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1 Introduction

Transportation problems mainly consist of carrying some demands (e.g., products,
goods, people) from their origin to their destination through a given network. Because
of important economic and ecologic stakes, operations research practitioners have been
giving more and more attention to these problems. Many variants have then been intro-
duced in order to match as close as possible the real-world applications. One of these
variants allows demands to be unloaded and then reloaded in order to get better routes for
the vehicles and reduce the total cost. In this paper, we consider such a variant of the
transportation problem, called the splittable pickup and delivery problem with reloads.

This problem can be stated as follows. Consider a network specified by a set of nodes
that are connected with each other by links. Letv0 be a distinguished node which represents
thedepot. The other nodes are calledstops. Suppose also that a set of demands is given,each
demand being specified by an origin stop, a destination stop and a volume. The demands
need to be carried through the network from their origin to their destination using vehicles
of a given fleet. The vehicles all have the same transportation capacity and are available at
the depot.

Every demand can be unloaded (fully or partially) at any intermediate stop (i.e., a stop
different from its destination one), and can then be picked up later by the same or another
vehicle. This unloading/picking-up process, called areload, can be repeated several times
for a demand until its destination stop is reached. Moreover, every demand can be splitted
onto different routes and can be carried by several vehicles. Also there is no restriction on
the routes of the vehicles. They can pass by any node or link asmany times as necessary.

With each link of the network is associated a cost that corresponds to what must be paid
by a vehicle to use the link once. We suppose that the costs satisfy the triangle inequali-
ties and that the reload costs and time are neglected. TheSplittable Pickup and Delivery
Problem with Reloads(SPDPR) then consists of finding the vehicle routes so that all the
demands are carried to their destination, a vehicle is neveroverloaded, and the total cost is
minimum.

This problem arises in a wide variety of freight and passenger transportation systems.
For instance, this is the case in postal services as described by Grünert and Sebastian (2000).
They consider a problem encountered by the Deutch Post AG in its transportation chain
which can be presented as follows. Mail is first collected from customers and mailboxes
and is then brought to the nearest Letter Mail Center (LMC). After being sorted, mail is
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Figure 1 A reload with one vehicle

10
5151

p2

p3

5050

p1

1 1 1

v2

v5

v0

112100112

v1 v3

v4
v6

v7

sent from its origin LMCs to its destination ones. This transportation is performed by cars,
trucks, aircrafts or railways. Finally, after another sorting stage, mail is delivered to the
given addresses by postmen. Here, several optimization problems may be considered. In
fact, one has to deal with a capacitated vehicle routing problem (introduced by Dantzig
and Ramser (1959)), a ground problem which is similar to the SPDPR and an arc routing
problem (e.g., Chinese postman problem (Gendreau and Laporte, 1995)).

The SPDPR can be seen as a relaxation of the standard Pickup and Delivery Problem
(PDP). In fact in the PDP, reloads are not allowed, only unsplittable flows for the demands
are permitted and vehicle routes have to be vertex-disjointsimple walks. (See (Savelsberg
and Sol, 1995) for a thorough description of the PDP.) As illustrated by the two follow-
ing examples, considering the SPDPR instead of the PDP may lead to important savings.
The first example shows that allowing reloads tends to bypassthe limited vehicle capacity
whereas in the second one, transporting a demand onto different paths permits to reduce
the non-used transportation capacity of the vehicle. In both examples, each edge represents
two opposite links and even if all links are not shown, we consider a fully-meshed network.
The numbers correspond to the costs associated with the links and we can deduce the cost
of the missing links by computing the shortest paths betweentheir endnodes with the costs
provided in the figures. The demands are represented by dashed arcs and there is only one
vehicle available at depotv0.

We first consider the network given in Figure 1. Suppose that we have to carry three
demandsp1, p2 andp3. The volume of each demand is equal to the transportation capacity
of the vehicle. An optimal solution of the PDP consists of first making the vehicle go to
v5 where it loadsp3 and bring it to its destinationv7. Then the vehicle goes tov4 where it
loadsp2, conveys it tov6 through(v4, v6) and then passes by(v6, v1) and arrives atv1 to
start the transportation ofp1. Once it has unloadedp1 at its destinationv3, it goes directly
back to the depot. The associated cost is then 475. When reloads are allowed, an optimal
solution can be as follows. The vehicle starts its route by going to v1 where it loadsp1.
It carries it fromv1 to v3 through(v1, v3) and then goes tov4 to start the transportation
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Figure 2 Demand carried on different paths
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of p2. It then arrives at stopv5 where it unloadsp2 and loadsp3 instead. It then carries
p3 from v5 to v7 and goes back tov5 using arc(v7, v5). It continues its trip by reload-
ing p2 and conveying it tov6, and ends by going back tov0. The associated cost is then 446.

In the second example shown in Figure 2, we consider a vehiclewith a transportation
capacity equal to 3 as well as three demands, each one having avolume equal to 2. In an
optimal solution of the PDP, the vehicle first goes tov1 where it loadsp1. It conveysp1
from v1 to v6 and then goes tov2 to load p2. It carriesp2 to its destination and then goes
to v3 to transport the last demand. It loadsp3 at v3, goes tov4 and terminates at the depot.
The associated cost is equal to 1260. For the SPDPR, we obtaina cheaper solution. The
vehicle starts by passing byv1 where it loadsp1. It then goes tov2 where it takes one unit
of p2. At this point, the vehicle is full-loaded. It then goes tov5 where it unloads the unit
of p2 and goes tov6 where it unloads the two units ofp1. It then returns tov2 to achieve
the load ofp2 and pass byv3 to also loadp3. It then conveysp3 from v3 to v4 and goes
to v5 to end the transportation ofp2. The vehicle then returns to the depot. The associated
cost is 880.

Although the SPDPR is a new problem, it is close to other optimization problems. In
what follows, we present some problems that are similar to the SPDPR.

Oertel (2000) studied a variant of the PDP where reloads are permitted on certain nodes
calledhubs. This latter implies that vehicle routes are no more vertex-disjoint simple walks.
Indeed, when a demand is unloaded at a hub, it is then reloadedby the same vehicle (in this
case, its trip is not a simple walk) or by another one (the two routes are no more vertex-
disjoint.) Oertel used an auxiliary graph in which every hubis splitted into several vertices
to ensure that vehicle routes are vertex-disjoint simple walks. He developed a mixed-integer
linear programming model based on this auxiliary graph. He also considered time windows
constraints. The model was then solved using a tabu-search algorithm. Instances with up
to 40 demands were solved efficiently with this method.

