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1 Introduction

Transportation problems mainly consist of carrying somealeds (e.g., products,
goods, people) from their origin to their destination thgbwa given network. Because
of important economic and ecologic stakes, operationsarebepractitioners have been
giving more and more attention to these problems. Many mtsihave then been intro-
duced in order to match as close as possible the real-wogtications. One of these
variants allows demands to be unloaded and then reloadedén  get better routes for
the vehicles and reduce the total cost. In this paper, weidensuch a variant of the
transportation problem, called the splittable pickup aelivery problem with reloads.

This problem can be stated as follows. Consider a networkifipe: by a set of nodes
that are connected with each other by links. &glbe a distinguished node which represents
thedepot The other nodes are calletbps Suppose also thata set of demands is given, each
demand being specified by an origin stop, a destination sidmasolume. The demands
need to be carried through the network from their origin ®itllestination using vehicles
of a given fleet. The vehicles all have the same transpontaipacity and are available at
the depot.

Every demand can be unloaded (fully or partially) at anyrimtediate stop (i.e., a stop
different from its destination one), and can then be picketater by the same or another
vehicle. This unloading/picking-up process, calleglaad can be repeated several times
for a demand until its destination stop is reached. Moreaxary demand can be splitted
onto different routes and can be carried by several vehidés there is no restriction on
the routes of the vehicles. They can pass by any node or linkaay times as necessary.

With each link of the network is associated a cost that cpords to what must be paid
by a vehicle to use the link once. We suppose that the coss$ystite triangle inequali-
ties and that the reload costs and time are neglected.Spligable Pickup and Delivery
Problem with ReloadéSPDPR) then consists of finding the vehicle routes so th#beal
demands are carried to their destination, a vehicle is nrewenioaded, and the total cost is
minimum.

This problem arises in a wide variety of freight and passetrgasportation systems.
Forinstance, thisis the case in postal services as deddnb@riinert and Sebastian (2000).
They consider a problem encountered by the Deutch Post A imainsportation chain
which can be presented as follows. Mail is first collectedrfroustomers and mailboxes
and is then brought to the nearest Letter Mail Center (LMdJeAbeing sorted, mail is
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Figurel A reload with one vehicle

sent from its origin LMCs to its destination ones. This tiamsation is performed by cars,
trucks, aircrafts or railways. Finally, after another sogtstage, mail is delivered to the
given addresses by postmen. Here, several optimizatidrigres may be considered. In
fact, one has to deal with a capacitated vehicle routing lpral{introduced by Dantzig

and Ramser (1959)), a ground problem which is similar to tRBBR and an arc routing
problem (e.g., Chinese postman problem (Gendreau and teg(i®95)).

The SPDPR can be seen as a relaxation of the standard Picupedimery Problem
(PDP). In fact in the PDP, reloads are not allowed, only ttaple flows for the demands
are permitted and vehicle routes have to be vertex-disgimple walks. (See (Savelsberg
and Sol, 1995) for a thorough description of the PDP.) Assitlated by the two follow-
ing examples, considering the SPDPR instead of the PDP radytéeimportant savings.
The first example shows that allowing reloads tends to bytbeskmited vehicle capacity
whereas in the second one, transporting a demand ontoddiffeaths permits to reduce
the non-used transportation capacity of the vehicle. Ilhbaamples, each edge represents
two opposite links and even if all links are not shown, we édeisa fully-meshed network.
The numbers correspond to the costs associated with thedinit we can deduce the cost
of the missing links by computing the shortest paths betweein endnodes with the costs
provided in the figures. The demands are represented by dast®and there is only one
vehicle available at depob.

We first consider the network given in Figure 1. Suppose ttehave to carry three
demandss, p2 andps. The volume of each demand is equal to the transportaticawiigp
of the vehicle. An optimal solution of the PDP consists oftfireking the vehicle go to
vs Where it loadsps and bring it to its destination;. Then the vehicle goes tg where it
loadspy, conveys it tavg through(vs, vg) and then passes lgys, v1) and arrives ab1 to
start the transportation qf;. Once it has unloadeph at its destinatioms, it goes directly
back to the depot. The associated cost is then 475. Wherdeeloa allowed, an optimal
solution can be as follows. The vehicle starts its route bipgdo v1 where it loadsp;.

It carries it fromo1 to v3 through(v1, v3) and then goes to, to start the transportation
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Figure2 Demand carried on different paths
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of pp. It then arrives at stops where it unload9, and loadsps instead. It then carries
ps from vs to v7 and goes back tos using arc(v7, vs). It continues its trip by reload-
ing p2 and conveying it t@g, and ends by going back t@. The associated costis then 446.

In the second example shown in Figure 2, we consider a veWittea transportation
capacity equal to 3 as well as three demands, each one havoigrae equal to 2. In an
optimal solution of the PDP, the vehicle first goes)iowhere it loadsp;. It conveysp;
from v1 to v and then goes top to load py. It carriesp; to its destination and then goes
to vz to transport the last demand. It loapgsatos, goes taw4 and terminates at the depot.
The associated cost is equal to 1260. For the SPDPR, we @btdieaper solution. The
vehicle starts by passing by where it loadsp;. It then goes t@, where it takes one unit
of p2. At this point, the vehicle is full-loaded. It then goesstpwhere it unloads the unit
of pz and goes t@g Where it unloads the two units gf;. It then returns tw; to achieve
the load ofp, and pass bys to also loadps. It then conveyss from v3 to v4 and goes
tovs to end the transportation @b. The vehicle then returns to the depot. The associated
cost is 880.

Although the SPDPR is a new problem, it is close to other ogttion problems. In
what follows, we present some problems that are similared3RDPR.

Oertel (2000) studied a variant of the PDP where reloadsermaitted on certain nodes
calledhubs This latter implies that vehicle routes are no more vedesjeint simple walks.
Indeed, when a demand is unloaded at a hub, it is then reldpdibé same vehicle (in this
case, its trip is not a simple walk) or by another one (the taugtes are no more vertex-
disjoint.) Oertel used an auxiliary graph in which every lwbplitted into several vertices
to ensure that vehicle routes are vertex-disjoint simpl&svaHe developed a mixed-integer
linear programming model based on this auxiliary graph. lde eonsidered time windows
constraints. The model was then solved using a tabu-seblyatitam. Instances with up
to 40 demands were solved efficiently with this method.

