as the
following integer linear program Pg

min{c’y | (x, y, n) € conv(Sg (D, vo, ®))}.

The formulation Pg contains a polynomial number of variables and constraints which
leads to the following theorem

Theorem 7 The linear relaxation of Pg can be solved in polynomial time.
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5.2 Experimental results

In this section, we present the experimental results obtained by solving the SPPDP us-
ing a branch-and-bound algorithm. Since the formulation Pg contains a polynomial
number of variables and constraints, we entirely put the formulation in the commer-
cial interactive solver CPLEX 11.2 (TIlog 2000). The algorithm was tested on proces-
sor 2.5 GHz with 6 Gb RAM, running under Linux. We fixed the maximum CPU
time to 3 hours.

Results are presented for randomly generated instances. In these instances, the
density of the initial digraph, which is the ratio of the number of arcs over the num-
ber of nodes, is a parameter of the instances. The digraphs are obtained from random
graphs, generated using RUDY (Rinaldi 1996), by replacing each edge by two oppo-
site arcs having the same cost as the edge. The origin, destination and volume of each
demand are randomly chosen. The capacity of the vehicle is a random number that is
greater than or equal to the volume of each demand.

Table 2 reports the running CPU time necessary to solve the instances with the
branch-and-bound algorithm and the gap between the best lower and upper bounds.
The entries of Table 2 different from those of Table 1 are the following:

— dens: the density in percentage of the initial digraph. It is a scalar in the interval
[0, 100]. The number of arcs of the digraph is given by the closest integer to n *
(n — 1) x dens/100,

— Gap2: the gap between the best upper bound and the best lower bound,

We remark that for instances with less than 10 nodes, each instance could be solved
to optimality within the time limit. Also, instances of 10 (11, 13, respectively) nodes
and a density of 40 (30, 20, respectively) could be solved to optimality. However,
many instances could not be solved to optimality within the time limit, in particular
those with at least 12 nodes, a number of demands greater than or equal to 5 and a
density greater than or equal to 30. Moreover, the algorithm could not find any fea-
sible solution for some instances, as it is the case for instances with 12 nodes and a
density 40. Finally, we remark that the gap between the best lower and upper bounds
when the instances are not solved to optimality is quite big. This can be explained
by the fact that, although the formulation Pg contains a polynomial number of bi-
nary variables and constraints, these numbers fastly grow with respect to the size of
the instance. These results show the necessity of devising an algorithm dedicated to
the SPPDP taking into account the specificities of the formulation Pg. For instance,
although the transity constraints (13) are in polynomial number, it would be more
appropriate to not add all of them in the initial linear relaxation in order to not use-
lessly increase the size of the linear program. Moreover, further valid inequalities are
necessary in order to strenghten the linear relaxation. For this, a deep investigation of
the polyhedral structure of the problem is necessary.

6 Concluding remarks

In this paper, we have introduced a new NP-hard problem which is an extension of
the single-vehicle pickup and delivery problem where every demand can be carried
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Table 2 Results obtained for the SPPDP

4 dens |P| Gap2 TT
7 40 3 0.00 0.08
7 40 5 0.00 1.83
7 50 3 0.00 24.20
7 50 5 0.00 23.21
8 40 3 0.00 0.38
8 40 5 0.00 0.79
8 50 3 0.00 66.85
8 50 5 0.00 36.93
9 40 3 0.00 0.39
9 40 5 0.00 1.49
9 50 3 0.00 26.06
9 50 5 0.00 5365.54
10 40 3 0.00 7152.56
10 40 5 0.00 10800.00
10 50 3 41.34 10800.00
10 50 5 32.90 10800.00
11 30 3 0.00 735.68
11 30 5 0.00 3620.89
11 30 7 0.00 2855.30
11 40 3 14.32 10800.00
11 40 5 13.68 10800.00
12 30 3 0.00 5961.10
12 30 5 8.42 10800.00
12 30 7 47.25 10800.00
12 40 3 0.00 5961.10
12 40 5 - 10800.00
12 40 7 - 10800.00
13 20 3 0.00 2370.24
13 20 5 0.00 1564.48
13 20 7 0.00 2456.15
14 20 3 0.00 3.71
14 20 5 0.00 817.24
14 20 7 18.27 10800.00
14 20 10 18.24 10800.00

using reloads. Based on some new complexity results, we have defined the minimal
representations of the solutions to this problem for both the unitary and the general
cases. We have then focused on the unitary SPPDP since we have proven that, in
this case, only the arc sets associated with the vehicle closed walk and the demand

@ Springer



218 J Comb Optim (2012) 23:196-223

paths are necessary to fully represent the feasible solutions. We have thus given an
integer linear programming formulation whose linear relaxation is polynomial-time
solvable and we have presented some experimental results obtained using a branch-
and-cut algorithm. We have also pointed out that this formulation is also valid for the
preemptive stacker crane problem for which, to the best of our knowledge, there did
not exist a dedicated formulation yet. Next, we have extended this formulation to the
general SPPDP by considering variables representing a linear order on the arcs of the
vehicle closed walk. Once again, we have obtained a polynomial-time solvable linear
relaxation. We have finally reported some experimental results obtained by solving
the formulation with a branch-and-bound algorithm.