Grünert and Sebastian (2000) modeled the ground transportation problem which arises
in the transportation chain of the Deutch Post AG that was previously described. This prob-
lem is known as the Vehicle and Request Flow Network Design Problem (VRFNDP). This
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problem is closely related to the SPDPR. However, the reloads can only be made on certain
nodes (i.e., hubs). Moreover, each time a vehicle passes by ahub, it automatically unloads
all the carried demand. This demand is then unavailable for some time that corresponds to
the time needed to sort the demand. Finally, strong time windows constraints are taken into
account. Grünert and Sebastian considered a discrete modelbased on time periods. They
used a space-time graph by creating two nodes, one for the pickup action and the other for
the delivery one, for all physical locations at each period.They gave a mixed-integer linear
programming formulation which is based on two types of commodity flows: the vehicles
and demands. They proposed a modelization for this problem.The VRFNDP differs from
the SPDPR for several reasons. The first problem imposes thateach vehicle has to be un-
loaded whenever it reaches a hub and considers sorting time and cost at each hub. It also
considers different vehicle types, each one with specific depot and capacity. It also takes
into account driving costs that are proportionnal to the carried load and storage cost at any
hub.

The SPDPR can also be considered as a constrained version of the Minimum-Cost Ca-
pacity Installation for Multicommodity network flows (MCCI) studied by Bienstock et al.
(1995). In fact, transportation capacity of vehicles can always be brought back to one (by
dividing any demand volume by this capacity) since all the vehicles have the same capacity.
The SPDPR is then a version of the MCCI in which the chosen capacities on arcs have to
respect additional constraints in order to form feasible routes for the vehicles.

In the next section, we prove that the SPDPR is NP-hard. We then give in Section 3
two mixed-integer linear programming formulations for theproblem which are based on
an auxiliary graph. In section 4, we present some valid inequalities which may be added in
order to strengthen the associated linear relaxations and we study their separation problems
in Section 5. We finally describe a branch-and-cut algorithmfor solving these two models
and present some computational results.

The rest of this section is devoted to more definitions and notation. The graphs we
consider are finite, directed, loopless and connected. LetG = (V, A) be a graph whereV
corresponds to the set of vertices andA to the set of arcs. We denote byn its number of
vertices, that is,n = |V |. An arc from vertexu to vertexv will be denoted by(u, v) and we
will call v its head andu its tail. ForW ⊂ V with W 6= ∅, we setW = V \W and we denote
by δ+(W) (resp.δ−(W)) the set of arcs having their tail (resp. head) inW and their head
(resp. tail) inW. The union of these two arc sets is denoted byδ(W) = δ−(W) ∪ δ+(W).
If W = {u}, we will write δ+(u) (resp. δ−(u), δ(u)) instead ofδ+({u}) (resp. δ−({u}),
δ({u})). If X is a set,z ∈ RX a vector indexed on the elements ofX andX′ ⊆ X a subset
of X, then we writez(X′) for

∑

x∈X′

z(x).

2 Complexity of the SPDPR

Some notation and a more formal definition of the SPDPR are required at this point.
To represent the network, we consider a directed graphG = (V, A), calledinitial graph.
Remark thatV contains the vertexv0 which represents the depot of the vehicles. For each
arca ∈ A, let ca ∈ R+ be the cost for a vehicle to use the associated link, and letla ∈ Z+
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the time a vehicle needs to go througha. We suppose that the costs satisfy the triangle in-
equalities, that is, for all(i , j ), ( j , k), (i , k) ∈ A, c(i, j ) +c( j ,k) ≥ c(i,k). We denote byF the
fleet of vehicles and byB ∈ Z+ their transportation capacity. LetP be the set of demands
that have to be carried through the network. With every demand p ∈ P, we associate a
triplet (op, dp, qp) whereop ∈ V \ {v0} represents its origin stop,dp ∈ V \ {v0, op} its
destination stop andqp ∈ Q+ its volume.

Even though the SPDPR is a relaxation of the PDP, it remains anNP-hard problem as
stated in the following proposition.

Proposition 1 The splittable pickup and delivery problem with reloads is NP-hard, even
if the initial graph is complete, the costs satisfy the triangle inequalities and the fleet is
composed of only one vehicle.

Proof: To prove the statement, we use a reduction from the Hamiltonian circuit problem
in a directed graph. Given a directed graphG = (V, A) with V = {v1, . . . , vn} (so
|V | = n), we construct an instance of the SPDPR as follows. LetG′ = (V ′, A′) be the
complete directed graph induced byV ′ = V ∪ {v0}, wherev0 serves as the depot. We set
P = {(v1, vi , 1) ; i = 2, .., n} ∪ {(vi , v1, 1) ; i = 2, .., n}. There is only one vehicle
with a transportation capacity equal to the sum of the volumes of the demands. The costs
on the arcs ofG′ are defined as follows. For all arc(i , j ) ∈ A′ \ δ(v0), we setc(i, j ) = 1
if (i , j ) ∈ A andc(i, j ) is equal to the shortest path (in terms of hops) inG from i to j if
(i , j ) 6∈ A. For any arc(i , j ) ∈ δ(v0), we setc(i, j ) = n. It is clear that in this case, the
costs ofA′ satisfy the triangle inequalities and for any arca ∈ A′ \ A, ca > 1. We now
prove that the instance(G′, P) of the SPDPR has a solution of cost less than or equal to 3n
if and only if G contains a Hamiltonian circuit.

Given a Hamiltonian circuit ofG, we can obtain a solution to the SPDPR. We can
construct a circuit inG′ by adding to the Hamiltonian circuit ofG the two arcs(v0, v1)

and(v1, v0). This circuit in G′ can be considered as the route of the vehicle. Moreover,
it obviously implies a feasible solution to the SPDPR since the capacity of the vehicle is
equal to the whole demand volume. The cost associated with this solution corresponds to
the sum of the costs of the arcs of the circuit inG′, that is, 3n.

To prove the reverse, assume that we have a solution to the SPDPR having a cost less
than or equal to 3n. Without loss of generality, we suppose that there is no reloads in the
solution and all the demands are carried on a single path. (This assumption can be done
because of the property of the vehicle capacity.) From the definition of the demand set
P, the vehicle has to pass by the verticesv2, . . . , vn at least once and byv1 at least twice.
Therefore, the vehicle starts its route fromv0, goes through a walk containing a circuit
spanning the vertices ofV and having at leastn arcs ofA′ \ δ(v0), and comes back tov0.
Since the vehicle uses two arcs incident withv0, the cost of the path inA′ \ δ(v0) cannot
exceedn. Moreover, all the arcs not inA have costs greater than 1. Therefore, the solution
to the SPDPR exists only if the path inA′ \ δ(v0) is a circuit passing by each vertex of
V exactly once and using only arcs of cost 1, that is, there exists a Hamiltoniancircuit inG. �

On the other hand, if there is only one demand, the SPDPR can then be solved in poly-
nomial time since it can be reduced to a sequence of shortest paths.