Grinert and Sebastian (2000) modeled the ground transgiporfzroblem which arises
in the transportation chain of the Deutch Post AG that wagipusly described. This prob-
lem is known as the Vehicle and Request Flow Network Desigblem (VRFNDP). This
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problemis closely related to the SPDPR. However, the ralcad only be made on certain
nodes (i.e., hubs). Moreover, each time a vehicle passe$bl,at automatically unloads
all the carried demand. This demand is then unavailabledimrestime that corresponds to
the time needed to sort the demand. Finally, strong time swsttonstraints are taken into
account. Grunert and Sebastian considered a discrete rbasked on time periods. They
used a space-time graph by creating two nodes, one for tkegaction and the other for
the delivery one, for all physical locations at each peribldey gave a mixed-integer linear
programming formulation which is based on two types of corditycflows: the vehicles
and demands. They proposed a modelization for this probldra.VRFNDP differs from
the SPDPR for several reasons. The first problem imposegé#utatvehicle has to be un-
loaded whenever it reaches a hub and considers sorting ticheast at each hub. It also
considers different vehicle types, each one with specifiptiand capacity. It also takes
into account driving costs that are proportionnal to theiedroad and storage cost at any
hub.

The SPDPR can also be considered as a constrained verstua Minimum-Cost Ca-
pacity Installation for Multicommodity network flows (MCLs$tudied by Bienstock et al.
(1995). In fact, transportation capacity of vehicles camegis be brought back to one (by
dividing any demand volume by this capacity) since all theicles have the same capacity.
The SPDPR is then a version of the MCCI in which the chosenditiggmon arcs have to
respect additional constraints in order to form feasiblges for the vehicles.

In the next section, we prove that the SPDPR is NP-hard. We ghe in Section 3
two mixed-integer linear programming formulations for gi@blem which are based on
an auxiliary graph. In section 4, we present some valid iaéiies which may be added in
order to strengthen the associated linear relaxations astwdy their separation problems
in Section 5. We finally describe a branch-and-cut algoritbnsolving these two models
and present some computational results.

The rest of this section is devoted to more definitions anétiari. The graphs we
consider are finite, directed, loopless and connectedGLet (V, A) be a graph wher¥
corresponds to the set of vertices afido the set of arcs. We denote hyits number of
vertices, thatisp = |V|. An arc from vertex to vertexo will be denoted byu, ») and we
will call v its head andi its tail. Forw c V with W # @, we seW = V \ W and we denote
by 6T (W) (resp.5~ (W)) the set of arcs having their tail (resp. headWhand their head
(resp. tail) inW. The union of these two arc sets is denotedB§) = 5~ (W) U 5+ (W).

If W = {u}, we will write 6 (u) (resp. 6~ (u), 5(u)) instead ofs*({u}) (resp. 6~ ({u}),
s({u})). If X is a setz € RX a vector indexed on the elementsXfand X’ C X a subset
of X, then we writez(X") for Z z(x).

xeX’

2 Complexity of the SPDPR

Some notation and a more formal definition of the SPDPR araired) at this point.
To represent the network, we consider a directed g@aph (V, A), calledinitial graph.
Remark tha¥ contains the vertexp which represents the depot of the vehicles. For each
arca € A, letcy € Ry be the cost for a vehicle to use the associated link, and etz
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the time a vehicle needs to go througthWe suppose that the costs satisfy the triangle in-
equalities, thatis, foralli, j), (j, k), (i, k) € A, ¢, jy+C(j,k = Ci,k-. We denote by the
fleet of vehicles and b € Z. their transportation capacity. L& be the set of demands
that have to be carried through the network. With every dedare P, we associate a
triplet (oP, dP, qP) whereoP € V \ {vp} represents its origin stogl® € V \ {vo, 0P} its
destination stop angP € Q. its volume.

Even though the SPDPR is a relaxation of the PDP, it remaif¢éRahard problem as
stated in the following proposition.

Proposition 1 The splittable pickup and delivery problem with reloads B-hard, even
if the initial graph is complete, the costs satisfy the tgminequalities and the fleet is
composed of only one vehicle.

Proof: To prove the statement, we use a reduction from the Hamdtoaircuit problem
in a directed graph. Given a directed grah= (V, A) with V = {v1,...,0n} (SO
V| = n), we construct an instance of the SPDPR as follows. &et= (V/, A) be the
complete directed graph induced By = V U {00}, whereog serves as the depot. We set
P = {(v1,vi,1); i =2,..,n}U{(vi,v1,1); i = 2,..,n}. There is only one vehicle
with a transportation capacity equal to the sum of the vokiofehe demands. The costs
on the arcs oz’ are defined as follows. Forall afc, j) € A\ d(vo), we setc j) = 1

if (i, j) € Aandcg j) is equal to the shortest path (in terms of hopsEifromi to j if
(,]j) & A Forany ardi, j) € d(vg), we setc,jy = n. Itis clear that in this case, the
costs of A’ satisfy the triangle inequalities and for any are A’ \ A, ca > 1. We now
prove that the instandé&’, P) of the SPDPR has a solution of cost less than or equaito 3
if and only if G contains a Hamiltonian circuit.

Given a Hamiltonian circuit of5, we can obtain a solution to the SPDPR. We can
construct a circuit inG’ by adding to the Hamiltonian circuit d& the two arcs(vg, v1)
and(v1, vo). This circuit inG’ can be considered as the route of the vehicle. Moreover,
it obviously implies a feasible solution to the SPDPR sirwe ¢apacity of the vehicle is
equal to the whole demand volume. The cost associated witlsatution corresponds to
the sum of the costs of the arcs of the circui@h that is, 3.