The results obtained for the unitary SPPDP show the interest of the formulation
given in this paper. Indeed, we could see that almost all instances were solved to
optimality without branching. In all cases, the gap between the best upper bound
and the lower bound obtained before branching is very small, so as the number of
nodes in the branch-and-bound tree. However, the major weakness of our algorithm
is the time spent for solving the initial linear relaxation. A way to bypass this problem
is to decrease the size of the initial linear relaxation. As we can see, our formulation
describes the demand paths using an arc-node approach. It would really be interesting
to use a path formulation instead. The approach would use an exponential number
of variables for the demand paths in the formulation but it could be solved using a
branch-and-cut-and-price algorithm.

Moreover, in order to better understand the structure of the solutions of the unitary
SPPDP and improve its resolution, it would be of big interest to study the polytope of
the solutions of this problem. This study would also allow us to identify facet defining
inequalities that may strengthen the linear relaxation and speed up the resolution of
the problem.

The results obtained for the SPPDP also indicate that a deep study is necessary
to obtain an efficient branch-and-cut algorithm for this problem. These investigations
form the guidelines of our future work.

Acknowledgements We would like to thank the anonymous referees for their valuable comments that
permitted us to considerably improve the paper.

Appendix

Proof of Theorem 1 We prove the NP-completeness of the DPCP by reducing the
so-called arc-disjoint paths in quasi-topological digraph problem to it. Before stat-
ing precisely this new NP-complete problem, we introduce what a quasi-topological
digraph is. Let G = (Vg, Ag) be a simple acyclic digraph with vertex set Vg =
{v1, v, ..., vy}. We suppose that the digraph G contains a Hamiltonian path whose
arcs are those of the set Ay = {(vj,vi+1):i=1,2,...,n — 1}. The arcs of A; =
Ag \ Ag are called jump arcs. We remark that since G is simple and acyclic, any
arc of Ay is of the form (v;, v;) with 1 <i < j <m and j —i > 1. The digraph G
then is quasi-topological if all the indegrees and outdegrees are bounded by two, and
every vertex is incident with at most three arcs. Due to the definition of G, any vertex
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Fig. 2 An instance of the ADP Us U1
v3(s5) V4 vg(th)
v2(s1) Ve
of Vi is incident with at most one jump arc. Let S = {(s;, %) :i =1,2,...,k} be a

set of pairs of distinct vertices of G so that every vertex of G belongs to at most one
pair, deg™(s;) < 1 and deg®(s;) <1 for all i = 1,..., k. The arc-disjoint paths in
Quasi-Topological Digraph Problem (QTDP) consists of checking whether there ex-
ist k arc-disjoint paths L1, Lo, ..., Ly sothat L; isa s;t;-pathof G fori = 1,2, ..., k.
In the following claim, we prove that the QTDP is NP-complete.

Claim The arc-disjoint paths in quasi-topological digraph problem is NP-complete.

Proof We prove the NP-completeness of the QTDP by a reduction from the so-called
arc-disjoint paths in acyclic digraph problem. This latter can be stated as follows. The
arc-disjoint paths in Acyclic Digraph Problem (ADP) consists, given an acyclic di-
graph G’ = (V/, Ag) and a set S’ of k’ pairs of distinct vertices (s, #/), of checking
if there exist k arc-disjoint paths L), L}, ..., L}, so that L] is a s¢/-path of G’ for all
i=1,...,k". This problem is known to be NP-complete (Vygen 1995). An example
of an instance of the ADP is depicted in Fig. 2, where the information relative to S’
is enclosed in parentheses.

First, for i = 1,2,..., k", we create two new vertices s; and #; and two new
arcs (s;,s;) and (#,;). Let S = {(s;, ;) : i = 1,2,...,k’}. Notice that no vertex
belongs to two pairs of S, which might not be the case with S’. Consider the
graph G* = (Vgx, Agx) where Vg« = Vgr U {s;,t; i = 1,2,...,k'} and Agx =
Ag U{(si,s), (¢, 1;):i=1,2,...,k'}. Since G* is acyclic, we can compute a topo-
logical order T of G*. Moreover, T is choosen in such a way that vertex s{ (t;, respec-
tively) directly follows s; (t/, respectively) in T forall i =1,2,...,k". Let A be the
set of arcs (u, v) so that v is immediately after « in 7 and the arc («, v) does not be-
long to Ag+. It is straightforward to see that the digraph G induced by Az =AgxU A
contains a Hamiltonian path traversing the vertices of V= in the same order as in 7.
We denote by A’ the arcs of the Hamiltonian path. The graph obtained from the
one of Fig. 2 by the foregoing construction is given in Fig. 3, where the dashed arcs
represent the arc set A.

