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Abstract

Given an undirected networ = (V, E), a vector of nonnegative integers= (r(v) : v € V)
associated with the nodes@fand weights on the edges®f the survivable network design problem
is to determine a minimum-weight subnetwork®fsuch that between every two nodesv of V,
there are at least min{u), r (v)} edge-disjoint paths. In this paper we study the polytope associated
with the solutions to that problem. We show that when the underlying network is series—parallel and
r(v) is even for allv € V, the polytope is completely described by the trivial constraints and the
so-called cut constraints. As a consequence, we obtain a polynomial time algorithm for the survivable
network design problem in that class of networks. This generalizes and unifies known results in the
literature. We also obtain a linear description of the polyhedron associated with the problem in the
same class of networks when the use of more than one copy of an edge is allowed.
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1. Introduction

Satisfying a suitable degree of survivability has become a major objective in the design of
telecommunication networks. Survivable networks must fulfill some connectivity require-
ments that ensure connections between parts of the network, that is, networks that are still
functional after the failure of certain links. This can be, for instance, realized by considering
a sufficient number of links between every pair of nodes of the network. However, with the
use of fiber-optic technology, this would be costly, which yields the need to design minimum
cost networks which are survivable.

As fiber-optic cables provide a high transmission capacity and can thus carry substantially
more traffic than traditional copper cables, telecommunication networks tend to be sparse.
In this case, the failure of a single (or more) link might be of heavy consequences if
the network does not provide alternative paths for routing. This leads to the problem of
designing minimum-cost telecommunication networks with high reliability level, namely
with sufficient routing paths between each pair of nodes.

More precisely, letG = (V, E) be an undirected network. If we associate with each
nodei of G aconnectivity type (i) € Z. representing the importance of communication
from and to node, thenG is said to besurvivable(with respect to the connectivity types
(r@) :i e V))ifithasatleast(i, j) = min{r (i), r(j)} edge-disjoint paths between every
pair of nodes andj.

Given a networlG = (V, E) with weights v (e) : e € E) onits edges, and a connectivity
type vector £(i) : i € V), thesurvivable network design problefBNDP) is to determine
a survivable subnetwork @ (with respect ta) whose total weight is minimum.

In this paper we study the SNDP from a polyhedral point of view. We give a com-
plete description of the polytope associated with the solutions to that problem when the
underlying network is series—parallel and the connectivity types are all even. As a conse-
quence, we obtain a polynomial time (cutting plane) algorithm for the SNDP in that class
of graphs. To the best of our knowledge, this is the first polynomial time algorithm for the
SNDP in that class of graphs. We also obtain a linear description of the polyhedron asso-
ciated with the SNDP, in the same class of graphs, when multiple copies of an edge may
be used.

1.1. Complexity and heuristics

The SNDP is NP-hard in general. It includes as special cases a number of well-known
NP-hard combinatorial optimization problems such as the Steiner tree prob{eme(

{0, 1}, for all i € V) and thek-edge connected network problen(i) =k, for all i € V),
wherek is a fixed positive integer.

The SNDP was shown to be polynomially solvable in some particular casegs) # 1
foralli € vV, the SNDP is nothing but the minimum spanning tree problem which is well
known to be polynomially solvable. And if the weights are restricted to be 1, Chou and
Frank[10] gave a polynomial algorithm to solve the problem wi@&may contain parallel
edges, and(i) > 2 for alli € V. Chou and Frank also studied a similar probldr] when
no parallel edges but additional nodes are allowed. Winter gave linear time algorithms
for the SNDP withr (i) € {0, 2} for all i € V, in series—parallel grapt43] and Halin
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graphg42]. (A Halin graph is a graph that is planar and can be drawn in the plane as a tree
without nodes of degree 2 plus one cycle connecting all leaves of the tree.)

As the SNDP is NP-hard, a considerable amount of research has been conducted into
the design of heuristic algorithni84,37,39] Steiglitz et al[39] have proposed a heuristic
based on local search for the general model. Further heuristics were given by Ko and
Monma[34] for thek-edge connected subgraph problem and by Monma and Shall8/@ss
for the SNDP where (i) € {1, 2} foralli € V.

1.2. Approximation algorithms

In the design of approximation algorithms for the SNDP, one often specifies the con-
nectivity requirements by giving the minimum numbg¢S) of edges crossing each cut
J(S) with § € V. For these very general versions of the SNDP, sometimes also called the
generalized Steiner network probletwo variants may be considered: one in which the use
of multiple copies of an edge is allowed, and one in which this is forbidden.

For the latter case, Williamson et §1] (see alsd22]) gave a polynomial time Znax-
approximation algorithm when the functibis proper andfmax=max{ 1 (S) : S € V}isthe
maximum requirement. (A functidns properiff(V)=0, f(S)= f(V\S) foreachS C V
(symmetry), andf (A U B) < max{ f(A), f(B)} wheneveA andB are disjoint (maximal-
ity).) In [25], Goemans et al. improved this by presenting an apprOX|mation algorithm with
a performance guarantee o#2 fmax) where# (fmax) =1+ 3 -|— 4. .+ L isthe
harmonic function. And when the functidrs weakly supermodular Ja[BZ] proposed a
factor 2 approximation algorithm. (A functidris weakly supermodular if (V) = 0 and
for everyA, B C V atleast one of the following holdg:(A) + f(B) < f(A\B) + f(B\A)
or f(A)+ f(B)Sf(ANB) + f(BUA).)

For the problem in which a solution may include multiple copies of an edge,
Goemans and Bertsim§iz4] gave a mif2.# (rmax), 2q }-approximation algorithm for the
SNDP whereq denotes the number of distinct connectivity requirement values. Using a
primal-dual approach, Agrawal et 2] obtained a 2 logrmax-approximation algorithm
for the SNDP, and Goemans and Williamd@6] devised a 27 ( fmax) -approximation al-
gorithm for the multiple-copy generalized Steiner network problem with arbitrary proper
function. Recently, Aggarwal and Gaid] improved this result by giving a 2 lgg-
approximation algorithm for the SNDP wheckeis the number of nodes € V with
r(v) > 0.

Many variants of the SNDP have been given particular attention and have been extensively
investigated. For a complete survey of the SNDP,[3&¢(see alsd40]).

1.3. Formulation

Let G = (V, E) be a graph and ¢ ZK be a connectivity type vector associated
with the nodes olV. For W C V, let r(W)= max{r(i) : i € W} and conW) =min
{r(W),r(VAW)}. r(W) will be called theconnectivity typeof W. We notice that is a
nondecreasing function, thatrisatisfies'(X) <r(Y) forall X C Y C V.

If W C V, the set of edges having exactly one nod&ifis called acutand denoted by
O(W). If W = {v} then we writed(v) for 6({v}).
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The SNDP is equivalent to the following integer linear program:

Min Z w(e)x(e)

ecE
x(e)>0 foralle € E, (1.1)
x(e)<1 foralle € E, 1.2)
x(O(W))=conW) foral WV, 0#£#W#V, (1.3)
x(e) €{0,1} foralleckE. (1.4)

Inequalities (1.1) and (1.2) are calléivial inequalitiesand inequalities (1.3) are called
cut inequalities

Let SNDP@G,r) be the convex hull of the solutions of (1.1)—(1.4). SNBP} will be
called thesurvivable network polytopef G.