To prove the reverse, assume that we have a solution to th®BPRaving a cost less
than or equal to 8. Without loss of generality, we suppose that there is ncaddan the
solution and all the demands are carried on a single pathis @sumption can be done
because of the property of the vehicle capacity.) From tHinitien of the demand set
P, the vehicle has to pass by the vertiogs. . ., v, at least once and hy at least twice.
Therefore, the vehicle starts its route fram, goes through a walk containing a circuit
spanning the vertices &f and having at least arcs of A’ \ d(vp), and comes back tay.
Since the vehicle uses two arcs incident with the cost of the path id\' \ §(vg) cannot
exceech. Moreover, all the arcs not iA have costs greater than 1. Therefore, the solution
to the SPDPR exists only if the path & \ d(vo) is a circuit passing by each vertex of
V exactly once and using only arcs of cost 1, that is, therésexidamiltonian circuitiis. O]

On the other hand, if there is only one demand, the SPDPR earbh solved in poly-
nomial time since it can be reduced to a sequence of shod#s.p

One should also remark that if a bound on the time, Bays given, knowing if the
problem contains a solution of total time less than or eqodl tthat is the feasibility
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problem of the SPDPR with completion time limit, is also N&¢h The proof is similar to
the previous one. The only difference is that costs are ceplay duration times. (Remark
that since we only consider one vehicle in the proof, thd thieation time of the solution
is equal to the sum of the duration time of the arcs used by¢héie.)

3 Mixed-integer linear programming formulations

Any solution to the SPDPR has to satisfy what we gaéicedence conditionsin
fact, because of the reload policy, part of a demand P may be dropped off at a stop
v € V \ {vo} that is different from its destinatiod® and then picked up later. Therefore,
the vehicle that carries this part pfon the leg started at has to pass by once the part
of the demand is arrived at that is, after the leg ended atis completed. To handle the
precedence conditions, we consider an auxiliary directaplgthat is based on a space-time
graph. (Similar space-time graphs can be found in (Ahuj& £1993) and in (Grunert and
Sebastian, 2000).) In order to have a finite space-time graptihen need to be given a
completion time limitT € Z, that corresponds to the latest time any demanH afrives
at its destination stop. (Remark thiatan be as big as necessary to keep the initial solution
space.)

The time component is introduced because of the reloadslier ¢o ensure that all the
precedence conditions are satisfied. If reloads are notifiednany node of the network
would be visited exactly once. In fact without loss of gelfigrave can consider a complete
directed graph, a cost function satisfying the trianglejinaities and only vertices that are
incident with a demand. In this case, the problem can be fated on the initial graph
by associating with every vertex a time variable which cgpands to the departure time of
the vehicle from the vertex. The remaining precedence ¢mmdi, which impose that the
origin of a demand is visited before its destination by thkieke, can then be formulated
by forcing the departure time, associated with the destinaif any demand, to be greater
than the one associated with the origin of the demand.

3.1 Auxiliary graph

This subsection is devoted to the construction of an auyiimaph, denoted b’ =
(V’, A), from the initial graphG. Since no demand is incident with the depot, no reload
is allowed at the depot and the cost function satisfies thadte inequalities, it is straight-
forward to see that the vehicles do not pass by the depotsnlesn they start or end their
trip. So each vehicle passes tayat most twice. This leads us to separate the depot from
the other vertices in the construction of the auxiliary drap

For each vertexi € V \ {vo}, we associat& + 1 verticesug, Ui, ..., ut in G’. The
vertexu; representsi € V \ {vo} at timet € {0,..., T}. (Note that time is considered
discrete.) We denote this vertex 3&f;. We then consider a first arc set 6f, At =
{(u, ut+1) |u € V \ {vg}, t € {0,..., T — 1}}. An arc of At corresponds to a vehicle
or a demand that stays at a node for one time unit. We also demaisecond arc set
A = {(Ut, witl,,) | (U, w) € A\6(vo), t € {0,..., T—lw,w}}. Anarca = (u, wy) € A
corresponds to a vehicle that goes from venteat timet to vertexw at timet’ with
t" =t +lw,w. The arcs inAr have a zero cost (since we assume that it does not cost
anything to stay at a network node) whereas arease (u;, wy) € A has its cost equal to
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Figure3 Intial graph and its associated auxiliary graph

C(u,w)-

We add two additional vertice® and D that represent the origin and the destination
of the vehicle routes respectively. These two verticesalstcorrespond to the depot in
the initial graph. Without loss of generality, we force diktvehicles of the fleet to start
their routes at time 0 and finish it at tinle (Remark that a vehicle that is not used for
transportation can readd (from O) using only arcs ofA7.) For all verticesu € V \ {vo},
we then add arc€0, up) and(ut, D) both having the same cost and duration time that are
equal to those of the ardsp, u) and(u, vg) in G. Let A° = {(O, up) | u € V \ {vo}}
and AP = {(ur,D) | u € V \ {vo}}. To conclude, we have built an auxiliary graph
G = (V/, A)with V' = Vgt U{O, D} andA’ = At U AU AC U AP,

Figure 3 illustrates the construction of the auxiliary dgr& associated with the initial
graphG = (V, A) givenin Figure 3(a). In this example, we suppose that alathea € A
have a duration timk, equal to one and@ equals two. Starting with an initial graph having
4 vertices and 9 arcs (note that some arcs are bidirectedndiap with an auxiliary graph
that has 11 vertices and 18 arcs.

3.2 Multicommaodity flow based formulation

In our first formulation, we consider a multicommodity flowrepresent the routing of
the demands in the network and a flow to model the routes ofghieles. We then consider
two types of variables that are:

e ye Z'f‘/' wherey, represents the number of vehicles passing ormarcA/,

AUAT|x|P|
R/
+

e Xe wherex® represents the amount of demapdt P carried on the

arcae AU Ar.

For a vertexuy withu € V \ {vp} andt € {0, ..., T}, and ademang € P, the number
bf, defined by
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gP if u=oP andt =0,
bh =1 —qP if u=dPandt =T,
0 otherwise,

represents the supply/demand associated with vertexith respect to demang. We
remark that for a givep € P, there are exactly two vertices 9§ for which bﬂj’t is not null.
These two vertices are associated with the origin nogeaiftime 0 and the destination one
attimeT. The correctness of the definition qut is implied by the equivalence between
demandp (or part of it) staying for some time at a node of the networll arpath using
only arcs of At in G'.