At this point, the digraph G may not be quasi-topological since the degree con-
ditions may not be satisfied or it may contain multiple arcs. Let V be the sub-
set of vertices v of Vg« so that either r, = degicf;‘(v) > 2,8 = deg%“t(v) > 2, or

dy = degi(v) > 3. V does not contain any vertex of a couple of S since we have
degig(v) <1 and deg%ut(v) <lforallve{s;,t:i=1,2,...,k'}. Let v be a vertex
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Fig. 3 Digraph G

Fig. 4 Replacement gadget of vertex vg

of V. The entering (leaving, respectively) arcs of v are ordered in such a way that
if there exists an arc of A’ in §™(v) (8™ (v), respectively), then it is the first (last,
respectlvely) arc in the order. We consider z, = ry(sy + 1) + 5, (ry + 1) new vertices

vl 02, . We then replace in G the vertex v by the path ((v!, v2), (vV2, v3),
,(vZ” ,vZU)) in the following way: the i arc of 82(1}) has v’(S”“) Svoag its
head for i = 1,2,...,ry; the i arc of 806“(1)) has v"vGvtDH oD a5 s tail for

i=1,2,...,s.Fori=1,2,...,ry, wedenote by If; the sequence of the (s, + 1) con-
secutive vertices starting from v’(v+D =5 (corresponding to the head of the i arc en-
tering v in G). Similarly, we define the set Ol’; of vertices by considering the (r, + 1)
consecutive vertices finishing by v"»@v+D+ D for j — 1 2 s,. Furthermore
if s, # 0 and r, # 0, we also add the arcs (v!v DT+ yrolvtD+iCotD=rvtiy for
i=0,1,...,ry — 1 and for j =1,2,...,s,. If v corresponded to a vertex s; (¢,
respectively), then the vertex v! (v¥, respectively) becomes the vertex s; (f;, respec-
tively). This gadget we use to replace the vertex vg in Fig. 3 is illustrated on Fig. 4.

The digraph we obtain, say G, contains a Hamiltonian path. We denote by A%,
the arcs of this path. At this point, G may still contain multiple arcs if G contains
multiple arcs that are not incident to V. However, by definition of W, given two
vertices u and v of é, there exist at most two multiple arcs from u to v and one of
them belongs to A}‘_I. We then subdivise the arc (u, v) that belongs to A%, i.e., we
add a new vertex w and we replace (u, v) in A}, by the arcs (4, w) and (w, v). By
repeating this operation as long as necessary, we obtain a simple digraph.

The last gadget we use is to replace every arc a = (u, v) of A by a path ((u, s,),
(Sa,14), (4, v)), where s, and 7, are two new vertices. Moreover, the pair (s,, ;)
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is added to the set S. At the end of this replacement procedure, the set S is then
composed of k =k’ 4 |A| pairs of vertices. Let G be the resulting digraph. It is clear
that all the vertices of G fulfill the degree conditions of a quasi-topological digraph.
Therefore, since G is simple, it is quasi-topological. Since no vertex of G belongs to
two pairs of S and degin (s;) <1and deg®™(;) <1foralli =1,...,k, the digraph G
and the set S correspond to an instance of the QTDP. As finding a topological order
of an acyclic digraph is a polynomial-time solvable problem, the whole construction
procedure of G and S from G’ and S’ can be clearly performed in polynomial time.

We now claim that the ADP has a feasible solution if and only if the QTDP has
a feasible one. We first consider a solution to the QTDP, that is, k arc-disjoint paths
L1, Ly, ..., Ly. Without loss of generality, a path L; fori = 1,2, ...,k is associated
with a pair of §". Let L, L, ..., L}, be the restriction of L1, L, ..., Ly respectively
on the digraph G’. Because of the definition of the pairs (sq, ;) with a € A, L
corresponds to a path of G’ from s; to #/. As the paths Ly, Ly, ..., Ly are arc-disjoint,
so are the paths L, L}, ..., L;c,.