One should also remark that if a bound on the time, sayT , is given, knowing if the
problem contains a solution of total time less than or equal to T , that is the feasibility
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problem of the SPDPR with completion time limit, is also NP-hard. The proof is similar to
the previous one. The only difference is that costs are replaced by duration times. (Remark
that since we only consider one vehicle in the proof, the total duration time of the solution
is equal to the sum of the duration time of the arcs used by the vehicle.)

3 Mixed-integer linear programming formulations

Any solution to the SPDPR has to satisfy what we callprecedence conditions. In
fact, because of the reload policy, part of a demandp ∈ P may be dropped off at a stop
v ∈ V \ {v0} that is different from its destinationdp and then picked up later. Therefore,
the vehicle that carries this part ofp on the leg started atv has to pass byv once the part
of the demand is arrived atv, that is, after the leg ended atv is completed. To handle the
precedence conditions, we consider an auxiliary directed graph that is based on a space-time
graph. (Similar space-time graphs can be found in (Ahuja et al., 1993) and in (Grunert and
Sebastian, 2000).) In order to have a finite space-time graph, we then need to be given a
completion time limitT ∈ Z+ that corresponds to the latest time any demand ofP arrives
at its destination stop. (Remark thatT can be as big as necessary to keep the initial solution
space.)

The time component is introduced because of the reloads in order to ensure that all the
precedence conditions are satisfied. If reloads are not permitted, any node of the network
would be visited exactly once. In fact without loss of generality, we can consider a complete
directed graph, a cost function satisfying the triangle inequalities and only vertices that are
incident with a demand. In this case, the problem can be formulated on the initial graph
by associating with every vertex a time variable which corresponds to the departure time of
the vehicle from the vertex. The remaining precedence conditions, which impose that the
origin of a demand is visited before its destination by the vehicle, can then be formulated
by forcing the departure time, associated with the destination of any demand, to be greater
than the one associated with the origin of the demand.

3.1 Auxiliary graph

This subsection is devoted to the construction of an auxiliary graph, denoted byG′ =

(V ′, A′), from the initial graphG. Since no demand is incident with the depot, no reload
is allowed at the depot and the cost function satisfies the triangle inequalities, it is straight-
forward to see that the vehicles do not pass by the depot unless when they start or end their
trip. So each vehicle passes byv0 at most twice. This leads us to separate the depot from
the other vertices in the construction of the auxiliary graph.

For each vertexu ∈ V \ {v0}, we associateT + 1 verticesu0, u1, . . . , uT in G′. The
vertexut representsu ∈ V \ {v0} at time t ∈ {0, . . . , T}. (Note that time is considered
discrete.) We denote this vertex setVst. We then consider a first arc set ofG′, AT =

{(ut , ut+1) | u ∈ V \ {v0}, t ∈ {0, . . . , T − 1}}. An arc of AT corresponds to a vehicle
or a demand that stays at a node for one time unit. We also consider a second arc set
Ã = {(ut , wt+l(u,w)) | (u, w) ∈ A\δ(v0), t ∈ {0, . . . , T−l(u,w)}}. An arca = (ut , wt ′) ∈ Ã
corresponds to a vehicle that goes from vertexu at time t to vertexw at time t ′ with
t ′ = t + l(u,w). The arcs inAT have a zero cost (since we assume that it does not cost
anything to stay at a network node) whereas an arca = (ut , wt ′) ∈ Ã has its cost equal to
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Figure 3 Intial graph and its associated auxiliary graph
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We add two additional verticesO andD that represent the origin and the destination

of the vehicle routes respectively. These two vertices actually correspond to the depot in
the initial graph. Without loss of generality, we force all the vehicles of the fleet to start
their routes at time 0 and finish it at timeT . (Remark that a vehicle that is not used for
transportation can reachD (from O) using only arcs ofAT .) For all verticesu ∈ V \ {v0},
we then add arcs(O, u0) and(uT , D) both having the same cost and duration time that are
equal to those of the arcs(v0, u) and(u, v0) in G. Let AO = {(O, u0) | u ∈ V \ {v0}}

and AD = {(uT , D) | u ∈ V \ {v0}}. To conclude, we have built an auxiliary graph
G′ = (V ′, A′) with V ′ = Vst ∪ {O, D} andA′ = AT ∪ Ã ∪ AO ∪ AD.

Figure 3 illustrates the construction of the auxiliary graph G′ associated with the initial
graphG = (V, A) given in Figure 3(a). In this example, we suppose that all thearcsa ∈ A
have a duration timela equal to one andT equals two. Starting with an initial graph having
4 vertices and 9 arcs (note that some arcs are bidirected), weend up with an auxiliary graph
that has 11 vertices and 18 arcs.

3.2 Multicommodity flow based formulation

In our first formulation, we consider a multicommodity flow torepresent the routing of
the demands in the network and a flow to model the routes of the vehicles. We then consider
two types of variables that are:

• y ∈ Z
|A′ |
+ whereya represents the number of vehicles passing on arca ∈ A′,

• x ∈ R
|Ã∪AT |×|P|
+ wherex p

a represents the amount of demandp ∈ P carried on the
arca ∈ Ã ∪ AT .

For a vertexut with u ∈ V \ {v0} andt ∈ {0, . . . , T}, and a demandp ∈ P, the number
bp

ut defined by
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bp
ut =







qp if u = op andt = 0,

−qp if u = dp andt = T,

0 otherwise,

represents the supply/demand associated with vertexut with respect to demandp. We
remark that for a givenp ∈ P, there are exactly two vertices ofVst for whichbp

ut is not null.
These two vertices are associated with the origin node ofp at time 0 and the destination one
at timeT . The correctness of the definition ofbp

ut is implied by the equivalence between
demandp (or part of it) staying for some time at a node of the network and a path using
only arcs ofAT in G′.

The SPDPR can be formulated as a mixed-integer linear program using an arc-vertex
based approach (Ahuja et al., 1993) as follows.

min
∑

a∈A′

caya

s.t.
∑

a∈AO

ya ≤ |F |, (1)

∑

a∈δ+(v)

ya −
∑

a∈δ−(v)

ya = 0 ∀ v ∈ Vst, (2)

∑

a∈δ+(v)\AD

x p
a −

∑

a∈δ−(v)\AO

x p
a = bp

v ∀ p ∈ P, ∀ v ∈ Vst, (3)

∑

p∈P

x p
a − Bya ≤ 0 ∀ a ∈ Ã, (4)

x p
a ≥ 0 ∀ a ∈ Ã ∪ AT , ∀ p ∈ P, (5)

ya ≥ 0 ∀ a ∈ A′, (6)

ya integer ∀ a ∈ A′, (7)

The objective function states that the vehicle-related total cost must be minimized. (We
remark that this objective function can be easily extended if we consider costs that are pro-
portional to the demand amounts carried on arcs.) Constraint (1) forces the number of used
vehicles to be at most|F |. Constraints (2) (resp. (3)) are the flow conservation constraints
associated with the vehicles (resp. demands). Constraints(4) impose the amount of the
demands carried on an arc ofÃ to be no more than the total capacity of the vehicles passing
on this arc. The other constraints are the trivial constraints and the integrity constraints. We
remark that constraints (6) are not necessary since constraints constraints (4) and (5) already
imply thaty is non negative. This model contains|A′| + |P| × (|Ã| + |AT |) variables and
|Vst|(|P| + 1) + |A′| + |P| × (|Ã| + |AT |) + |Ã| + 1 constraints.