The SPDPR can be formulated as a mixed-integer linear pnmogsang an arc-vertex
based approach (Ahuja et al., 1993) as follows.

min Z CaYa

aeA
S.t.
> ya<IFI, (1)
acA°
Z ya el Z ya = O VD S Vst, (2)
aedt(v) aed~(v)
Z xP — Z x4 = bP Vpe P, Vo e Ve, (3)
aeot(v)\ AP aeo—(v)\ AC
> x{ —Bya<0 Vae A, (4)
peP
x£ >0 Vaec AUAT, VpeP, (5)
Ya>0 vae A, (6)
ya integer Vae A, (7

The objective function states that the vehicle-relateal st must be minimized. (We
remark that this objective function can be easily extenfle@iconsider costs that are pro-
portional to the demand amounts carried on arcs.) Cons{Bjiforces the number of used
vehicles to be at mos$E|. Constraints (2) (resp. (3)) are the flow conservation cairsts
associated with the vehicles (resp. demands). Constrghimpose the amount of the
demands carried on an arc Afto be no more than the total capacity of the vehicles passing
onthis arc. The other constraints are the trivial constsaand the integrity constraints. We
remark that constraints (6) are not necessary since camstcanstraints (4) and (5) already
imply thaty is non negative. This model contgih@l +|P| x (JAl + |AT|) variables and
IVst|(IP] + 1) + |A| + |P| x (JAl + |AT]) + | Al + 1 constraints.

3.3 Metric constraints based formulation

In the formulation given in the previous subsection, we deiee the routing of the
demands even though the value of the objective functiondabends on the vehicle routes
and no additional constraints on the demand routing areideresl. Therefore, it would be
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enough to only focus on determining the vehicle routes thawa feasible routing of the
demands. This can be achieved by considering no other Vesidtany, for alla € A’ and
replacing constraints (3) and (4) by the so-called metritst@ints as described below.

Iri (1971) and Onaga and Kakhuso (1971) independently stidheg the metric con-
straints can be used to check whether or not there exists#feanulticommodity flow in
a graph when demands and arc capacities are given. Thelt, lesown as the Japanese
theorem, can be briefly presented as follows. Get (V, A) be a complete directed graph

andw € R'f' (resp.r € R'f') be the capacity (resp. demand) vector indexed on the arcs

of A. The capacity vectan allows the transportation of the demands éfand only if all
the metric constraints

(w—=r)"z >0 Vr e Met, (8)

are satisfied wherMet, = {z € Rﬁ | mik + wkj — wij > OVi # | # Kk #i}is themetric
cone Clearly, the number of metric constraints is infinite. Hoee those associated with
extreme rays of the metric cone are sufficient to ensure beatapacity vectow allows

the transportation of the demandsrofThese constraints are in exponential number. For
our problem, the metric cone is the one induced by the completph orVst, and capacity
and demand vectors are given by the number of vehicles per arc

400 if ae AT,
wa=1 Ya ifaeA,
0 otherwise

and

[ = q—Bp if a = (Ug, wt) with u = oP andw = dP for somep € P,
271 0 otherwise

foralla € A. (We remark that we could have considered the whole vehiesp( demand)
volumes forthe capacity (resp. demand) vector as well.hgsietric constraints (8) instead
of constraints (3) and (4), we now introduce the followingeier linear formulation for the
SPDPR:

min{ > caya | y satisfies(1), (2), (8), (6), (7)} €)

aeA

This program contains less variables than the first one (i} versus|A’| + |A U
At| x | P]), butit has an exponential number of constraints whereafirgt model contains
a polynomial one. As it will be pointed out in Section 5, thgpemential number of metric
constraints can be tackled in polynomial time.

Furthermore, once we have an optimal solution of (9), deit@ng the routing of the
demands (i.e., the variable§ foralla € AU At and forallp € P in the first formulation)
can be performed in polynomial time. Itis actually nothing & continuous multicommod-
ity flow problem which is a well-known polynomially-solvadbroblem (Ahuja et al., 1993).

The two presented models can be easily extended to a vafidhé SPDPR where
capacity constraints on the demand volume stocked at the siame at any stop of the
network are taken into account. In fact, if we denoteghpyhe maximum waiting load of
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demands allowed at vertexe V, then we only have to add the constraidts,_p x§ <

g, for all a = (ut, uiy1) witht € {0,..., T — 1}, in the multicommodity flow based
formulation. To consider such constraints in the metricstmints based model, we only
have to modify the vectap in the metric inequalities. In fact, we replace the infinépacity
associated with the arcs éfr by wa = % foralla = (ui, ugr1) witht € {0, ..., T — 1}.

4 Formulation strengthening

We now present four families of constraints we will use in algorithm to strengthten
the linear relaxations. The first one can be used by both rsodieéreas the second and
the third ones are based on the flow variables associatedhégtiemands (i.e., variables
X) and then cannot be used in the metric constraints basedifation. The last family of
constraints is a strengthened formulation of the metricstraints (8), so it is only used in
the metric constraint based formulation. The way to hanidjerahmically these families
of constraints will be discussed in Section 5.

4.1 Cut Constraints

In this part, we introduce constraints known as cut constsaihat we will use in
our branch-and-cut algorithm to strengthen both lineaaxations of the SPDPR. These
constraints have been already considered in various agtion problems. (See (Bienstock
et al., 1995), (Barahona, 1996) for instance.) They aredbasehe notion of cuts i'.
For a vertex subs&V c Vs, W # @, let us denote bg [W, Vs \ W] the total volume of
the demands o having their origin vertex inW and their destination one st \ W.

Proposition 2 Let W C Vsi, W # @ induce a cutt (W) so thatét (W) N At = @. Then

the cut constraint
yEHW)) [

is valid for the SPDPR.

Proof: The constrainBy(s+(W)) > gq[W, Vst \ W] is obviously valid for the SPDPR. In
fact, it expresses the fact that the whole vehicle capaéityearcs of5* (W) must exceed
the whole demand frofV to Vst \ W. Sincey is integer, dividing the two members of this
inequality byB and rounding-up the right-hand side yields (10). O

q[W, Vst \ W] —‘ (10)

B

We remark that only cuts that do not interségt are considered because capacity con-
straints do not apply for these arcs. (In the first formulatithere are no constraints (4)
associated with the arcs @éfr, and in the second one, we consider an infinite capacity on
them.) This comes directly from the fact that any demand éot of it) can stay without
any conditions at any node of the network.

4.2 Extended Arc Residual Capacity Constraints

The extended arc residual capacity constraints are us@etgthen the linear relaxation
of the arc-vertex based formulation. They cannot be useth®ometric constraints based
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formulation since they are defined with respect to variakleSince they are an extension
of the arc residual capacity constraints, we begin thisgragh by presenting the so-called
arc residual capacity constraints that were first introdilmeMagnanti et al. (1993). These
are in fact a special case of the mixed-integer roundingtcaimsés (Nemhauser and Wolsey,
1990).