To prove the converse, we consider a solution to the ADP given by k’ arc-disjoint
paths L, L}, ..., L;,.Fori =1,2,..., k', every path L] can be trivially extended to a
path L of G by concatenatlng the arc (sl , 8 ) the path L/ and the arc (t t;). Clearly,
the paths L1 L2, .. Lk/ are arc-disjoint. Moreover, since neither (s;, s; ) nor (t t;)
belongs to A, the path L; does not contain any arc of A, fori =1,2,...,k’. Let v be
a vertex of V and q be the number of paths of L1, Lz, .. L ¥ traversmg v. Without
loss of generality, we suppose that these paths are the ﬁrst q ones. We remark that 1 <
g < min{ry, s,}. Consider any i of {1,2,..., ¢}, and denote by a; (b;, respectively)
the arc of L; entering (leavmg, respectlvely) v. As G is acyclic, the arcs a; and b; are
uniquely defined. Let I} " and 01 be the subsets of vertices associated with a; and
b; respectively, as prev10usly deﬁned in the replacement gadget. We remark that in
G, the vertex v’ v D=5 ig the head of a;, and the vertex v v+ D+i" (v +1 g the tail
of b;. From the definition of the replacement gadget, it is straightforward that there
exists a unique path M; from vi GvtD=su o preGu+D+H" v+ jp the subgraph of G
induced by I} iy O"” We then construct the path L; by inserting M; in between the
arcs a; and b; in L;. We remark that two distinct paths L and L s withl<j,j <gq
clearly provide two arc-disjoint paths M and M S1nce the paths Li,Lo,..., Lq
are arc-disjoint, so are the paths Li, Lo, ..., By reiterating this local insertion
procedure to every vertex of V, we obtain k’ paths Li,Ly,..., Ly of G which are
obviously arc-disjoint. To complete the proof, we consider the path composed of the
arc (sq, t,) for every pair of S associated with an arc a of A. In that way, we have
obtained k = k’ 4 |A| arc-disjoint paths of G. 0

Using a reduction from the QTDP, we now prove that the demand-paths check-
ing problem is NP-complete. Consider an instance of the QTDP specified by a
quasi-topological digraph G = (Vg, Ag) and a set S = {(s;, %) :i =1,2,...,k}
of pairs of distinct vertices of G so that every vertex of G belongs to at most
one pair, deg™(s;) < 1 and deg®'(;) <1 for i = 1,2,..., k. To obtain the di-
graph D’ of the instance of the DPCP, we first contract every jump arc of G. (Re-
member that the jump arcs are those which do not belong to the Hamiltonian path
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(v, v2), (v2,v3), ..., (Uy—1, V) of G.) We then add a new vertex vy together with
two new arcs (vg, v1) and (v, vo). Since G is quasi-topological and contracting the
jump arcs creates closed walks, the digraph D’ thus obtained is clearly Eulerian. The
Eulerian closed walk C of D’ is constructed as follows. We consider the sequence
((vo, v1), (v1,V2), ..., (Vn—1, Vp), (Vp, v0)) Where ((v1, v2), (v2,03), ..., (Un—1, Un))
corresponds to the Hamiltonian path of G. For every arc (v;, v;) of Ay, we identify
in C the vertices v; and v;. It is easy to see that C is an Eulerian closed walk of
D’. The set P of demands is derived from § by associating a demand p; with every
pair (s;,t;) fori = 1,2, ..., k, so that oPi (dPi, respectively) is the vertex of D’ corre-
sponding to s; (#;, respectively) and g = 1. Moreover, we set the vehicle capacity Q
to one. It is obvious that this construction of the instance of the DPCP is polynomial.

We now claim that the QTDP has a feasible solution if and only if the DPCP has
a feasible one. Consider a feasible solution to the QTDP defined by k arc-disjoint
paths Ly, Lo, ..., Ly of G. We construct a solution to the DPCP as follows. For
i=1,2,...,k, the path K; of D" associated with the demand p; is obtained from
L; by removing all the jump arcs. Since the paths Ly, L», ..., L; are arc-disjoint,
no arc of D’ is overloaded. Moreover, the arcs of K; are traversed in the same order
asin C,fori =1,2,...,k, because G is quasi-topological and C is built upon the
Hamiltonian path of G. Therefore, K1, K>, ..., Ki is a feasible solution to the DPCP.

To prove the converse, we start with a feasible solution K1, K», ..., Ki of the
DPCP. Since Q = 1, the paths K;, i = 1,2,...,k of D’ are arc-disjoint. Let i €
{1,2, ..., k}. Consider the restriction L; of K; on G. Clearly, all the arcs of the L;
belong to Ag. To transform L/ into a s;7;-path, we add jump arcs of A; to connect
the different subpaths of L;. (Jump arcs may be needed to connect s; to the first vertex
of L’ and to connect the last vertex to #;.) We remark that any added jump arc cor-
responds to a reload of p; with respect to C. Indeed, all the arcs of the Hamiltonian
path between the two extremities of any added jump arc corresponds to a closed walk
in C. Moreover, the demand p; is carried before and after this closed walk but not on
any arc of this walk, which implies that it is reloaded on the vertex of D’ correspond-

ing to the extremities of the jump arc. Since L}, L), ..., L} are arc-disjoint, a jump
arc can be added at most once. The resulting s;¢;-paths for i =1, 2, ..., k then form
a feasible solution to the QTDP. O
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