3.3 Metric constraints based formulation

In the formulation given in the previous subsection, we determine the routing of the
demands even though the value of the objective function onlydepends on the vehicle routes
and no additional constraints on the demand routing are considered. Therefore, it would be
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enough to only focus on determining the vehicle routes that allow a feasible routing of the
demands. This can be achieved by considering no other variables thanya for all a ∈ A′ and
replacing constraints (3) and (4) by the so-called metric constraints as described below.

Iri (1971) and Onaga and Kakhuso (1971) independently showed that the metric con-
straints can be used to check whether or not there exists a feasible multicommodity flow in
a graph when demands and arc capacities are given. Their result, known as the Japanese
theorem, can be briefly presented as follows. LetG = (V , A) be a complete directed graph

andw ∈ R
|A|
+ (resp. r ∈ R

|A|
+ ) be the capacity (resp. demand) vector indexed on the arcs

of A. The capacity vectorw allows the transportation of the demands ofr if and only if all
the metric constraints

(w − r )Tπ ≥ 0 ∀ π ∈ Metn (8)

are satisfied whereMetn = {π ∈ RA
+ | πik + πkj − πi j ≥ 0 ∀i 6= j 6= k 6= i } is themetric

cone. Clearly, the number of metric constraints is infinite. However, those associated with
extreme rays of the metric cone are sufficient to ensure that the capacity vectorw allows
the transportation of the demands ofr . These constraints are in exponential number. For
our problem, the metric cone is the one induced by the complete graph onVst, and capacity
and demand vectors are given by the number of vehicles per arc

wa =







+∞ if a ∈ AT ,

ya if a ∈ Ã,

0 otherwise,

and

ra =

{ qp

B if a = (u0, wT ) with u = op andw = dp for somep ∈ P,

0 otherwise,

for all a ∈ A. (We remark that we could have considered the whole vehicle (resp. demand)
volumes for the capacity (resp. demand) vectoras well.) Using metric constraints (8) instead
of constraints (3) and (4), we now introduce the following integer linear formulation for the
SPDPR:

min{
∑

a∈A′

caya | y satisfies(1), (2), (8), (6), (7)} (9)

This program contains less variables than the first one (i.e., |A′| versus|A′| + |Ã ∪

AT |×|P|), but it has an exponential number of constraints whereas the first model contains
a polynomial one. As it will be pointed out in Section 5, the exponential number of metric
constraints can be tackled in polynomial time.

Furthermore, once we have an optimal solution of (9), determining the routing of the
demands (i.e., the variablesx p

a for all a ∈ Ã∪ AT and for allp ∈ P in the first formulation)
can be performed in polynomial time. It is actually nothing but a continuous multicommod-
ity flow problem which is a well-known polynomially-solvable problem (Ahuja et al.,1993).

The two presented models can be easily extended to a variant of the SPDPR where
capacity constraints on the demand volume stocked at the same time at any stop of the
network are taken into account. In fact, if we denote byeu the maximum waiting load of
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demands allowed at vertexu ∈ V , then we only have to add the constraints
∑

p∈P x p
a ≤

eu for all a = (ut , ut+1) with t ∈ {0, . . . , T − 1}, in the multicommodity flow based
formulation. To consider such constraints in the metric constraints based model, we only
have to modify the vectorw in the metric inequalities. In fact, we replace the infinite capacity
associated with the arcs ofAT by wa = eu

B for all a = (ut , ut+1) with t ∈ {0, . . . , T − 1}.

4 Formulation strengthening

We now present four families of constraints we will use in ouralgorithm to strengthten
the linear relaxations. The first one can be used by both models whereas the second and
the third ones are based on the flow variables associated withthe demands (i.e., variables
x) and then cannot be used in the metric constraints based formulation. The last family of
constraints is a strengthened formulation of the metric constraints (8), so it is only used in
the metric constraint based formulation. The way to handle algorithmically these families
of constraints will be discussed in Section 5.

4.1 Cut Constraints

In this part, we introduce constraints known as cut constraints that we will use in
our branch-and-cut algorithm to strengthen both linear relaxations of the SPDPR. These
constraints have been already considered in various optimization problems. (See (Bienstock
et al., 1995), (Barahona, 1996) for instance.) They are based on the notion of cuts inG′.
For a vertex subsetW ⊂ Vst, W 6= ∅, let us denote byq [W, Vst \ W] the total volume of
the demands ofP having their origin vertex inW and their destination one inVst \ W.

Proposition 2 Let W ⊂ Vst, W 6= ∅ induce a cutδ+(W) so thatδ+(W) ∩ AT = ∅. Then
the cut constraint

y(δ+(W)) ≥

⌈

q [W, Vst \ W]

B

⌉

(10)

is valid for the SPDPR.

Proof: The constraintBy(δ+(W)) ≥ q [W, Vst \ W] is obviously valid for the SPDPR. In
fact, it expresses the fact that the whole vehicle capacity of the arcs ofδ+(W) must exceed
the whole demand fromW to Vst \ W. Sincey is integer, dividing the two members of this
inequality byB and rounding-up the right-hand side yields (10). �

We remark that only cuts that do not intersectAT are considered because capacity con-
straints do not apply for these arcs. (In the first formulation, there are no constraints (4)
associated with the arcs ofAT , and in the second one, we consider an infinite capacity on
them.) This comes directly from the fact that any demand (or part of it) can stay without
any conditions at any node of the network.

4.2 Extended Arc Residual Capacity Constraints

The extended arc residual capacity constraints are used to strengthen the linear relaxation
of the arc-vertex based formulation. They cannot be used forthe metric constraints based
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formulation since they are defined with respect to variablesx. Since they are an extension
of the arc residual capacity constraints, we begin this paragraph by presenting the so-called
arc residual capacity constraints that were first introduced by Magnanti et al. (1993). These
are in fact a special case of the mixed-integer rounding constraints (Nemhauser and Wolsey,
1990).