The separation problem for the cut inequalities (i.e., the problem that consists in deciding
whether or nota given vectore R” satisfies (1.3) and if notin finding a violated inequality
(1.3)) can be solved in polynomial time using a polynomial time max-flow algofiti921].

Hence from27], this implies that the SNDP can be solved in polynomial time in the class
of networksG where SNDPG,r) is completely described by inequalities (1.1)—(1.3). In
this paper we show that series—parallel networks belong to that class of networks when the
connectivity types are all even. This was an open question, posed first by Pullejgsink

and partially proved in some special capg47,18,35]

1.4. The polytope SNDP(G,r)

The polytope SNDRG,r) has been the subject of substantial research in the past decade.
Grotschel and Monm#28] considered a more general model where node connectivity
conditions are added to the problem. They gave an integer programming formulation of the
model and describe basic facets. Grotschel €08130] studied further families of valid
inequalities along with experiment results for both the lew) € {0, 1, 2}, for all i € V)
and the high connectivity cases. A complete survey of the polyhedral aspects of this model
can be found if29,40]

The polytope SNDRg,r) has been extensively investigated when the requirements are
uniform, that isr(i) = k for all i € V. In this case, the SNDP reduces to the problem
of designing a minimum-weight-edge connected network. Grétschel and Mor2&#]

(see alsd30]) showed that the so-called partition inequalities together with the trivial
inequalities suffice to describe SNOF() whenr(i) =1 for alli € V. Barahona and
Mahjoub[5] characterized the SND8(r) whenG is a Halin graph and (i) = 2 for all

i € V.Boyd and Hag6] studied a general class of facets for the SN@R{() whenr (i) =2

for all i € V. Mahjoub[35] showed that whe is series—parallel andi) = 2 for alli

V, the SNDPG;r) is given by the trivial and the cut inequalities. Baiou and Mahjpib
generalized this to the case whet@) < {0, 2} for all i € V. And recently Didi Biha
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and MahjoulJ18] extended this to the case where {0, k}" andk is even. The purpose

of this paper is to generalize these results on series—parallel graphs to the case where
r(i) is even for alli € V. The proofs presented in those papers cannot, unfortunately,
be easily extended. Many new developments have been necessary to handle this more
general case.

Chopra[7] studied the SNDP when(i) = k for all i € V and multiple copies of an
edge are allowed, and he characterized the associated polyhe@tom) for outerplanar
graphs wherk is odd. (A graph is outerplanar if it can be drawn in the plane as one cycle
with noncrossing chords.) The polyhedr8iiG, r) was previously studied by Cornuéjols
et al.[12]. They showed that when the graph is series—parallek-é&nd=k for alli € V
and even,P(G, r) is completely described by the nonnegative inequalities and the cut
inequalities. Baioli3] showed that this also holdsrifi) € {0, 2} for all i € V. Didi Biha
and Mahjoub[17] gave a complete description &f(G, r) whenG is series—parallel and
r(i) =k for alli € V wherekis arbitrary.

The polytope SNDRg,r) whenr(i) € {0,1} for all i € V is closely related to the
Steiner tree polytope, the extreme points of which are the incidence vectors of the Steiner
trees ofG. During the last two decades, extensive research has been done on this polytope
[8,9,16,23,36] Chopra and Raf8,9] described several classes of facets for the dominant
of the Steiner tree polytope in both the directed and undirected cases. Didi Bih§léf al.
studied further facets of this polyhedron. Margot ef26] gave an extended formulation for
the Steiner tree problem and showed that it is a complete linear description of the associated
polytope when the graph is a 2-tree (i.e., a maximal series—parallel graph). Go@3lans
discussed an extended formulation of the Steiner tree problem and characterized the associ-
ated polytope when the underlying graph is series—parallel. He also described some classes
of facets of the Steiner tree polytope.

The node version of the SNDP has also been investigated. Here, the problem is to de-
termine a minimum-weight subgraph such that between every two repded V there
are at least mifr (s), r ()} node-disjoint paths. Grotschel and Monf@8] described sev-
eral classes of facets of the polytope associated with that problem. For more details on
that model se§?29,40] Coullard et al[13-15]studied the Steiner 2-node connected sub-
graph problem, that is when(v) € {0, 2} for all v € V. In [13] they described the as-
sociated polytope for series—parallel graphdg.14 they gave a linear time algorithm for
that problem on Halin graphs and the graphs noncontractibi&tdthe wheel on five
nodes). If15] they described the dominant of that polytope for the graphs noncontractible
to Wy.

1.5. Contents of the paper

The paper is organized as follows. In the next section we give a complete description
of the polytope SNDRg,r) whenG is series—parallel andi) is even for alli € V. This
is a consequence of a series of claims whose proofs are given in Section 3. In Section 4
we characterize the polyhedrdhG, r) in the same class of graphs whe() is even for
all i € vV but multiple copies of edges are allowed. In Section 5 we give some concluding
remarks.
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1.6. Definitions and notations

In the rest of this section, we give more definitions and notations.

The graphs we consider are finite, undirected, connected and may have multiple edges.
Given anode subsé@t C V, we letG (W) (resp.E(W)) denote the subgraph Gf(resp. the
edge subset db) induced byV. If W1, W> are disjoint subsets &f, then [W1,W>] denotes
the set of edges having one nodé#ha and the other iriW,. If uandv are two nodes, then
we write[u, v] for [{u}, {v}]. If G = (V, E) thenW denotesV\W. If F C E is a subset of
edges, thelV (F) denotes the set of nodes inducedry

A graph G is said to becontractibleto a graphH, if H may be obtained frons by
a sequence of elementary removals and contractions of edges. A contraction consists of
identifying a pair of adjacent vertices and of preserving all other vertices as well as all other
adjacencies between vertices. Contracting a set of efigest consists of contracting all
the edges oF. Note that contraction preserves connectivity.

Given a constraintx > «, a € RE, and a solution:*, we will say thatux > o is tight for
x*ifax* =o.

2. The SNDP(G,r) on series—parallel graphs

A homeomorptof K4 is a graph obtained fromk 4 (the complete graph on four nodes)
when its edges are subdivided into paths by inserting new nodes. A graph isseaies-
parallel if it contains no homeomorph a4 as a subgraph.

Series—parallel graphs have the following propeft2€g.

Lemma 1. If G=(V, E) isaconnected series—parallel graph wjth| > 3,then G contains
a node that is adjacent to at most two nodes

Lemma 2. If G is a series—parallel graph contractible to a graph then H is series—
parallel.

Throughout we consider agraph=(V, E) and letr € ZK be a connectivity type vector.
We shall suppose that there are at least two nodes having maximum connectivity types. Note
that the SNDP can always be reduced to this case. From this assumption, it follows that

con(v) =r(v) forallveV. (2.1)
Moreover we have the following properties which will be frequently used in the paper.

Lemma 3. Let W be a node subset of V
(i) If Wy, Waisapartition of W(thatisWiNWo=@ andW1UWo=W) andr(W1) <r(W2),
thencon(W) <con(Wo).
(i) Letv e WandW’ = W\{v}.
Q) If r(v) > r(W’), thencon(W’) = r(W’).
(2) If r(W) <r(v), thencon(W’) = r(v).
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Proof. (i) First note that as(W1) <r (W) andW1, W» is a partition oW, we have- (W) =
r(W2). Moreover,

con(W) = min{r(W), r(W)}
= min{r(Wy), r(W)}
< min{r(Wa), r(W2)}
=con(Wa).