For a given seK C P, the total volume of the demangise K is equal toq(K) =
ZpeK gP. Letyx = (Lgﬁ andrk = (q(K) mod B). By convention, we setx equal to
B if q(K) is a multiple ofB (i.e.,rk € ]0, B].) We first state that the arc residual capacity
constraints are valid for our problem. We omit the proof siitds similar to the one given
by Magnanti et al. (1993) when they introduced those inetiesl

Proposition 3 Let K C P and ac A. The arc residual capacity constraint

> X —rk ya < 7k = D(B —rk) (11)
peK
is valid for SPDPR. O

In what follows, we give an example of a violated arc residiagiacity constraint. Sup-
pose that we have two demands which have respectively valghe- 6 andg? = 12,
and that the vehicle capaci®is equal to 10 Lefy, X) be a fractional solution satisfying
(1)-(6) so that there exis® € A with xa, = gP for p = 1,2 andyy = 1.8. There
exists an arc residual capacity constraint defined on tha’astich is violated by(y, X).
Indeed, if we consider the demand get= P, we haveyx = 2 andrk = 8, and then the
constraintimplies that we must have8 > (6+12) — (2—1)(10—8) = 16, thatisyy > 2.

We now introduce the extended arc residual capacity cdnsiraFor this, we first
present some notation. For a giveére {0, ..., T — 1}, we defineV? = {u; € Vst | U €
V\ {00}, t = ¢} andA? = 5t (V#) N A. V% corresponds to the vertices df\ {vo} at time
¢ and A? corresponds to the arcs 8f\ d(vo) that begin at date.

Proposition4 Let K C P, ¢ € {0,...,T — 1} and X C A?. Then the extended arc
residual capacity constraint

DO xE =1k D ya< (k = DB —rk) (12)

peK aeX aeX
is valid for SPDPR.

Proof: We first remark that the auxiliary graph has no backward aha, is, it does not
contain any arqu, w) with u € V%, w < V% andg¢, < ¢1. Sincexd < qP for all
a e AU Ar, the constramﬁaeﬁ(w) x5 < qP holds forall¢ € {0,...,T — 1} and
forall p e P. Let¢ € {0,. — 1}, K C PandX C A?. We can easily show that
constraint (11) is dominated by the sum of the constraiits x x¥ < qPforall p e K
(resp. constraints (4) for all arc iX) if >, x Ya > yk (resp. D acx Ya < vk — 1))
Therefore, the extended arc residual capacity constréif)sare valid for the SPDPRL]
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4.3 Rounded Metric Constraints

The metric constraints (8) can be strengthened. Indeebeifrietric coefficientz,
of the constraint are rational for al € A, sincew is by definition rational (because of
B € Z*t andy is integer),w" z is rational and we can then consider the rounded metric
constraint

w' > (rTﬂ (13)

which is also valid for SPDPR. Similar constraints have hesad (Bienstock et al., 1995)
for solving the minimum cost capacity installation for medtmmodity network flows. We
point out that the cut constraints (10) correspond to a@aer case of the rounded metric
constraints.

5 Separation

One of the most important parts of an efficient branch-analgaorithm is the so-called
separation problem that can be described as follows. Givematraint systenAx < b
based ofR" and a poink of R", theseparation problerassociated with this system consists
of deciding whether all the constraints of the system aiisféad byx and if not, of finding
a constraint violated by. Grotschel, Lovasz and Schrijver (1985) have shown thdttaf t
separation problem of a constraint systém < b can be solved in polynomial time, then
any optimization problem over this system can also be sadlvglynomial time, even if
the number of constraints is exponential.

In this section, we consider the separation problems foirtegqualities presented in
the previous section. The solutions we consider in the sd¢iparproblems are the vectors
y € RIA1 for the metric constraints based formulation and the veafgrx) € RIAT x

RIAJATIXIPI for the multicommodity flow formulation that we obtain afteaving solved
the current linear relaxation.

5.1 Separation of the metric constraints

The separation problem for metric constraints (8) can beesbin polynomial time. In
fact, it can be reduced to the following linear program:

min(w — r)T7r
s.t.
n € Met,,

whereMet,, w andr are defined as in §3.3. Let* be an optimal solution of this linear
program. If the objective value associated with is negative, then the metric constraint
(w —r)Tz* > 0is violated byy. Otherwise, we can assert thasatisfies all the metric
constraints.
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5.2 Separation of the rounded metric constraints

The separation algorithm for the rounded metric constsgibB) is a heuristic based on
the one developed by Bienstock et al. (1995). Each time atédimetric (8) is found, we
search among the metric coefficiemts, a € A, the one with the smallest positive value,
sayno, and we then check if all the valu%% forall a € A are integer. If this is the case,
then we have found a stronger violated rounded metric caimsfif not, we keep the initial
metric constraint (8) we have found. This heuristic is therf@grmed in linear time.

5.3 Separation of the cut constraints

The separation problem associated with the cut constréiffsis NP-hard in general
(Bienstock et al., 1995). Therefore, we have developedistig to separate the cut con-
straints. In what follows, we describe three separationibtcs that are based on previous
works ((Bienstock et al., 1995), (Gabrel et al., 1999)). Wa these heuristics to space-
time graph. In the description of those heuristdswill always represent a vertex subset
of Vst so thatst (W) N At = 0.

The first one is the so-called n-cut heuristic that was deesddby Bienstock et al.
(1995) for the MCCI. This heuristic works as follows. For atgmandp € P, we check
whether there exists a path fromﬁ to dTp (these two vertices correspond to the orighat
time 0 and the destinatich® at timeT of the demand) in the auxiliary graptG’ where
we only consider the arc sétr U {a € A|Y¥a > 0}. Obviously, this can be performed
using any search algorithm. If there is no such a path, irégitforward that there exists
a violated constraint (10). This constraint is actuallyuodd by a vertex setV so that
o) € W, df € Vst \ W and the vertices o¥s; that are reachable from{ belong tow.
(6T (W) N At = @ is guaranteed because all the arcé\gfare considered.) If a path from
og to dTp is found for all the demandp € P, we then randomly pick out some vertices of
Vst to form a seWand we check if the cut constraint associated Witlis violated or not.
Since the complexity of a search algorithm ist{| A U At|) and we need to perform it
|D| times, the complexity of this heuristic is (| D||AU At]).