For a given setK ⊆ P, the total volume of the demandsp ∈ K is equal toq(K ) =
∑

p∈K qp. LetγK = ⌈
q(K )

B ⌉ andr K = (q(K ) mod B). By convention, we setr K equal to
B if q(K ) is a multiple ofB (i.e.,r K ∈ ]0, B].) We first state that the arc residual capacity
constraints are valid for our problem. We omit the proof since it is similar to the one given
by Magnanti et al. (1993) when they introduced those inequalities.

Proposition 3 Let K ⊆ P and a∈ Ã. The arc residual capacity constraint

∑

p∈K

x p
a − r K ya ≤ (γK − 1)(B − r K ) (11)

is valid for SPDPR. �

In what follows, we give an example of a violated arc residualcapacity constraint. Sup-
pose that we have two demands which have respectively volumes q1 = 6 andq2 = 12,
and that the vehicle capacityB is equal to 10. Let(y, x) be a fractional solution satisfying
(1)-(6) so that there existsa′ ∈ Ã with x p

a′ = qp for p = 1, 2 andya′ = 1.8. There
exists an arc residual capacity constraint defined on the arca′ which is violated by(y, x).
Indeed, if we consider the demand setK = P, we haveγK = 2 andr K = 8, and then the
constraint implies that we must have 8ya′ ≥ (6+12)−(2−1)(10−8) = 16, that isya′ ≥ 2.

We now introduce the extended arc residual capacity constraints. For this, we first
present some notation. For a givenφ ∈ {0, . . . , T − 1}, we defineVφ = {ut ∈ Vst | u ∈

V \ {v0}, t = φ} andAφ = δ+(Vφ)∩ Ã. Vφ corresponds to the vertices ofV \ {v0} at time
φ andAφ corresponds to the arcs ofA \ δ(v0) that begin at dateφ.

Proposition 4 Let K ⊆ P, φ ∈ {0, . . . , T − 1} and X ⊆ Aφ . Then the extended arc
residual capacity constraint

∑

p∈K

∑

a∈X

x p
a − r K

∑

a∈X

ya ≤ (γK − 1)(B − r K ) (12)

is valid for SPDPR.

Proof: We first remark that the auxiliary graph has no backward arcs,that is, it does not
contain any arc(u, w) with u ∈ Vφ1, w ∈ Vφ2 andφ2 ≤ φ1. Sincex p

a ≤ qp for all
a ∈ Ã ∪ AT , the constraint

∑

a∈δ+(Vφ ) x p
a ≤ qp holds for allφ ∈ {0, . . . , T − 1} and

for all p ∈ P. Let φ ∈ {0, . . . , T − 1}, K ⊆ P and X ⊆ Aφ . We can easily show that
constraint (11) is dominated by the sum of the constraints

∑

a∈X x p
a ≤ qp for all p ∈ K

(resp. constraints (4) for all arc inX) if
∑

a∈X ya ≥ γK (resp.
∑

a∈X ya ≤ γK − 1.)
Therefore, the extended arc residual capacity constraints(12) are valid for the SPDPR.�
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4.3 Rounded Metric Constraints

The metric constraints (8) can be strengthened. Indeed, if the metric coefficientsπa

of the constraint are rational for alla ∈ Ã, sincew is by definition rational (because of
B ∈ Z+ andy is integer),wT π is rational and we can then consider the rounded metric
constraint

wT π ≥ ⌈r Tπ⌉ (13)

which is also valid for SPDPR. Similar constraints have beenused (Bienstock et al., 1995)
for solving the minimum cost capacity installation for multicommodity network flows. We
point out that the cut constraints (10) correspond to a particular case of the rounded metric
constraints.

5 Separation

One of the most important parts of an efficient branch-and-cutalgorithm is the so-called
separation problem that can be described as follows. Given aconstraint systemAx ≤ b
based onRn and a pointx of Rn, theseparation problemassociated with this system consists
of deciding whether all the constraints of the system are satisfied byx and if not, of finding
a constraint violated byx. Grötschel, Lovász and Schrijver (1985) have shown that if the
separation problem of a constraint systemAx ≤ b can be solved in polynomial time, then
any optimization problem over this system can also be solvedin polynomial time, even if
the number of constraints is exponential.

In this section, we consider the separation problems for theinequalities presented in
the previous section. The solutions we consider in the separation problems are the vectors
y ∈ R|A′ | for the metric constraints based formulation and the vectors (y, x) ∈ R|A′ | ×

R|Ã∪AT |×|P| for the multicommodity flow formulation that we obtain afterhaving solved
the current linear relaxation.

5.1 Separation of the metric constraints

The separation problem for metric constraints (8) can be solved in polynomial time. In
fact, it can be reduced to the following linear program:

min(w − r )Tπ

s.t.

π ∈ Metn,

whereMetn, w andr are defined as in §3.3. Letπ∗ be an optimal solution of this linear
program. If the objective value associated withπ∗ is negative, then the metric constraint
(w − r )Tπ∗ ≥ 0 is violated byy. Otherwise, we can assert thaty satisfies all the metric
constraints.
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5.2 Separation of the rounded metric constraints

The separation algorithm for the rounded metric constraints (13) is a heuristic based on
the one developed by Bienstock et al. (1995). Each time a violated metric (8) is found, we
search among the metric coefficientsπa, a ∈ Ã, the one with the smallest positive value,
sayπ0, and we then check if all the valuesπa

π0
for all a ∈ Ã are integer. If this is the case,

then we have found a stronger violated rounded metric constraint; if not, we keep the initial
metric constraint (8) we have found. This heuristic is then performed in linear time.

5.3 Separation of the cut constraints

The separation problem associated with the cut constraints(10) is NP-hard in general
(Bienstock et al., 1995). Therefore, we have developed heuristics to separate the cut con-
straints. In what follows, we describe three separation heuristics that are based on previous
works ((Bienstock et al., 1995), (Gabrel et al., 1999)). We adapt these heuristics to space-
time graph. In the description of those heuristics,W will always represent a vertex subset
of Vst so thatδ+(W) ∩ AT = ∅.

The first one is the so-called n-cut heuristic that was developed by Bienstock et al.
(1995) for the MCCI. This heuristic works as follows. For anydemandp ∈ P, we check
whether there exists a path fromop

0 to dp
T (these two vertices correspond to the originop at

time 0 and the destinationdp at timeT of the demandp) in the auxiliary graphG′ where
we only consider the arc setAT ∪ {a ∈ Ã | ya > 0}. Obviously, this can be performed
using any search algorithm. If there is no such a path, it is straightforward that there exists
a violated constraint (10). This constraint is actually induced by a vertex setW so that
op

0 ∈ W, dp
T ∈ Vst \ W and the vertices ofVst that are reachable fromop

0 belong toW.
(δ+(W) ∩ AT = ∅ is guaranteed because all the arcs ofAT are considered.) If a path from
op

0 to dp
T is found for all the demandsp ∈ P, we then randomly pick out some vertices of

Vst to form a setWand we check if the cut constraint associated withW is violated or not.
Since the complexity of a search algorithm is inO(| Ã ∪ AT |) and we need to perform it
|D| times, the complexity of this heuristic is inO(|D|| Ã ∪ AT |).