(i) (1) Asv € W', r(v) <r(W). Sincer (v) > r(W'), itthen follows that (W) > r(W').
Therefore cotW’) = r(W).

(2) As (W) < r(v), we have that(W') = r(v). Moreover asG contains at least two
nodes of maximum connectivity types, it also follows tH&tcontains at least one node of
maximum connectivity type, and hencé¥’) > r(v). Thus comW/) =r(). O

If F C E is an edge subset inducing a connected subgra@) tifenG/F = (V’, E’)
will denote the subgraph obtained by contractihgndr» will denote the vector oZ_‘f
such thatp(w)=con(V (F))andrr(i)=r(i)if i € V'\{w}, wherewis the node that arises
from the contraction of. Let Q(G, r) be the polytope given by the inequalities (1.1)—(1.3).
In what follows we are going to show that@ is series—parallel and(i) is even for all
i € V,then SNDPG,r) = Q(G, r). To this end, we first discuss some structural properties
of the polytopeQ (G, r).

2.1. Structural properties of Q(G,r)
Let x be a solution ofQ (G, r). We have the following lemmas.

Lemma 4. LetG =(V, E) be agraph and € Z}i. Let F C E be an edge subset of E that

induces a connected subgraph of G. ket R\ be the restriction of x o\ F. Thenx’
is a solution ofQ(G/F, rF).

Proof. Easy. [

Now we introduce two properties which will be useful throughout the paper. Two subsets
X, Y C V are said to béntersectingf none of X\'Y, Y\ X andX NY is empty. Moreover
if X andY are intersecting and U Y # V then they are said to le¥ossing

Lemma 5. Letd(W1) andd(W>) be two cuts tight for x such tha¥; and W» are crossing
and (W1 N Wa) < min{r(W1\W2),r(W2\W1)}. Then
(a) conWy) =con(Wi\Wy),
con(Wz) = con(W2\Wy).
(b) d(W1\W2) ando(Wo\W1) are tight for x and
x[Wy N Wa, Wi UW5,]=0.
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Proof. (a) Asr(Wi N Wa) < r(W1\W>), by Lemma 3 (i) it follows that cofiv1) <con
(W1\Wo). Also asr(W1 N Wa) < r(Wo\W1) andW1 D Wo\ Wy, sincer is increasing with
respect to inclusion, we havéW; N W) <r(W1). SinceWi\Wo = (Wy N Wo) U W1,
by Lemma 3 (i) it also follows that caiV;\ W2) = con(W1\ W) <con(W1) = con(Wy).
Therefore cofiWy) = con(Wy\ Wo).

Similarly we can show that c@iz) = con(W2\ Wy).

(b) From (a), we have

con(W1\ W) + con(W2\W1) = con(Wy) + con(W>)
=x(0(W1)) + x(6(W2))
=x(0(W1\W2)) + x(6(W2\W1))

+2x[W1 N W2, Wi U Wol.
By inequalities (1.1) and (1.3), this implies that

x(0(W1\Wp)) = con(W1\ W),

x(0(W2\W1)) = con(W2\W1),

x[W1 N Wa, Wp U W>,] =0. O

Lemma 6. Suppose that x is an extreme point®fG, r). If u, v are two nodes of Ghen
[u, v] contains at most one edge with fractional value

Proof. The lemma holds vacuouslyl|ifu, v]| = 1. Suppose thafu, v]| > 2, and that there
are two edgesy, ¢ such that O< x(e1) <1 and O< x(e2) < 1. Letx’ € RE such that

x(e) +¢ if e=eq,
xX'(e)=1{x(e)—¢ if e=eo,
x(e) if e e E\{e1, ez},

for ¢ # 0 arbitrarily small. Since any cut @ either containgu, v], or does not intersect
this set, all cuts that are tight farare also tight fox’. As x’(e) is integer ifx(e) is also for
e € E\{e1, ez}, this implies that every inequality @@ (G, r) that is satisfied with equality
by X, is also satisfied with equality by . But this contradicts the extremality gf [

Lemma 7. Suppose that(e) >0 for all e € E. If (W) is a cut tight for x then G (W)
and G (W) are both connected

Proof. Suppose for instance th&t (W) is not connected. Lew?!, w2 be a partition
of W such that{fw!, W2]=¢. SinceG is connected, it follows thatw?*, W] ¢ and
[W?2, W]+ @. From the hypothesis, we then have

x[WY, W]>0, x[W? W]>0. (2.2)
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In addition, sinced(W) is tight forx andx (e) > 0 for alle € E, we must have caiv) > 0.
Thus at least one of the subsé¥d, W2 has a positive connectivity type. Without loss of
generality, we may suppose thaW?!) > 0 andr(W?2) <r(W1). Hence by Lemma 3 (i)

con(W)<con(W?h). (2.3)
As (W1 is a cut ofG, we have
x(S(Wh) = x[WL, W]=con(wh. (2.4)
Consequently, by (2.2) and (2.4), we obtain that
con(W) = x(6(W))
= x[WL, W]+ x[W2, W]
> con(Wb),
contradicting (2.3). O

2.2. The SNDP(G,r) on series—parallel graphs
We now state the main result of the paper.

Theorem 8. If G = (V, E) is series—parallel and (i) is even for alli € V, thenSNDP
(Grr) = Q(G, r).

Proof. The proof is by induction ofE]|. It is not hard to see that the statement holds for
any graph with no more than two edges. Suppose it holds for any series—parallel graph with
no more thamm edges, and suppose thatcontains exactlyn+1 edges. We may suppose
thatG is connected. In fact, i& has only one component with positive connectivity, then
the polytope reduces to the one associated with that component. And if this is not the case,
then both polytopes are empty and the theorem trivially holds.

Now letus assume that, onthe contrary, SNGP = O (G, r).As SNDPG,r) C Q(G, r)
and any integer solution @ (G, r) is a solution of SNDRG,r), there must exist a fractional
extreme poink € R of Q(G, r). From the induction hypothesis, it follows that

x(e)>0 foralle € E. (2.5)

Let E1 be the set of edgaese E such thatx(e) = 1. Asx is an extreme point 0 (G, r),
it then follows that there exists a family of cut&(W;) : i =1, ..., s} such thatx is the
unique solution of the system

x(e)=1 foralle € E1,
x(0(W;)) =con(W;) fori=1,...,s5,

where|E| = |E1] + s.
The proof of the theorem proceeds by successively establishing the following sequences
of claims that build on each other. For the sake of clarity, their proofs are deferred.

(2.6)
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Claim 1. Letd(W) be a cuttight for x. Then systei6)can be chosen so thatitw;),i
{1, ..., s},issuchthatW an®; are crossingthenr (WNW;) > min{r (W\W;), r(W;\W)}
andr(W\W;) > min{r(W N W;), r(WU W)}

Claim 2. Each variablex(f) has a nonzero coefficient in at least two equations of
systen(2.6).