The second heuristic is based on the so-called n-partiganistic devised by Bienstock
etal. (1995). We only consider the case n=2 since we seeéteiblcut constraints (10).
We start with a randomly chosen demapde P and the two vertex subsets b,

Vi ={of|t=0,...,T}andVo = {d° |t = 0,..., T}. We then iteratively assign
the vertices ofVst \ (V1 U Vo) to eitherVy or V> as described below. (At the end of the
heuristic, we will consider the cut constraintinduced®y= V1.) Ateach iteration, we ran-
domly select a verted € V \ {vg, 0P, dP} that has not been considered yet. Then, we only

focus onthe vertexs&t UVoU{u; [t =0, ..., T} and assign verticesi; |t =0, ..., T}
either toV; or V», the assignment of the vertices of the two latter sets remgiimchanged.
The assignment of the verticgs; |t = O,..., T} is performed in order to obtain new

setsVy andV; so thaté™ (V1) N At = @ andy(6T (V1) N6~ (Vo)) — [q[V1, V2] /B] is
minimum. This can be done by enumerating and testing all dssiple assignments of
vertices{o; |t =0, ..., T} since there only exist + 2 feasible ones with respect to the
conditiond™ (V1) N At = @. Once all the vertices of \ {vg, oP, dP} have been considered,
we check whether the cut constraint inducedMy= V; is violated. This heuristic works
in O(AU At|) time.
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The last heuristic is an extension of the one developed byébabal. (1999) for the
exact solution of multicommodity network optimization ptems with general step cost
functions. Given a demanp € P, let W be a randomly chosen set so tluﬁte W and
d¥ € Vst \ W. This heuristic consists of iteratively switching vertc@xcepb! andd,”
forallt =0,...,T)in betweerW andVst \ W in order to increase the value of the ratio
p(W) = [g[W, Vst \ W] /B] /¥(6+(W)). This process stops when no switching increases
the ratiop(W). To find the switching, we compute for each vertex V \ {vg, oP, dP}
that has not been considered yet the val(e) that corresponds to the assignment of the
verticesu; forallt =0, ..., T to the subset®/ andVst \ W that maximizep(W). (The
assignment of the other vertices does not change.) Agaere thnly existT + 2 feasible
assignments which respect the conditbn(W) N Ar = @#. We then only modify the
assignment of the verticds; |t =0, ..., T} associated with the vertexfor which o (u)
is maximum. We repeat this process until all the vertice¥ of {vg, oP, dP} have been
considered. At this point, we obtain the new sul¥etThe computation of this new subset
can be performed iO(|V||]A U Ar]) time. At the end of the heuristic, we check if the
cut constraint induced by the obtained ¥éts violated. In our experiments, each time the
algorithm is applied, up to ten random initial vertex subs#tare tried and the final result
is taken to be the best over the 10 locally optimal subsetsdoiVe apply this algorithm
for all the demandp € P.

5.4 Separation of the extended arc residual capacity camgs

We presentin this section the separation routine we usgtrate the extended residual
capacity constraints. Since this separation routine isthas the separation algorithm of
the arc residual capacity constraints, we first presengtigisrithm.

The separation problem for the arc residual capacity caimifr (11) can be solved in
polynomialtime. Atamtirk et Rajan (2002) showed that thEasation problem on each arc
can be solved iO(|P|). Foragivenar@a e A, letD = {pe P | X} > qP(Ya — LY}
They showed that if a constraint of type (11) associated aiitta is violated by(y, X) for
ademand séf C P, then there exists a violated one for the demanddsetherefore, the
separation problem consists of checking for allare A whether the associated constraint
is violated for the demand s&t or not. This can be easily performed in linear time.

The separation problem of the extended arc residual cgpewitstraints (12) can be
decomposed int® independent problems, each one defined by a valago, ..., T —1}.
The complexity of this separation problem for a given vajubas not been stated yet.
Nevertheless, if the arc st C A? is fixed, the separation problem is the same as the one
for the arc residual capacity constraints (11). The diffieeeis that in this case, the det
is definedaD = {(pe P | D cx Xk > 0P acx Ya — [Dacx Yal))- So, when the arc
setX is fixed, the extended arc residual capacity constraintbeaseparated i®(| P|).

Foreveryp € {0, ..., T —1}, instead of devising a heuristic to separate all the exténde
arc residual capacity constraints, we only separate cainssr(12) associated with one arc
of A?, two arcs ofA?, all the arcs ofA? but one, and all the arcs &% but two. (We
can remark that the heuristic also separates the arc résigpacity inequalities which are
a particular case of the extended arc residual capacityuslggs when|X| = 1.) The
complexity of the separation routine is &(|P| Z;;& |A?|(|A?| + 1)) since there are
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% unordered pairs, a’ € A? for a giveng € {0,..., T — 1}.

6 Computational results

This section is devoted to the experiments we have doneve sed SPDPR, based on
the foregoing theorical developments. Our aim is not towaia the cost savings (and the
additional computational time) implied by consideringoeds in the splittable pickup and
delivery problem. This was actually addressed briefly initheduction. Moreover for a
variant with time windows, Mitrovi¢-Mini¢ and and Laper(2006) empirically showed the
usefulness of the reloads in demand transportation. Oynrgseris more to provide a basic
frame for further researches, and give lower bounds to ctieekfficiency of heuristics de-
veloped for the problem. We begin this section by preseritiadpranch-and-cut algorithm
we use to solve the two formulations introduced in Section 3.

For the first formulation, the linear program we start witkésnposed of the constraints
(1)-(6) together with the cut constraints implied by ves8mfV, that is,

K
Y@+ ({Uo, U, ..., ur))) > [%W (14)
if there existsK C P so thatu = oP forall p € K, and
K
Y@ (Ve \ {Uo, Uy, ., UT)) = [%)1 (15)

if there existK C P sothatu = dP forall p € K. For the metric constraints based model,
the initial linear program is given by the constraints (2), (6), (14) and (15).

For the multicommodity flow formulation, the optimal soleni of the relaxation is fea-
sible forthe SPDPR if it is an integral vector. Usually, tieéusion is not feasible, and thus,
in each iteration of the branch-and-cut algoritm, it is resagy to generate further inequal-
ities that are valid for the SPDPR but violated by the cursatition. For this, one has to
solve the separation problems introduced in Section 5. €paration is first performed on
the cut constraints (10) using the three heuristics desdriim the previous section and if
none is found, then we separate the extended arc residuaticpmequalities (12).