The second heuristic is based on the so-called n-partition heuristic devised by Bienstock
et al. (1995). We only consider the case n=2 since we seek violated cut constraints (10).
We start with a randomly chosen demandp ∈ P and the two vertex subsets ofVst,
V1 = {op

t | t = 0, . . . , T} and V2 = {dp
t | t = 0, . . . , T}. We then iteratively assign

the vertices ofVst \ (V1 ∪ V2) to eitherV1 or V2 as described below. (At the end of the
heuristic, we will consider the cut constraint induced byW = V1.) At each iteration, we ran-
domly select a vertexu ∈ V \ {v0, op, dp} that has not been considered yet. Then, we only
focus on the vertex setV1 ∪V2 ∪{ut | t = 0, . . . , T} and assign vertices{ut | t = 0, . . . , T}

either toV1 or V2, the assignment of the vertices of the two latter sets remaining unchanged.
The assignment of the vertices{ut | t = 0, . . . , T} is performed in order to obtain new
setsV1 andV2 so thatδ+(V1) ∩ AT = ∅ and y(δ+(V1) ∩ δ−(V2)) − ⌈q [V1, V2] /B⌉ is
minimum. This can be done by enumerating and testing all the possible assignments of
vertices{vt | t = 0, . . . , T} since there only existT + 2 feasible ones with respect to the
conditionδ+(V1)∩ AT = ∅. Once all the vertices ofV \{v0, op, dp} have been considered,
we check whether the cut constraint induced byW = V1 is violated. This heuristic works
in O(|Ã ∪ AT |) time.
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The last heuristic is an extension of the one developed by Gabrel et al. (1999) for the
exact solution of multicommodity network optimization problems with general step cost
functions. Given a demandp ∈ P, let W be a randomly chosen set so thatop

0 ∈ W and
dp

T ∈ Vst \ W. This heuristic consists of iteratively switching vertices (exceptop
t anddp

t
for all t = 0, . . . , T) in betweenW andVst \ W in order to increase the value of the ratio
p(W) = ⌈q [W, Vst \ W] /B⌉ /y(δ+(W)). This process stops when no switching increases
the ratiop(W). To find the switching, we compute for each vertexu ∈ V \ {v0, op, dp}

that has not been considered yet the valueα(u) that corresponds to the assignment of the
verticesut for all t = 0, . . . , T to the subsetsW andVst \ W that maximizesp(W). (The
assignment of the other vertices does not change.) Again, there only existT + 2 feasible
assignments which respect the conditionδ+(W) ∩ AT = ∅. We then only modify the
assignment of the vertices{ut | t = 0, . . . , T} associated with the vertexu for whichα(u)

is maximum. We repeat this process until all the vertices ofV \ {v0, op, dp} have been
considered. At this point, we obtain the new subsetW. The computation of this new subset
can be performed inO(|V ||Ã ∪ AT |) time. At the end of the heuristic, we check if the
cut constraint induced by the obtained setW is violated. In our experiments, each time the
algorithm is applied, up to ten random initial vertex subsetsW are tried and the final result
is taken to be the best over the 10 locally optimal subsets found. We apply this algorithm
for all the demandsp ∈ P.

5.4 Separation of the extended arc residual capacity constraints

We present in this section the separation routine we use to separate the extended residual
capacity constraints. Since this separation routine is based on the separation algorithm of
the arc residual capacity constraints, we first present thisalgorithm.

The separation problem for the arc residual capacity constraints (11) can be solved in
polynomial time. Atamtürk et Rajan (2002) showed that the separation problem on each arc
can be solved inO(|P|). For a given arca ∈ Ã, let D = {p ∈ P | xp

a > qp(ya − ⌊ya⌋)}.
They showed that if a constraint of type (11) associated witharca is violated by(y, x) for
a demand setK ⊆ P, then there exists a violated one for the demand setD. Therefore, the
separation problem consists of checking for all arca ∈ Ã whether the associated constraint
is violated for the demand setD or not. This can be easily performed in linear time.

The separation problem of the extended arc residual capacity constraints (12) can be
decomposed intoT independent problems, each one defined by a valueφ ∈ {0, . . . , T −1}.
The complexity of this separation problem for a given valueφ has not been stated yet.
Nevertheless, if the arc setX ⊆ Aφ is fixed, the separation problem is the same as the one
for the arc residual capacity constraints (11). The difference is that in this case, the setD
is defined asD = {p ∈ P |

∑

a∈X xp
a > qp(

∑

a∈X ya − ⌊
∑

a∈X ya⌋)}. So, when the arc
setX is fixed, the extended arc residual capacity constraints canbe separated inO(|P|).

For everyφ ∈ {0, . . . , T −1}, instead of devising a heuristic to separate all the extended
arc residual capacity constraints, we only separate constraints (12) associated with one arc
of Aφ , two arcs ofAφ , all the arcs ofAφ but one, and all the arcs ofAφ but two. (We
can remark that the heuristic also separates the arc residual capacity inequalities which are
a particular case of the extended arc residual capacity inequalities when|X| = 1.) The
complexity of the separation routine is inO(|P|

∑T−1
φ=0 |Aφ|(|Aφ| + 1)) since there are



16 H. L. M. Kerivin, M. Lacroix, A. R. Mahjoub and A. Quilliot

|Aφ |(|Aφ |−1)
2 unordered pairsa, a′ ∈ Aφ for a givenφ ∈ {0, . . . , T − 1}.

6 Computational results

This section is devoted to the experiments we have done to solve the SPDPR, based on
the foregoing theorical developments. Our aim is not to evaluate the cost savings (and the
additional computational time) implied by considering reloads in the splittable pickup and
delivery problem. This was actually addressed briefly in theintroduction. Moreover for a
variant with time windows, Mitrović-Minić and and Laporte (2006) empirically showed the
usefulness of the reloads in demand transportation. Our purpose is more to provide a basic
frame for further researches, and give lower bounds to checkthe efficiency of heuristics de-
veloped for the problem. We begin this section by presentingthe branch-and-cut algorithm
we use to solve the two formulations introduced in Section 3.

For the first formulation, the linear program we start with iscomposed of the constraints
(1)-(6) together with the cut constraints implied by vertices ofV , that is,

y(δ+({u0, u1, . . . , uT })) ≥

⌈

q(K )

B

⌉

(14)

if there existsK ⊆ P so thatu = op for all p ∈ K , and

y(δ+(Vst \ {u0, u1, . . . , uT })) ≥

⌈

q(K )

B

⌉

(15)

if there existsK ⊆ P so thatu = dp for all p ∈ K . For the metric constraints based model,
the initial linear program is given by the constraints (1), (2), (6), (14) and (15).