Claim 3. G contains no node having less than two neighbors

SinceG is series—parallel and contains at least three nodes, by Lemma 1 together with
Claim 3, there must exist a nodéhat is adjacent to exactly two nodes v,. Let Fy (resp.
F>) be the set of edges betweerand vy (resp.vz). Without loss of generality, we may
suppose that(F1) > x(F2).

Claim 4. There exists a cui(W) tight for x such thab € W, F1 € §(W), |[W|>2 and
W|>2.

By Claim 4, there must exist a ctitW), tight for x, such thatF; € 6(W) and, without
loss of generalityp € W. In consequence we may suppose tha@l(W)) = con(W) is
a constraint of system (2.6). Furthermore, by (2.5) together with Lemn@a(W,) and
G (W) are both connected, and thBs € E(W). For the rest of the proof we suppose that
system (2.6) verifies Claim 1 with respectib We also make the following hypothesis:

H1. 6(W) is chosen such that(W\{v}) is minimum among all the cut$(Z) of
system (2.6) satisfying1 C 6(Z) andF> C E(Z), i.e.,r(Z\{v}) =r(W\{v}).

Let W = W\{v} (seeFig. 1).
Claim 5. r(v) > r(W’).
Claim 6. The equation:(6(v)) = r(v) does not belong to systg@.6).
Claim 7. x(F1) — x(F2) <r(v) — r(W").

Now by Claims 2 and 6 together with Lemma 7, there exists a &0¥;,) of
system (2.6) such that, € 6(W;,) and F1 € E(W,,). Note thatv € W;,. We claim

w W

Fig. 1.
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that cor{W;,) <con(W’). To prove this, we first assume thét,, < W’. Sincer is a
nondecreasing function, we have thaWio)gr(W’) andr(v) <r(Wy,). As by Claim 5
r(v) > r(W’), it follows thatr(W;,) > r(W,-O). Note also that by Claim 5 together with
Lemma 3 (ii) (1), we have that c6W’) =r(W’). Thus, cotiW;,) = min{r (W;,), r(W;,)} =
r(Wi,) <r(W') = con(W’). Now suppose thaW;, N W # @ and coriW;,) > con(W’).
We claim that-(W\W;,) <r(W U W,,). In fact, if this is not the case, then we would have
r(W\W;,) = r(W;,) <r(W’). Moreover by Claim 5 together with Lemma 3 (ii) (1), we
also have co(W’) = r(W’). Therefore, we would obtain coW;,) = con(W,,) <r(W;,) =
r(W\W;,) <r(W’) = con(W’), a contradiction. A& € W N W;,, and by Claim 5r(v) >
r(W"),we also have (W\W,,) <r(W’') <r(v) <r(W N W;,). Consequently;(W\W,,) <
min{r(W U W), r(WNW;,)}.As system (2.6) verifies Claim 1 with respect¥gNandW;,
are then noncrossing, and thus eitigy € W or W € W;,. As F1 € E(W;,)\E(W) and
F> € E(W)\E(W;,), this is impossible. Therefore, cOf;,) <con(W’) <r(W') <r(v)
by Claim 5. Sincev € W, it then follows that cotW;,) = r(W,-O) <r(v). Let Wl.’0 =
Wi, \{v}. By Lemma 3 (ii) (2) with respect t&;, andv, it follows that cor(Wl/O) =r(v).
As conW’) = r(W’), by Claim 5 we then have

X(0(Wp)) = x(0(Wig)) — x(F2) + x(F1)
= con(Wjy) — x(F2) + x(F1)
<con(W') — x(F2) + x(F1)
=r(W') = x(F2) + x(F1).

This together with Claim 7 imply that

X(OWp) <r(Wh +r@) —r(W
<r(v)
= con(Wj).

a contradiction, which completes the proof of our theoreif.

Thus by Theorem 8, the trivial and cut inequalities suffice to describe the polytope
SNDPG@G, r) if Gis series—parallel and(v) is even for allv € V. As the separation prob-
lem for constraints (1.3) can be solved in polynomial time using any polynomial max-flow
algorithm, an immediate consequence of Theorem 8 is the following.

Corollary 9. The SNDP can be solved in polynomial time in series—parallel graphs if the
connectivity types are all even
3. Proofs of the claims

In order to allow a better understanding and readability of the proof of Theorem 8, we

have presented it without giving the proofs of the various used claims. This section is thus
devoted to prove these claims.



194 H. Kerivin, A.R. Mahjoub / Discrete Mathematics 290 (2005) 183-210

Throughout this section, and as it has been considered in the proof of Theoxemill8,
denote a fractional extreme point 6f(G, r), which is a unique solution of system (2.6),
and which, by (2.5), has all its values positive. Moreover, we haveGhat(V, E) is a
connected graph and, by the induction hypothegig;’, r) is integral for any graplt’
having less edges th&a

Claim 1. Letdé(W) be a cuttight for x. Then systgf6)can be chosen so thatifw;), i
{1, ..., s},issuchthatW ant®V; are crossingthenr(WNW;) > min{r (W\W;), r(W;\W)}
andr(W\W;) > min{r(W N W;), r(W U W)}

Proof. Firstof all, note that we may assume théé(W)) =con(W) is one of the equations
of system (2.6). Now suppose for instance th@a/ N W;) < min{r(W\W;), r(W;\W)}.
By Lemma 5, we have that the cutéW\ W;) ando(W;\ W) are tight forx, and

con(W) = con(W\W,),
con(W;) = con(W;\W),
x[WNW;, WUW;]=0.
Thus,
x(0(W;)) = x(0(W\W;)) + x(6(W;\W)) — x(d(W)).
In consequence, the equatio (W;)) =con(W;) is redundant with respect to the equalities
x(6(W)) = con(W),
x(6(Wj\W)) = con(W;\W),
x(3(W\W;)) = con(W\W,).

One may then replace in system (24&)(W;)) = con(W;) by the last two equations and
get a system still havingas a unique solution. Moreover, clearly one can extract from this
new system a (nonsingular) system Bf| + s equations. ASV\W; € W andW;\W C W,

the statement follows. [

Claim 2. Each variablex(f) has a nonzero coefficient in at least two equations of
systen(2.6).

Proof. Itis clear thate (/) must have a nonzero coefficient in at least one of the equations
of system (2.6). For otherwise, one can increasg€) and obtain a solution still satisfying
system (2.6), which is impossible.

Now let us suppose that for an edge= uv, x(f) has a nonzero coefficient in ex-
actly one equation of system (2.6). Let (2.6¢ the system obtained from (2.6) by delet-
ing this equation as well as the equation@) = 1 wheree € [u, v]. Note that none
of the variablesx(e¢), ¢ € [u, v] is involved in system (2.6) Let F = [u, v]. Let x’
be the restriction ok on E\F. By Lemma 4,x’ € Q(G/F, rr). Furthermorex’ is a
solution of system (2.6) Since system (2.6)s nonsingular and every equation of this
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system comes from a constraint@{ G/ F, rr), this implies that’ is an extreme point of
Q(G/F.rp).

We claim thatx’ is fractional. Indeed az is a fractional solution of a system whose
right-hand side is integer and all the coefficients are either 0 arriyst have at least
two fractional components. Since, by Lemma[®,v] may have at most one edge with
fractional value, this implies that is fractional. As by Lemma 25/ F is series—parallel,
this contradicts the induction hypothesig.]