For the metric constraints based formulation, the optirohltion of the relaxation has
to be an integral vector that satisfies all the metric coigsan order to be a feasible solu-
tion for SPDPR. So, at each iteration, we first separate theanstraints (10). If no such
violated inequality is found, then we separate in an exagtthva metric constraints (8). If
a violated metric constraint is found, the separation probassociated with the rounded
metric constraints (13) is then performed in order to stthag this inequality.

The branch-and-cut algorithm was implemented in C++, usi@iN-BCP (Lougee-
Heimer, 2003) to manage the branch-and-cuttree and CplgX9DG CPLEX, 2003) as a
LP-solver for all the linear programs except the linearxatéon of the second formulation
that is solved using COIN-CLP (Lougee-Heimer, 2003). It tested on a Pentium IV 3.2
Ghz with 1GB of RAM, running under Linux. We fixed the maximuRCtime to 5 hours.
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For our tests, we considered random instances. These aregdtby complete directed
graphs which come from the TSP Library (Reinelt, 1991). Theaosts are equal to
rounded-up Euclidian distances. For each graph, threerdiit demand sets of sizes 5,
10 and 15 are randomly generated so that the volume of eachrakism betwee /4 and
3B/4. (Remember thaB denotes the transportation capacity of the vehicles.)

The instances are created in order to be feasible with réespagiven completion time
limit T. To do so, we set the duration times to 1 for all the arcs. Twessfor the fleet are

considered;|F| = L(Tlipl)/zj and|F| = L(T'_ipll)/zj + 2. Both values ensure that we have

enough vehicles to carry all the demands. In fact, each leehan carry at Ieas[[TT_lj
demands. Indeed, each vehicle starts from the depot anddgeetly to the origin of the
first demand it will be carrying. For each demapaf the LTT‘H demands, the vehicle
only carries it on the ar¢oP, dP). Once the vehicle has reached the destination of the
demandp, it goes to the origin of the next demamtthrough ar(dP, oP). The vehicle
ends its route at the depot. (Remark that this solution isiféasince the volume of each
demand is less than the transportation capacity of the le=hithe graph is complete and
the duration times are all equal to 1.) All considered ins&mrare then feasible. For all the
test problems, the completion time linTitis fixed to 7.

In the following tables, the entries are:

« |V|: the number of vertices of the initial graph,

* |P] : the number of demands,

* |F]| : the number of vehicles,

« NC : the number of generated violated cut constraints (10),

« NRM : the number of generated violated rounded metric gaids (13),

« NM : the number of generated violated metric constrain}s (8

< NE : the number of generated violated extended arc resgdymcity constraints (12),
 0/p: the number of problems solved to optimality over thember of instances tested,

« Gapl: the relative error between the best upper bound fitimal value if the prob-
lem has been solved to optimality) and the lower bound obthiefore considering
cutting planes that strengthen the linear relaxation,

* Gap2: the relative error between the best upper bound aldwer bound achieved
by the cutting plane phase at the root node (before branghing

* CPU : the total CPU time in seconds.

Each line of the tables reports the average results obtdoretiree instances, all of
them having the same number of vertices, demands and vehidhe three instances only
differ by the coordinates of vertices, and for every demdaydits origin, destination and
volume. Both formulations were run on the same test problems

Each test instance was first transformed into an instandeeimxiliary graph as de-
scribed in Section 3. In consequence, an initial graph liprinertices gives rise to an
auxiliary graph with & + 2 vertices and 8% + 2n arcs. This transformation leads to mixed-
integer linear programs having eithem%+ 2n variables for the metric constraints based
formulation or(|P| + 1) x 5n? + 2n variables for the multicommodity flow model.
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Tablel Results obtained with the multicommodity flow formulation

VI P |FI NC NE o/p Gapl Gap2 CPU
6 5 2 17.33 733.00 3/3 17.26 1.69 1.02
6 5 4 24.00 988.00 3/3 1881 2.09 1.36
6 10 4 85.33 2261.66 3/3 1382 1.64 42.86
6 10 6 96.00 3222.00 3/3 14.29 159 47.23
6 15 5 238.66 7103.00 3/3 13.35 4.16 362.11
6 15 7 24200 7062.33 3/3 15.17 4.74 656.95
7 5 2 10433 4977.66 3/3 33.24 20.72 64.05
7 5 4 38.00 2061.33 3/3 1546 321 4.81
7 10 4 22166 6582.00 3/3 17.17 544 208.24
7 10 6 84.00 3602.33 3/3 1257 0.09 36.05
7 15 5 965.66 17662.66 3/3 17.59 8.75 5174.03
7 15 7 1292.66 17883.33 3/3 16.87 9.12 7313.39
8 5 2 103.00 3703.33 3/3 1980 6.99 34.74
8 5 4 87.33 4960.66 3/3 20.03 6.49 33.66
8 10 4 34433 9581.00 3/3 17.73 4.09 673.36
8 10 6 278.33 8175.66 3/3 16.75 3.83 647.17
8 15 5 143233 17653.33 2/3 18.24 579 9162.24
8 15 7 1447.00 2064566 2/3 21.32 8.48 13587.84
9 5 2 39.00 5498.66 3/3 1335 2.99 27.52
9 5 4 79.00 6973.33 3/3 16.93 4.05 62.16
9 10 4 550.66 12309.33 3/3 18.34 3.77 2179.85
9 10 6 78533 17228.00 3/3 13.68 3.94 4952.95
9 15 5 1056.66 17126.66 0/3 32.71 25.16 18000.00
9 15 7 144766 19059.66 O0/3 32.40 22.42 18000.00

10 5 2 146.33 8985.00 3/3 16.71 7.59 152.38

10 5 4 14933 7220.66 3/3 16.77 7.96 562.95

10 10 4 2125.33 23081.00 1/3 26.10 11.99 13025.04

10 10 6 1571.66 29175.66 2/3 20.89 10.92 14093.96

10 15 5 1681.33 22241.00 0/3 38.57 28.37 18000.00

10 15 7 1907.33 27872.00 0/3 26.10 15.09 18000.00
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Table2 Results obtained with the metric constraints based fortimula