For the multicommodity flow formulation, the optimal solution of the relaxation is fea-
sible for the SPDPR if it is an integral vector. Usually, the solution is not feasible, and thus,
in each iteration of the branch-and-cut algoritm, it is necessary to generate further inequal-
ities that are valid for the SPDPR but violated by the currentsolution. For this, one has to
solve the separation problems introduced in Section 5. The separation is first performed on
the cut constraints (10) using the three heuristics described on the previous section and if
none is found, then we separate the extended arc residual capacity inequalities (12).

For the metric constraints based formulation, the optimal solution of the relaxation has
to be an integral vector that satisfies all the metric constraints in order to be a feasible solu-
tion for SPDPR. So, at each iteration, we first separate the cut constraints (10). If no such
violated inequality is found, then we separate in an exact way the metric constraints (8). If
a violated metric constraint is found, the separation problem associated with the rounded
metric constraints (13) is then performed in order to strengthen this inequality.

The branch-and-cut algorithm was implemented in C++, usingCOIN-BCP (Lougee-
Heimer, 2003) to manage the branch-and-cut tree and Cplex 9.1 (ILOG CPLEX, 2003) as a
LP-solver for all the linear programs except the linear relaxation of the second formulation
that is solved using COIN-CLP (Lougee-Heimer, 2003). It wastested on a Pentium IV 3.2
Ghz with 1GB of RAM, running under Linux. We fixed the maximum CPU time to 5 hours.
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For our tests, we considered random instances. These are induced by complete directed
graphs which come from the TSP Library (Reinelt, 1991). The arc costs are equal to
rounded-up Euclidian distances. For each graph, three different demand sets of sizes 5,
10 and 15 are randomly generated so that the volume of each demand is betweenB/4 and
3B/4. (Remember thatB denotes the transportation capacity of the vehicles.)

The instances are created in order to be feasible with respect to a given completion time
limit T . To do so, we set the duration times to 1 for all the arcs. Two sizes for the fleet are
considered:|F | =

|P|
⌊(T−1)/2⌋

and|F | =
|P|

⌊(T−1)/2⌋
+ 2. Both values ensure that we have

enough vehicles to carry all the demands. In fact, each vehicle can carry at least⌊T−1
2 ⌋

demands. Indeed, each vehicle starts from the depot and goesdirectly to the origin of the
first demand it will be carrying. For each demandp of the ⌊T−1

2 ⌋ demands, the vehicle
only carries it on the arc(op, dp). Once the vehicle has reached the destination of the
demandp, it goes to the origin of the next demandp′ through arc(dp, op′

). The vehicle
ends its route at the depot. (Remark that this solution is feasible since the volume of each
demand is less than the transportation capacity of the vehicles, the graph is complete and
the duration times are all equal to 1.) All considered instances are then feasible. For all the
test problems, the completion time limitT is fixed to 7.

In the following tables, the entries are:

• |V | : the number of vertices of the initial graph,

• |P| : the number of demands,

• |F | : the number of vehicles,

• NC : the number of generated violated cut constraints (10),

• NRM : the number of generated violated rounded metric constraints (13),

• NM : the number of generated violated metric constraints (8),

• NE : the numberof generated violated extended arc residualcapacity constraints (12),

• o/p : the numberof problems solved to optimality over the numberof instances tested,

• Gap1 : the relative error between the best upper bound (the optimal value if the prob-
lem has been solved to optimality) and the lower bound obtained before considering
cutting planes that strengthen the linear relaxation,

• Gap2 : the relative error between the best upper bound and the lower bound achieved
by the cutting plane phase at the root node (before branching),

• CPU : the total CPU time in seconds.

Each line of the tables reports the average results obtainedfor three instances, all of
them having the same number of vertices, demands and vehicles. The three instances only
differ by the coordinates of vertices, and for every demand,by its origin, destination and
volume. Both formulations were run on the same test problems.

Each test instance was first transformed into an instance in the auxiliary graph as de-
scribed in Section 3. In consequence, an initial graph having n vertices gives rise to an
auxiliary graph with 6n+2 vertices and 5n2+2n arcs. This transformation leads to mixed-
integer linear programs having either 5n2 + 2n variables for the metric constraints based
formulation or(|P| + 1) × 5n2 + 2n variables for the multicommodity flow model.
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Table 1 Results obtained with the multicommodity flow formulation

|V| |P| |F| NC NE o/p Gap1 Gap2 CPU
6 5 2 17.33 733.00 3/3 17.26 1.69 1.02
6 5 4 24.00 988.00 3/3 18.81 2.09 1.36
6 10 4 85.33 2261.66 3/3 13.82 1.64 42.86
6 10 6 96.00 3222.00 3/3 14.29 1.59 47.23
6 15 5 238.66 7103.00 3/3 13.35 4.16 362.11
6 15 7 242.00 7062.33 3/3 15.17 4.74 656.95
7 5 2 104.33 4977.66 3/3 33.24 20.72 64.05
7 5 4 38.00 2061.33 3/3 15.46 3.21 4.81
7 10 4 221.66 6582.00 3/3 17.17 5.44 208.24
7 10 6 84.00 3602.33 3/3 12.57 0.09 36.05
7 15 5 965.66 17662.66 3/3 17.59 8.75 5174.03
7 15 7 1292.66 17883.33 3/3 16.87 9.12 7313.39
8 5 2 103.00 3703.33 3/3 19.80 6.99 34.74
8 5 4 87.33 4960.66 3/3 20.03 6.49 33.66
8 10 4 344.33 9581.00 3/3 17.73 4.09 673.36
8 10 6 278.33 8175.66 3/3 16.75 3.83 647.17
8 15 5 1432.33 17653.33 2/3 18.24 5.79 9162.24
8 15 7 1447.00 20645.66 2/3 21.32 8.48 13587.84
9 5 2 39.00 5498.66 3/3 13.35 2.99 27.52
9 5 4 79.00 6973.33 3/3 16.93 4.05 62.16
9 10 4 550.66 12309.33 3/3 18.34 3.77 2179.85
9 10 6 785.33 17228.00 3/3 13.68 3.94 4952.95
9 15 5 1056.66 17126.66 0/3 32.71 25.16 18000.00
9 15 7 1447.66 19059.66 0/3 32.40 22.42 18000.00