Claim 3. G contains no node having less than two neighbors

Proof. Assume, on the contrary, that such a node,gag V, exists. AsG is connected,
vo has then only one neighbor, sayFrom Lemma 7, there doesn't exist a d4#) tight
for x such thatfu, vg] € (W), vg € W and|W|>2. Moreover the cub(vo) (=[u, vo])
does not belong to system (2.6). In fact, singe) > 0 for all e € [u, vo], this is clear if
r(vg) = 0. So assume thatvg) > 0. Obviously we have (vg) <|[u, vo]| since otherwise,
both polytopesQ (G, r) and SNDPG, r) would be empty. As(vg) (=con(vg)) is inte-
ger, Lemma 6 implies thdt:, vg] € E1. If r(vo) < |[u, voll|, then clearly the constraint
x(0(vo)) =con(vg) cannot be tight fox. If r(vg) = |[u, vol|, thenx(d(vg)) = con(vp) is
redundant with respect to the equatiofe) = 1 for all e € [u, vo]. Consequently, the vari-
ablex(e), e € [u, vo], may have at most one nonzero coefficient in system (2.6), which
contradicts Claim 2. [

For the rest of the claims, we need the following lemmas.
Lemma 10. |V| >4.

Proof. By Claim 3 we haveV|>3. So suppose thaV | = 3. Let F’ = [v1, v2] (seeFig. 2).
Without loss of generality, we may assume that there is an eddg,dafay f1, such

that O< x(f1) < 1. By Claim 2,x(f1) has a nonzero coefficient in at least two equations

of system (2.6). Thug(v) andd(vy) are both tight forx, (v) > 0, andr(v1) > 0. As by

Lemma 6,F; contains at most one edge with fractional value, there must exist two edges

f2 € F> and f’ € F’ such that O< x(f2) <1 and O< x(f’) < 1. Moreover, these should

Fig. 2.
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be the only edges df, and F’ that are fractional. Thus
x(0(v)) = x(F1) + x(F2)
=|F1| =1+ |F2 =1+ x(f1) +x(f2)
=con(v).
As x(f1) + x(f2) =1, this yields
x(0(v)) = |F1| + | F2| — 1. (3.1)
Similarly, we obtain
x(0(v1) =|F1| +|F'| = 1
=con(vy). (3.2)

Now by interchanging’; and f>, we deduce thai(vy) is also tight forx andr (v2) > 0. We
then get along the same line

x(0(v2)) =|F|+|F'| -1
=con(vy). (3.3)

Now asr(u) is even for allu € {v, vy, v2}, it follows from (3.1) and (3.2) thatF»| and
|F’| have the same parity. However by (3.3) this implies that(egnis odd, a
contradiction. [J

Lemma 11. If F1 C E1,thenthe equation induced byv) does not belong to systg16).

Proof. Assume thak(e¢) = 1 for alle € F; andx(5(v)) = con(v) appear in system (2.6).
We have

x(0(v)) =x(F1) + x(F2)
= con(v)

and by Lemma 6, it then follows that, € E;. SinceE1 is maximal, this implies that
x(0(v)) = con(v) is redundant with respect to the equatiatie) = 1 for all e € 6(v), and
hence cannot be among the equations of system (28).

Lemma 12. If the equation induced b§(v) does not appear in syste(8.6), then there
exists a cub(W;,), i1 € {1,..., s}, such thatFy C 6(W;,) and the inequality induced by
the cut(6(W;,)\ F1) U F> is not tight for x

Proof. Assume that the result does not hold. Let={i € {1, ..., s} : F1 C 6(W;)}. Since
the equation induced by(v) does not belong to system (2.6), from Lemma 7, we obtain
that Fo N o(W;) =@ for all i € 1. Without loss of generality, we may suppose that W;
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and thugW;|>2 for alli € I1. Then the subset of edgé®(W;)\ F1) U F» corresponds to
the cut induced bw;\{v}, i.e.,

(O(W)\F1) U F2 = d(W;\{v}).
By the assumption that the result is not true, we have
x(6(Wi\{v})) = con(W;\{v})
=x(6(W)) — x(F1) + x(F2)
=con(W;) — x(F1) + x(F2)
foralli € I1, and thus
x(F1) — x(F2) = con(W;) — con(W;\{v}). (3.4)

Now let (2.6) be the system obtained from (2.6) by replacing each’¢Wt) by the cut
d(W;\{v}) for all i € I, and deleting the equationge) =1, for alle € F; N E1. We
notice that if the equation induced Ib; \ {v} already belongs to system (2.6), we only have
to delete the equation(é(W;)) = con(W;). Clearly system (2.6)does not contain any
equation involving edges afy. Let x* be the restriction ok on E\ F;. Obviously,x* is
a (fractional) solution of system (2:6)Moreover the graplt;/ Fy is series—parallel with
fewer edges. Thus, by the induction hypothegi§G/ F1, rr,) is integer. In consequence,
as all the equations of system (2.@orresponds to constraints 6f(G/Fy, rr,), there
exists an integer solution® of Q(G/Fi, rr,) Which is at the same time a solution of
system (2.6). We shall consider two cases.

Casel:x(e) =1foralle € Fy.As, by (3.4)x(F1) — x(F») is integer, and by Lemma 6,
F> can have at most one fractional edge, it follows th@) =1 for alle € F». Lety € RE
be the solution given by

y*(e) if e € E\F1,
y(e ={ _
1 if e e Fy.

We will show thaty satisfies system (2.6). In fact, it is clear tyaatisfies the equations of
system (2.6) corresponding to trivial constraints and cuts not contaifiifgow leto(W;),

i € I, be a cut of system (2.6) containirig. Without loss of generality, we may suppose
thatv € W;. Thus, by the remarks abov&W; \{v}) is tight forx, and in consequence, the
equationx (o(W;\{v})) = con(W;\{v}) would belong to system (2.6and hence be tight
for y*. Thus

y(OW) = y*(6(Wi\{v}) + y(F1) — y*(F2)
=con(W;\{v}) + y(F1) — y(F2)
= con(W;\{v}) + x(F1) — x(F2)
=con(W;),

where the last equation follows from (3.4). Her@éV; ) is tight fory.
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Case2: There is an edg¢, € F1 with 0 < x(f1) < 1. Asx(F1) — x(F») is integer, by
Lemma 6, there must exist exactly one egiges F> with 0 < x(f2) < 1 andx(f2) =x(f1).
We also have (F1) — x(F») = |F1| — | F2|. Lety € RE such that

y*(e) if e € E\Fy,
ye)=11 if e € F1\{f1},
yi(fo) if e= fi.

Clearly,y satisfies the trivial equations of system (2.6) as well as the cut const@ai#i;3
with F1 N o(W;) = 0. If Fy € 6(W;) with i € I; (and without loss of generality, e W;),
theno(W;\{v}) is a cut of system (2.6)and thusy* (6(W;)\{v}) = con(W;\{v}). Therefore

y(O(Wp) = y* (6(Wi\{v}) — y*(F2) + y(F1)
=con(W;\{v}) — y*(F2) + y(F1)
=con(Wi\{v}) — (1F2l = 14+ y"(f2) + (|1F1l = 1+ y*(f2))
=con(W;\{v}) — [F2| + | F1]
= con(W;\{v}) — x(F2) + x(F1)
=con(W;).
And henced(W;) is tight fory.
Thus in both casegis a solution of system (2.6). As # x this is a contradiction. [J

C_Iaim 4. There exists a cul(W) tight for x such thaty € W, F; € §(W), |W|>2 and
[W|=>2.