V] |P| |F| NC NRM NM of/p Gapl Gap2 CPU
6 5 2 17.66 0.00 0.00 3/3 17.26 1.82 0.24
6 5 4 34.33 0.66 0.00 3/3 1881 2.76 0.96
6 10 4 76.00 433 0.00 3/3 1382 1.70 3.95
6 10 6 106.00 10.33 0.00 3/3 14.29 2.02 4.88
6 15 5 213.33 29.33 0.00 3/3 1335 4.39 26.74
6 15 7 271.33 60.00 0.00 3/3 1517 5.21 51.99
7 5 2 304.33 1.66 0.00 3/3 33.24 20.89 36.39
7 5 4 61.33 0.00 0.00 3/3 1546 3.21 2.85
7 10 4 28466 23.00 0.00 3/3 17.17 5.49 29.78
7 10 6 60.00 400 0.00 3/3 1257 0.19 1.43
7 15 5 1580.00 179.00 0.33 3/3 17.59 9.17 1620.19
7 15 7 1785.00 166.33 0.00 3/3 16.87 9.44 2176.62
8 5 2 121.33 1.00 0.00 3/3 19.80 7.00 6.90
8 5 4 187.66 0.66 0.00 3/3 20.03 6.50 16.69
8 10 4 440.00 21.33 0.00 3/3 17.73 4.13 120.67
8 10 6 436.33 31.66 0.00 3/3 16.75 4.43 129.39
8 15 5 3110.66 210.33 0.33 3/3 17.89 6.39 3073.67
8 15 7 171933 75.33 0.00 3/3 16.80 3.70 846.76
9 5 2 155.66 1.66 0.00 3/3 13.35 2.99 15.55
9 5 4  218.33 9.33 0.00 3/3 16.93 4.06 46.83
9 10 4 388.33 15.00 0.00 3/3 18.34 3.64 108.95
9 10 6 1072.00 31.00 0.00 3/3 13.68 3.94 2125.72
9 15 5 3488.00 364.00 0.66 1/3 16.90 8.24 14947.41
9 15 7 3098.33 226.33 166 3/3 14.60 2.43 5980.95
10 5 2 173.00 266 0.00 3/3 16.71 7.63 79.13
10 5 4  304.00 7.33 0.00 3/3 16.77 8.18 224.40
10 10 4 2582.66 50.33 0.00 3/3 20.38 4.85 6580.89
10 10 6 2314.66 71.00 0.00 3/3 16.52 5.94 6329.88
10 15 5 6105.66 151.33 0.00 1/3 20.83 8.04 14565.66
10 15 7 5038.66 228.00 0.33 0/3 26.30 16.01 18000.00

Table 1 gives the results obtained using the multicommdbiity model. We remark
that almost all the instances with 5 or 10 demands have bdeedsto optimality except
3 of them. For the instances with 15 demands, our brancheahdlgorithm could solve
problems with up to 7 vertices. However, for bigger instantiee problem appeared harder
to solve. In fact, only two thirds of the instances having 8iges (and 15 demands) could
be solved. Moreover, no instances with 9 vertices and more saved.

We can also remark that our branch-and-cut algorithm geéeeealot of cut constraints
(10) (up to 2125) and a huge number of extended arc residpatis inequalities (12) (up
to 29175). We can also observe that Gap2 is quite small fot ofdke instances. More-
over, this gap is much smaller than Gap1, which shows thahgdie violated inequalities
significantly strengthened the linear relaxation.

Table 2 reports the results obtained using the metric caimésrbased formulation. We
remark that for instances with 9 vertices or less, all protdéave been solved to optimality
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except 2 of them. We can also note that for all the test ingsmdgth up to 10 vertices and
10 demands, we could get the optimal solution. However, fordrtices and 15 demands,
only one instance over six has been solved. This can be eegdldy the fact that the
problem becomes harder when the size of the problem incsedsareover, we believe that
the most decisive parameter is the number of demands. Indsedtcan be seen in Table
2, the instances with 15 demands needed at least twice tleerdiquired for solving the
same instances but with only 10 demands. One should alsdhmaitéhe rounded metric
constraints (13) play an important role in the resolutiomlbthe instances.

However, the algorithm does not generate a lot of metricuiadiies (8). This is because
in most of the cases, a violated metric inequality is extende rounded metric one using
our separation algorithm. This shows at the same time tleateparation heuristic we have
for the rounded metric inequalities (13) is quite efficiee also notice that the algorithm
generates an important number of cut inequalities (10)alRinas for the multicommodity
flow formulation, Gap2 is much smaller than Gapl. The roundettic constraints (13)
and the cut constraints (10) are thus very effective in therawement of the lower bound.

Comparing the results obtained using both formulations,aam see that more instances
are solved to optimality using the metric formulation. Mover, the time is around 5 times
less than the one obtained by the multicommaodity flow forrioa However, this latter
provides a lower gap. For some instances like those with fces; 15 demands and
7 vehicles, Gap2 obtained with the multicommodity flow fotation is higher than that
related to the metric one. However, this can be explainedhéydct that the upper bound
obtained with the first formulation is quite large.

7 Concluding remarks

Inthis paperwe have introduced a new NP-hard problem ctikedplittable pickup and
delivery problem with reloads. We have proposed two mixgeger linear programming
formulations for the problem and studied a cutting-plangrapch for solving them. We
have identified some valid inequalities. In particular, veednintroduced a new family of
constraints which generalizes the so-called arc residacity inequalities. As it appears
from the presented computational study, these inequaétie useful for solving the multi-
commaodity flow formulation.

Our models can be easily extended to take into account addltconstraints such as
time windows and capacity limits on waiting loads. We camalensider different ca-
pacities for the vehicles. To do so, one has to consider piveriables with each vehicle
(instead of integer variables associated with all the yeb)c Some extra work would be
then necessary to extend the inequalities considered tio8ekto a heterogeneous vehicle
fleet. In this case, different depots for the vehicles can bésconsidered.

Ourapproach can be seen as a prospective work in order tiogeareefficient algorithm
for solving that problem. It would be interesting to idewtflirther valid inequalities to
strengthen more both formulations. Moreover, other apglieameritto be tried for solving
this new problem. In particular, one can consider a columregaion approach based on
an arc-path formulation for the problem. Another approadticlv might be interesting
is a Benders’ decomposition applied to the metric modelaljyinan interesting question
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would be to develop a model for the problem which does notioseihdexation. All these
questions are our line for future research work.
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