10 5 2 146.33 8985.00 3/3 16.71 7.59 152.38
10 5 4 149.33 7220.66 3/3 16.77 7.96 562.95
10 10 4 2125.33 23081.00 1/3 26.10 11.99 13025.04
10 10 6 1571.66 29175.66 2/3 20.89 10.92 14093.96
10 15 5 1681.33 22241.00 0/3 38.57 28.37 18000.00
10 15 7 1907.33 27872.00 0/3 26.10 15.09 18000.00
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Table 2 Results obtained with the metric constraints based formulation

|V | |P| |F | NC NRM NM o/p Gap1 Gap2 CPU
6 5 2 17.66 0.00 0.00 3/3 17.26 1.82 0.24
6 5 4 34.33 0.66 0.00 3/3 18.81 2.76 0.96
6 10 4 76.00 4.33 0.00 3/3 13.82 1.70 3.95
6 10 6 106.00 10.33 0.00 3/3 14.29 2.02 4.88
6 15 5 213.33 29.33 0.00 3/3 13.35 4.39 26.74
6 15 7 271.33 60.00 0.00 3/3 15.17 5.21 51.99
7 5 2 304.33 1.66 0.00 3/3 33.24 20.89 36.39
7 5 4 61.33 0.00 0.00 3/3 15.46 3.21 2.85
7 10 4 284.66 23.00 0.00 3/3 17.17 5.49 29.78
7 10 6 60.00 4.00 0.00 3/3 12.57 0.19 1.43
7 15 5 1580.00 179.00 0.33 3/3 17.59 9.17 1620.19
7 15 7 1785.00 166.33 0.00 3/3 16.87 9.44 2176.62
8 5 2 121.33 1.00 0.00 3/3 19.80 7.00 6.90
8 5 4 187.66 0.66 0.00 3/3 20.03 6.50 16.69
8 10 4 440.00 21.33 0.00 3/3 17.73 4.13 120.67
8 10 6 436.33 31.66 0.00 3/3 16.75 4.43 129.39
8 15 5 3110.66 210.33 0.33 3/3 17.89 6.39 3073.67
8 15 7 1719.33 75.33 0.00 3/3 16.80 3.70 846.76
9 5 2 155.66 1.66 0.00 3/3 13.35 2.99 15.55
9 5 4 218.33 9.33 0.00 3/3 16.93 4.06 46.83
9 10 4 388.33 15.00 0.00 3/3 18.34 3.64 108.95
9 10 6 1072.00 31.00 0.00 3/3 13.68 3.94 2125.72
9 15 5 3488.00 364.00 0.66 1/3 16.90 8.24 14947.41
9 15 7 3098.33 226.33 1.66 3/3 14.60 2.43 5980.95

10 5 2 173.00 2.66 0.00 3/3 16.71 7.63 79.13
10 5 4 304.00 7.33 0.00 3/3 16.77 8.18 224.40
10 10 4 2582.66 50.33 0.00 3/3 20.38 4.85 6580.89
10 10 6 2314.66 71.00 0.00 3/3 16.52 5.94 6329.88
10 15 5 6105.66 151.33 0.00 1/3 20.83 8.04 14565.66
10 15 7 5038.66 228.00 0.33 0/3 26.30 16.01 18000.00

Table 1 gives the results obtained using the multicommodityflow model. We remark
that almost all the instances with 5 or 10 demands have been solved to optimality except
3 of them. For the instances with 15 demands, our branch-and-cut algorithm could solve
problems with up to 7 vertices. However, for bigger instances, the problem appeared harder
to solve. In fact, only two thirds of the instances having 8 vertices (and 15 demands) could
be solved. Moreover, no instances with 9 vertices and more were solved.

We can also remark that our branch-and-cut algorithm generated a lot of cut constraints
(10) (up to 2125) and a huge number of extended arc residual capacity inequalities (12) (up
to 29175). We can also observe that Gap2 is quite small for most of the instances. More-
over, this gap is much smaller than Gap1, which shows that adding the violated inequalities
significantly strengthened the linear relaxation.

Table 2 reports the results obtained using the metric constraints based formulation. We
remark that for instances with 9 vertices or less, all problems have been solved to optimality
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except 2 of them. We can also note that for all the test instances with up to 10 vertices and
10 demands, we could get the optimal solution. However, for 10 vertices and 15 demands,
only one instance over six has been solved. This can be explained by the fact that the
problem becomes harder when the size of the problem increases. Moreover, we believe that
the most decisive parameter is the number of demands. Indeed, as it can be seen in Table
2, the instances with 15 demands needed at least twice the time required for solving the
same instances but with only 10 demands. One should also notethat the rounded metric
constraints (13) play an important role in the resolution ofall the instances.

However, the algorithm does not generate a lot of metric inequalities (8). This is because
in most of the cases, a violated metric inequality is extended to a rounded metric one using
our separation algorithm. This shows at the same time that the separation heuristic we have
for the rounded metric inequalities (13) is quite efficient.We also notice that the algorithm
generates an important number of cut inequalities (10). Finally, as for the multicommodity
flow formulation, Gap2 is much smaller than Gap1. The roundedmetric constraints (13)
and the cut constraints (10) are thus very effective in the improvement of the lower bound.

Comparing the results obtained using both formulations, one can see that more instances
are solved to optimality using the metric formulation. Moreover, the time is around 5 times
less than the one obtained by the multicommodity flow formulation. However, this latter
provides a lower gap. For some instances like those with 9 vertices, 15 demands and
7 vehicles, Gap2 obtained with the multicommodity flow formulation is higher than that
related to the metric one. However, this can be explained by the fact that the upper bound
obtained with the first formulation is quite large.

7 Concluding remarks

In this paper we have introduced a new NP-hard problem calledthe splittable pickup and
delivery problem with reloads. We have proposed two mixed-integer linear programming
formulations for the problem and studied a cutting-plane approach for solving them. We
have identified some valid inequalities. In particular, we have introduced a new family of
constraints which generalizes the so-called arc residual capacity inequalities. As it appears
from the presented computational study, these inequalities are useful for solving the multi-
commodity flow formulation.

Our models can be easily extended to take into account additional constraints such as
time windows and capacity limits on waiting loads. We can also consider different ca-
pacities for the vehicles. To do so, one has to consider binary variables with each vehicle
(instead of integer variables associated with all the vehicles). Some extra work would be
then necessary to extend the inequalities considered in Section 4 to a heterogeneous vehicle
fleet. In this case, different depots for the vehicles can also be considered.

Our approach can be seen as a prospective work in order to develop an efficient algorithm
for solving that problem. It would be interesting to identify further valid inequalities to
strengthenmore both formulations. Moreover,other approachesmerit to be tried for solving
this new problem. In particular, one can consider a column generation approach based on
an arc-path formulation for the problem. Another approach which might be interesting
is a Benders’ decomposition applied to the metric model. Finally, an interesting question
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would be to develop a model for the problem which does not use time indexation. All these
questions are our line for future research work.
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