Proof. Assume the contrary. We shall consider two cases.

Casel: x(e) = 1 for all e € F;. By Lemma 11 the equation(é(v)) = con(v) can-
not belong to system (2.6). The hypothesis that the claim is false together with Claim 2
imply thatd(v1) is a cut of system (2.6) that contais. Moreover, it is the only cut of
system (2.6) containingy. Let F' = [v1, V\{v, v1}] (se€Fig. 3). Thenx (6(V\{v, v1})) =
x(F2) + x(F") = con(V\{v, v1}). Sincex(F1) > x(F2) andx(d(v1)) = x(F1) + x(F') =
con(vy), we then have

con(V\{v, v1}) <con(vy). (3.5)

Fi

Fig. 3.
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By (2.1) we have cofv1) = r(v1). Thus by inequality (3.5) we obtain thatv;) > min
{r(), r(V\{v, vih}.

(a) We claim that (v) =r(v1) > r(V\{v, v1}). In fact suppose that(v) <r(V\{v, v1}).
Thenr(vy) > r(v) andr(vy) <r(V\{v, v1}). Infact, ifr (v1) > r(V\{v, v1}) we then deduce
thatr(v1) > r(u) for all u € V\{v1} which contradicts the fact th& contains at least two
nodes of maximum connectivity type. This implies that GoR{v, v1}) = r(v1) = con(vy),
and hence

x(0(V\{v, v1})) = x(F2) + x(F")
=x(0(v1)) — x(F1) + x(F2)
= con(v1) — x(F1) + x(F2)
=con(V\{v, v1})
= con(vy).

In consequence(F1) <x(F2). As x(F1) > x(F2), we then have that(F;) = x(F2) and
therefore the cub(V\{v, v1}) is tight for x. As d(v1) is the only cut containing; in
system (2.6), this contradicts Lemma 12. Ths) > r(V\{v, v1}). SinceG contains at
least two nodes of maximum connectivity type, we also hdve) = r (v).

(b) By Claim 2, there must exist a ciitW>») in system (2.6) such tha C 6(W>). Itis
clear thatF; N 6(W») = @. For otherwised(W>) would be the cub(v). But asF, C Ej,
this contradicts Lemma 11. Without loss of generality, we may supposeztaiV,. Let
F| = [v1, Wa\{v, v1}], F} = [v1, W2l and F" = [Wa, W2\{v, v1}] (Se€Fig. 4).

For the remainder of the proof for Case 1, as by Lemma ¥ (;> 4, we shall suppose
thatWs # V\{v, v1}, that isW\{v, v1} # @. If Wo = V\{v, v1}, the proof is similar (by
settingx (Fy) = x(F") = 0). Sinced(v1) andd(W>) are tight forx and corfvy) = r(v1) we
have that

x(F1) + x(Fy) + x(F3) = r(v1), (3.6)
and

x(Fp) + x(F}) + x(F") = con(Wa). (3.7)

v —
" Wo \ {v,vi}
W,
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As by (a),v andv1 have maximum connectivity types, it follows that €@y U {v}) =r (v1).
Thus

X(0(W2 U {v}) = x(F1) + x(Fp) + x(F")
=con(Wa U {v})
=r(vy).
By (3.6), this yields
x(F")=x(Fy). (3.8)
Moreover, from (a) we also have con\{v, v1}) >con(W>). Consequently,
2(O(V\{v, va})) = x(F2) + x(F]) + x(Fy)
= con(V\{v, v1})
=con(Wa),

which by (3.7) implies thak (F”) <x(Fj). By (3.8) we then obtain that(F") = x(F).
Thus equation (3.6) can also be written as

X(F1) +x(Fp) +x(F") = r(v1). (3.9)
By combining (3.7) and (3.9) we get
x(F1) — x(F2) =r(v1) — con(W2). (3.10)
Therefore
con(V\{v, v1}) <x(d(V\{v, v1}))
=x(F2) + x(F')
=x(6(v1) — x(F1) + x(F2)
=r(vy) — x(F1) + x(F2)
= con(W2)
<con(V\{v, v1}),

where the last equation comes from (3.10). Thug#@an=con(V\{v, v1}) andd(V\{v, v1})
is tight for x. Since the only cut containing in system (2.6) i9(v1), we obtain a contra-
diction to Lemma 12.

Case2: There exists an edgf € F; such that O< x(f1) < 1. Then from Lemma 6, it
follows thatx(e) =1foralle € F1\{f1}. Moreover, by Claim 2 together with the hypothesis
that the claim does not hold, the cadte) ando(v1) must be tight foxx and in system (2.6).
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(a) We claim thatc (Fy) > x(F2). In fact, suppose not, thatig F1) = x(F2). Asd(v) is
tight for x, we have

x(8(v)) = con(v)
= x(F1) + x(F2)
=2x(F1)
=2(1F1] = 1) + 2x(f1).

However, as & x(f1) <1, 2(|F1] — 1) + 2x(f1) cannot be even, a contradiction.

(b) Next we show that(v) =r(v1) > r(V\{v, v1}). Indeed, sincé(v1) is tight forx and
thereforex(F1) + x(F’) = con(vy) where, we recallF’ = [v1, V\{v, v1}], by (a) we have
thatx (F2) +x(F’) < con(vy). Asx (3(V\{v, v1})) =x(F2) +x(F") >con(V\{v, v1}), and
by (2.1) conrfv1) = r(v1) we get

con(V\{v, v1}) <con(vy) =r(vy).

Thusr(vy) > min{r (V\{v, v1}), max{r(v), r(v1)}}, and hence (v1) > r(V\{v, v1}). AsG
contains at least two nodes of maximum connectivity type;) must be equal te(v) and
thus the Case 2 (b) follows.

Now from (b) together with (2.1) it follows that cémy ) = con(v). As é(v) andd(v1) are
tight for xand hence (Fy1) + x(F2) = con(v) andx(F1) + x(F") = con(v1), we obtain that

x(F2) = x(F). (3.11)

Moreover, asf; has a fractional value antiv) is tight, there must exist an edge, sy

of F» such that O< x(f2) < 1. Thus by Claim 2 there must exist in system (2.6) two cuts
containingf, and hencd’. We may then consider again the éuW>) introduced in Case

1 (b). Suppose thab € W, and letF;, F, andF" be as defined in Case 1. Suppose also that
W2 # V\{v, v1} (the case wher@, = V\{v, v1} is similar). We claim that (F;) =x(F").

In fact aso(v) ando(W>) are tight forx, Egs. (3.6) and (3.7) hold. Now by considering the
cutso(Wo U {v}) ando(V\{v, v1}) we get

x(F1) + x(F") + x(F3) =con(Wp U {v})
and
x(F2) + x(F5) + x(Fy) =con(V\{v, v1}).

As by (b),v andv; have maximum connectivity types, it follows that ¢oW»> U {v}) =r (v1)
and coriV\{v, v1}) = r(V\{v, v1}). Hence

X(F1) + x(F") + x(Fp) >r(v), (3.12)
X(F2) + x(Fp) + x(F) Zr(V\{v, v1}). (3.13)

From (3.6) and (3.12), it follows that(F;) <x(F"). And, as by (b),r(V\{v, v1})
>r(W2) = con(Wy), (3.7) and (3.13) yieldv(F;) >x(F"). Thereforex(F;)) = x(F").
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Consequently,
x(0(W2)) = x(F2) + x(Fp) + x(F")
= x(F2) + x(F3) + x(Fy)
=x(F2) +x(F').
By (3.11) we then have
x(6(W2)) = 2x(F2)
=2(1F2| =1 + 2x(f2)
= con(Wy).

Since 0< x(f2) <1, 2| F2| — 1) + 2x( f2) cannot be even. But this contradicts the fact that
con(Wo) is even, which ends the proof of our claim[J

For the proof of the next claim we need the following.

Lemma 13. For any cutd(Z) in system(2.6) such thatF; € 6(Z) and F» C E(Z), we
havex(Fy) — x(F2) <con(Z) — con(Z\{v}).

Proof. Sinced(Z) is tight forx and{v, v2} € Z, we have
x(0(2)) = x(Fy) + x[Z\{v}, Z]
=con(z2).
Moreover we have
X((Z\{v}) = x(F2) + x[Z\{v}, Z]
= con(Z\{v}).
We thus deduce (F1) — x(F2) <con(Z) —con(Z\{v}). O

Claim 5. r(v) > r(W’).

Proof. Supposer(v) <r(W’). Thusr(W) = r(W’) and hence cai)<con(W’). By
Lemma 13, it then follows that (F1) <x(F»). As x(F1) > x(F»), we then obtain that
x(F1) = x(F2) and confW) = con(W’). Now we claim that the equation(é(v)) = r(v)
does not belong to system (2.6). (Note that by (2.1) (epe- r(v).) Indeed, suppose the
contrary. Since

x(8(W)) = x(F1) + x[W', W] = con(W) = con(W), (3.14)
we have

x(8(W') = x(F2) + x[W', W] = con(W). (3.15)
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Thus

2x[W', W]=2conW') — (x(F1) + x(F2))
=2conW’) —x(5(v))
=2conW’) —r(v),

which implies that

W AL
X[W,W]:COWW)—T

Asr(v)is even, we obtain thaf W', W]is integer. Therefore, by (3.14) and (3.15) it follows
thatx(F1) andx(F») are integer. As by Lemma 6, both and F» cannot have more than
one edge with fractional value, we then hawe) = 1 for all e € F1 U F>, contradicting
Lemma 11.

Consequentlyx(d(v)) = r(v) is not an equation of system (2.6). Now k&tW;) be
a cut of system (2.6) containinf; such thatF, € E(W;), (6(W;) may bed(W)). By
the minimality type hypothesis H1 o \{v}, we have that-(W;\{v}) >r(W\{v}) =
r(W’). Since we have supposed thdb) <r(W’), it then follows that-(W;\{v}) >r(v).
Hence coW;) <con(W;\{v}). Furthermore, applying Lemma 13 with respectpand
Wi\{v} yieldsx(Fy) — x(F2) <con(W;) — con(W;\{v}). Sincex(F1) = x(F2), it follows
that con(W;) >con(W;\{v}), and therefore caiV;) = con(W;\{v}). In consequence, as
x(F1) = x(F2), 0(W;\{v}) is tight forx. Since the latter holds for all cuts containifgin
system (2.6), this contradicts Lemma 12.]

Claim 6. The equation:(d(v)) = r(v) does not belong to systgi.6).

Proof. Assume that, onthe contratyp) is a cut of system (2.6). By Lemmas 11 and 6, there
must exist an edgg of F1 and an edg¢> of F> suchthat O< x(f1) <1and O< x(f2) < 1.
Note that by Lemma 6 we hawée)=1foralle € F1\{f1} andx(e)=1foralle € F2\{ f2}.

On the other hand, from Claim 5 together with the fact tBabntains at least two nodes
of maximum connectivity type, it follows that cOW) = r(v). As (W) andd(v) are tight
for x, we have

x(6(W)) = x(F1) + x[W, W] =con(W) =r(v),
x(0(v)) = x(F1) + x(F2) =r(v),

which yields

x[W, W] =x(F),
x(3(W')) = 2x(F2) =con(W').
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Also, by Claim 5 it follows that cotW’) = r(W’). Sincer(W’) is even, and, as(F») is
fractional, & (F») is not even, we obtain that

X(F2) > r(‘;/ ). (3.16)

Sincex(0(v)) = x(F1) + x(F2) = r(v), this implies that

W/
x(F1) <r(v) — r(2 ) (3.17)
Now by Claim 2, there must exist a further cut, sag) (different from 6(v)) of
system (2.6) that containg. Without loss of generality, we may suppose that W5.
Thus, by Lemma 7F; € E(W>). Let W, = W\ {v} (seeFig. 5. We claim that

x(0(Wp) =7 (v). (3.18)

In fact suppose, on the contrary, thab(W,)) < r(v). Asx(6(W5)) > con(W,), we then
have coriW,) < r(v), and therefore(W,) < r(v). SinceG contains at least two nodes with
maximum connectivity type, it follows that(W») >r(v), and hence cai,) = r(v). So
we have

x(6(W2)) = x(F2) + x[Wa2, Wy]
=con(W»)
=r(v).
As
x(0(Wy)) = x(F1) + x[Wa, W] <r(v),

this implies thatc (F2) > x(F1), a contradiction.
Consequently, inequality (3.18) holds. Now, sidg¢@/>) is tight for x, by (3.16) we get
r(W’)

x[Wa, Wh] < con(Wa) — R

Fig. 5.
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Therefore by (3.17) we obtain that

x(0(Wp)) = x(F1) + x[W2, W;]

< con(Wa) + r(v) — r(W).

From (3.18) it thus follows that

con(Wa) > r(W"). (3.19)
Now we claim that

r(W N Wa) <min{r(W\Wa), r(Wo\W)}. (3.20)
In fact asv € W\ Wo, from Claim 5 it follows that

r(WN W) <r(W') <r(v) =r(W\Wa).

As by (3.19) we also have(W’) < r(W>) and hence (W N W2) < r(W>), it follows that
r(W2) = r(W2\W). This implies that-(W N W2) < r(W2\W), and consequently, (3.20)
holds.

Sincev € WoN W andvy € WoN W, by Claim 1, we have eithé¥, € W or Wo C W.
In the first case, one would havg < E(W) which contradicts the definition af(W).
So assume tha¥, € W. This implies thatW, € W’ and thus-(W2) <r(W’). Since, by
inequality (3.19), we know that(W>) > r(W’), we get a contradiction. [J

Claim 7. x(F1) — x(F2) <r(v) — r(W).

Proof. AsV contains at least two nodes with a maximum connectivity type, and by Claim 5,
r(v) >r(W’), We have

x(6(W)) = x(F1) + x[W', W] = con(W) = r(v).
Also,
X(O(W) = x(F2) + x[W/, W]=conW') = r(W').

Hencex(F1) — x(F2) <r(v) — r(W’).
Suppose now that, on the contrary, the statement does not hold, that is

x(F) — x(F2) =r() —r(W). (3.21)

Let 6(W;) be a cut of system (2.6) containirfg such thatv € W;. By the minimality
type hypothesis H1 o\ {v}, we haver(W;\{v}) >r(W\{v}) = r(W’). Moreover, since
r(W\{v}) = max(r(W;), r(v)} > r(W') by Claim 5, we then have

con(Wi\{v}) >r(W) if r(W:\{v})) >r(W, (3.22)

conW\{v}) =r(W') if r(Wi\{v}) =r(W). (3.23)
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We now claim that co@;) <r(v). Indeed, if coliW;) > r(v), then coW;)=con(W;\{v}).
Therefore

x(O(Wi\{v})) = x(6(W})) — x(F1) + x(F2)
=con(W;) —r(v) + r(W"
=con(W;\{v}) — r(v) + r(W’).

By Claim 5, this implies that (6(W;\{v})) < con(W;\{v}), which is impossible. Thus,
con(W;) <r(v).

Suppose now that(W;\{v}) > r(W’). From (3.22), we have cqi;\{v}) > r(W’) and
therefore,

x(F2) + x[Wi\{v}, Wil = x(d(W;\{v}])
= con(W;\{v})
> r(W).
As o(W;) is a tight cut of system (2.6) and cOi;) <r(v), we then have
xX(F) + x[Wi\{v}, Wil = x(5(W;))
= con(W;)
<r(v)

and it immediatly follows that (F1) — x(F2) < r(v) — r(W’), contradicting (3.21).

Thus,(W;\{v}) =r(W’) and from (3.23) we get c@i;\{v}) =r(W’). Since there exist
at least two nodes having maximum connectivity typesamg > r(W’) by Claim 5, we
deduce coW;) = r(v). As 6(W;) is a tight cut of system (2.6) and using (3.21), we then
have

x(O(Wi\{v}) =x(6(W) — x(F1) + x(F2)
= con(W;) — x(F1) + x(F2)
=r() —r@) +r(W)
=r(W")
= con(W;\{v}).

Hence,o(W;\{v}) is tight for x. As 6(W;) is an arbitrary cut of system (2.6) containing
F; with v € W; and, by Claim 69(v) is not among the cuts of that system, we obtain a
contradiction with Lemma 12. [

4. The polyhedron P(G, r)

Let G = (V, E) be a graph with weights (¢), ¢ € E and letr ZK be a connectivity
type vector. Here we consider the SNDP when more than one copy of an edge may be used.
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More precisely, the problem here is to determine an integer veatoh* such that

(i) the graphH = (V, E(x)) is survivable, and
(i) > ,cpw(e)x(e) is minimum.

Here E (x) is the set of edges obtained by replacing each edufeE by x(e¢) edges. This
relaxation of the SNDP is important because it may provide a lower cost solution than the
case where at most one copy of an edge may be used.

In this section we shall discuss the polyhed®(G, r) associated with the solutions to
that problem. Clearly inequalities (1.1) and (1.3) are validfoG, r). Using Theorem 8 we
are going to show, in what follows, that these inequalities are sufficient to degt(ibe-)
whenG is series—parallel andv) is even for allv € V.

Theorem 14. LetG = (V, E) be a series—parallel graph. If the connectivity types are all
eventhenP (G, r) is completely described by inequaliti@is1) and (1.3).

Proof. Let P*(G, r) be the polyhedron described by inequalities (1.1) and (1.3). It suffices
to show that the extreme points &f(G, r) are integral. Suppose that, on the contrary,
there exists a fractional extreme paine R” of P*(G, r). LetG' = (V, E’) be the graph
obtained fromG by replacing each edgeof E by [x(e)] edgesey, ..., e[x()]. Clearly,

G' is series—parallel and by Theorem@(G’, r) is integral. Letr’ € R’ be the solution
given by

{x’(e,-):l fori=1,...,[x(e)] — 1,
x'(ej)) =x(e) — [x(e) = 1] fori=[x(e)],

It is easily seen that’ € Q(G’, r). Moreover,x’ is an extreme point o (G’, r). In fact,
if this is not the case, a@(G’, r) is integral, there must existinteger solutionsz(>2)
¥y, -...y; of P(G',r)andia, ..., 4 € R such that

t t
x' = Z /ljy} and Z ;u'j =1
j=1

j=1

} if x(e) #0.

Now, lety, ..., y; € RF be the solutions such that

[x(e)]
vile)= Y yi(e))

j=1

foree Eandi =1,...,t. ltisclearthatys, ..., y; € P*(G,r). Moreover we have that

t
X = Z )ujyj.
j=1

But this contradicts the fact thatis an extreme point oP*(G, r).
Consequently’ is an extreme point o (G’, r). Sincex’ is fractional and5’ is series—
parallel this contradicts Theorem 81
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5. Concluding remarks

We have studied the survivable network design problem and have given a complete linear
description of the associated polytope when the underlying graph is series—parallel and the
node connectivity types are all even. We have shown that in this case, the trivial and the
cut inequalities suffice to describe the polytope. Since the cut inequalities can be separated
in polynomial time, this provides a polynomial time cutting plane algorithm for solving
the survivable network design problem in series—parallel graphs. As a consequence we also
obtained that the nonnegativity inequalities together with the cut inequalities characterize
the polyhedron when multiple copies of an edge are allowed.

The trivial and the cut inequalities do not, unfortunately, suffice to describe the surviv-
able network polytope of a series—parallel graph if the node connectivity types may be
(even and) odd. The polytope in this case is an extension of the widely studied Steiner tree
polytope[8,9,16,23,36whose complete description in series—parallel graphs, although it
contains further classes of facets, is still unknown. However, when the connectivity types
are uniform, say equal tk, andk is odd and the graph is series—parallel, as shown by
Didi Biha and Mahjoul17], the corresponding polytope can be described by the trivial,
cut and the so-called series—parallel inequalities.

In general graphs, further classes of facets are needed for describing the survivable
network polytope even when the node types are uniform and equal to 2. Ma3sub
introduced for this case a large class of valid inequalities called-tpartition inequal-
ities. These inequalities can be extended in a straightforward manner to the case where
r(i) € Z4 forall i € V. Kerivin et al.[33] investigated a generalization of the class
of F-partition inequalities and discussed a branch-and-cut algorithm based on these in-
equalities, the trivial and the cut inequalities for both the 2-edge and the 2-node connected
subgraph problems. The algorithm is also used to solve the SNDP m¢hek {1, 2} for
alveV.

Goemans and BertsimfZ] showed that if the weightsi((e) : e € E) satisfy the trian-
gle inequalities (i.eaw(e) + w(f) >w(g) for every three edges f, g defining a triangle),
then the linear programs minfx : x € P*(G, r)} and min{fwx : x € P{(G, r)} have the
same optimal values. He®& (G, r) is obtained fromP* (G, r) by adding the constraints
{x(0@))=r() : i € S}andSis an arbitrary node subset@f They referred to this property
as theparsimonious property

If G =(V,E) is series—parallel ane(v) is even for allv € V, then by Theorem 14,
P*(G, r) is integral. AsP¢ (G, r) is a face of P*(G, r), it follows that P (G, r) is also
integral and thus the SNDP (& where edges may be used repeatedly is equivalent to the
linear program minfpx : x € Pj(G,r)}. As a consequence one can delete any vertex
i € V with r(i) = 0 when solving this linear program.
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